RobotArxiv
Robotics 53
☆ SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model
AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.
☆ Distributed AI Agents for Cognitive Underwater Robot Autonomy
Achieving robust cognitive autonomy in robots navigating complex, unpredictable environments remains a fundamental challenge in robotics. This paper presents Underwater Robot Self-Organizing Autonomy (UROSA), a groundbreaking architecture leveraging distributed Large Language Model AI agents integrated within the Robot Operating System 2 (ROS 2) framework to enable advanced cognitive capabilities in Autonomous Underwater Vehicles. UROSA decentralises cognition into specialised AI agents responsible for multimodal perception, adaptive reasoning, dynamic mission planning, and real-time decision-making. Central innovations include flexible agents dynamically adapting their roles, retrieval-augmented generation utilising vector databases for efficient knowledge management, reinforcement learning-driven behavioural optimisation, and autonomous on-the-fly ROS 2 node generation for runtime functional extensibility. Extensive empirical validation demonstrates UROSA's promising adaptability and reliability through realistic underwater missions in simulation and real-world deployments, showing significant advantages over traditional rule-based architectures in handling unforeseen scenarios, environmental uncertainties, and novel mission objectives. This work not only advances underwater autonomy but also establishes a scalable, safe, and versatile cognitive robotics framework capable of generalising to a diverse array of real-world applications.
☆ RAGNet: Large-scale Reasoning-based Affordance Segmentation Benchmark towards General Grasping ICCV 2025
General robotic grasping systems require accurate object affordance perception in diverse open-world scenarios following human instructions. However, current studies suffer from the problem of lacking reasoning-based large-scale affordance prediction data, leading to considerable concern about open-world effectiveness. To address this limitation, we build a large-scale grasping-oriented affordance segmentation benchmark with human-like instructions, named RAGNet. It contains 273k images, 180 categories, and 26k reasoning instructions. The images cover diverse embodied data domains, such as wild, robot, ego-centric, and even simulation data. They are carefully annotated with an affordance map, while the difficulty of language instructions is largely increased by removing their category name and only providing functional descriptions. Furthermore, we propose a comprehensive affordance-based grasping framework, named AffordanceNet, which consists of a VLM pre-trained on our massive affordance data and a grasping network that conditions an affordance map to grasp the target. Extensive experiments on affordance segmentation benchmarks and real-robot manipulation tasks show that our model has a powerful open-world generalization ability. Our data and code is available at https://github.com/wudongming97/AffordanceNet.
comment: Accepted by ICCV 2025. The code is at https://github.com/wudongming97/AffordanceNet
☆ Design of a bioinspired robophysical antenna for insect-scale tactile perception and navigation
The American cockroach (Periplaneta americana) uses its soft antennae to guide decision making by extracting rich tactile information from tens of thousands of distributed mechanosensors. Although tactile sensors enable robust, autonomous perception and navigation in natural systems, replicating these capabilities in insect-scale robots remains challenging due to stringent size, weight, and power constraints that limit existing sensor technologies. To overcome these limitations, we introduce CITRAS (Cockroach Inspired Tactile Robotic Antenna Sensor), a bioinspired, multi-segmented, compliant laminate sensor with embedded capacitive angle sensors. CITRAS is compact (73.7x15.6x2.1 mm), lightweight (491 mg), and low-power (32 mW), enabling seamless integration with miniature robotic platforms. The segmented compliant structure passively bends in response to environmental stimuli, achieving accurate hinge angle measurements with maximum errors of just 0.79 degree (quasistatic bending) and 3.58 degree (dynamic bending). Experimental evaluations demonstrate CITRAS' multifunctional tactile perception capabilities: predicting base-to-tip distances with 7.75 % error, estimating environmental gap widths with 6.73 % error, and distinguishing surface textures through differential sensor response. The future integration of this bioinspired tactile antenna in insect-scale robots addresses critical sensing gaps, promising enhanced autonomous exploration, obstacle avoidance, and environmental mapping in complex, confined environments.
☆ Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents
While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by $4\times$ and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.
☆ villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
comment: Project page: https://aka.ms/villa-x
☆ Stereo 3D Gaussian Splatting SLAM for Outdoor Urban Scenes
3D Gaussian Splatting (3DGS) has recently gained popularity in SLAM applications due to its fast rendering and high-fidelity representation. However, existing 3DGS-SLAM systems have predominantly focused on indoor environments and relied on active depth sensors, leaving a gap for large-scale outdoor applications. We present BGS-SLAM, the first binocular 3D Gaussian Splatting SLAM system designed for outdoor scenarios. Our approach uses only RGB stereo pairs without requiring LiDAR or active sensors. BGS-SLAM leverages depth estimates from pre-trained deep stereo networks to guide 3D Gaussian optimization with a multi-loss strategy enhancing both geometric consistency and visual quality. Experiments on multiple datasets demonstrate that BGS-SLAM achieves superior tracking accuracy and mapping performance compared to other 3DGS-based solutions in complex outdoor environments.
DuLoc: Life-Long Dual-Layer Localization in Changing and Dynamic Expansive Scenarios
LiDAR-based localization serves as a critical component in autonomous systems, yet existing approaches face persistent challenges in balancing repeatability, accuracy, and environmental adaptability. Traditional point cloud registration methods relying solely on offline maps often exhibit limited robustness against long-term environmental changes, leading to localization drift and reliability degradation in dynamic real-world scenarios. To address these challenges, this paper proposes DuLoc, a robust and accurate localization method that tightly couples LiDAR-inertial odometry with offline map-based localization, incorporating a constant-velocity motion model to mitigate outlier noise in real-world scenarios. Specifically, we develop a LiDAR-based localization framework that seamlessly integrates a prior global map with dynamic real-time local maps, enabling robust localization in unbounded and changing environments. Extensive real-world experiments in ultra unbounded port that involve 2,856 hours of operational data across 32 Intelligent Guided Vehicles (IGVs) are conducted and reported in this study. The results attained demonstrate that our system outperforms other state-of-the-art LiDAR localization systems in large-scale changing outdoor environments.
☆ DRACo-SLAM2: Distributed Robust Acoustic Communication-efficient SLAM for Imaging Sonar EquippedUnderwater Robot Teams with Object Graph Matching
We present DRACo-SLAM2, a distributed SLAM framework for underwater robot teams equipped with multibeam imaging sonar. This framework improves upon the original DRACo-SLAM by introducing a novel representation of sonar maps as object graphs and utilizing object graph matching to achieve time-efficient inter-robot loop closure detection without relying on prior geometric information. To better-accommodate the needs and characteristics of underwater scan matching, we propose incremental Group-wise Consistent Measurement Set Maximization (GCM), a modification of Pairwise Consistent Measurement Set Maximization (PCM), which effectively handles scenarios where nearby inter-robot loop closures share similar registration errors. The proposed approach is validated through extensive comparative analyses on simulated and real-world datasets.
☆ Human-Exoskeleton Kinematic Calibration to Improve Hand Tracking for Dexterous Teleoperation
Hand exoskeletons are critical tools for dexterous teleoperation and immersive manipulation interfaces, but achieving accurate hand tracking remains a challenge due to user-specific anatomical variability and donning inconsistencies. These issues lead to kinematic misalignments that degrade tracking performance and limit applicability in precision tasks. We propose a subject-specific calibration framework for exoskeleton-based hand tracking that uses redundant joint sensing and a residual-weighted optimization strategy to estimate virtual link parameters. Implemented on the Maestro exoskeleton, our method improves joint angle and fingertip position estimation across users with varying hand geometries. We introduce a data-driven approach to empirically tune cost function weights using motion capture ground truth, enabling more accurate and consistent calibration across participants. Quantitative results from seven subjects show substantial reductions in joint and fingertip tracking errors compared to uncalibrated and evenly weighted models. Qualitative visualizations using a Unity-based virtual hand further confirm improvements in motion fidelity. The proposed framework generalizes across exoskeleton designs with closed-loop kinematics and minimal sensing, and lays the foundation for high-fidelity teleoperation and learning-from-demonstration applications.
comment: 8 pages, 10 figures, submitted to RA-L
☆ Can LLM-Reasoning Models Replace Classical Planning? A Benchmark Study
Recent advancements in Large Language Models have sparked interest in their potential for robotic task planning. While these models demonstrate strong generative capabilities, their effectiveness in producing structured and executable plans remains uncertain. This paper presents a systematic evaluation of a broad spectrum of current state of the art language models, each directly prompted using Planning Domain Definition Language domain and problem files, and compares their planning performance with the Fast Downward planner across a variety of benchmarks. In addition to measuring success rates, we assess how faithfully the generated plans translate into sequences of actions that can actually be executed, identifying both strengths and limitations of using these models in this setting. Our findings show that while the models perform well on simpler planning tasks, they continue to struggle with more complex scenarios that require precise resource management, consistent state tracking, and strict constraint compliance. These results underscore fundamental challenges in applying language models to robotic planning in real world environments. By outlining the gaps that emerge during execution, we aim to guide future research toward combined approaches that integrate language models with classical planners in order to enhance the reliability and scalability of planning in autonomous robotics.
☆ Impact of a Lower Limb Exosuit Anchor Points on Energetics and Biomechanics
Anchor point placement is a crucial yet often overlooked aspect of exosuit design since it determines how forces interact with the human body. This work analyzes the impact of different anchor point positions on gait kinematics, muscular activation and energetic consumption. A total of six experiments were conducted with 11 subjects wearing the XoSoft exosuit, which assists hip flexion in five configurations. Subjects were instrumented with an IMU-based motion tracking system, EMG sensors, and a mask to measure metabolic consumption. The results show that positioning the knee anchor point on the posterior side while keeping the hip anchor on the anterior part can reduce muscle activation in the hip flexors by up to 10.21\% and metabolic expenditure by up to 18.45\%. Even if the only assisted joint was the hip, all the configurations introduced changes also in the knee and ankle kinematics. Overall, no single configuration was optimal across all subjects, suggesting that a personalized approach is necessary to transmit the assistance forces optimally. These findings emphasize that anchor point position does indeed have a significant impact on exoskeleton effectiveness and efficiency. However, these optimal positions are subject-specific to the exosuit design, and there is a strong need for future work to tailor musculoskeletal models to individual characteristics and validate these results in clinical populations.
comment: 12 pages, 10 figures
☆ User Experience Estimation in Human-Robot Interaction Via Multi-Instance Learning of Multimodal Social Signals IROS 2025
In recent years, the demand for social robots has grown, requiring them to adapt their behaviors based on users' states. Accurately assessing user experience (UX) in human-robot interaction (HRI) is crucial for achieving this adaptability. UX is a multi-faceted measure encompassing aspects such as sentiment and engagement, yet existing methods often focus on these individually. This study proposes a UX estimation method for HRI by leveraging multimodal social signals. We construct a UX dataset and develop a Transformer-based model that utilizes facial expressions and voice for estimation. Unlike conventional models that rely on momentary observations, our approach captures both short- and long-term interaction patterns using a multi-instance learning framework. This enables the model to capture temporal dynamics in UX, providing a more holistic representation. Experimental results demonstrate that our method outperforms third-party human evaluators in UX estimation.
comment: This paper has been accepted for presentation at IEEE/RSJ International Conference on Intelligent Robots and Systems 2025 (IROS 2025)
☆ A Unified Perception-Language-Action Framework for Adaptive Autonomous Driving
Autonomous driving systems face significant challenges in achieving human-like adaptability, robustness, and interpretability in complex, open-world environments. These challenges stem from fragmented architectures, limited generalization to novel scenarios, and insufficient semantic extraction from perception. To address these limitations, we propose a unified Perception-Language-Action (PLA) framework that integrates multi-sensor fusion (cameras, LiDAR, radar) with a large language model (LLM)-augmented Vision-Language-Action (VLA) architecture, specifically a GPT-4.1-powered reasoning core. This framework unifies low-level sensory processing with high-level contextual reasoning, tightly coupling perception with natural language-based semantic understanding and decision-making to enable context-aware, explainable, and safety-bounded autonomous driving. Evaluations on an urban intersection scenario with a construction zone demonstrate superior performance in trajectory tracking, speed prediction, and adaptive planning. The results highlight the potential of language-augmented cognitive frameworks for advancing the safety, interpretability, and scalability of autonomous driving systems.
☆ H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation
Imitation learning for robotic manipulation faces a fundamental challenge: the scarcity of large-scale, high-quality robot demonstration data. Recent robotic foundation models often pre-train on cross-embodiment robot datasets to increase data scale, while they face significant limitations as the diverse morphologies and action spaces across different robot embodiments make unified training challenging. In this paper, we present H-RDT (Human to Robotics Diffusion Transformer), a novel approach that leverages human manipulation data to enhance robot manipulation capabilities. Our key insight is that large-scale egocentric human manipulation videos with paired 3D hand pose annotations provide rich behavioral priors that capture natural manipulation strategies and can benefit robotic policy learning. We introduce a two-stage training paradigm: (1) pre-training on large-scale egocentric human manipulation data, and (2) cross-embodiment fine-tuning on robot-specific data with modular action encoders and decoders. Built on a diffusion transformer architecture with 2B parameters, H-RDT uses flow matching to model complex action distributions. Extensive evaluations encompassing both simulation and real-world experiments, single-task and multitask scenarios, as well as few-shot learning and robustness assessments, demonstrate that H-RDT outperforms training from scratch and existing state-of-the-art methods, including Pi0 and RDT, achieving significant improvements of 13.9% and 40.5% over training from scratch in simulation and real-world experiments, respectively. The results validate our core hypothesis that human manipulation data can serve as a powerful foundation for learning bimanual robotic manipulation policies.
☆ Online Estimation of Table-Top Grown Strawberry Mass in Field Conditions with Occlusions IROS 2025
Accurate mass estimation of table-top grown strawberries under field conditions remains challenging due to frequent occlusions and pose variations. This study proposes a vision-based pipeline integrating RGB-D sensing and deep learning to enable non-destructive, real-time and online mass estimation. The method employed YOLOv8-Seg for instance segmentation, Cycle-consistent generative adversarial network (CycleGAN) for occluded region completion, and tilt-angle correction to refine frontal projection area calculations. A polynomial regression model then mapped the geometric features to mass. Experiments demonstrated mean mass estimation errors of 8.11% for isolated strawberries and 10.47% for occluded cases. CycleGAN outperformed large mask inpainting (LaMa) model in occlusion recovery, achieving superior pixel area ratios (PAR) (mean: 0.978 vs. 1.112) and higher intersection over union (IoU) scores (92.3% vs. 47.7% in the [0.9-1] range). This approach addresses critical limitations of traditional methods, offering a robust solution for automated harvesting and yield monitoring with complex occlusion patterns.
comment: Accepted by IROS 2025
☆ Quantifying and Visualizing Sim-to-Real Gaps: Physics-Guided Regularization for Reproducibility
Simulation-to-real transfer using domain randomization for robot control often relies on low-gear-ratio, backdrivable actuators, but these approaches break down when the sim-to-real gap widens. Inspired by the traditional PID controller, we reinterpret its gains as surrogates for complex, unmodeled plant dynamics. We then introduce a physics-guided gain regularization scheme that measures a robot's effective proportional gains via simple real-world experiments. Then, we penalize any deviation of a neural controller's local input-output sensitivities from these values during training. To avoid the overly conservative bias of naive domain randomization, we also condition the controller on the current plant parameters. On an off-the-shelf two-wheeled balancing robot with a 110:1 gearbox, our gain-regularized, parameter-conditioned RNN achieves angular settling times in hardware that closely match simulation. At the same time, a purely domain-randomized policy exhibits persistent oscillations and a substantial sim-to-real gap. These results demonstrate a lightweight, reproducible framework for closing sim-to-real gaps on affordable robotic hardware.
☆ Policy Learning from Large Vision-Language Model Feedback without Reward Modeling IROS 2025
Offline reinforcement learning (RL) provides a powerful framework for training robotic agents using pre-collected, suboptimal datasets, eliminating the need for costly, time-consuming, and potentially hazardous online interactions. This is particularly useful in safety-critical real-world applications, where online data collection is expensive and impractical. However, existing offline RL algorithms typically require reward labeled data, which introduces an additional bottleneck: reward function design is itself costly, labor-intensive, and requires significant domain expertise. In this paper, we introduce PLARE, a novel approach that leverages large vision-language models (VLMs) to provide guidance signals for agent training. Instead of relying on manually designed reward functions, PLARE queries a VLM for preference labels on pairs of visual trajectory segments based on a language task description. The policy is then trained directly from these preference labels using a supervised contrastive preference learning objective, bypassing the need to learn explicit reward models. Through extensive experiments on robotic manipulation tasks from the MetaWorld, PLARE achieves performance on par with or surpassing existing state-of-the-art VLM-based reward generation methods. Furthermore, we demonstrate the effectiveness of PLARE in real-world manipulation tasks with a physical robot, further validating its practical applicability.
comment: Accepted to IROS 2025
☆ Multi-Waypoint Path Planning and Motion Control for Non-holonomic Mobile Robots in Agricultural Applications
There is a growing demand for autonomous mobile robots capable of navigating unstructured agricultural environments. Tasks such as weed control in meadows require efficient path planning through an unordered set of coordinates while minimizing travel distance and adhering to curvature constraints to prevent soil damage and protect vegetation. This paper presents an integrated navigation framework combining a global path planner based on the Dubins Traveling Salesman Problem (DTSP) with a Nonlinear Model Predictive Control (NMPC) strategy for local path planning and control. The DTSP generates a minimum-length, curvature-constrained path that efficiently visits all targets, while the NMPC leverages this path to compute control signals to accurately reach each waypoint. The system's performance was validated through comparative simulation analysis on real-world field datasets, demonstrating that the coupled DTSP-based planner produced smoother and shorter paths, with a reduction of about 16% in the provided scenario, compared to decoupled methods. Based thereon, the NMPC controller effectively steered the robot to the desired waypoints, while locally optimizing the trajectory and ensuring adherence to constraints. These findings demonstrate the potential of the proposed framework for efficient autonomous navigation in agricultural environments.
comment: 6 pages
☆ Learning to Drift with Individual Wheel Drive: Maneuvering Autonomous Vehicle at the Handling Limits
Drifting, characterized by controlled vehicle motion at high sideslip angles, is crucial for safely handling emergency scenarios at the friction limits. While recent reinforcement learning approaches show promise for drifting control, they struggle with the significant simulation-to-reality gap, as policies that perform well in simulation often fail when transferred to physical systems. In this paper, we present a reinforcement learning framework with GPU-accelerated parallel simulation and systematic domain randomization that effectively bridges the gap. The proposed approach is validated on both simulation and a custom-designed and open-sourced 1/10 scale Individual Wheel Drive (IWD) RC car platform featuring independent wheel speed control. Experiments across various scenarios from steady-state circular drifting to direction transitions and variable-curvature path following demonstrate that our approach achieves precise trajectory tracking while maintaining controlled sideslip angles throughout complex maneuvers in both simulated and real-world environments.
☆ Assessing the Alignment of Automated Vehicle Decisions with Human Reasons
A key challenge in deploying automated vehicles (AVs) is ensuring they make appropriate decisions in ethically challenging everyday driving situations. While much attention has been paid to rare, high-stakes dilemmas such as trolley problems, similar tensions also arise in routine scenarios, such as navigating empty intersections, where multiple human considerations, including legality and comfort, often conflict. Current AV planning systems typically rely on rigid rules, which struggle to balance these competing considerations and can lead to behaviour that misaligns with human expectations. This paper proposes a novel reasons-based trajectory evaluation framework that operationalises the tracking condition of Meaningful Human Control (MHC). The framework models the reasons of human agents, such as regulatory compliance, as quantifiable functions and evaluates how well candidate AV trajectories align with these reasons. By assigning adjustable weights to agent priorities and integrating a balance function to discourage the exclusion of any agent, the framework supports interpretable decision evaluation. Through a real-world-inspired overtaking scenario, we show how this approach reveals tensions, for instance between regulatory compliance, efficiency, and comfort. The framework functions as a modular evaluation layer over existing planning algorithms. It offers a transparent tool for assessing ethical alignment in everyday scenarios and provides a practical step toward implementing MHC in real-world AV deployment.
comment: This version incorporates revisions based on peer-review feedback from a prior submission. The work has not yet been accepted and is being prepared for resubmission
☆ Whisker-based Active Tactile Perception for Contour Reconstruction
Perception using whisker-inspired tactile sensors currently faces a major challenge: the lack of active control in robots based on direct contact information from the whisker. To accurately reconstruct object contours, it is crucial for the whisker sensor to continuously follow and maintain an appropriate relative touch pose on the surface. This is especially important for localization based on tip contact, which has a low tolerance for sharp surfaces and must avoid slipping into tangential contact. In this paper, we first construct a magnetically transduced whisker sensor featuring a compact and robust suspension system composed of three flexible spiral arms. We develop a method that leverages a characterized whisker deflection profile to directly extract the tip contact position using gradient descent, with a Bayesian filter applied to reduce fluctuations. We then propose an active motion control policy to maintain the optimal relative pose of the whisker sensor against the object surface. A B-Spline curve is employed to predict the local surface curvature and determine the sensor orientation. Results demonstrate that our algorithm can effectively track objects and reconstruct contours with sub-millimeter accuracy. Finally, we validate the method in simulations and real-world experiments where a robot arm drives the whisker sensor to follow the surfaces of three different objects.
☆ GSFusion:Globally Optimized LiDAR-Inertial-Visual Mapping for Gaussian Splatting
While 3D Gaussian Splatting (3DGS) has revolutionized photorealistic mapping, conventional approaches based on camera sensor, even RGB-D, suffer from fundamental limitations such as high computational load, failure in environments with poor texture or illumination, and short operational ranges. LiDAR emerges as a robust alternative, but its integration with 3DGS introduces new challenges, such as the need for exceptional global alignment for photorealistic quality and prolonged optimization times caused by sparse data. To address these challenges, we propose GSFusion, an online LiDAR-Inertial-Visual mapping system that ensures high-precision map consistency through a surfel-to-surfel constraint in the global pose-graph optimization. To handle sparse data, our system employs a pixel-aware Gaussian initialization strategy for efficient representation and a bounded sigmoid constraint to prevent uncontrolled Gaussian growth. Experiments on public and our datasets demonstrate our system outperforms existing 3DGS SLAM systems in terms of rendering quality and map-building efficiency.
☆ Simulation-based planning of Motion Sequences for Automated Procedure Optimization in Multi-Robot Assembly Cells
Reconfigurable multi-robot cells offer a promising approach to meet fluctuating assembly demands. However, the recurrent planning of their configurations introduces new challenges, particularly in generating optimized, coordinated multi-robot motion sequences that minimize the assembly duration. This work presents a simulation-based method for generating such optimized sequences. The approach separates assembly steps into task-related core operations and connecting traverse operations. While core operations are constrained and predetermined, traverse operations offer substantial optimization potential. Scheduling the core operations is formulated as an optimization problem, requiring feasible traverse operations to be integrated using a decomposition-based motion planning strategy. Several solution techniques are explored, including a sampling heuristic, tree-based search and gradient-free optimization. For motion planning, a decomposition method is proposed that identifies specific areas in the schedule, which can be solved independently with modified centralized path planning algorithms. The proposed method generates efficient and collision-free multi-robot assembly procedures that outperform a baseline relying on decentralized, robot-individual motion planning. Its effectiveness is demonstrated through simulation experiments.
☆ Quadratic Programming-Based Posture Manipulation and Thrust-vectoring for Agile Dynamic Walking on Narrow Pathways
There has been significant advancement in legged robot's agility where they can show impressive acrobatic maneuvers, such as parkour. These maneuvers rely heavily on posture manipulation. To expand the stability and locomotion plasticity, we use the multi-modal ability in our legged-aerial platform, the Husky Beta, to perform thruster-assisted walking. This robot has thrusters on each of its sagittal knee joints which can be used to stabilize its frontal dynamic as it walks. In this work, we perform a simulation study of quadruped narrow-path walking with Husky $\beta$, where the robot will utilize its thrusters to stably walk on a narrow path. The controller is designed based on a centroidal dynamics model with thruster and foot ground contact forces as inputs. These inputs are regulated using a QP solver to be used in a model predictive control framework. In addition to narrow-path walking, we also perform a lateral push-recovery simulation to study how the thrusters can be used to stabilize the frontal dynamics.
☆ Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks
Multi-task Reinforcement Learning (MTRL) has emerged as a critical training paradigm for applying reinforcement learning (RL) to a set of complex real-world robotic tasks, which demands a generalizable and robust policy. At the same time, \emph{massively parallelized training} has gained popularity, not only for significantly accelerating data collection through GPU-accelerated simulation but also for enabling diverse data collection across multiple tasks by simulating heterogeneous scenes in parallel. However, existing MTRL research has largely been limited to off-policy methods like SAC in the low-parallelization regime. MTRL could capitalize on the higher asymptotic performance of on-policy algorithms, whose batches require data from the current policy, and as a result, take advantage of massive parallelization offered by GPU-accelerated simulation. To bridge this gap, we introduce a massively parallelized $\textbf{M}$ulti-$\textbf{T}$ask $\textbf{Bench}$mark for robotics (MTBench), an open-sourced benchmark featuring a broad distribution of 50 manipulation tasks and 20 locomotion tasks, implemented using the GPU-accelerated simulator IsaacGym. MTBench also includes four base RL algorithms combined with seven state-of-the-art MTRL algorithms and architectures, providing a unified framework for evaluating their performance. Our extensive experiments highlight the superior speed of evaluating MTRL approaches using MTBench, while also uncovering unique challenges that arise from combining massive parallelism with MTRL. Code is available at $\href{https://github.com/Viraj-Joshi/MTBench}{ https://github.com/Viraj-Joshi/MTBench}$
comment: RLC 2025
♻ ☆ UniLegs: Universal Multi-Legged Robot Control through Morphology-Agnostic Policy Distillation IROS 2025
Developing controllers that generalize across diverse robot morphologies remains a significant challenge in legged locomotion. Traditional approaches either create specialized controllers for each morphology or compromise performance for generality. This paper introduces a two-stage teacher-student framework that bridges this gap through policy distillation. First, we train specialized teacher policies optimized for individual morphologies, capturing the unique optimal control strategies for each robot design. Then, we distill this specialized expertise into a single Transformer-based student policy capable of controlling robots with varying leg configurations. Our experiments across five distinct legged morphologies demonstrate that our approach preserves morphology-specific optimal behaviors, with the Transformer architecture achieving 94.47% of teacher performance on training morphologies and 72.64% on unseen robot designs. Comparative analysis reveals that Transformer-based architectures consistently outperform MLP baselines by leveraging attention mechanisms to effectively model joint relationships across different kinematic structures. We validate our approach through successful deployment on a physical quadruped robot, demonstrating the practical viability of our morphology-agnostic control framework. This work presents a scalable solution for developing universal legged robot controllers that maintain near-optimal performance while generalizing across diverse morphologies.
comment: 6 pages, 3 figures, IROS 2025
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ SHINE: Social Homology Identification for Navigation in Crowded Environments
Navigating mobile robots in social environments remains a challenging task due to the intricacies of human-robot interactions. Most of the motion planners designed for crowded and dynamic environments focus on choosing the best velocity to reach the goal while avoiding collisions, but do not explicitly consider the high-level navigation behavior (avoiding through the left or right side, letting others pass or passing before others, etc.). In this work, we present a novel motion planner that incorporates topology distinct paths representing diverse navigation strategies around humans. The planner selects the topology class that imitates human behavior the best using a deep neural network model trained on real-world human motion data, ensuring socially intelligent and contextually aware navigation. Our system refines the chosen path through an optimization-based local planner in real time, ensuring seamless adherence to desired social behaviors. In this way, we decouple perception and local planning from the decision-making process. We evaluate the prediction accuracy of the network with real-world data. In addition, we assess the navigation capabilities in both simulation and a real-world platform, comparing it with other state-of-the-art planners. We demonstrate that our planner exhibits socially desirable behaviors and shows a smooth and remarkable performance.
comment: This paper has been accepted for publication at The International Journal of Robotics Research. Please, when citing the paper, refer to the official manuscript with the following DOI: 10.1177/02783649251344639
♻ ☆ Decentralized Uncertainty-Aware Multi-Agent Collision Avoidance with Model Predictive Path Integral IROS2025
Decentralized multi-agent navigation under uncertainty is a complex task that arises in numerous robotic applications. It requires collision avoidance strategies that account for both kinematic constraints, sensing and action execution noise. In this paper, we propose a novel approach that integrates the Model Predictive Path Integral (MPPI) with a probabilistic adaptation of Optimal Reciprocal Collision Avoidance. Our method ensures safe and efficient multi-agent navigation by incorporating probabilistic safety constraints directly into the MPPI sampling process via a Second-Order Cone Programming formulation. This approach enables agents to operate independently using local noisy observations while maintaining safety guarantees. We validate our algorithm through extensive simulations with differential-drive robots and benchmark it against state-of-the-art methods, including ORCA-DD and B-UAVC. Results demonstrate that our approach outperforms them while achieving high success rates, even in densely populated environments. Additionally, validation in the Gazebo simulator confirms its practical applicability to robotic platforms. A source code is available at http://github.com/PathPlanning/MPPI-Collision-Avoidance.
comment: This is a pre-print of the paper accepted to IROS2025. The manuscript includes 8 pages, 4 figures, and 1 table. A supplementary video is available at https://youtu.be/_D4zDYJ4KCk Updated version: added link to source code in the abstract; updated experimental results description in Section VI.A; updated author affiliation and funding information; minor typo corrections
♻ ☆ SmartPNT-MSF: A Multi-Sensor Fusion Dataset for Positioning and Navigation Research
High-precision navigation and positioning systems are critical for applications in autonomous vehicles and mobile mapping, where robust and continuous localization is essential. To test and enhance the performance of algorithms, some research institutions and companies have successively constructed and publicly released datasets. However, existing datasets still suffer from limitations in sensor diversity and environmental coverage. To address these shortcomings and advance development in related fields, the SmartPNT Multisource Integrated Navigation, Positioning, and Attitude Dataset has been developed. This dataset integrates data from multiple sensors, including Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU), optical cameras, and LiDAR, to provide a rich and versatile resource for research in multi-sensor fusion and high-precision navigation. The dataset construction process is thoroughly documented, encompassing sensor configurations, coordinate system definitions, and calibration procedures for both cameras and LiDAR. A standardized framework for data collection and processing ensures consistency and scalability, enabling large-scale analysis. Validation using state-of-the-art Simultaneous Localization and Mapping (SLAM) algorithms, such as VINS-Mono and LIO-SAM, demonstrates the dataset's applicability for advanced navigation research. Covering a wide range of real-world scenarios, including urban areas, campuses, tunnels, and suburban environments, the dataset offers a valuable tool for advancing navigation technologies and addressing challenges in complex environments. By providing a publicly accessible, high-quality dataset, this work aims to bridge gaps in sensor diversity, data accessibility, and environmental representation, fostering further innovation in the field.
♻ ☆ Generalizable Motion Policies through Keypoint Parameterization and Transportation Maps
Learning from Interactive Demonstrations has revolutionized the way non-expert humans teach robots. It is enough to kinesthetically move the robot around to teach pick-and-place, dressing, or cleaning policies. However, the main challenge is correctly generalizing to novel situations, e.g., different surfaces to clean or different arm postures to dress. This article proposes a novel task parameterization and generalization to transport the original robot policy, i.e., position, velocity, orientation, and stiffness. Unlike the state of the art, only a set of keypoints is tracked during the demonstration and the execution, e.g., a point cloud of the surface to clean. We then propose to fit a nonlinear transformation that would deform the space and then the original policy using the paired source and target point sets. The use of function approximators like Gaussian Processes allows us to generalize, or transport, the policy from every space location while estimating the uncertainty of the resulting policy due to the limited task keypoints and the reduced number of demonstrations. We compare the algorithm's performance with state-of-the-art task parameterization alternatives and analyze the effect of different function approximators. We also validated the algorithm on robot manipulation tasks, i.e., different posture arm dressing, different location product reshelving, and different shape surface cleaning.
comment: This article was accepted at IEEE Transactions on Robotics (T-RO)
♻ ☆ iFANnpp: Nuclear Power Plant Digital Twin for Robots and Autonomous Intelligence
Robotics has gained attention in the nuclear industry due to its precision and ability to automate tasks. However, there is a critical need for advanced simulation and control methods to predict robot behavior and optimize plant performance, motivating the use of digital twins. Most existing digital twins do not offer a total design of a nuclear power plant. Moreover, they are designed for specific algorithms or tasks, making them unsuitable for broader research applications. In response, this work proposes a comprehensive nuclear power plant digital twin designed to improve real-time monitoring, operational efficiency, and predictive maintenance. A full nuclear power plant is modeled in Unreal Engine 5 and integrated with a high-fidelity Generic Pressurized Water Reactor Simulator to create a realistic model of a nuclear power plant and a real-time updated virtual environment. The virtual environment provides various features for researchers to easily test custom robot algorithms and frameworks.
♻ ☆ Generalizable Image Repair for Robust Visual Control IROS 2025
Vision-based control relies on accurate perception to achieve robustness. However, image distribution changes caused by sensor noise, adverse weather, and dynamic lighting can degrade perception, leading to suboptimal control decisions. Existing approaches, including domain adaptation and adversarial training, improve robustness but struggle to generalize to unseen corruptions while introducing computational overhead. To address this challenge, we propose a real-time image repair module that restores corrupted images before they are used by the controller. Our method leverages generative adversarial models, specifically CycleGAN and pix2pix, for image repair. CycleGAN enables unpaired image-to-image translation to adapt to novel corruptions, while pix2pix exploits paired image data when available to improve the quality. To ensure alignment with control performance, we introduce a control-focused loss function that prioritizes perceptual consistency in repaired images. We evaluated our method in a simulated autonomous racing environment with various visual corruptions. The results show that our approach significantly improves performance compared to baselines, mitigating distribution shift and enhancing controller reliability.
comment: 8 pages, 4 figures, 2 tables, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ KGN-Pro: Keypoint-Based Grasp Prediction through Probabilistic 2D-3D Correspondence Learning
High-level robotic manipulation tasks demand flexible 6-DoF grasp estimation to serve as a basic function. Previous approaches either directly generate grasps from point-cloud data, suffering from challenges with small objects and sensor noise, or infer 3D information from RGB images, which introduces expensive annotation requirements and discretization issues. Recent methods mitigate some challenges by retaining a 2D representation to estimate grasp keypoints and applying Perspective-n-Point (PnP) algorithms to compute 6-DoF poses. However, these methods are limited by their non-differentiable nature and reliance solely on 2D supervision, which hinders the full exploitation of rich 3D information. In this work, we present KGN-Pro, a novel grasping network that preserves the efficiency and fine-grained object grasping of previous KGNs while integrating direct 3D optimization through probabilistic PnP layers. KGN-Pro encodes paired RGB-D images to generate Keypoint Map, and further outputs a 2D confidence map to weight keypoint contributions during re-projection error minimization. By modeling the weighted sum of squared re-projection errors probabilistically, the network effectively transmits 3D supervision to its 2D keypoint predictions, enabling end-to-end learning. Experiments on both simulated and real-world platforms demonstrate that KGN-Pro outperforms existing methods in terms of grasp cover rate and success rate.
♻ ☆ MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
♻ ☆ Line-Search Filter Differential Dynamic Programming for Optimal Control with Nonlinear Equality Constraints
We present FilterDDP, a differential dynamic programming algorithm for solving discrete-time, optimal control problems (OCPs) with nonlinear equality constraints. Unlike prior methods based on merit functions or the augmented Lagrangian class of algorithms, FilterDDP uses a step filter in conjunction with a line search to handle equality constraints. We identify two important design choices for the step filter criteria which lead to robust numerical performance: 1) we use the Lagrangian instead of the cost as one of the filter criterion and, 2) for the stopping criteria and backward pass Hessians, we replace the value function gradient with an estimated dual variable of the dynamics constraints. Both choices are rigorously justified, for 2) in particular by a formal proof of local quadratic convergence. We validate FilterDDP on three contact implicit trajectory optimisation problems which arise in robotics.
♻ ☆ CoA-VLA: Improving Vision-Language-Action Models via Visual-Textual Chain-of-Affordance
Robot foundation models, particularly Vision-Language-Action (VLA) models, have garnered significant attention for their ability to enhance robot policy learning, greatly improving robot's generalization and robustness. OpenAI's recent model, O1, showcased impressive capabilities in solving complex problems by utilizing extensive reasoning chains. This prompts an important question: can robot models achieve better performance in multi-task , complex environments by reviewing prior observations and then providing task-specific reasoning to guide action prediction? In this paper, we introduce Chain-of-Affordance (CoA-VLA) , a novel approach to scaling robot models by incorporating reasoning in the format of sequential robot affordances to facilitate task completion. Specifically, we prompt the model to consider the following four types of affordances before taking action: (1) object affordance - what object to manipulate and where it is ; (2) grasp affordance - the specific object part to grasp ; (3) spatial affordance - the optimal space to place the object ; and (4) movement affordance-the collision - free path for movement. We further transform each affordance into two prompting formats: visual affordance and textual affordance. We introduce a novel vision-language co-injection module that integrates this knowledge into the policy network. This allows the robot to leverage essential contextual information during action inference, resulting in improved precision and robustness. Our experiments demonstrate that CoA-VLA outperforms state-of-the-art robot foundation models, including OpenVLA and Octo, on a variety of tasks. Furthermore, CoA-VLA exhibits strong generalization capabilities, including recognizing unseen object poses, identifying free space, and avoiding obstacles in novel environments.
comment: Project webpage is available at https://chain-of-affordance.github.io
AKF-LIO: LiDAR-Inertial Odometry with Gaussian Map by Adaptive Kalman Filter IROS 2025
Existing LiDAR-Inertial Odometry (LIO) systems typically use sensor-specific or environment-dependent measurement covariances during state estimation, leading to laborious parameter tuning and suboptimal performance in challenging conditions (e.g., sensor degeneracy and noisy observations). Therefore, we propose an Adaptive Kalman Filter (AKF) framework that dynamically estimates time-varying noise covariances of LiDAR and Inertial Measurement Unit (IMU) measurements, enabling context-aware confidence weighting between sensors. During LiDAR degeneracy, the system prioritizes IMU data while suppressing contributions from unreliable inputs like moving objects or noisy point clouds. Furthermore, a compact Gaussian-based map representation is introduced to model environmental planarity and spatial noise. A correlated registration strategy ensures accurate plane normal estimation via pseudo-merge, even in unstructured environments like forests. Extensive experiments validate the robustness of the proposed system across diverse environments, including dynamic scenes and geometrically degraded scenarios. Our method achieves reliable localization results across all MARS-LVIG sequences and ranks 8th on the KITTI Odometry Benchmark. The code will be released at https://github.com/xpxie/AKF-LIO.git.
comment: Submitted to IROS 2025 Conference, https://github.com/xpxie/AKF-LIO.git
♻ ☆ Allocation for Omnidirectional Aerial Robots: Incorporating Power Dynamics
Tilt-rotor aerial robots are more dynamic and versatile than fixed-rotor platforms, since the thrust vector and body orientation are decoupled. However, the coordination of servos and propellers (the allocation problem) is not trivial, especially accounting for overactuation and actuator dynamics. We incrementally build and present three novel allocation methods for tiltrotor aerial robots, comparing them to state-of-the-art methods on a real system performing dynamic maneuvers. We extend the state-of-the-art geometric allocation into a differential allocation, which uses the platform's redundancy and does not suffer from singularities. We expand it by incorporating actuator dynamics and propeller power dynamics. These allow us to model dynamic propeller acceleration limits, bringing two main advantages: balancing propeller speed without the need of nullspace goals and allowing the platform to selectively turn-off propellers during flight, opening the door to new manipulation possibilities. We also use actuator dynamics and limits to normalize the allocation problem, making it easier to tune and allowing it to track 70% faster trajectories than a geometric allocation.
♻ ☆ UniLGL: Learning Uniform Place Recognition for FOV-limited/Panoramic LiDAR Global Localization
Existing LGL methods typically consider only partial information (e.g., geometric features) from LiDAR observations or are designed for homogeneous LiDAR sensors, overlooking the uniformity in LGL. In this work, a uniform LGL method is proposed, termed UniLGL, which simultaneously achieves spatial and material uniformity, as well as sensor-type uniformity. The key idea of the proposed method is to encode the complete point cloud, which contains both geometric and material information, into a pair of BEV images (i.e., a spatial BEV image and an intensity BEV image). An end-to-end multi-BEV fusion network is designed to extract uniform features, equipping UniLGL with spatial and material uniformity. To ensure robust LGL across heterogeneous LiDAR sensors, a viewpoint invariance hypothesis is introduced, which replaces the conventional translation equivariance assumption commonly used in existing LPR networks and supervises UniLGL to achieve sensor-type uniformity in both global descriptors and local feature representations. Finally, based on the mapping between local features on the 2D BEV image and the point cloud, a robust global pose estimator is derived that determines the global minimum of the global pose on SE(3) without requiring additional registration. To validate the effectiveness of the proposed uniform LGL, extensive benchmarks are conducted in real-world environments, and the results show that the proposed UniLGL is demonstratively competitive compared to other State-of-the-Art LGL methods. Furthermore, UniLGL has been deployed on diverse platforms, including full-size trucks and agile Micro Aerial Vehicles (MAVs), to enable high-precision localization and mapping as well as multi-MAV collaborative exploration in port and forest environments, demonstrating the applicability of UniLGL in industrial and field scenarios.
♻ ☆ Exploiting Local Observations for Robust Robot Learning
While many robotic tasks can be addressed using either centralized single-agent control with full state observation or decentralized multi-agent control, clear criteria for choosing between these approaches remain underexplored. This paper systematically investigates how multi-agent reinforcement learning (MARL) with local observations can improve robustness in complex robotic systems compared to traditional centralized control. Through theoretical analysis and empirical validation, we show that in certain tasks, decentralized MARL can achieve performance comparable to centralized methods while exhibiting greater resilience to perturbations and agent failures. By analytically demonstrating the equivalence of single-agent reinforcement learning (SARL) and MARL under full observability, we identify observability as the critical factor distinguishing the two paradigms. We further derive bounds quantifying performance degradation under external perturbations for locally observable policies. Empirical results on standard MARL benchmarks confirm that MARL with limited observations can maintain competitive performance. Finally, real-world experiments with a mobile manipulator demonstrate that decentralized MARL controllers achieve markedly improved robustness to agent malfunctions and environmental disturbances relative to centralized baselines. Together, these findings highlight MARL with local observations as a robust and practical alternative to conventional centralized control in complex robotic systems.
comment: 8 pages, 8 figures
♻ ☆ Estimating Scene Flow in Robot Surroundings with Distributed Miniaturized Time-of-Flight Sensors
Tracking motions of humans or objects in the surroundings of the robot is essential to improve safe robot motions and reactions. In this work, we present an approach for scene flow estimation from low-density and noisy point clouds acquired from miniaturized Time of Flight (ToF) sensors distributed on the robot body. The proposed method clusters points from consecutive frames and applies Iterative Closest Point (ICP) to estimate a dense motion flow, with additional steps introduced to mitigate the impact of sensor noise and low-density data points. Specifically, we employ a fitness-based classification to distinguish between stationary and moving points and an inlier removal strategy to refine geometric correspondences. The proposed approach is validated in an experimental setup where 24 ToF are used to estimate the velocity of an object moving at different controlled speeds. Experimental results show that the method consistently approximates the direction of the motion and its magnitude with an error which is in line with sensor noise.
comment: 7 pages, 5 figures, 2 tables, 1 algorithm, IEEE RO-MAN 2025 accepted paper
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach. The code and model checkpoints are available at: https://github.com/continental/EP-Diffuser.
Tiny LiDARs for Manipulator Self-Awareness: Sensor Characterization and Initial Localization Experiments
For several tasks, ranging from manipulation to inspection, it is beneficial for robots to localize a target object in their surroundings. In this paper, we propose an approach that utilizes coarse point clouds obtained from miniaturized VL53L5CX Time-of-Flight (ToF) sensors (tiny LiDARs) to localize a target object in the robot's workspace. We first conduct an experimental campaign to calibrate the dependency of sensor readings on relative range and orientation to targets. We then propose a probabilistic sensor model, which we validate in an object pose estimation task using a Particle Filter (PF). The results show that the proposed sensor model improves the performance of the localization of the target object with respect to two baselines: one that assumes measurements are free from uncertainty and one in which the confidence is provided by the sensor datasheet.
comment: 7 pages, 6 figures, 3 tables, IEEE/RSJ International Conference on Intelligent Robots and Systems 2025 accepted paper
♻ ☆ SDHN: Skewness-Driven Hypergraph Networks for Enhanced Localized Multi-Robot Coordination
Multi-Agent Reinforcement Learning is widely used for multi-robot coordination, where simple graphs typically model pairwise interactions. However, such representations fail to capture higher-order collaborations, limiting effectiveness in complex tasks. While hypergraph-based approaches enhance cooperation, existing methods often generate arbitrary hypergraph structures and lack adaptability to environmental uncertainties. To address these challenges, we propose the Skewness-Driven Hypergraph Network (SDHN), which employs stochastic Bernoulli hyperedges to explicitly model higher-order multi-robot interactions. By introducing a skewness loss, SDHN promotes an efficient structure with Small-Hyperedge Dominant Hypergraph, allowing robots to prioritize localized synchronization while still adhering to the overall information, similar to human coordination. Extensive experiments on Moving Agents in Formation and Robotic Warehouse tasks validate SDHN's effectiveness, demonstrating superior performance over state-of-the-art baselines.
♻ ☆ OpenFly: A Comprehensive Platform for Aerial Vision-Language Navigation
Vision-Language Navigation (VLN) aims to guide agents by leveraging language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising various rendering engines, a versatile toolchain, and a large-scale benchmark for aerial VLN. Firstly, we integrate diverse rendering engines and advanced techniques for environment simulation, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of our environments. Secondly, we develop a highly automated toolchain for aerial VLN data collection, streamlining point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Thirdly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. Moreover, we propose OpenFly-Agent, a keyframe-aware VLN model emphasizing key observations during flight. For benchmarking, extensive experiments and analyses are conducted, evaluating several recent VLN methods and showcasing the superiority of our OpenFly platform and agent. The toolchain, dataset, and codes will be open-sourced.
comment: 20 pages, 11 figures
♻ ☆ LoL-NMPC: Low-Level Dynamics Integration in Nonlinear Model Predictive Control for Unmanned Aerial Vehicles IROS 2025
[Accepted to IROS 2025] In this paper, we address the problem of tracking high-speed agile trajectories for Unmanned Aerial Vehicles(UAVs), where model inaccuracies can lead to large tracking errors. Existing Nonlinear Model Predictive Controller(NMPC) methods typically neglect the dynamics of the low-level flight controllers such as underlying PID controller present in many flight stacks, and this results in sub-optimal tracking performance at high speeds and accelerations. To this end, we propose a novel NMPC formulation, LoL-NMPC, which explicitly incorporates low-level controller dynamics and motor dynamics in order to minimize trajectory tracking errors while maintaining computational efficiency. By leveraging linear constraints inside low-level dynamics, our approach inherently accounts for actuator constraints without requiring additional reallocation strategies. The proposed method is validated in both simulation and real-world experiments, demonstrating improved tracking accuracy and robustness at speeds up to 98.57 km/h and accelerations of 3.5 g. Our results show an average 21.97 % reduction in trajectory tracking error over standard NMPC formulation, with LoL-NMPC maintaining real-time feasibility at 100 Hz on an embedded ARM-based flight computer.
comment: Accepted to IROS 2025
♻ ☆ KineDepth: Utilizing Robot Kinematics for Online Metric Depth Estimation
Depth perception is essential for a robot's spatial and geometric understanding of its environment, with many tasks traditionally relying on hardware-based depth sensors like RGB-D or stereo cameras. However, these sensors face practical limitations, including issues with transparent and reflective objects, high costs, calibration complexity, spatial and energy constraints, and increased failure rates in compound systems. While monocular depth estimation methods offer a cost-effective and simpler alternative, their adoption in robotics is limited due to their output of relative rather than metric depth, which is crucial for robotics applications. In this paper, we propose a method that utilizes a single calibrated camera, enabling the robot to act as a "measuring stick" to convert relative depth estimates into metric depth in real-time as tasks are performed. Our approach employs an LSTM-based metric depth regressor, trained online and refined through probabilistic filtering, to accurately restore the metric depth across the monocular depth map, particularly in areas proximal to the robot's motion. Experiments with real robots demonstrate that our method significantly outperforms current state-of-the-art monocular metric depth estimation techniques, achieving a 22.1% reduction in depth error and a 52% increase in success rate for a downstream task.
comment: 8 pages, 5 figures
♻ ☆ Humanoids in Hospitals: A Technical Study of Humanoid Robot Surrogates for Dexterous Medical Interventions
The increasing demand for healthcare workers, driven by aging populations and labor shortages, presents a significant challenge for hospitals. Humanoid robots have the potential to alleviate these pressures by leveraging their human-like dexterity and adaptability to assist in medical procedures. This work conducted an exploratory study on the feasibility of humanoid robots performing direct clinical tasks through teleoperation. A bimanual teleoperation system was developed for the Unitree G1 Humanoid Robot, integrating high-fidelity pose tracking, custom grasping configurations, and an impedance controller to safely and precisely manipulate medical tools. The system is evaluated in seven diverse medical procedures, including physical examinations, emergency interventions, and precision needle tasks. Our results demonstrate that humanoid robots can successfully replicate critical aspects of human medical assessments and interventions, with promising quantitative performance in ventilation and ultrasound-guided tasks. However, challenges remain, including limitations in force output for procedures requiring high strength and sensor sensitivity issues affecting clinical accuracy. This study highlights the potential and current limitations of humanoid robots in hospital settings and lays the groundwork for future research on robotic healthcare integration.
comment: 8 pages
♻ ☆ ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning
Reinforcement learning (RL) is ubiquitous in the development of modern AI systems. However, state-of-the-art RL agents require extensive, and potentially unsafe, interactions with their environments to learn effectively. These limitations confine RL agents to simulated environments, hindering their ability to learn directly in real-world settings. In this work, we present ActSafe, a novel model-based RL algorithm for safe and efficient exploration. ActSafe learns a well-calibrated probabilistic model of the system and plans optimistically w.r.t. the epistemic uncertainty about the unknown dynamics, while enforcing pessimism w.r.t. the safety constraints. Under regularity assumptions on the constraints and dynamics, we show that ActSafe guarantees safety during learning while also obtaining a near-optimal policy in finite time. In addition, we propose a practical variant of ActSafe that builds on latest model-based RL advancements and enables safe exploration even in high-dimensional settings such as visual control. We empirically show that ActSafe obtains state-of-the-art performance in difficult exploration tasks on standard safe deep RL benchmarks while ensuring safety during learning.
♻ ☆ Controllable Traffic Simulation through LLM-Guided Hierarchical Reasoning and Refinement IROS 2025
Evaluating autonomous driving systems in complex and diverse traffic scenarios through controllable simulation is essential to ensure their safety and reliability. However, existing traffic simulation methods face challenges in their controllability. To address this, we propose a novel diffusion-based and LLM-enhanced traffic simulation framework. Our approach incorporates a high-level understanding module and a low-level refinement module, which systematically examines the hierarchical structure of traffic elements, guides LLMs to thoroughly analyze traffic scenario descriptions step by step, and refines the generation by self-reflection, enhancing their understanding of complex situations. Furthermore, we propose a Frenet-frame-based cost function framework that provides LLMs with geometrically meaningful quantities, improving their grasp of spatial relationships in a scenario and enabling more accurate cost function generation. Experiments on the Waymo Open Motion Dataset (WOMD) demonstrate that our method can handle more intricate descriptions and generate a broader range of scenarios in a controllable manner.
comment: Accepted by IROS 2025
♻ ☆ Model-Free and Real-Time Unicycle-Based Source Seeking with Differential Wheeled Robotic Experiments
Many autonomous robots aimed at source-seeking are studied, and their controls designed, using unicycle modeling and formulation. This is true not only for model-based controllers, but also for model-free, real-time control methods such as extremum seeking control (ESC). In this paper, we propose a unicycle-based ESC design applicable to differential wheeled robots that: (1) is very simple design, based on one simple control-affine law, and without state integrators; (2) attenuates oscillations known to persist in ESC designs (i.e., fully stop at the source); and (3) operates in a model-free, real-time setting, tolerating environmental/sensor noise. We provide simulation and real-world robotic experimental results for fixed and moving light source seeking by a differential wheeled robot using our proposed design. Results indicate clear advantages of our proposed design when compared to the literature, including attenuation of undesired oscillations, improved convergence speed, and better handling of noise.
Computer Vision and Pattern Recognition 180
☆ Gaussian Variation Field Diffusion for High-fidelity Video-to-4D Synthesis ICCV 2025
In this paper, we present a novel framework for video-to-4D generation that creates high-quality dynamic 3D content from single video inputs. Direct 4D diffusion modeling is extremely challenging due to costly data construction and the high-dimensional nature of jointly representing 3D shape, appearance, and motion. We address these challenges by introducing a Direct 4DMesh-to-GS Variation Field VAE that directly encodes canonical Gaussian Splats (GS) and their temporal variations from 3D animation data without per-instance fitting, and compresses high-dimensional animations into a compact latent space. Building upon this efficient representation, we train a Gaussian Variation Field diffusion model with temporal-aware Diffusion Transformer conditioned on input videos and canonical GS. Trained on carefully-curated animatable 3D objects from the Objaverse dataset, our model demonstrates superior generation quality compared to existing methods. It also exhibits remarkable generalization to in-the-wild video inputs despite being trained exclusively on synthetic data, paving the way for generating high-quality animated 3D content. Project page: https://gvfdiffusion.github.io/.
comment: ICCV 2025. Project page: https://gvfdiffusion.github.io/
☆ SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions ICCV 2025
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.
comment: Accepted at ICCV 2025
☆ MonoFusion: Sparse-View 4D Reconstruction via Monocular Fusion ICCV 2025
We address the problem of dynamic scene reconstruction from sparse-view videos. Prior work often requires dense multi-view captures with hundreds of calibrated cameras (e.g. Panoptic Studio). Such multi-view setups are prohibitively expensive to build and cannot capture diverse scenes in-the-wild. In contrast, we aim to reconstruct dynamic human behaviors, such as repairing a bike or dancing, from a small set of sparse-view cameras with complete scene coverage (e.g. four equidistant inward-facing static cameras). We find that dense multi-view reconstruction methods struggle to adapt to this sparse-view setup due to limited overlap between viewpoints. To address these limitations, we carefully align independent monocular reconstructions of each camera to produce time- and view-consistent dynamic scene reconstructions. Extensive experiments on PanopticStudio and Ego-Exo4D demonstrate that our method achieves higher quality reconstructions than prior art, particularly when rendering novel views. Code, data, and data-processing scripts are available on https://github.com/ImNotPrepared/MonoFusion.
comment: ICCV 2025. Project Page: https://imnotprepared.github.io/research/25_DSR/
☆ Phi-Ground Tech Report: Advancing Perception in GUI Grounding
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from \textit{"Iron Man"}, are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the \textbf{Phi-Ground} model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under $10B$ parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textit{\textbf{43.2}} on ScreenSpot-pro and \textit{\textbf{27.2}} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: \href{https://zhangmiaosen2000.github.io/Phi-Ground/}{https://zhangmiaosen2000.github.io/Phi-Ground/}
☆ Half-Physics: Enabling Kinematic 3D Human Model with Physical Interactions
While current general-purpose 3D human models (e.g., SMPL-X) efficiently represent accurate human shape and pose, they lacks the ability to physically interact with the environment due to the kinematic nature. As a result, kinematic-based interaction models often suffer from issues such as interpenetration and unrealistic object dynamics. To address this limitation, we introduce a novel approach that embeds SMPL-X into a tangible entity capable of dynamic physical interactions with its surroundings. Specifically, we propose a "half-physics" mechanism that transforms 3D kinematic motion into a physics simulation. Our approach maintains kinematic control over inherent SMPL-X poses while ensuring physically plausible interactions with scenes and objects, effectively eliminating penetration and unrealistic object dynamics. Unlike reinforcement learning-based methods, which demand extensive and complex training, our half-physics method is learning-free and generalizes to any body shape and motion; meanwhile, it operates in real time. Moreover, it preserves the fidelity of the original kinematic motion while seamlessly integrating physical interactions
☆ XSpecMesh: Quality-Preserving Auto-Regressive Mesh Generation Acceleration via Multi-Head Speculative Decoding
Current auto-regressive models can generate high-quality, topologically precise meshes; however, they necessitate thousands-or even tens of thousands-of next-token predictions during inference, resulting in substantial latency. We introduce XSpecMesh, a quality-preserving acceleration method for auto-regressive mesh generation models. XSpecMesh employs a lightweight, multi-head speculative decoding scheme to predict multiple tokens in parallel within a single forward pass, thereby accelerating inference. We further propose a verification and resampling strategy: the backbone model verifies each predicted token and resamples any tokens that do not meet the quality criteria. In addition, we propose a distillation strategy that trains the lightweight decoding heads by distilling from the backbone model, encouraging their prediction distributions to align and improving the success rate of speculative predictions. Extensive experiments demonstrate that our method achieves a 1.7x speedup without sacrificing generation quality. Our code will be released.
☆ SeqAffordSplat: Scene-level Sequential Affordance Reasoning on 3D Gaussian Splatting
3D affordance reasoning, the task of associating human instructions with the functional regions of 3D objects, is a critical capability for embodied agents. Current methods based on 3D Gaussian Splatting (3DGS) are fundamentally limited to single-object, single-step interactions, a paradigm that falls short of addressing the long-horizon, multi-object tasks required for complex real-world applications. To bridge this gap, we introduce the novel task of Sequential 3D Gaussian Affordance Reasoning and establish SeqAffordSplat, a large-scale benchmark featuring 1800+ scenes to support research on long-horizon affordance understanding in complex 3DGS environments. We then propose SeqSplatNet, an end-to-end framework that directly maps an instruction to a sequence of 3D affordance masks. SeqSplatNet employs a large language model that autoregressively generates text interleaved with special segmentation tokens, guiding a conditional decoder to produce the corresponding 3D mask. To handle complex scene geometry, we introduce a pre-training strategy, Conditional Geometric Reconstruction, where the model learns to reconstruct complete affordance region masks from known geometric observations, thereby building a robust geometric prior. Furthermore, to resolve semantic ambiguities, we design a feature injection mechanism that lifts rich semantic features from 2D Vision Foundation Models (VFM) and fuses them into the 3D decoder at multiple scales. Extensive experiments demonstrate that our method sets a new state-of-the-art on our challenging benchmark, effectively advancing affordance reasoning from single-step interactions to complex, sequential tasks at the scene level.
☆ Consensus-Driven Active Model Selection ICCV 2025
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.
comment: ICCV 2025 Highlight. 16 pages, 8 figures
☆ Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.
☆ Slot Attention with Re-Initialization and Self-Distillation ACM MM 2025
Unlike popular solutions based on dense feature maps, Object-Centric Learning (OCL) represents visual scenes as sub-symbolic object-level feature vectors, termed slots, which are highly versatile for tasks involving visual modalities. OCL typically aggregates object superpixels into slots by iteratively applying competitive cross attention, known as Slot Attention, with the slots as the query. However, once initialized, these slots are reused naively, causing redundant slots to compete with informative ones for representing objects. This often results in objects being erroneously segmented into parts. Additionally, mainstream methods derive supervision signals solely from decoding slots into the input's reconstruction, overlooking potential supervision based on internal information. To address these issues, we propose Slot Attention with re-Initialization and self-Distillation (DIAS): $\emph{i)}$ We reduce redundancy in the aggregated slots and re-initialize extra aggregation to update the remaining slots; $\emph{ii)}$ We drive the bad attention map at the first aggregation iteration to approximate the good at the last iteration to enable self-distillation. Experiments demonstrate that DIAS achieves state-of-the-art on OCL tasks like object discovery and recognition, while also improving advanced visual prediction and reasoning. Our code is available on https://github.com/Genera1Z/DIAS.
comment: Accepted by ACM MM 2025
☆ RAGNet: Large-scale Reasoning-based Affordance Segmentation Benchmark towards General Grasping ICCV 2025
General robotic grasping systems require accurate object affordance perception in diverse open-world scenarios following human instructions. However, current studies suffer from the problem of lacking reasoning-based large-scale affordance prediction data, leading to considerable concern about open-world effectiveness. To address this limitation, we build a large-scale grasping-oriented affordance segmentation benchmark with human-like instructions, named RAGNet. It contains 273k images, 180 categories, and 26k reasoning instructions. The images cover diverse embodied data domains, such as wild, robot, ego-centric, and even simulation data. They are carefully annotated with an affordance map, while the difficulty of language instructions is largely increased by removing their category name and only providing functional descriptions. Furthermore, we propose a comprehensive affordance-based grasping framework, named AffordanceNet, which consists of a VLM pre-trained on our massive affordance data and a grasping network that conditions an affordance map to grasp the target. Extensive experiments on affordance segmentation benchmarks and real-robot manipulation tasks show that our model has a powerful open-world generalization ability. Our data and code is available at https://github.com/wudongming97/AffordanceNet.
comment: Accepted by ICCV 2025. The code is at https://github.com/wudongming97/AffordanceNet
☆ DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching ICCV 2025
Deep functional maps have recently emerged as a powerful tool for solving non-rigid shape correspondence tasks. Methods that use this approach combine the power and flexibility of the functional map framework, with data-driven learning for improved accuracy and generality. However, most existing methods in this area restrict the learning aspect only to the feature functions and still rely on axiomatic modeling for formulating the training loss or for functional map regularization inside the networks. This limits both the accuracy and the applicability of the resulting approaches only to scenarios where assumptions of the axiomatic models hold. In this work, we show, for the first time, that both in-network regularization and functional map training can be replaced with data-driven methods. For this, we first train a generative model of functional maps in the spectral domain using score-based generative modeling, built from a large collection of high-quality maps. We then exploit the resulting model to promote the structural properties of ground truth functional maps on new shape collections. Remarkably, we demonstrate that the learned models are category-agnostic, and can fully replace commonly used strategies such as enforcing Laplacian commutativity or orthogonality of functional maps. Our key technical contribution is a novel distillation strategy from diffusion models in the spectral domain. Experiments demonstrate that our learned regularization leads to better results than axiomatic approaches for zero-shot non-rigid shape matching. Our code is available at: https://github.com/daidedou/diffumatch/
comment: Presented at ICCV 2025
☆ Explainable Image Classification with Reduced Overconfidence for Tissue Characterisation
The deployment of Machine Learning models intraoperatively for tissue characterisation can assist decision making and guide safe tumour resections. For image classification models, pixel attribution methods are popular to infer explainability. However, overconfidence in deep learning model's predictions translates to overconfidence in pixel attribution. In this paper, we propose the first approach which incorporates risk estimation into a pixel attribution method for improved image classification explainability. The proposed method iteratively applies a classification model with a pixel attribution method to create a volume of PA maps. This volume is used for the first time, to generate a pixel-wise distribution of PA values. We introduce a method to generate an enhanced PA map by estimating the expectation values of the pixel-wise distributions. In addition, the coefficient of variation (CV) is used to estimate pixel-wise risk of this enhanced PA map. Hence, the proposed method not only provides an improved PA map but also produces an estimation of risk on the output PA values. Performance evaluation on probe-based Confocal Laser Endomicroscopy (pCLE) data and ImageNet verifies that our improved explainability method outperforms the state-of-the-art.
☆ Enhanced Velocity Field Modeling for Gaussian Video Reconstruction
High-fidelity 3D video reconstruction is essential for enabling real-time rendering of dynamic scenes with realistic motion in virtual and augmented reality (VR/AR). The deformation field paradigm of 3D Gaussian splatting has achieved near-photorealistic results in video reconstruction due to the great representation capability of deep deformation networks. However, in videos with complex motion and significant scale variations, deformation networks often overfit to irregular Gaussian trajectories, leading to suboptimal visual quality. Moreover, the gradient-based densification strategy designed for static scene reconstruction proves inadequate to address the absence of dynamic content. In light of these challenges, we propose a flow-empowered velocity field modeling scheme tailored for Gaussian video reconstruction, dubbed FlowGaussian-VR. It consists of two core components: a velocity field rendering (VFR) pipeline which enables optical flow-based optimization, and a flow-assisted adaptive densification (FAD) strategy that adjusts the number and size of Gaussians in dynamic regions. We validate our model's effectiveness on multi-view dynamic reconstruction and novel view synthesis with multiple real-world datasets containing challenging motion scenarios, demonstrating not only notable visual improvements (over 2.5 dB gain in PSNR) and less blurry artifacts in dynamic textures, but also regularized and trackable per-Gaussian trajectories.
comment: 17 pages, 8 figures
☆ UniLDiff: Unlocking the Power of Diffusion Priors for All-in-One Image Restoration
All-in-One Image Restoration (AiOIR) has emerged as a promising yet challenging research direction. To address its core challenges, we propose a novel unified image restoration framework based on latent diffusion models (LDMs). Our approach structurally integrates low-quality visual priors into the diffusion process, unlocking the powerful generative capacity of diffusion models for diverse degradations. Specifically, we design a Degradation-Aware Feature Fusion (DAFF) module to enable adaptive handling of diverse degradation types. Furthermore, to mitigate detail loss caused by the high compression and iterative sampling of LDMs, we design a Detail-Aware Expert Module (DAEM) in the decoder to enhance texture and fine-structure recovery. Extensive experiments across multi-task and mixed degradation settings demonstrate that our method consistently achieves state-of-the-art performance, highlighting the practical potential of diffusion priors for unified image restoration. Our code will be released.
☆ I2V-GS: Infrastructure-to-Vehicle View Transformation with Gaussian Splatting for Autonomous Driving Data Generation
Vast and high-quality data are essential for end-to-end autonomous driving systems. However, current driving data is mainly collected by vehicles, which is expensive and inefficient. A potential solution lies in synthesizing data from real-world images. Recent advancements in 3D reconstruction demonstrate photorealistic novel view synthesis, highlighting the potential of generating driving data from images captured on the road. This paper introduces a novel method, I2V-GS, to transfer the Infrastructure view To the Vehicle view with Gaussian Splatting. Reconstruction from sparse infrastructure viewpoints and rendering under large view transformations is a challenging problem. We adopt the adaptive depth warp to generate dense training views. To further expand the range of views, we employ a cascade strategy to inpaint warped images, which also ensures inpainting content is consistent across views. To further ensure the reliability of the diffusion model, we utilize the cross-view information to perform a confidenceguided optimization. Moreover, we introduce RoadSight, a multi-modality, multi-view dataset from real scenarios in infrastructure views. To our knowledge, I2V-GS is the first framework to generate autonomous driving datasets with infrastructure-vehicle view transformation. Experimental results demonstrate that I2V-GS significantly improves synthesis quality under vehicle view, outperforming StreetGaussian in NTA-Iou, NTL-Iou, and FID by 45.7%, 34.2%, and 14.9%, respectively.
☆ DepMicroDiff: Diffusion-Based Dependency-Aware Multimodal Imputation for Microbiome Data
Microbiome data analysis is essential for understanding host health and disease, yet its inherent sparsity and noise pose major challenges for accurate imputation, hindering downstream tasks such as biomarker discovery. Existing imputation methods, including recent diffusion-based models, often fail to capture the complex interdependencies between microbial taxa and overlook contextual metadata that can inform imputation. We introduce DepMicroDiff, a novel framework that combines diffusion-based generative modeling with a Dependency-Aware Transformer (DAT) to explicitly capture both mutual pairwise dependencies and autoregressive relationships. DepMicroDiff is further enhanced by VAE-based pretraining across diverse cancer datasets and conditioning on patient metadata encoded via a large language model (LLM). Experiments on TCGA microbiome datasets show that DepMicroDiff substantially outperforms state-of-the-art baselines, achieving higher Pearson correlation (up to 0.712), cosine similarity (up to 0.812), and lower RMSE and MAE across multiple cancer types, demonstrating its robustness and generalizability for microbiome imputation.
☆ SAMSA: Segment Anything Model Enhanced with Spectral Angles for Hyperspectral Interactive Medical Image Segmentation
Hyperspectral imaging (HSI) provides rich spectral information for medical imaging, yet encounters significant challenges due to data limitations and hardware variations. We introduce SAMSA, a novel interactive segmentation framework that combines an RGB foundation model with spectral analysis. SAMSA efficiently utilizes user clicks to guide both RGB segmentation and spectral similarity computations. The method addresses key limitations in HSI segmentation through a unique spectral feature fusion strategy that operates independently of spectral band count and resolution. Performance evaluation on publicly available datasets has shown 81.0% 1-click and 93.4% 5-click DICE on a neurosurgical and 81.1% 1-click and 89.2% 5-click DICE on an intraoperative porcine hyperspectral dataset. Experimental results demonstrate SAMSA's effectiveness in few-shot and zero-shot learning scenarios and using minimal training examples. Our approach enables seamless integration of datasets with different spectral characteristics, providing a flexible framework for hyperspectral medical image analysis.
☆ OmniTraj: Pre-Training on Heterogeneous Data for Adaptive and Zero-Shot Human Trajectory Prediction
While large-scale pre-training has advanced human trajectory prediction, a critical challenge remains: zero-shot transfer to unseen dataset with varying temporal dynamics. State-of-the-art pre-trained models often require fine-tuning to adapt to new datasets with different frame rates or observation horizons, limiting their scalability and practical utility. In this work, we systematically investigate this limitation and propose a robust solution. We first demonstrate that existing data-aware discrete models struggle when transferred to new scenarios with shifted temporal setups. We then isolate the temporal generalization from dataset shift, revealing that a simple, explicit conditioning mechanism for temporal metadata is a highly effective solution. Based on this insight, we present OmniTraj, a Transformer-based model pre-trained on a large-scale, heterogeneous dataset. Our experiments show that explicitly conditioning on the frame rate enables OmniTraj to achieve state-of-the-art zero-shot transfer performance, reducing prediction error by over 70\% in challenging cross-setup scenarios. After fine-tuning, OmniTraj achieves state-of-the-art results on four datasets, including NBA, JTA, WorldPose, and ETH-UCY. The code is publicly available: https://github.com/vita-epfl/omnitraj
☆ Adaptively Distilled ControlNet: Accelerated Training and Superior Sampling for Medical Image Synthesis MICCAI2025
Medical image annotation is constrained by privacy concerns and labor-intensive labeling, significantly limiting the performance and generalization of segmentation models. While mask-controllable diffusion models excel in synthesis, they struggle with precise lesion-mask alignment. We propose \textbf{Adaptively Distilled ControlNet}, a task-agnostic framework that accelerates training and optimization through dual-model distillation. Specifically, during training, a teacher model, conditioned on mask-image pairs, regularizes a mask-only student model via predicted noise alignment in parameter space, further enhanced by adaptive regularization based on lesion-background ratios. During sampling, only the student model is used, enabling privacy-preserving medical image generation. Comprehensive evaluations on two distinct medical datasets demonstrate state-of-the-art performance: TransUNet improves mDice/mIoU by 2.4%/4.2% on KiTS19, while SANet achieves 2.6%/3.5% gains on Polyps, highlighting its effectiveness and superiority. Code is available at GitHub.
comment: Accepted by MICCAI2025
☆ Towards Field-Ready AI-based Malaria Diagnosis: A Continual Learning Approach MICCAI 2025
Malaria remains a major global health challenge, particularly in low-resource settings where access to expert microscopy may be limited. Deep learning-based computer-aided diagnosis (CAD) systems have been developed and demonstrate promising performance on thin blood smear images. However, their clinical deployment may be hindered by limited generalization across sites with varying conditions. Yet very few practical solutions have been proposed. In this work, we investigate continual learning (CL) as a strategy to enhance the robustness of malaria CAD models to domain shifts. We frame the problem as a domain-incremental learning scenario, where a YOLO-based object detector must adapt to new acquisition sites while retaining performance on previously seen domains. We evaluate four CL strategies, two rehearsal-based and two regularization-based methods, on real-life conditions thanks to a multi-site clinical dataset of thin blood smear images. Our results suggest that CL, and rehearsal-based methods in particular, can significantly improve performance. These findings highlight the potential of continual learning to support the development of deployable, field-ready CAD tools for malaria.
comment: MICCAI 2025 AMAI Workshop, Accepted, Submitted Manuscript Version
☆ FFGAF-SNN: The Forward-Forward Based Gradient Approximation Free Training Framework for Spiking Neural Networks
Spiking Neural Networks (SNNs) offer a biologically plausible framework for energy-efficient neuromorphic computing. However, it is a challenge to train SNNs due to their non-differentiability, efficiently. Existing gradient approximation approaches frequently sacrifice accuracy and face deployment limitations on edge devices due to the substantial computational requirements of backpropagation. To address these challenges, we propose a Forward-Forward (FF) based gradient approximation-free training framework for Spiking Neural Networks, which treats spiking activations as black-box modules, thereby eliminating the need for gradient approximation while significantly reducing computational complexity. Furthermore, we introduce a class-aware complexity adaptation mechanism that dynamically optimizes the loss function based on inter-class difficulty metrics, enabling efficient allocation of network resources across different categories. Experimental results demonstrate that our proposed training framework achieves test accuracies of 99.58%, 92.13%, and 75.64% on the MNIST, Fashion-MNIST, and CIFAR-10 datasets, respectively, surpassing all existing FF-based SNN approaches. Additionally, our proposed method exhibits significant advantages in terms of memory access and computational power consumption.
☆ Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation
Few-shot classification and segmentation (FS-CS) focuses on jointly performing multi-label classification and multi-class segmentation using few annotated examples. Although the current state of the art (SOTA) achieves high accuracy in both tasks, it struggles with small objects. To overcome this, we propose the Efficient Masked Attention Transformer (EMAT), which improves classification and segmentation accuracy, especially for small objects. EMAT introduces three modifications: a novel memory-efficient masked attention mechanism, a learnable downscaling strategy, and parameter-efficiency enhancements. EMAT outperforms all FS-CS methods on the PASCAL-5$^i$ and COCO-20$^i$ datasets, using at least four times fewer trainable parameters. Moreover, as the current FS-CS evaluation setting discards available annotations, despite their costly collection, we introduce two novel evaluation settings that consider these annotations to better reflect practical scenarios.
comment: Accepted for GCPR 2025. Project page: https://visinf.github.io/emat
☆ DivControl: Knowledge Diversion for Controllable Image Generation
Diffusion models have advanced from text-to-image (T2I) to image-to-image (I2I) generation by incorporating structured inputs such as depth maps, enabling fine-grained spatial control. However, existing methods either train separate models for each condition or rely on unified architectures with entangled representations, resulting in poor generalization and high adaptation costs for novel conditions. To this end, we propose DivControl, a decomposable pretraining framework for unified controllable generation and efficient adaptation. DivControl factorizes ControlNet via SVD into basic components-pairs of singular vectors-which are disentangled into condition-agnostic learngenes and condition-specific tailors through knowledge diversion during multi-condition training. Knowledge diversion is implemented via a dynamic gate that performs soft routing over tailors based on the semantics of condition instructions, enabling zero-shot generalization and parameter-efficient adaptation to novel conditions. To further improve condition fidelity and training efficiency, we introduce a representation alignment loss that aligns condition embeddings with early diffusion features. Extensive experiments demonstrate that DivControl achieves state-of-the-art controllability with 36.4$\times$ less training cost, while simultaneously improving average performance on basic conditions. It also delivers strong zero-shot and few-shot performance on unseen conditions, demonstrating superior scalability, modularity, and transferability.
☆ LLM-Based Identification of Infostealer Infection Vectors from Screenshots: The Case of Aurora
Infostealers exfiltrate credentials, session cookies, and sensitive data from infected systems. With over 29 million stealer logs reported in 2024, manual analysis and mitigation at scale are virtually unfeasible/unpractical. While most research focuses on proactive malware detection, a significant gap remains in leveraging reactive analysis of stealer logs and their associated artifacts. Specifically, infection artifacts such as screenshots, image captured at the point of compromise, are largely overlooked by the current literature. This paper introduces a novel approach leveraging Large Language Models (LLMs), more specifically gpt-4o-mini, to analyze infection screenshots to extract potential Indicators of Compromise (IoCs), map infection vectors, and track campaigns. Focusing on the Aurora infostealer, we demonstrate how LLMs can process screenshots to identify infection vectors, such as malicious URLs, installer files, and exploited software themes. Our method extracted 337 actionable URLs and 246 relevant files from 1000 screenshots, revealing key malware distribution methods and social engineering tactics. By correlating extracted filenames, URLs, and infection themes, we identified three distinct malware campaigns, demonstrating the potential of LLM-driven analysis for uncovering infection workflows and enhancing threat intelligence. By shifting malware analysis from traditional log-based detection methods to a reactive, artifact-driven approach that leverages infection screenshots, this research presents a scalable method for identifying infection vectors and enabling early intervention.
☆ Consistent Point Matching
This study demonstrates that incorporating a consistency heuristic into the point-matching algorithm \cite{yerebakan2023hierarchical} improves robustness in matching anatomical locations across pairs of medical images. We validated our approach on diverse longitudinal internal and public datasets spanning CT and MRI modalities. Notably, it surpasses state-of-the-art results on the Deep Lesion Tracking dataset. Additionally, we show that the method effectively addresses landmark localization. The algorithm operates efficiently on standard CPU hardware and allows configurable trade-offs between speed and robustness. The method enables high-precision navigation between medical images without requiring a machine learning model or training data.
☆ Medical Image De-Identification Benchmark Challenge
The de-identification (deID) of protected health information (PHI) and personally identifiable information (PII) is a fundamental requirement for sharing medical images, particularly through public repositories, to ensure compliance with patient privacy laws. In addition, preservation of non-PHI metadata to inform and enable downstream development of imaging artificial intelligence (AI) is an important consideration in biomedical research. The goal of MIDI-B was to provide a standardized platform for benchmarking of DICOM image deID tools based on a set of rules conformant to the HIPAA Safe Harbor regulation, the DICOM Attribute Confidentiality Profiles, and best practices in preservation of research-critical metadata, as defined by The Cancer Imaging Archive (TCIA). The challenge employed a large, diverse, multi-center, and multi-modality set of real de-identified radiology images with synthetic PHI/PII inserted. The MIDI-B Challenge consisted of three phases: training, validation, and test. Eighty individuals registered for the challenge. In the training phase, we encouraged participants to tune their algorithms using their in-house or public data. The validation and test phases utilized the DICOM images containing synthetic identifiers (of 216 and 322 subjects, respectively). Ten teams successfully completed the test phase of the challenge. To measure success of a rule-based approach to image deID, scores were computed as the percentage of correct actions from the total number of required actions. The scores ranged from 97.91% to 99.93%. Participants employed a variety of open-source and proprietary tools with customized configurations, large language models, and optical character recognition (OCR). In this paper we provide a comprehensive report on the MIDI-B Challenge's design, implementation, results, and lessons learned.
comment: 19 pages
☆ Mamba-based Efficient Spatio-Frequency Motion Perception for Video Camouflaged Object Detection
Existing video camouflaged object detection (VCOD) methods primarily rely on spatial appearance features to perceive motion cues for breaking camouflage. However, the high similarity between foreground and background in VCOD results in limited discriminability of spatial appearance features (e.g., color and texture), restricting detection accuracy and completeness. Recent studies demonstrate that frequency features can not only enhance feature representation to compensate for appearance limitations but also perceive motion through dynamic variations in frequency energy. Furthermore, the emerging state space model called Mamba, enables efficient perception of motion cues in frame sequences due to its linear-time long-sequence modeling capability. Motivated by this, we propose a novel visual camouflage Mamba (Vcamba) based on spatio-frequency motion perception that integrates frequency and spatial features for efficient and accurate VCOD. Specifically, we propose a receptive field visual state space (RFVSS) module to extract multi-scale spatial features after sequence modeling. For frequency learning, we introduce an adaptive frequency component enhancement (AFE) module with a novel frequency-domain sequential scanning strategy to maintain semantic consistency. Then we propose a space-based long-range motion perception (SLMP) module and a frequency-based long-range motion perception (FLMP) module to model spatio-temporal and frequency-temporal sequences in spatial and frequency phase domains. Finally, the space and frequency motion fusion module (SFMF) integrates dual-domain features for unified motion representation. Experimental results show that our Vcamba outperforms state-of-the-art methods across 6 evaluation metrics on 2 datasets with lower computation cost, confirming the superiority of Vcamba. Our code is available at: https://github.com/BoydeLi/Vcamba.
comment: 11 pages, 11 figures
☆ DA-Occ: Efficient 3D Voxel Occupancy Prediction via Directional 2D for Geometric Structure Preservation
Efficient and high-accuracy 3D occupancy prediction is crucial for ensuring the performance of autonomous driving (AD) systems. However, many current methods focus on high accuracy at the expense of real-time processing needs. To address this challenge of balancing accuracy and inference speed, we propose a directional pure 2D approach. Our method involves slicing 3D voxel features to preserve complete vertical geometric information. This strategy compensates for the loss of height cues in Bird's-Eye View (BEV) representations, thereby maintaining the integrity of the 3D geometric structure. By employing a directional attention mechanism, we efficiently extract geometric features from different orientations, striking a balance between accuracy and computational efficiency. Experimental results highlight the significant advantages of our approach for autonomous driving. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
☆ MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction ICCV 2025
We present MoGA, a novel method to reconstruct high-fidelity 3D Gaussian avatars from a single-view image. The main challenge lies in inferring unseen appearance and geometric details while ensuring 3D consistency and realism. Most previous methods rely on 2D diffusion models to synthesize unseen views; however, these generated views are sparse and inconsistent, resulting in unrealistic 3D artifacts and blurred appearance. To address these limitations, we leverage a generative avatar model, that can generate diverse 3D avatars by sampling deformed Gaussians from a learned prior distribution. Due to the limited amount of 3D training data such a 3D model alone cannot capture all image details of unseen identities. Consequently, we integrate it as a prior, ensuring 3D consistency by projecting input images into its latent space and enforcing additional 3D appearance and geometric constraints. Our novel approach formulates Gaussian avatar creation as a model inversion process by fitting the generative avatar to synthetic views from 2D diffusion models. The generative avatar provides a meaningful initialization for model fitting, enforces 3D regularization, and helps in refining pose estimation. Experiments show that our method surpasses state-of-the-art techniques and generalizes well to real-world scenarios. Our Gaussian avatars are also inherently animatable
comment: ICCV 2025 (Highlight), Project Page: https://zj-dong.github.io/MoGA/
☆ MamV2XCalib: V2X-based Target-less Infrastructure Camera Calibration with State Space Model ICCV25
As cooperative systems that leverage roadside cameras to assist autonomous vehicle perception become increasingly widespread, large-scale precise calibration of infrastructure cameras has become a critical issue. Traditional manual calibration methods are often time-consuming, labor-intensive, and may require road closures. This paper proposes MamV2XCalib, the first V2X-based infrastructure camera calibration method with the assistance of vehicle-side LiDAR. MamV2XCalib only requires autonomous vehicles equipped with LiDAR to drive near the cameras to be calibrated in the infrastructure, without the need for specific reference objects or manual intervention. We also introduce a new targetless LiDAR-camera calibration method, which combines multi-scale features and a 4D correlation volume to estimate the correlation between vehicle-side point clouds and roadside images. We model the temporal information and estimate the rotation angles with Mamba, effectively addressing calibration failures in V2X scenarios caused by defects in the vehicle-side data (such as occlusions) and large differences in viewpoint. We evaluate MamV2XCalib on the V2X-Seq and TUMTraf-V2X real-world datasets, demonstrating the effectiveness and robustness of our V2X-based automatic calibration approach. Compared to previous LiDAR-camera methods designed for calibration on one car, our approach achieves better and more stable calibration performance in V2X scenarios with fewer parameters. The code is available at https://github.com/zhuyaoye/MamV2XCalib.
comment: ICCV25 poster
☆ Beyond Gloss: A Hand-Centric Framework for Gloss-Free Sign Language Translation BMVC 2025
Sign Language Translation (SLT) is a challenging task that requires bridging the modality gap between visual and linguistic information while capturing subtle variations in hand shapes and movements. To address these challenges, we introduce \textbf{BeyondGloss}, a novel gloss-free SLT framework that leverages the spatio-temporal reasoning capabilities of Video Large Language Models (VideoLLMs). Since existing VideoLLMs struggle to model long videos in detail, we propose a novel approach to generate fine-grained, temporally-aware textual descriptions of hand motion. A contrastive alignment module aligns these descriptions with video features during pre-training, encouraging the model to focus on hand-centric temporal dynamics and distinguish signs more effectively. To further enrich hand-specific representations, we distill fine-grained features from HaMeR. Additionally, we apply a contrastive loss between sign video representations and target language embeddings to reduce the modality gap in pre-training. \textbf{BeyondGloss} achieves state-of-the-art performance on the Phoenix14T and CSL-Daily benchmarks, demonstrating the effectiveness of the proposed framework. We will release the code upon acceptance of the paper.
comment: Accepted at BMVC 2025
☆ Gaussian Splatting Feature Fields for Privacy-Preserving Visual Localization CVPR 2025
Visual localization is the task of estimating a camera pose in a known environment. In this paper, we utilize 3D Gaussian Splatting (3DGS)-based representations for accurate and privacy-preserving visual localization. We propose Gaussian Splatting Feature Fields (GSFFs), a scene representation for visual localization that combines an explicit geometry model (3DGS) with an implicit feature field. We leverage the dense geometric information and differentiable rasterization algorithm from 3DGS to learn robust feature representations grounded in 3D. In particular, we align a 3D scale-aware feature field and a 2D feature encoder in a common embedding space through a contrastive framework. Using a 3D structure-informed clustering procedure, we further regularize the representation learning and seamlessly convert the features to segmentations, which can be used for privacy-preserving visual localization. Pose refinement, which involves aligning either feature maps or segmentations from a query image with those rendered from the GSFFs scene representation, is used to achieve localization. The resulting privacy- and non-privacy-preserving localization pipelines, evaluated on multiple real-world datasets, show state-of-the-art performances.
comment: CVPR 2025
3D-MOOD: Lifting 2D to 3D for Monocular Open-Set Object Detection ICCV 2025
Monocular 3D object detection is valuable for various applications such as robotics and AR/VR. Existing methods are confined to closed-set settings, where the training and testing sets consist of the same scenes and/or object categories. However, real-world applications often introduce new environments and novel object categories, posing a challenge to these methods. In this paper, we address monocular 3D object detection in an open-set setting and introduce the first end-to-end 3D Monocular Open-set Object Detector (3D-MOOD). We propose to lift the open-set 2D detection into 3D space through our designed 3D bounding box head, enabling end-to-end joint training for both 2D and 3D tasks to yield better overall performance. We condition the object queries with geometry prior and overcome the generalization for 3D estimation across diverse scenes. To further improve performance, we design the canonical image space for more efficient cross-dataset training. We evaluate 3D-MOOD on both closed-set settings (Omni3D) and open-set settings (Omni3D to Argoverse 2, ScanNet), and achieve new state-of-the-art results. Code and models are available at royyang0714.github.io/3D-MOOD.
comment: ICCV 2025
☆ User Experience Estimation in Human-Robot Interaction Via Multi-Instance Learning of Multimodal Social Signals IROS 2025
In recent years, the demand for social robots has grown, requiring them to adapt their behaviors based on users' states. Accurately assessing user experience (UX) in human-robot interaction (HRI) is crucial for achieving this adaptability. UX is a multi-faceted measure encompassing aspects such as sentiment and engagement, yet existing methods often focus on these individually. This study proposes a UX estimation method for HRI by leveraging multimodal social signals. We construct a UX dataset and develop a Transformer-based model that utilizes facial expressions and voice for estimation. Unlike conventional models that rely on momentary observations, our approach captures both short- and long-term interaction patterns using a multi-instance learning framework. This enables the model to capture temporal dynamics in UX, providing a more holistic representation. Experimental results demonstrate that our method outperforms third-party human evaluators in UX estimation.
comment: This paper has been accepted for presentation at IEEE/RSJ International Conference on Intelligent Robots and Systems 2025 (IROS 2025)
☆ ART: Adaptive Relation Tuning for Generalized Relation Prediction ICCV 2025
Visual relation detection (VRD) is the task of identifying the relationships between objects in a scene. VRD models trained solely on relation detection data struggle to generalize beyond the relations on which they are trained. While prompt tuning has been used to adapt vision-language models (VLMs) for VRD, it uses handcrafted prompts and struggles with novel or complex relations. We argue that instruction tuning offers a more effective solution by fine-tuning VLMs on diverse instructional data. We thus introduce ART, an Adaptive Relation Tuning framework that adapts VLMs for VRD through instruction tuning and strategic instance selection. By converting VRD datasets into an instruction tuning format and employing an adaptive sampling algorithm, ART directs the VLM to focus on informative relations while maintaining generalizability. Specifically, we focus on the relation classification, where subject-object boxes are given and the model predicts the predicate between them. We tune on a held-in set and evaluate across multiple held-out datasets of varying complexity. Our approach strongly improves over its baselines and can infer unseen relation concepts, a capability absent in mainstream VRD methods. We demonstrate ART's practical value by using the predicted relations for segmenting complex scenes.
comment: Accepted for publication in ICCV 2025
☆ A Unified Perception-Language-Action Framework for Adaptive Autonomous Driving
Autonomous driving systems face significant challenges in achieving human-like adaptability, robustness, and interpretability in complex, open-world environments. These challenges stem from fragmented architectures, limited generalization to novel scenarios, and insufficient semantic extraction from perception. To address these limitations, we propose a unified Perception-Language-Action (PLA) framework that integrates multi-sensor fusion (cameras, LiDAR, radar) with a large language model (LLM)-augmented Vision-Language-Action (VLA) architecture, specifically a GPT-4.1-powered reasoning core. This framework unifies low-level sensory processing with high-level contextual reasoning, tightly coupling perception with natural language-based semantic understanding and decision-making to enable context-aware, explainable, and safety-bounded autonomous driving. Evaluations on an urban intersection scenario with a construction zone demonstrate superior performance in trajectory tracking, speed prediction, and adaptive planning. The results highlight the potential of language-augmented cognitive frameworks for advancing the safety, interpretability, and scalability of autonomous driving systems.
☆ Continual Learning with Synthetic Boundary Experience Blending
Continual learning (CL) aims to address catastrophic forgetting in models trained sequentially on multiple tasks. While experience replay has shown promise, its effectiveness is often limited by the sparse distribution of stored key samples, leading to overly simplified decision boundaries. We hypothesize that introducing synthetic data near the decision boundary (Synthetic Boundary Data, or SBD) during training serves as an implicit regularizer, improving boundary stability and mitigating forgetting. To validate this hypothesis, we propose a novel training framework, {\bf Experience Blending}, which integrates knowledge from both stored key samples and synthetic, boundary-adjacent data. Experience blending consists of two core components: (1) a multivariate Differential Privacy (DP) noise mechanism that injects batch-wise noise into low-dimensional feature representations, generating SBD; and (2) an end-to-end training strategy that jointly leverages both stored key samples and SBD. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet demonstrate that our method outperforms nine CL baselines, achieving accuracy improvements of 10%, 6%, and 13%, respectively.
☆ H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation
Imitation learning for robotic manipulation faces a fundamental challenge: the scarcity of large-scale, high-quality robot demonstration data. Recent robotic foundation models often pre-train on cross-embodiment robot datasets to increase data scale, while they face significant limitations as the diverse morphologies and action spaces across different robot embodiments make unified training challenging. In this paper, we present H-RDT (Human to Robotics Diffusion Transformer), a novel approach that leverages human manipulation data to enhance robot manipulation capabilities. Our key insight is that large-scale egocentric human manipulation videos with paired 3D hand pose annotations provide rich behavioral priors that capture natural manipulation strategies and can benefit robotic policy learning. We introduce a two-stage training paradigm: (1) pre-training on large-scale egocentric human manipulation data, and (2) cross-embodiment fine-tuning on robot-specific data with modular action encoders and decoders. Built on a diffusion transformer architecture with 2B parameters, H-RDT uses flow matching to model complex action distributions. Extensive evaluations encompassing both simulation and real-world experiments, single-task and multitask scenarios, as well as few-shot learning and robustness assessments, demonstrate that H-RDT outperforms training from scratch and existing state-of-the-art methods, including Pi0 and RDT, achieving significant improvements of 13.9% and 40.5% over training from scratch in simulation and real-world experiments, respectively. The results validate our core hypothesis that human manipulation data can serve as a powerful foundation for learning bimanual robotic manipulation policies.
☆ JPEG Processing Neural Operator for Backward-Compatible Coding
Despite significant advances in learning-based lossy compression algorithms, standardizing codecs remains a critical challenge. In this paper, we present the JPEG Processing Neural Operator (JPNeO), a next-generation JPEG algorithm that maintains full backward compatibility with the current JPEG format. Our JPNeO improves chroma component preservation and enhances reconstruction fidelity compared to existing artifact removal methods by incorporating neural operators in both the encoding and decoding stages. JPNeO achieves practical benefits in terms of reduced memory usage and parameter count. We further validate our hypothesis about the existence of a space with high mutual information through empirical evidence. In summary, the JPNeO functions as a high-performance out-of-the-box image compression pipeline without changing source coding's protocol. Our source code is available at https://github.com/WooKyoungHan/JPNeO.
☆ I Am Big, You Are Little; I Am Right, You Are Wrong ICCV 2025
Machine learning for image classification is an active and rapidly developing field. With the proliferation of classifiers of different sizes and different architectures, the problem of choosing the right model becomes more and more important. While we can assess a model's classification accuracy statistically, our understanding of the way these models work is unfortunately limited. In order to gain insight into the decision-making process of different vision models, we propose using minimal sufficient pixels sets to gauge a model's `concentration': the pixels that capture the essence of an image through the lens of the model. By comparing position, overlap, and size of sets of pixels, we identify that different architectures have statistically different concentration, in both size and position. In particular, ConvNext and EVA models differ markedly from the others. We also identify that images which are misclassified are associated with larger pixels sets than correct classifications.
comment: 10 pages, International Conference on Computer Vision, ICCV 2025
☆ Hyperbolic Cycle Alignment for Infrared-Visible Image Fusion
Image fusion synthesizes complementary information from multiple sources, mitigating the inherent limitations of unimodal imaging systems. Accurate image registration is essential for effective multi-source data fusion. However, existing registration methods, often based on image translation in Euclidean space, fail to handle cross-modal misalignment effectively, resulting in suboptimal alignment and fusion quality. To overcome this limitation, we explore image alignment in non-Euclidean space and propose a Hyperbolic Cycle Alignment Network (Hy-CycleAlign). To the best of our knowledge, Hy-CycleAlign is the first image registration method based on hyperbolic space. It introduces a dual-path cross-modal cyclic registration framework, in which a forward registration network aligns cross-modal inputs, while a backward registration network reconstructs the original image, forming a closed-loop registration structure with geometric consistency. Additionally, we design a Hyperbolic Hierarchy Contrastive Alignment (H$^{2}$CA) module, which maps images into hyperbolic space and imposes registration constraints, effectively reducing interference caused by modality discrepancies. We further analyze image registration in both Euclidean and hyperbolic spaces, demonstrating that hyperbolic space enables more sensitive and effective multi-modal image registration. Extensive experiments on misaligned multi-modal images demonstrate that our method significantly outperforms existing approaches in both image alignment and fusion. Our code will be publicly available.
☆ Causal Identification of Sufficient, Contrastive and Complete Feature Sets in Image Classification
Existing algorithms for explaining the outputs of image classifiers are based on a variety of approaches and produce explanations that lack formal rigor. On the other hand, logic-based explanations are formally and rigorously defined but their computability relies on strict assumptions about the model that do not hold on image classifiers. In this paper, we show that causal explanations, in addition to being formally and rigorously defined, enjoy the same formal properties as logic-based ones, while still lending themselves to black-box algorithms and being a natural fit for image classifiers. We prove formal properties of causal explanations and introduce contrastive causal explanations for image classifiers. Moreover, we augment the definition of explanation with confidence awareness and introduce complete causal explanations: explanations that are classified with exactly the same confidence as the original image. We implement our definitions, and our experimental results demonstrate that different models have different patterns of sufficiency, contrastiveness, and completeness. Our algorithms are efficiently computable, taking on average 6s per image on a ResNet50 model to compute all types of explanations, and are totally black-box, needing no knowledge of the model, no access to model internals, no access to gradient, nor requiring any properties, such as monotonicity, of the model.
comment: 13 pages, 13 figures, appendix included
☆ Online Estimation of Table-Top Grown Strawberry Mass in Field Conditions with Occlusions IROS 2025
Accurate mass estimation of table-top grown strawberries under field conditions remains challenging due to frequent occlusions and pose variations. This study proposes a vision-based pipeline integrating RGB-D sensing and deep learning to enable non-destructive, real-time and online mass estimation. The method employed YOLOv8-Seg for instance segmentation, Cycle-consistent generative adversarial network (CycleGAN) for occluded region completion, and tilt-angle correction to refine frontal projection area calculations. A polynomial regression model then mapped the geometric features to mass. Experiments demonstrated mean mass estimation errors of 8.11% for isolated strawberries and 10.47% for occluded cases. CycleGAN outperformed large mask inpainting (LaMa) model in occlusion recovery, achieving superior pixel area ratios (PAR) (mean: 0.978 vs. 1.112) and higher intersection over union (IoU) scores (92.3% vs. 47.7% in the [0.9-1] range). This approach addresses critical limitations of traditional methods, offering a robust solution for automated harvesting and yield monitoring with complex occlusion patterns.
comment: Accepted by IROS 2025
☆ Stable-Sim2Real: Exploring Simulation of Real-Captured 3D Data with Two-Stage Depth Diffusion ICCV 2025
3D data simulation aims to bridge the gap between simulated and real-captured 3D data, which is a fundamental problem for real-world 3D visual tasks. Most 3D data simulation methods inject predefined physical priors but struggle to capture the full complexity of real data. An optimal approach involves learning an implicit mapping from synthetic to realistic data in a data-driven manner, but progress in this solution has met stagnation in recent studies. This work explores a new solution path of data-driven 3D simulation, called Stable-Sim2Real, based on a novel two-stage depth diffusion model. The initial stage finetunes Stable-Diffusion to generate the residual between the real and synthetic paired depth, producing a stable but coarse depth, where some local regions may deviate from realistic patterns. To enhance this, both the synthetic and initial output depth are fed into a second-stage diffusion, where diffusion loss is adjusted to prioritize these distinct areas identified by a 3D discriminator. We provide a new benchmark scheme to evaluate 3D data simulation methods. Extensive experiments show that training the network with the 3D simulated data derived from our method significantly enhances performance in real-world 3D visual tasks. Moreover, the evaluation demonstrates the high similarity between our 3D simulated data and real-captured patterns. Project page: https://mutianxu.github.io/stable-sim2real/.
comment: ICCV 2025 (Highlight). Project page: https://mutianxu.github.io/stable-sim2real/
☆ FastPoint: Accelerating 3D Point Cloud Model Inference via Sample Point Distance Prediction ICCV 2025
Deep neural networks have revolutionized 3D point cloud processing, yet efficiently handling large and irregular point clouds remains challenging. To tackle this problem, we introduce FastPoint, a novel software-based acceleration technique that leverages the predictable distance trend between sampled points during farthest point sampling. By predicting the distance curve, we can efficiently identify subsequent sample points without exhaustively computing all pairwise distances. Our proposal substantially accelerates farthest point sampling and neighbor search operations while preserving sampling quality and model performance. By integrating FastPoint into state-of-the-art 3D point cloud models, we achieve 2.55x end-to-end speedup on NVIDIA RTX 3090 GPU without sacrificing accuracy.
comment: Accepted to ICCV 2025
☆ Seeing More with Less: Video Capsule Endoscopy with Multi-Task Learning MICCAI 2025
Video capsule endoscopy has become increasingly important for investigating the small intestine within the gastrointestinal tract. However, a persistent challenge remains the short battery lifetime of such compact sensor edge devices. Integrating artificial intelligence can help overcome this limitation by enabling intelligent real-time decision- making, thereby reducing the energy consumption and prolonging the battery life. However, this remains challenging due to data sparsity and the limited resources of the device restricting the overall model size. In this work, we introduce a multi-task neural network that combines the functionalities of precise self-localization within the gastrointestinal tract with the ability to detect anomalies in the small intestine within a single model. Throughout the development process, we consistently restricted the total number of parameters to ensure the feasibility to deploy such model in a small capsule. We report the first multi-task results using the recently published Galar dataset, integrating established multi-task methods and Viterbi decoding for subsequent time-series analysis. This outperforms current single-task models and represents a significant ad- vance in AI-based approaches in this field. Our model achieves an accu- racy of 93.63% on the localization task and an accuracy of 87.48% on the anomaly detection task. The approach requires only 1 million parameters while surpassing the current baselines.
comment: Accepted at Applications of Medical AI (AMAI workshop) at MICCAI 2025 (submitted version)
☆ 3D-R1: Enhancing Reasoning in 3D VLMs for Unified Scene Understanding
Large vision-language models (VLMs) have made significant strides in 2D visual understanding tasks, sparking interest in extending these capabilities to 3D scene understanding. However, current 3D VLMs often struggle with robust reasoning and generalization due to limitations in high-quality spatial data and the static nature of viewpoint assumptions. To address these challenges, we propose 3D-R1, a foundation model that enhances the reasoning capabilities of 3D VLMs. Specifically, we first construct a high-quality synthetic dataset with CoT, named Scene-30K, leveraging existing 3D-VL datasets and a data engine based on Gemini 2.5 Pro. It serves as cold-start initialization data for 3D-R1. Moreover, we leverage RLHF policy such as GRPO in the reinforcement learning training process to enhance reasoning capabilities and introduce three reward functions: a perception reward, a semantic similarity reward and a format reward to maintain detection accuracy and answer semantic precision. Furthermore, we introduce a dynamic view selection strategy that adaptively chooses the most informative perspectives for 3D scene understanding. Extensive experiments demonstrate that 3D-R1 delivers an average improvement of 10% across various 3D scene benchmarks, highlighting its effectiveness in enhancing reasoning and generalization in 3D scene understanding. Code: https://github.com/AIGeeksGroup/3D-R1. Website: https://aigeeksgroup.github.io/3D-R1.
☆ CST Anti-UAV: A Thermal Infrared Benchmark for Tiny UAV Tracking in Complex Scenes ICCV
The widespread application of Unmanned Aerial Vehicles (UAVs) has raised serious public safety and privacy concerns, making UAV perception crucial for anti-UAV tasks. However, existing UAV tracking datasets predominantly feature conspicuous objects and lack diversity in scene complexity and attribute representation, limiting their applicability to real-world scenarios. To overcome these limitations, we present the CST Anti-UAV, a new thermal infrared dataset specifically designed for Single Object Tracking (SOT) in Complex Scenes with Tiny UAVs (CST). It contains 220 video sequences with over 240k high-quality bounding box annotations, highlighting two key properties: a significant number of tiny-sized UAV targets and the diverse and complex scenes. To the best of our knowledge, CST Anti-UAV is the first dataset to incorporate complete manual frame-level attribute annotations, enabling precise evaluations under varied challenges. To conduct an in-depth performance analysis for CST Anti-UAV, we evaluate 20 existing SOT methods on the proposed dataset. Experimental results demonstrate that tracking tiny UAVs in complex environments remains a challenge, as the state-of-the-art method achieves only 35.92% state accuracy, much lower than the 67.69% observed on the Anti-UAV410 dataset. These findings underscore the limitations of existing benchmarks and the need for further advancements in UAV tracking research. The CST Anti-UAV benchmark is about to be publicly released, which not only fosters the development of more robust SOT methods but also drives innovation in anti-UAV systems.
comment: Accepted by ICCVW2025
☆ Mitigating Resolution-Drift in Federated Learning: Case of Keypoint Detection
The Federated Learning (FL) approach enables effective learning across distributed systems, while preserving user data privacy. To date, research has primarily focused on addressing statistical heterogeneity and communication efficiency, through which FL has achieved success in classification tasks. However, its application to non-classification tasks, such as human pose estimation, remains underexplored. This paper identifies and investigates a critical issue termed ``resolution-drift,'' where performance degrades significantly due to resolution variability across clients. Unlike class-level heterogeneity, resolution drift highlights the importance of resolution as another axis of not independent or identically distributed (non-IID) data. To address this issue, we present resolution-adaptive federated learning (RAF), a method that leverages heatmap-based knowledge distillation. Through multi-resolution knowledge distillation between higher-resolution outputs (teachers) and lower-resolution outputs (students), our approach enhances resolution robustness without overfitting. Extensive experiments and theoretical analysis demonstrate that RAF not only effectively mitigates resolution drift and achieves significant performance improvements, but also can be integrated seamlessly into existing FL frameworks. Furthermore, although this paper focuses on human pose estimation, our t-SNE analysis reveals distinct characteristics between classification and high-resolution representation tasks, supporting the generalizability of RAF to other tasks that rely on preserving spatial detail.
☆ Machine learning and machine learned prediction in chest X-ray images
Machine learning and artificial intelligence are fast-growing fields of research in which data is used to train algorithms, learn patterns, and make predictions. This approach helps to solve seemingly intricate problems with significant accuracy without explicit programming by recognizing complex relationships in data. Taking an example of 5824 chest X-ray images, we implement two machine learning algorithms, namely, a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments. Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work. Gradient-weighted class activation mapping shows that DenseNet-121 correctly focuses on essential parts of the input chest X-ray images in its decision-making more than the baseline CNN.
comment: 8 pages, 7 figures
☆ Adjustable Spatio-Spectral Hyperspectral Image Compression Network
With the rapid growth of hyperspectral data archives in remote sensing (RS), the need for efficient storage has become essential, driving significant attention toward learning-based hyperspectral image (HSI) compression. However, a comprehensive investigation of the individual and joint effects of spectral and spatial compression on learning-based HSI compression has not been thoroughly examined yet. Conducting such an analysis is crucial for understanding how the exploitation of spectral, spatial, and joint spatio-spectral redundancies affects HSI compression. To address this issue, we propose Adjustable Spatio-Spectral Hyperspectral Image Compression Network (HyCASS), a learning-based model designed for adjustable HSI compression in both spectral and spatial dimensions. HyCASS consists of six main modules: 1) spectral encoder; 2) spatial encoder; 3) compression ratio (CR) adapter encoder; 4) CR adapter decoder; 5) spatial decoder; and 6) spectral decoder module. The modules employ convolutional layers and transformer blocks to capture both short-range and long-range redundancies. Experimental results on two HSI benchmark datasets demonstrate the effectiveness of our proposed adjustable model compared to existing learning-based compression models. Based on our results, we establish a guideline for effectively balancing spectral and spatial compression across different CRs, taking into account the spatial resolution of the HSIs. Our code and pre-trained model weights are publicly available at https://git.tu-berlin.de/rsim/hycass .
☆ Beyond Linear Bottlenecks: Spline-Based Knowledge Distillation for Culturally Diverse Art Style Classification
Art style classification remains a formidable challenge in computational aesthetics due to the scarcity of expertly labeled datasets and the intricate, often nonlinear interplay of stylistic elements. While recent dual-teacher self-supervised frameworks reduce reliance on labeled data, their linear projection layers and localized focus struggle to model global compositional context and complex style-feature interactions. We enhance the dual-teacher knowledge distillation framework to address these limitations by replacing conventional MLP projection and prediction heads with Kolmogorov-Arnold Networks (KANs). Our approach retains complementary guidance from two teacher networks, one emphasizing localized texture and brushstroke patterns, the other capturing broader stylistic hierarchies while leveraging KANs' spline-based activations to model nonlinear feature correlations with mathematical precision. Experiments on WikiArt and Pandora18k demonstrate that our approach outperforms the base dual teacher architecture in Top-1 accuracy. Our findings highlight the importance of KANs in disentangling complex style manifolds, leading to better linear probe accuracy than MLP projections.
☆ Honey Adulteration Detection using Hyperspectral Imaging and Machine Learning
This paper aims to develop a machine learning-based system for automatically detecting honey adulteration with sugar syrup, based on honey hyperspectral imaging data. First, the floral source of a honey sample is classified by a botanical origin identification subsystem. Then, the sugar syrup adulteration is identified, and its concentration is quantified by an adulteration detection subsystem. Both subsystems consist of two steps. The first step involves extracting relevant features from the honey sample using Linear Discriminant Analysis (LDA). In the second step, we utilize the K-Nearest Neighbors (KNN) model to classify the honey botanical origin in the first subsystem and identify the adulteration level in the second subsystem. We assess the proposed system performance on a public honey hyperspectral image dataset. The result indicates that the proposed system can detect adulteration in honey with an overall cross-validation accuracy of 96.39%, making it an appropriate alternative to the current chemical-based detection methods.
☆ Out-of-Distribution Detection in Medical Imaging via Diffusion Trajectories MICCAI 2025
In medical imaging, unsupervised out-of-distribution (OOD) detection offers an attractive approach for identifying pathological cases with extremely low incidence rates. In contrast to supervised methods, OOD-based approaches function without labels and are inherently robust to data imbalances. Current generative approaches often rely on likelihood estimation or reconstruction error, but these methods can be computationally expensive, unreliable, and require retraining if the inlier data changes. These limitations hinder their ability to distinguish nominal from anomalous inputs efficiently, consistently, and robustly. We propose a reconstruction-free OOD detection method that leverages the forward diffusion trajectories of a Stein score-based denoising diffusion model (SBDDM). By capturing trajectory curvature via the estimated Stein score, our approach enables accurate anomaly scoring with only five diffusion steps. A single SBDDM pre-trained on a large, semantically aligned medical dataset generalizes effectively across multiple Near-OOD and Far-OOD benchmarks, achieving state-of-the-art performance while drastically reducing computational cost during inference. Compared to existing methods, SBDDM achieves a relative improvement of up to 10.43% and 18.10% for Near-OOD and Far-OOD detection, making it a practical building block for real-time, reliable computer-aided diagnosis.
comment: Accepted at Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, MICCAI 2025
☆ AGA: An adaptive group alignment framework for structured medical cross-modal representation learning
Learning medical visual representations from paired images and reports is a promising direction in representation learning. However, current vision-language pretraining methods in the medical domain often simplify clinical reports into single entities or fragmented tokens, ignoring their inherent structure. In addition, contrastive learning frameworks typically depend on large quantities of hard negative samples, which is impractical for small-scale medical datasets. To tackle these challenges, we propose Adaptive Grouped Alignment (AGA), a new framework that captures structured semantics from paired medical images and reports. AGA introduces a bidirectional grouping mechanism based on a sparse similarity matrix. For each image-report pair, we compute fine-grained similarities between text tokens and image patches. Each token selects its top-matching patches to form a visual group, and each patch selects its most related tokens to form a language group. To enable adaptive grouping, we design two threshold gating modules, called Language Grouped Threshold Gate and Vision Grouped Threshold Gate, which learn grouping thresholds dynamically. Group representations are computed as weighted averages based on similarity scores. To align each token with its group representation, we introduce an Instance Aware Group Alignment loss that operates within each image-text pair, removing the need for external negatives. Finally, a Bidirectional Cross-modal Grouped Alignment module is applied to enhance fine-grained alignment between visual and linguistic group representations. Extensive experiments on public and private datasets show that our method achieves strong performance on image-text retrieval and classification tasks under both fine-tuning and zero-shot settings.
☆ Smart Video Capsule Endoscopy: Raw Image-Based Localization for Enhanced GI Tract Investigation ICONIP 2025
For many real-world applications involving low-power sensor edge devices deep neural networks used for image classification might not be suitable. This is due to their typically large model size and require- ment of operations often exceeding the capabilities of such resource lim- ited devices. Furthermore, camera sensors usually capture images with a Bayer color filter applied, which are subsequently converted to RGB images that are commonly used for neural network training. However, on resource-constrained devices, such conversions demands their share of energy and optimally should be skipped if possible. This work ad- dresses the need for hardware-suitable AI targeting sensor edge devices by means of the Video Capsule Endoscopy, an important medical proce- dure for the investigation of the small intestine, which is strongly limited by its battery lifetime. Accurate organ classification is performed with a final accuracy of 93.06% evaluated directly on Bayer images involv- ing a CNN with only 63,000 parameters and time-series analysis in the form of Viterbi decoding. Finally, the process of capturing images with a camera and raw image processing is demonstrated with a customized PULPissimo System-on-Chip with a RISC-V core and an ultra-low power hardware accelerator providing an energy-efficient AI-based image clas- sification approach requiring just 5.31 {\mu}J per image. As a result, it is possible to save an average of 89.9% of energy before entering the small intestine compared to classic video capsules.
comment: Accepted at the 32nd International Conference on Neural Information Processing - ICONIP 2025
☆ MPCC: A Novel Benchmark for Multimodal Planning with Complex Constraints in Multimodal Large Language Models
Multimodal planning capabilities refer to the ability to predict, reason, and design steps for task execution with multimodal context, which is essential for complex reasoning and decision-making across multiple steps. However, current benchmarks face two key challenges: (1) they cannot directly assess multimodal real-world planning capabilities, and (2) they lack constraints or implicit constraints across modalities. To address these issues, we introduce Multimodal Planning with Complex Constraints (MPCC), the first benchmark to systematically evaluate MLLMs' ability to handle multimodal constraints in planning. To address the first challenge, MPCC focuses on three real-world tasks: Flight Planning, Calendar Planning, and Meeting Planning. To solve the second challenge, we introduce complex constraints (e.g. budget, temporal, and spatial) in these tasks, with graded difficulty levels (EASY, MEDIUM, HARD) to separate constraint complexity from search space expansion. Experiments on 13 advanced MLLMs reveal significant challenges: closed-source models achieve only 21.3% feasible plans, while open-source models average below 11%. Additionally, we observe that MLLMs are highly sensitive to constraint complexity and that traditional multimodal prompting strategies fail in multi-constraint scenarios. Our work formalizes multimodal constraints in planning, provides a rigorous evaluation framework, and highlights the need for advancements in constraint-aware reasoning for real-world MLLM applications.
comment: Accepted to ACM Multimedia 2025
☆ NeRF Is a Valuable Assistant for 3D Gaussian Splatting ICCV
We introduce NeRF-GS, a novel framework that jointly optimizes Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). This framework leverages the inherent continuous spatial representation of NeRF to mitigate several limitations of 3DGS, including sensitivity to Gaussian initialization, limited spatial awareness, and weak inter-Gaussian correlations, thereby enhancing its performance. In NeRF-GS, we revisit the design of 3DGS and progressively align its spatial features with NeRF, enabling both representations to be optimized within the same scene through shared 3D spatial information. We further address the formal distinctions between the two approaches by optimizing residual vectors for both implicit features and Gaussian positions to enhance the personalized capabilities of 3DGS. Experimental results on benchmark datasets show that NeRF-GS surpasses existing methods and achieves state-of-the-art performance. This outcome confirms that NeRF and 3DGS are complementary rather than competing, offering new insights into hybrid approaches that combine 3DGS and NeRF for efficient 3D scene representation.
comment: Accepted by ICCV
☆ Multi-Prompt Progressive Alignment for Multi-Source Unsupervised Domain Adaptation
Large Vision-Language Models like CLIP have become a powerful foundation for Unsupervised Domain Adaptation due to their strong zero-shot generalization. State-of-the-art methods typically leverage CLIP to generate pseudo-labels for the target domain, then fine-tune the model to learn domain-invariant features. However, these methods attempt to align source and target domains using all pseudo-labeled data simultaneously. This one-shot alignment struggles with noisy, hard-to-classify samples, leading to error propagation and suboptimal feature learning. The problem is even more amplified in the multi-source scenario, where diverse domain gaps and varying noise levels across multiple source domains further destabilize the alignment process. To address this issue, in this work, we propose a progressive alignment strategy for adapting CLIP to unlabeled downstream task. Our method begins by training the model on a high-confidence subset of target samples, allowing it to first learn a well-aligned representation from the most reliable data. As training progresses, it gradually incorporates more challenging samples, guiding the model to refine its understanding without being overwhelmed by initial label noise. This progressive approach effectively mitigates confirmation bias and promotes a more robust convergence, allowing for the learning of genuinely domain-invariant features. We name our approach MP^2A and test it on three popular UDA benchmarks, namely ImageCLEF, Office-Home, and the most challenging DomainNet. Experiments showcase that MP^2A achieves state-of-the-art performance when compared with most recent CLIP-based MS-UDA approaches, demonstrating the effectiveness of our approach.
☆ UniEmo: Unifying Emotional Understanding and Generation with Learnable Expert Queries
Emotional understanding and generation are often treated as separate tasks, yet they are inherently complementary and can mutually enhance each other. In this paper, we propose the UniEmo, a unified framework that seamlessly integrates these two tasks. The key challenge lies in the abstract nature of emotions, necessitating the extraction of visual representations beneficial for both tasks. To address this, we propose a hierarchical emotional understanding chain with learnable expert queries that progressively extracts multi-scale emotional features, thereby serving as a foundational step for unification. Simultaneously, we fuse these expert queries and emotional representations to guide the diffusion model in generating emotion-evoking images. To enhance the diversity and fidelity of the generated emotional images, we further introduce the emotional correlation coefficient and emotional condition loss into the fusion process. This step facilitates fusion and alignment for emotional generation guided by the understanding. In turn, we demonstrate that joint training allows the generation component to provide implicit feedback to the understanding part. Furthermore, we propose a novel data filtering algorithm to select high-quality and diverse emotional images generated by the well-trained model, which explicitly feedback into the understanding part. Together, these generation-driven dual feedback processes enhance the model's understanding capacity. Extensive experiments show that UniEmo significantly outperforms state-of-the-art methods in both emotional understanding and generation tasks. The code for the proposed method is available at https://github.com/JiuTian-VL/UniEmo.
☆ VMatcher: State-Space Semi-Dense Local Feature Matching
This paper introduces VMatcher, a hybrid Mamba-Transformer network for semi-dense feature matching between image pairs. Learning-based feature matching methods, whether detector-based or detector-free, achieve state-of-the-art performance but depend heavily on the Transformer's attention mechanism, which, while effective, incurs high computational costs due to its quadratic complexity. In contrast, Mamba introduces a Selective State-Space Model (SSM) that achieves comparable or superior performance with linear complexity, offering significant efficiency gains. VMatcher leverages a hybrid approach, integrating Mamba's highly efficient long-sequence processing with the Transformer's attention mechanism. Multiple VMatcher configurations are proposed, including hierarchical architectures, demonstrating their effectiveness in setting new benchmarks efficiently while ensuring robustness and practicality for real-time applications where rapid inference is crucial. Source Code is available at: https://github.com/ayoussf/VMatcher
☆ Short-LVLM: Compressing and Accelerating Large Vision-Language Models by Pruning Redundant Layers ACM MM 25
Although large vision-language models (LVLMs) have demonstrated impressive capabilities in multi-modal understanding and reasoning, their practical applications are still limited by massive model parameters and high computational costs. Recent efforts from natural language processing (NLP) have shown the effectiveness of layer pruning, offering a plausible training-free compression solution. However, due to the modality divergence between vision and language, it is unclear whether these NLP techniques are still effective in LVLMs. In this paper, we empirically prove that directly applying these layer pruning methods to LVLMs is ineffective. Through extensive experiments, we find that non-essential vision-language (VL) tokens and inter-layer feature gaps pose critical challenges to pruning layers in LVLMs. Based on these insights, we propose a novel framework Short-LVLM (SVL) that can utilize important VL tokens and mitigate the layer-wise feature gaps. Notably, Short-LVLM not only achieves a superior trade-off between performance and efficiency but also exhibits several potential advantages, i.e., training-free, model-agnostic, and highly compatible. The code for this work is publicly available at https://github.com/ASGO-MM/Short-LVLM.
comment: Accepted By ACM MM 25
☆ Pixel Embedding Method for Tubular Neurite Segmentation
Automatic segmentation of neuronal topology is critical for handling large scale neuroimaging data, as it can greatly accelerate neuron annotation and analysis. However, the intricate morphology of neuronal branches and the occlusions among fibers pose significant challenges for deep learning based segmentation. To address these issues, we propose an improved framework: First, we introduce a deep network that outputs pixel level embedding vectors and design a corresponding loss function, enabling the learned features to effectively distinguish different neuronal connections within occluded regions. Second, building on this model, we develop an end to end pipeline that directly maps raw neuronal images to SWC formatted neuron structure trees. Finally, recognizing that existing evaluation metrics fail to fully capture segmentation accuracy, we propose a novel topological assessment metric to more appropriately quantify the quality of neuron segmentation and reconstruction. Experiments on our fMOST imaging dataset demonstrate that, compared to several classical methods, our approach significantly reduces the error rate in neuronal topology reconstruction.
☆ IN45023 Neural Network Design Patterns in Computer Vision Seminar Report, Summer 2025
This report analyzes the evolution of key design patterns in computer vision by examining six influential papers. The analy- sis begins with foundational architectures for image recognition. We review ResNet, which introduced residual connections to overcome the vanishing gradient problem and enable effective training of significantly deeper convolutional networks. Subsequently, we examine the Vision Transformer (ViT), which established a new paradigm by applying the Transformer ar- chitecture to sequences of image patches, demonstrating the efficacy of attention-based models for large-scale image recogni- tion. Building on these visual representation backbones, we investigate generative models. Generative Adversarial Networks (GANs) are analyzed for their novel adversarial training process, which challenges a generator against a discriminator to learn complex data distributions. Then, Latent Diffusion Models (LDMs) are covered, which improve upon prior generative methods by performing a sequential denoising process in a perceptually compressed latent space. LDMs achieve high-fidelity synthesis with greater computational efficiency, representing the current state-of-the-art for image generation. Finally, we explore self-supervised learning techniques that reduce dependency on labeled data. DINO is a self-distillation framework in which a student network learns to match the output of a momentum-updated teacher, yielding features with strong k-NN classification performance. We conclude with Masked Autoencoders (MAE), which utilize an asymmetric encoder-decoder design to reconstruct heavily masked inputs, providing a highly scalable and effective method for pre-training large-scale vision models.
☆ Who is a Better Talker: Subjective and Objective Quality Assessment for AI-Generated Talking Heads
Speech-driven methods for portraits are figuratively known as "Talkers" because of their capability to synthesize speaking mouth shapes and facial movements. Especially with the rapid development of the Text-to-Image (T2I) models, AI-Generated Talking Heads (AGTHs) have gradually become an emerging digital human media. However, challenges persist regarding the quality of these talkers and AGTHs they generate, and comprehensive studies addressing these issues remain limited. To address this gap, this paper presents the largest AGTH quality assessment dataset THQA-10K to date, which selects 12 prominent T2I models and 14 advanced talkers to generate AGTHs for 14 prompts. After excluding instances where AGTH generation is unsuccessful, the THQA-10K dataset contains 10,457 AGTHs. Then, volunteers are recruited to subjectively rate the AGTHs and give the corresponding distortion categories. In our analysis for subjective experimental results, we evaluate the performance of talkers in terms of generalizability and quality, and also expose the distortions of existing AGTHs. Finally, an objective quality assessment method based on the first frame, Y-T slice and tone-lip consistency is proposed. Experimental results show that this method can achieve state-of-the-art (SOTA) performance in AGTH quality assessment. The work is released at https://github.com/zyj-2000/Talker.
☆ The Impact of Image Resolution on Face Detection: A Comparative Analysis of MTCNN, YOLOv XI and YOLOv XII models
Face detection is a crucial component in many AI-driven applications such as surveillance, biometric authentication, and human-computer interaction. However, real-world conditions like low-resolution imagery present significant challenges that degrade detection performance. In this study, we systematically investigate the impact of input resolution on the accuracy and robustness of three prominent deep learning-based face detectors: YOLOv11, YOLOv12, and MTCNN. Using the WIDER FACE dataset, we conduct extensive evaluations across multiple image resolutions (160x160, 320x320, and 640x640) and assess each model's performance using metrics such as precision, recall, mAP50, mAP50-95, and inference time. Results indicate that YOLOv11 outperforms YOLOv12 and MTCNN in terms of detection accuracy, especially at higher resolutions, while YOLOv12 exhibits slightly better recall. MTCNN, although competitive in landmark localization, lags in real-time inference speed. Our findings provide actionable insights for selecting resolution-aware face detection models suitable for varying operational constraints.
comment: 6 pages, 5 figures, 4 tables
☆ MagicRoad: Semantic-Aware 3D Road Surface Reconstruction via Obstacle Inpainting
Road surface reconstruction is essential for autonomous driving, supporting centimeter-accurate lane perception and high-definition mapping in complex urban environments.While recent methods based on mesh rendering or 3D Gaussian splatting (3DGS) achieve promising results under clean and static conditions, they remain vulnerable to occlusions from dynamic agents, visual clutter from static obstacles, and appearance degradation caused by lighting and weather changes. We present a robust reconstruction framework that integrates occlusion-aware 2D Gaussian surfels with semantic-guided color enhancement to recover clean, consistent road surfaces. Our method leverages a planar-adapted Gaussian representation for efficient large-scale modeling, employs segmentation-guided video inpainting to remove both dynamic and static foreground objects, and enhances color coherence via semantic-aware correction in HSV space. Extensive experiments on urban-scale datasets demonstrate that our framework produces visually coherent and geometrically faithful reconstructions, significantly outperforming prior methods under real-world conditions.
☆ Contrastive Learning-Driven Traffic Sign Perception: Multi-Modal Fusion of Text and Vision
Traffic sign recognition, as a core component of autonomous driving perception systems, directly influences vehicle environmental awareness and driving safety. Current technologies face two significant challenges: first, the traffic sign dataset exhibits a pronounced long-tail distribution, resulting in a substantial decline in recognition performance of traditional convolutional networks when processing low-frequency and out-of-distribution classes; second, traffic signs in real-world scenarios are predominantly small targets with significant scale variations, making it difficult to extract multi-scale features.To overcome these issues, we propose a novel two-stage framework combining open-vocabulary detection and cross-modal learning. For traffic sign detection, our NanoVerse YOLO model integrates a reparameterizable vision-language path aggregation network (RepVL-PAN) and an SPD-Conv module to specifically enhance feature extraction for small, multi-scale targets. For traffic sign classification, we designed a Traffic Sign Recognition Multimodal Contrastive Learning model (TSR-MCL). By contrasting visual features from a Vision Transformer with semantic features from a rule-based BERT, TSR-MCL learns robust, frequency-independent representations, effectively mitigating class confusion caused by data imbalance. On the TT100K dataset, our method achieves a state-of-the-art 78.4% mAP in the long-tail detection task for all-class recognition. The model also obtains 91.8% accuracy and 88.9% recall, significantly outperforming mainstream algorithms and demonstrating superior accuracy and generalization in complex, open-world scenarios.
comment: 11pages, 5 figures
☆ Learning Semantic Directions for Feature Augmentation in Domain-Generalized Medical Segmentation
Medical image segmentation plays a crucial role in clinical workflows, but domain shift often leads to performance degradation when models are applied to unseen clinical domains. This challenge arises due to variations in imaging conditions, scanner types, and acquisition protocols, limiting the practical deployment of segmentation models. Unlike natural images, medical images typically exhibit consistent anatomical structures across patients, with domain-specific variations mainly caused by imaging conditions. This unique characteristic makes medical image segmentation particularly challenging. To address this challenge, we propose a domain generalization framework tailored for medical image segmentation. Our approach improves robustness to domain-specific variations by introducing implicit feature perturbations guided by domain statistics. Specifically, we employ a learnable semantic direction selector and a covariance-based semantic intensity sampler to modulate domain-variant features while preserving task-relevant anatomical consistency. Furthermore, we design an adaptive consistency constraint that is selectively applied only when feature adjustment leads to degraded segmentation performance. This constraint encourages the adjusted features to align with the original predictions, thereby stabilizing feature selection and improving the reliability of the segmentation. Extensive experiments on two public multi-center benchmarks show that our framework consistently outperforms existing domain generalization approaches, achieving robust and generalizable segmentation performance across diverse clinical domains.
☆ FASTopoWM: Fast-Slow Lane Segment Topology Reasoning with Latent World Models
Lane segment topology reasoning provides comprehensive bird's-eye view (BEV) road scene understanding, which can serve as a key perception module in planning-oriented end-to-end autonomous driving systems. Existing lane topology reasoning methods often fall short in effectively leveraging temporal information to enhance detection and reasoning performance. Recently, stream-based temporal propagation method has demonstrated promising results by incorporating temporal cues at both the query and BEV levels. However, it remains limited by over-reliance on historical queries, vulnerability to pose estimation failures, and insufficient temporal propagation. To overcome these limitations, we propose FASTopoWM, a novel fast-slow lane segment topology reasoning framework augmented with latent world models. To reduce the impact of pose estimation failures, this unified framework enables parallel supervision of both historical and newly initialized queries, facilitating mutual reinforcement between the fast and slow systems. Furthermore, we introduce latent query and BEV world models conditioned on the action latent to propagate the state representations from past observations to the current timestep. This design substantially improves the performance of temporal perception within the slow pipeline. Extensive experiments on the OpenLane-V2 benchmark demonstrate that FASTopoWM outperforms state-of-the-art methods in both lane segment detection (37.4% v.s. 33.6% on mAP) and centerline perception (46.3% v.s. 41.5% on OLS).
FastDriveVLA: Efficient End-to-End Driving via Plug-and-Play Reconstruction-based Token Pruning
Vision-Language-Action (VLA) models have demonstrated significant potential in complex scene understanding and action reasoning, leading to their increasing adoption in end-to-end autonomous driving systems. However, the long visual tokens of VLA models greatly increase computational costs. Current visual token pruning methods in Vision-Language Models (VLM) rely on either visual token similarity or visual-text attention, but both have shown poor performance in autonomous driving scenarios. Given that human drivers concentrate on relevant foreground areas while driving, we assert that retaining visual tokens containing this foreground information is essential for effective decision-making. Inspired by this, we propose FastDriveVLA, a novel reconstruction-based vision token pruning framework designed specifically for autonomous driving. FastDriveVLA includes a plug-and-play visual token pruner called ReconPruner, which prioritizes foreground information through MAE-style pixel reconstruction. A novel adversarial foreground-background reconstruction strategy is designed to train ReconPruner for the visual encoder of VLA models. Once trained, ReconPruner can be seamlessly applied to different VLA models with the same visual encoder without retraining. To train ReconPruner, we also introduce a large-scale dataset called nuScenes-FG, consisting of 241K image-mask pairs with annotated foreground regions. Our approach achieves state-of-the-art results on the nuScenes closed-loop planning benchmark across different pruning ratios.
comment: 9 pages, 5 figures
☆ Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.
comment: 13 pages, 4 figures, 4 tables. Includes ablation study and evaluation on 7 lightweight deep learning models. Code and logs available at https://github.com/VineetKumarRakesh/lcnn-opt
☆ The Cow of Rembrandt - Analyzing Artistic Prompt Interpretation in Text-to-Image Models SP
Text-to-image diffusion models have demonstrated remarkable capabilities in generating artistic content by learning from billions of images, including popular artworks. However, the fundamental question of how these models internally represent concepts, such as content and style in paintings, remains unexplored. Traditional computer vision assumes content and style are orthogonal, but diffusion models receive no explicit guidance about this distinction during training. In this work, we investigate how transformer-based text-to-image diffusion models encode content and style concepts when generating artworks. We leverage cross-attention heatmaps to attribute pixels in generated images to specific prompt tokens, enabling us to isolate image regions influenced by content-describing versus style-describing tokens. Our findings reveal that diffusion models demonstrate varying degrees of content-style separation depending on the specific artistic prompt and style requested. In many cases, content tokens primarily influence object-related regions while style tokens affect background and texture areas, suggesting an emergent understanding of the content-style distinction. These insights contribute to our understanding of how large-scale generative models internally represent complex artistic concepts without explicit supervision. We share the code and dataset, together with an exploratory tool for visualizing attention maps at https://github.com/umilISLab/artistic-prompt-interpretation.
comment: to be published in: Applications of AI in the Analysis of Cultural and Artistic Heritage, organized within the 35th IEEE International Workshop on Machine Learning for Signal Processing (MLSP) 2025
☆ Forgetting of task-specific knowledge in model merging-based continual learning
This paper investigates the linear merging of models in the context of continual learning (CL). Using controlled visual cues in computer vision experiments, we demonstrate that merging largely preserves or enhances shared knowledge, while unshared task-specific knowledge rapidly degrades. We further find that merging models from an incremental training process consistently outperforms merging models trained in parallel.
☆ PriorFusion: Unified Integration of Priors for Robust Road Perception in Autonomous Driving
With the growing interest in autonomous driving, there is an increasing demand for accurate and reliable road perception technologies. In complex environments without high-definition map support, autonomous vehicles must independently interpret their surroundings to ensure safe and robust decision-making. However, these scenarios pose significant challenges due to the large number, complex geometries, and frequent occlusions of road elements. A key limitation of existing approaches lies in their insufficient exploitation of the structured priors inherently present in road elements, resulting in irregular, inaccurate predictions. To address this, we propose PriorFusion, a unified framework that effectively integrates semantic, geometric, and generative priors to enhance road element perception. We introduce an instance-aware attention mechanism guided by shape-prior features, then construct a data-driven shape template space that encodes low-dimensional representations of road elements, enabling clustering to generate anchor points as reference priors. We design a diffusion-based framework that leverages these prior anchors to generate accurate and complete predictions. Experiments on large-scale autonomous driving datasets demonstrate that our method significantly improves perception accuracy, particularly under challenging conditions. Visualization results further confirm that our approach produces more accurate, regular, and coherent predictions of road elements.
☆ ST-SAM: SAM-Driven Self-Training Framework for Semi-Supervised Camouflaged Object Detection ACM MM 2025
Semi-supervised Camouflaged Object Detection (SSCOD) aims to reduce reliance on costly pixel-level annotations by leveraging limited annotated data and abundant unlabeled data. However, existing SSCOD methods based on Teacher-Student frameworks suffer from severe prediction bias and error propagation under scarce supervision, while their multi-network architectures incur high computational overhead and limited scalability. To overcome these limitations, we propose ST-SAM, a highly annotation-efficient yet concise framework that breaks away from conventional SSCOD constraints. Specifically, ST-SAM employs Self-Training strategy that dynamically filters and expands high-confidence pseudo-labels to enhance a single-model architecture, thereby fundamentally circumventing inter-model prediction bias. Furthermore, by transforming pseudo-labels into hybrid prompts containing domain-specific knowledge, ST-SAM effectively harnesses the Segment Anything Model's potential for specialized tasks to mitigate error accumulation in self-training. Experiments on COD benchmark datasets demonstrate that ST-SAM achieves state-of-the-art performance with only 1\% labeled data, outperforming existing SSCOD methods and even matching fully supervised methods. Remarkably, ST-SAM requires training only a single network, without relying on specific models or loss functions. This work establishes a new paradigm for annotation-efficient SSCOD. Codes will be available at https://github.com/hu-xh/ST-SAM.
comment: 10 pages, 6 figures, ACM MM 2025
☆ Training-free Geometric Image Editing on Diffusion Models ICCV
We tackle the task of geometric image editing, where an object within an image is repositioned, reoriented, or reshaped while preserving overall scene coherence. Previous diffusion-based editing methods often attempt to handle all relevant subtasks in a single step, proving difficult when transformations become large or structurally complex. We address this by proposing a decoupled pipeline that separates object transformation, source region inpainting, and target region refinement. Both inpainting and refinement are implemented using a training-free diffusion approach, FreeFine. In experiments on our new GeoBench benchmark, which contains both 2D and 3D editing scenarios, FreeFine outperforms state-of-the-art alternatives in image fidelity, and edit precision, especially under demanding transformations. Code and benchmark are available at: https://github.com/CIawevy/FreeFine
comment: 24 pages, 22 figures, ICCV
☆ LED Benchmark: Diagnosing Structural Layout Errors for Document Layout Analysis
Recent advancements in Document Layout Analysis through Large Language Models and Multimodal Models have significantly improved layout detection. However, despite these improvements, challenges remain in addressing critical structural errors, such as region merging, splitting, and missing content. Conventional evaluation metrics like IoU and mAP, which focus primarily on spatial overlap, are insufficient for detecting these errors. To address this limitation, we propose Layout Error Detection (LED), a novel benchmark designed to evaluate the structural robustness of document layout predictions. LED defines eight standardized error types, and formulates three complementary tasks: error existence detection, error type classification, and element-wise error type classification. Furthermore, we construct LED-Dataset, a synthetic dataset generated by injecting realistic structural errors based on empirical distributions from DLA models. Experimental results across a range of LMMs reveal that LED effectively differentiates structural understanding capabilities, exposing modality biases and performance trade-offs not visible through traditional metrics.
☆ Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval ICCV 2025
Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.
comment: ICCV 2025 Highlight
☆ UniLiP: Adapting CLIP for Unified Multimodal Understanding, Generation and Editing
In this paper, we propose UniLIP, which extends CLIP to reconstruction, generation and editing, thereby building a unified tokenizer upon its exceptional comprehension capabilities. Previous CLIP-based unified methods often require additional diffusion decoders or quantization to support reconstruction and generation tasks, leading to inconsistent reconstruction or degradation of original comprehension performance.In contrast, we introduce a two-stage training scheme and a self-distillation strategy that progressively integrates reconstruction capabilities into CLIP, allowing it to maintain original comprehension performance while achieving effective image reconstruction. Furthermore, we propose a dual-condition architecture to connect the MLLM and diffusion transformer, using both learnable queries and the last layer multimodal hidden states as joint conditions. This method not only enables the utilization of the MLLM's strong reasoning capabilities in generation tasks, but also maximizes the exploitation of the rich information in UniLIP features during editing tasks. In text-to-image generation tasks, UniLIP obtains scores of 0.87 and 0.53 on GenEval and WISE benchmark respectively, surpassing all previous unified models of similar scale. In image editing, UniLIP also achieves a score of 3.62 on the ImgEdit Benchmark, surpassing recent state-of-the-art models such as BAGEL and UniWorld-V1. UniLIP effectively expand the application scope of CLIP, enabling continuous CLIP features to not only serve as the optimal choice for understanding tasks but also achieve highly competitive performance in generation and editing tasks.
☆ iLRM: An Iterative Large 3D Reconstruction Model
Feed-forward 3D modeling has emerged as a promising approach for rapid and high-quality 3D reconstruction. In particular, directly generating explicit 3D representations, such as 3D Gaussian splatting, has attracted significant attention due to its fast and high-quality rendering, as well as numerous applications. However, many state-of-the-art methods, primarily based on transformer architectures, suffer from severe scalability issues because they rely on full attention across image tokens from multiple input views, resulting in prohibitive computational costs as the number of views or image resolution increases. Toward a scalable and efficient feed-forward 3D reconstruction, we introduce an iterative Large 3D Reconstruction Model (iLRM) that generates 3D Gaussian representations through an iterative refinement mechanism, guided by three core principles: (1) decoupling the scene representation from input-view images to enable compact 3D representations; (2) decomposing fully-attentional multi-view interactions into a two-stage attention scheme to reduce computational costs; and (3) injecting high-resolution information at every layer to achieve high-fidelity reconstruction. Experimental results on widely used datasets, such as RE10K and DL3DV, demonstrate that iLRM outperforms existing methods in both reconstruction quality and speed. Notably, iLRM exhibits superior scalability, delivering significantly higher reconstruction quality under comparable computational cost by efficiently leveraging a larger number of input views.
comment: Project page: https://gynjn.github.io/iLRM/
☆ GSFusion:Globally Optimized LiDAR-Inertial-Visual Mapping for Gaussian Splatting
While 3D Gaussian Splatting (3DGS) has revolutionized photorealistic mapping, conventional approaches based on camera sensor, even RGB-D, suffer from fundamental limitations such as high computational load, failure in environments with poor texture or illumination, and short operational ranges. LiDAR emerges as a robust alternative, but its integration with 3DGS introduces new challenges, such as the need for exceptional global alignment for photorealistic quality and prolonged optimization times caused by sparse data. To address these challenges, we propose GSFusion, an online LiDAR-Inertial-Visual mapping system that ensures high-precision map consistency through a surfel-to-surfel constraint in the global pose-graph optimization. To handle sparse data, our system employs a pixel-aware Gaussian initialization strategy for efficient representation and a bounded sigmoid constraint to prevent uncontrolled Gaussian growth. Experiments on public and our datasets demonstrate our system outperforms existing 3DGS SLAM systems in terms of rendering quality and map-building efficiency.
☆ Towards Affordable Tumor Segmentation and Visualization for 3D Breast MRI Using SAM2 MICCAI
Breast MRI provides high-resolution volumetric imaging critical for tumor assessment and treatment planning, yet manual interpretation of 3D scans remains labor-intensive and subjective. While AI-powered tools hold promise for accelerating medical image analysis, adoption of commercial medical AI products remains limited in low- and middle-income countries due to high license costs, proprietary software, and infrastructure demands. In this work, we investigate whether the Segment Anything Model 2 (SAM2) can be adapted for low-cost, minimal-input 3D tumor segmentation in breast MRI. Using a single bounding box annotation on one slice, we propagate segmentation predictions across the 3D volume using three different slice-wise tracking strategies: top-to-bottom, bottom-to-top, and center-outward. We evaluate these strategies across a large cohort of patients and find that center-outward propagation yields the most consistent and accurate segmentations. Despite being a zero-shot model not trained for volumetric medical data, SAM2 achieves strong segmentation performance under minimal supervision. We further analyze how segmentation performance relates to tumor size, location, and shape, identifying key failure modes. Our results suggest that general-purpose foundation models such as SAM2 can support 3D medical image analysis with minimal supervision, offering an accessible and affordable alternative for resource-constrained settings.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2nd Deep Breast Workshop on AI and Imaging for Diagnostic and Treatment Challenges in Breast Care (DeepBreath), 2025
☆ PixNerd: Pixel Neural Field Diffusion
The current success of diffusion transformers heavily depends on the compressed latent space shaped by the pre-trained variational autoencoder(VAE). However, this two-stage training paradigm inevitably introduces accumulated errors and decoding artifacts. To address the aforementioned problems, researchers return to pixel space at the cost of complicated cascade pipelines and increased token complexity. In contrast to their efforts, we propose to model the patch-wise decoding with neural field and present a single-scale, single-stage, efficient, end-to-end solution, coined as pixel neural field diffusion~(PixelNerd). Thanks to the efficient neural field representation in PixNerd, we directly achieved 2.15 FID on ImageNet $256\times256$ and 2.84 FID on ImageNet $512\times512$ without any complex cascade pipeline or VAE. We also extend our PixNerd framework to text-to-image applications. Our PixNerd-XXL/16 achieved a competitive 0.73 overall score on the GenEval benchmark and 80.9 overall score on the DPG benchmark.
comment: a single-scale, single-stage, efficient, end-to-end pixel space diffusion model
☆ Learning Semantic-Aware Threshold for Multi-Label Image Recognition with Partial Labels
Multi-label image recognition with partial labels (MLR-PL) is designed to train models using a mix of known and unknown labels. Traditional methods rely on semantic or feature correlations to create pseudo-labels for unidentified labels using pre-set thresholds. This approach often overlooks the varying score distributions across categories, resulting in inaccurate and incomplete pseudo-labels, thereby affecting performance. In our study, we introduce the Semantic-Aware Threshold Learning (SATL) algorithm. This innovative approach calculates the score distribution for both positive and negative samples within each category and determines category-specific thresholds based on these distributions. These distributions and thresholds are dynamically updated throughout the learning process. Additionally, we implement a differential ranking loss to establish a significant gap between the score distributions of positive and negative samples, enhancing the discrimination of the thresholds. Comprehensive experiments and analysis on large-scale multi-label datasets, such as Microsoft COCO and VG-200, demonstrate that our method significantly improves performance in scenarios with limited labels.
comment: 15 pages, 13 figures, publish to ESWA (Expert Systems With Applications)
☆ EMedNeXt: An Enhanced Brain Tumor Segmentation Framework for Sub-Saharan Africa using MedNeXt V2 with Deep Supervision MICCAI 2025
Brain cancer affects millions worldwide, and in nearly every clinical setting, doctors rely on magnetic resonance imaging (MRI) to diagnose and monitor gliomas. However, the current standard for tumor quantification through manual segmentation of multi-parametric MRI is time-consuming, requires expert radiologists, and is often infeasible in under-resourced healthcare systems. This problem is especially pronounced in low-income regions, where MRI scanners are of lower quality and radiology expertise is scarce, leading to incorrect segmentation and quantification. In addition, the number of acquired MRI scans in Africa is typically small. To address these challenges, the BraTS-Lighthouse 2025 Challenge focuses on robust tumor segmentation in sub-Saharan Africa (SSA), where resource constraints and image quality degradation introduce significant shifts. In this study, we present EMedNeXt -- an enhanced brain tumor segmentation framework based on MedNeXt V2 with deep supervision and optimized post-processing pipelines tailored for SSA. EMedNeXt introduces three key contributions: a larger region of interest, an improved nnU-Net v2-based architectural skeleton, and a robust model ensembling system. Evaluated on the hidden validation set, our solution achieved an average LesionWise DSC of 0.897 with an average LesionWise NSD of 0.541 and 0.84 at a tolerance of 0.5 mm and 1.0 mm, respectively.
comment: Submitted to the BraTS-Lighthouse 2025 Challenge (MICCAI 2025)
☆ Towards Measuring and Modeling Geometric Structures in Time Series Forecasting via Image Modality
Time Series forecasting is critical in diverse domains such as weather forecasting, financial investment, and traffic management. While traditional numerical metrics like mean squared error (MSE) can quantify point-wise accuracy, they fail to evaluate the geometric structure of time series data, which is essential to understand temporal dynamics. To address this issue, we propose the time series Geometric Structure Index (TGSI), a novel evaluation metric that transforms time series into images to leverage their inherent two-dimensional geometric representations. However, since the image transformation process is non-differentiable, TGSI cannot be directly integrated as a training loss. We further introduce the Shape-Aware Temporal Loss (SATL), a multi-component loss function operating in the time series modality to bridge this gap and enhance structure modeling during training. SATL combines three components: a first-order difference loss that measures structural consistency through the MSE between first-order differences, a frequency domain loss that captures essential periodic patterns using the Fast Fourier Transform while minimizing noise, and a perceptual feature loss that measures geometric structure difference in time-series by aligning temporal features with geometric structure features through a pre-trained temporal feature extractor and time-series image autoencoder. Experiments across multiple datasets demonstrate that models trained with SATL achieve superior performance in both MSE and the proposed TGSI metrics compared to baseline methods, without additional computational cost during inference.
☆ A Deep Dive into Generic Object Tracking: A Survey
Generic object tracking remains an important yet challenging task in computer vision due to complex spatio-temporal dynamics, especially in the presence of occlusions, similar distractors, and appearance variations. Over the past two decades, a wide range of tracking paradigms, including Siamese-based trackers, discriminative trackers, and, more recently, prominent transformer-based approaches, have been introduced to address these challenges. While a few existing survey papers in this field have either concentrated on a single category or widely covered multiple ones to capture progress, our paper presents a comprehensive review of all three categories, with particular emphasis on the rapidly evolving transformer-based methods. We analyze the core design principles, innovations, and limitations of each approach through both qualitative and quantitative comparisons. Our study introduces a novel categorization and offers a unified visual and tabular comparison of representative methods. Additionally, we organize existing trackers from multiple perspectives and summarize the major evaluation benchmarks, highlighting the fast-paced advancements in transformer-based tracking driven by their robust spatio-temporal modeling capabilities.
comment: 55 pages, 29 figures, 9 tables
☆ Automated Mapping the Pathways of Cranial Nerve II, III, V, and VII/VIII: A Multi-Parametric Multi-Stage Diffusion Tractography Atlas
Cranial nerves (CNs) play a crucial role in various essential functions of the human brain, and mapping their pathways from diffusion MRI (dMRI) provides valuable preoperative insights into the spatial relationships between individual CNs and key tissues. However, mapping a comprehensive and detailed CN atlas is challenging because of the unique anatomical structures of each CN pair and the complexity of the skull base environment.In this work, we present what we believe to be the first study to develop a comprehensive diffusion tractography atlas for automated mapping of CN pathways in the human brain. The CN atlas is generated by fiber clustering by using the streamlines generated by multi-parametric fiber tractography for each pair of CNs. Instead of disposable clustering, we explore a new strategy of multi-stage fiber clustering for multiple analysis of approximately 1,000,000 streamlines generated from the 50 subjects from the Human Connectome Project (HCP). Quantitative and visual experiments demonstrate that our CN atlas achieves high spatial correspondence with expert manual annotations on multiple acquisition sites, including the HCP dataset, the Multi-shell Diffusion MRI (MDM) dataset and two clinical cases of pituitary adenoma patients. The proposed CN atlas can automatically identify 8 fiber bundles associated with 5 pairs of CNs, including the optic nerve CN II, oculomotor nerve CN III, trigeminal nerve CN V and facial-vestibulocochlear nerve CN VII/VIII, and its robustness is demonstrated experimentally. This work contributes to the field of diffusion imaging by facilitating more efficient and automated mapping the pathways of multiple pairs of CNs, thereby enhancing the analysis and understanding of complex brain structures through visualization of their spatial relationships with nearby anatomy.
☆ Generalized Reinforcement Learning for Retriever-Specific Query Rewriter with Unstructured Real-World Documents
Retrieval-Augmented Generation (RAG) systems rely heavily on effective query formulation to unlock external knowledge, yet optimizing queries for diverse, unstructured real-world documents remains a challenge. We introduce \textbf{RL-QR}, a reinforcement learning framework for retriever-specific query rewriting that eliminates the need for human-annotated datasets and extends applicability to both text-only and multi-modal databases. By synthesizing scenario-question pairs and leveraging Generalized Reward Policy Optimization (GRPO), RL-QR trains query rewriters tailored to specific retrievers, enhancing retrieval performance across varied domains. Experiments on industrial in-house data demonstrate significant improvements, with $\text{RL-QR}_{\text{multi-modal}}$ achieving an 11\% relative gain in NDCG@3 for multi-modal RAG and $\text{RL-QR}_{\text{lexical}}$ yielding a 9\% gain for lexical retrievers. However, challenges persist with semantic and hybrid retrievers, where rewriters failed to improve performance, likely due to training misalignments. Our findings highlight RL-QR's potential to revolutionize query optimization for RAG systems, offering a scalable, annotation-free solution for real-world retrieval tasks, while identifying avenues for further refinement in semantic retrieval contexts.
☆ Ambiguity-Guided Learnable Distribution Calibration for Semi-Supervised Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) focuses on models learning new concepts from limited data while retaining knowledge of previous classes. Recently, many studies have started to leverage unlabeled samples to assist models in learning from few-shot samples, giving rise to the field of Semi-supervised Few-shot Class-Incremental Learning (Semi-FSCIL). However, these studies often assume that the source of unlabeled data is only confined to novel classes of the current session, which presents a narrow perspective and cannot align well with practical scenarios. To better reflect real-world scenarios, we redefine Semi-FSCIL as Generalized Semi-FSCIL (GSemi-FSCIL) by incorporating both base and all the ever-seen novel classes in the unlabeled set. This change in the composition of unlabeled samples poses a new challenge for existing methods, as they struggle to distinguish between unlabeled samples from base and novel classes. To address this issue, we propose an Ambiguity-guided Learnable Distribution Calibration (ALDC) strategy. ALDC dynamically uses abundant base samples to correct biased feature distributions for few-shot novel classes. Experiments on three benchmark datasets show that our method outperforms existing works, setting new state-of-the-art results.
comment: 6 pages, 5 figures
☆ Toward Safe, Trustworthy and Realistic Augmented Reality User Experience
As augmented reality (AR) becomes increasingly integrated into everyday life, ensuring the safety and trustworthiness of its virtual content is critical. Our research addresses the risks of task-detrimental AR content, particularly that which obstructs critical information or subtly manipulates user perception. We developed two systems, ViDDAR and VIM-Sense, to detect such attacks using vision-language models (VLMs) and multimodal reasoning modules. Building on this foundation, we propose three future directions: automated, perceptually aligned quality assessment of virtual content; detection of multimodal attacks; and adaptation of VLMs for efficient and user-centered deployment on AR devices. Overall, our work aims to establish a scalable, human-aligned framework for safeguarding AR experiences and seeks feedback on perceptual modeling, multimodal AR content implementation, and lightweight model adaptation.
comment: 2 pages, 4 figures
☆ YOLO-ROC: A High-Precision and Ultra-Lightweight Model for Real-Time Road Damage Detection
Road damage detection is a critical task for ensuring traffic safety and maintaining infrastructure integrity. While deep learning-based detection methods are now widely adopted, they still face two core challenges: first, the inadequate multi-scale feature extraction capabilities of existing networks for diverse targets like cracks and potholes, leading to high miss rates for small-scale damage; and second, the substantial parameter counts and computational demands of mainstream models, which hinder their deployment for efficient, real-time detection in practical applications. To address these issues, this paper proposes a high-precision and lightweight model, YOLO - Road Orthogonal Compact (YOLO-ROC). We designed a Bidirectional Multi-scale Spatial Pyramid Pooling Fast (BMS-SPPF) module to enhance multi-scale feature extraction and implemented a hierarchical channel compression strategy to reduce computational complexity. The BMS-SPPF module leverages a bidirectional spatial-channel attention mechanism to improve the detection of small targets. Concurrently, the channel compression strategy reduces the parameter count from 3.01M to 0.89M and GFLOPs from 8.1 to 2.6. Experiments on the RDD2022_China_Drone dataset demonstrate that YOLO-ROC achieves a mAP50 of 67.6%, surpassing the baseline YOLOv8n by 2.11%. Notably, the mAP50 for the small-target D40 category improved by 16.8%, and the final model size is only 2.0 MB. Furthermore, the model exhibits excellent generalization performance on the RDD2022_China_Motorbike dataset.
☆ Learning Arbitrary-Scale RAW Image Downscaling with Wavelet-based Recurrent Reconstruction ACM MM 2025
Image downscaling is critical for efficient storage and transmission of high-resolution (HR) images. Existing learning-based methods focus on performing downscaling within the sRGB domain, which typically suffers from blurred details and unexpected artifacts. RAW images, with their unprocessed photonic information, offer greater flexibility but lack specialized downscaling frameworks. In this paper, we propose a wavelet-based recurrent reconstruction framework that leverages the information lossless attribute of wavelet transformation to fulfill the arbitrary-scale RAW image downscaling in a coarse-to-fine manner, in which the Low-Frequency Arbitrary-Scale Downscaling Module (LASDM) and the High-Frequency Prediction Module (HFPM) are proposed to preserve structural and textural integrity of the reconstructed low-resolution (LR) RAW images, alongside an energy-maximization loss to align high-frequency energy between HR and LR domain. Furthermore, we introduce the Realistic Non-Integer RAW Downscaling (Real-NIRD) dataset, featuring a non-integer downscaling factor of 1.3$\times$, and incorporate it with publicly available datasets with integer factors (2$\times$, 3$\times$, 4$\times$) for comprehensive benchmarking arbitrary-scale image downscaling purposes. Extensive experiments demonstrate that our method outperforms existing state-of-the-art competitors both quantitatively and visually. The code and dataset will be released at https://github.com/RenYangSCU/ASRD.
comment: Accepted by ACM MM 2025
☆ Confidence-aware agglomeration classification and segmentation of 2D microscopic food crystal images
Food crystal agglomeration is a phenomenon occurs during crystallization which traps water between crystals and affects food product quality. Manual annotation of agglomeration in 2D microscopic images is particularly difficult due to the transparency of water bonding and the limited perspective focusing on a single slide of the imaged sample. To address this challenge, we first propose a supervised baseline model to generate segmentation pseudo-labels for the coarsely labeled classification dataset. Next, an instance classification model that simultaneously performs pixel-wise segmentation is trained. Both models are used in the inference stage to combine their respective strengths in classification and segmentation. To preserve crystal properties, a post processing module is designed and included to both steps. Our method improves true positive agglomeration classification accuracy and size distribution predictions compared to other existing methods. Given the variability in confidence levels of manual annotations, our proposed method is evaluated under two confidence levels and successfully classifies potential agglomerated instances.
☆ Adversarial-Guided Diffusion for Multimodal LLM Attacks
This paper addresses the challenge of generating adversarial image using a diffusion model to deceive multimodal large language models (MLLMs) into generating the targeted responses, while avoiding significant distortion of the clean image. To address the above challenges, we propose an adversarial-guided diffusion (AGD) approach for adversarial attack MLLMs. We introduce adversarial-guided noise to ensure attack efficacy. A key observation in our design is that, unlike most traditional adversarial attacks which embed high-frequency perturbations directly into the clean image, AGD injects target semantics into the noise component of the reverse diffusion. Since the added noise in a diffusion model spans the entire frequency spectrum, the adversarial signal embedded within it also inherits this full-spectrum property. Importantly, during reverse diffusion, the adversarial image is formed as a linear combination of the clean image and the noise. Thus, when applying defenses such as a simple low-pass filtering, which act independently on each component, the adversarial image within the noise component is less likely to be suppressed, as it is not confined to the high-frequency band. This makes AGD inherently robust to variety defenses. Extensive experiments demonstrate that our AGD outperforms state-of-the-art methods in attack performance as well as in model robustness to some defenses.
☆ A Novel Dataset for Flood Detection Robust to Seasonal Changes in Satellite Imagery
This study introduces a novel dataset for segmenting flooded areas in satellite images. After reviewing 77 existing benchmarks utilizing satellite imagery, we identified a shortage of suitable datasets for this specific task. To fill this gap, we collected satellite imagery of the 2019 Midwestern USA floods from Planet Explorer by Planet Labs (Image \c{opyright} 2024 Planet Labs PBC). The dataset consists of 10 satellite images per location, each containing both flooded and non-flooded areas. We selected ten locations from each of the five states: Iowa, Kansas, Montana, Nebraska, and South Dakota. The dataset ensures uniform resolution and resizing during data processing. For evaluating semantic segmentation performance, we tested state-of-the-art models in computer vision and remote sensing on our dataset. Additionally, we conducted an ablation study varying window sizes to capture temporal characteristics. Overall, the models demonstrated modest results, suggesting a requirement for future multimodal and temporal learning strategies. The dataset will be publicly available on .
comment: 8 pages, 2 figures. Presented at ACM RACS 2024 (Pompei, Italy, Nov 5-8, 2024)
☆ Accessibility Scout: Personalized Accessibility Scans of Built Environments
Assessing the accessibility of unfamiliar built environments is critical for people with disabilities. However, manual assessments, performed by users or their personal health professionals, are laborious and unscalable, while automatic machine learning methods often neglect an individual user's unique needs. Recent advances in Large Language Models (LLMs) enable novel approaches to this problem, balancing personalization with scalability to enable more adaptive and context-aware assessments of accessibility. We present Accessibility Scout, an LLM-based accessibility scanning system that identifies accessibility concerns from photos of built environments. With use, Accessibility Scout becomes an increasingly capable "accessibility scout", tailoring accessibility scans to an individual's mobility level, preferences, and specific environmental interests through collaborative Human-AI assessments. We present findings from three studies: a formative study with six participants to inform the design of Accessibility Scout, a technical evaluation of 500 images of built environments, and a user study with 10 participants of varying mobility. Results from our technical evaluation and user study show that Accessibility Scout can generate personalized accessibility scans that extend beyond traditional ADA considerations. Finally, we conclude with a discussion on the implications of our work and future steps for building more scalable and personalized accessibility assessments of the physical world.
comment: 18 pages, 16 figures. Presented at ACM UIST 2025
☆ Multi-Modal Motion Retrieval by Learning a Fine-Grained Joint Embedding Space
Motion retrieval is crucial for motion acquisition, offering superior precision, realism, controllability, and editability compared to motion generation. Existing approaches leverage contrastive learning to construct a unified embedding space for motion retrieval from text or visual modality. However, these methods lack a more intuitive and user-friendly interaction mode and often overlook the sequential representation of most modalities for improved retrieval performance. To address these limitations, we propose a framework that aligns four modalities -- text, audio, video, and motion -- within a fine-grained joint embedding space, incorporating audio for the first time in motion retrieval to enhance user immersion and convenience. This fine-grained space is achieved through a sequence-level contrastive learning approach, which captures critical details across modalities for better alignment. To evaluate our framework, we augment existing text-motion datasets with synthetic but diverse audio recordings, creating two multi-modal motion retrieval datasets. Experimental results demonstrate superior performance over state-of-the-art methods across multiple sub-tasks, including an 10.16% improvement in R@10 for text-to-motion retrieval and a 25.43% improvement in R@1 for video-to-motion retrieval on the HumanML3D dataset. Furthermore, our results show that our 4-modal framework significantly outperforms its 3-modal counterpart, underscoring the potential of multi-modal motion retrieval for advancing motion acquisition.
comment: Accepted by IEEE TMM 2025
☆ Single Image Rain Streak Removal Using Harris Corner Loss and R-CBAM Network
The problem of single-image rain streak removal goes beyond simple noise suppression, requiring the simultaneous preservation of fine structural details and overall visual quality. In this study, we propose a novel image restoration network that effectively constrains the restoration process by introducing a Corner Loss, which prevents the loss of object boundaries and detailed texture information during restoration. Furthermore, we propose a Residual Convolutional Block Attention Module (R-CBAM) Block into the encoder and decoder to dynamically adjust the importance of features in both spatial and channel dimensions, enabling the network to focus more effectively on regions heavily affected by rain streaks. Quantitative evaluations conducted on the Rain100L and Rain100H datasets demonstrate that the proposed method significantly outperforms previous approaches, achieving a PSNR of 33.29 dB on Rain100L and 26.16 dB on Rain100H.
comment: 21 pages
☆ CNN-based solution for mango classification in agricultural environments
This article exemplifies the design of a fruit detection and classification system using Convolutional Neural Networks (CNN). The goal is to develop a system that automatically assesses fruit quality for farm inventory management. Specifically, a method for mango fruit classification was developed using image processing, ensuring both accuracy and efficiency. Resnet-18 was selected as the preliminary architecture for classification, while a cascade detector was used for detection, balancing execution speed and computational resource consumption. Detection and classification results were displayed through a graphical interface developed in MatLab App Designer, streamlining system interaction. The integration of convolutional neural networks and cascade detectors proffers a reliable solution for fruit classification and detection, with potential applications in agricultural quality control.
♻ ☆ Towards Omnimodal Expressions and Reasoning in Referring Audio-Visual Segmentation ICCV 2025
Referring audio-visual segmentation (RAVS) has recently seen significant advancements, yet challenges remain in integrating multimodal information and deeply understanding and reasoning about audiovisual content. To extend the boundaries of RAVS and facilitate future research in this field, we propose Omnimodal Referring Audio-Visual Segmentation (OmniAVS), a new dataset containing 2,104 videos and 61,095 multimodal referring expressions. OmniAVS stands out with three key innovations: (1) 8 types of multimodal expressions that flexibly combine text, speech, sound, and visual cues; (2) an emphasis on understanding audio content beyond just detecting their presence; and (3) the inclusion of complex reasoning and world knowledge in expressions. Furthermore, we introduce Omnimodal Instructed Segmentation Assistant (OISA), to address the challenges of multimodal reasoning and fine-grained understanding of audiovisual content in OmniAVS. OISA uses MLLM to comprehend complex cues and perform reasoning-based segmentation. Extensive experiments show that OISA outperforms existing methods on OmniAVS and achieves competitive results on other related tasks.
comment: ICCV 2025, Project Page: https://henghuiding.com/OmniAVS/
♻ ☆ Ultra3D: Efficient and High-Fidelity 3D Generation with Part Attention
Recent advances in sparse voxel representations have significantly improved the quality of 3D content generation, enabling high-resolution modeling with fine-grained geometry. However, existing frameworks suffer from severe computational inefficiencies due to the quadratic complexity of attention mechanisms in their two-stage diffusion pipelines. In this work, we propose Ultra3D, an efficient 3D generation framework that significantly accelerates sparse voxel modeling without compromising quality. Our method leverages the compact VecSet representation to efficiently generate a coarse object layout in the first stage, reducing token count and accelerating voxel coordinate prediction. To refine per-voxel latent features in the second stage, we introduce Part Attention, a geometry-aware localized attention mechanism that restricts attention computation within semantically consistent part regions. This design preserves structural continuity while avoiding unnecessary global attention, achieving up to 6.7x speed-up in latent generation. To support this mechanism, we construct a scalable part annotation pipeline that converts raw meshes into part-labeled sparse voxels. Extensive experiments demonstrate that Ultra3D supports high-resolution 3D generation at 1024 resolution and achieves state-of-the-art performance in both visual fidelity and user preference.
comment: Project Page: https://buaacyw.github.io/ultra3d/
♻ ☆ VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning
Reinforcement learning has proven its effectiveness in enhancing the reasoning capabilities of large language models. Recent research efforts have progressively extended this paradigm to multimodal reasoning tasks. Due to the inherent complexity and diversity of multimodal tasks, especially in semantic content and problem formulations, existing models often exhibit unstable performance across various domains and difficulty levels. To address these limitations, we propose VL-Cogito, an advanced multimodal reasoning model trained via a novel multi-stage Progressive Curriculum Reinforcement Learning (PCuRL) framework. PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts. The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity, thus balancing reasoning efficiency with correctness. Experimental evaluations demonstrate that VL-Cogito consistently matches or surpasses existing reasoning-oriented models across mainstream multimodal benchmarks spanning mathematics, science, logic, and general understanding, validating the effectiveness of our approach.
comment: 21 pages, 5 figures, 6 tables. Work in progress
♻ ☆ Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy ICONIP2025
Vision-based bird's-eye-view (BEV) 3D object detection has advanced significantly in autonomous driving by offering cost-effectiveness and rich contextual information. However, existing methods often construct BEV representations by collapsing extracted object features, neglecting intrinsic environmental contexts, such as roads and pavements. This hinders detectors from comprehensively perceiving the characteristics of the physical world. To alleviate this, we introduce a multi-task learning framework, Collaborative Perceiver (CoP), that leverages spatial occupancy as auxiliary information to mine consistent structural and conceptual similarities shared between 3D object detection and occupancy prediction tasks, bridging gaps in spatial representations and feature refinement. To this end, we first propose a pipeline to generate dense occupancy ground truths incorporating local density information (LDO) for reconstructing detailed environmental information. Next, we employ a voxel-height-guided sampling (VHS) strategy to distill fine-grained local features according to distinct object properties. Furthermore, we develop a global-local collaborative feature fusion (CFF) module that seamlessly integrates complementary knowledge between both tasks, thus composing more robust BEV representations. Extensive experiments on the nuScenes benchmark demonstrate that CoP outperforms existing vision-based frameworks, achieving 49.5\% mAP and 59.2\% NDS on the test set. Code and supplementary materials are available at this link https://github.com/jichengyuan/Collaborative-Perceiver.
comment: The manuscript has been accepted by ICONIP2025
♻ ☆ HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors MICCAI 2025
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.
comment: Accepted by MICCAI 2025
♻ ☆ Robust Adverse Weather Removal via Spectral-based Spatial Grouping ICCV25
Adverse weather conditions cause diverse and complex degradation patterns, driving the development of All-in-One (AiO) models. However, recent AiO solutions still struggle to capture diverse degradations, since global filtering methods like direct operations on the frequency domain fail to handle highly variable and localized distortions. To address these issue, we propose Spectral-based Spatial Grouping Transformer (SSGformer), a novel approach that leverages spectral decomposition and group-wise attention for multi-weather image restoration. SSGformer decomposes images into high-frequency edge features using conventional edge detection and low-frequency information via Singular Value Decomposition. We utilize multi-head linear attention to effectively model the relationship between these features. The fused features are integrated with the input to generate a grouping-mask that clusters regions based on the spatial similarity and image texture. To fully leverage this mask, we introduce a group-wise attention mechanism, enabling robust adverse weather removal and ensuring consistent performance across diverse weather conditions. We also propose a Spatial Grouping Transformer Block that uses both channel attention and spatial attention, effectively balancing feature-wise relationships and spatial dependencies. Extensive experiments show the superiority of our approach, validating its effectiveness in handling the varied and intricate adverse weather degradations.
comment: accepted by ICCV25
♻ ☆ LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks ACM MM 2025
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.
comment: This paper has been accepted by ACM MM 2025
♻ ☆ Learning to Align and Refine: A Foundation-to-Diffusion Framework for Occlusion-Robust Two-Hand Reconstruction
Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures and occlusions, causing significant difficulty in achieving plausible interaction alignment. Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts. To tackle this, we propose a dual-stage Foundation-to-Diffusion framework that precisely align 2D prior guidance from vision foundation models and diffusion-based generative 3D interaction refinement to achieve occlusion-robust two-hand reconstruction. First, we introduce a lightweight fusion alignment encoder that aligns fused multimodal 2D priors like key points, segmentation maps, and depth cues from vision foundation models during training. This provides robust structured guidance, further enabling efficient inference without heavy foundation model encoders at test time while maintaining high reconstruction accuracy. Second, we implement a two-hand diffusion model explicitly trained to convert interpenetrated 3D poses into plausible, penetration-free counterparts. Through collision gradient-guided denoising, the model rectifies artifacts while preserving natural spatial relationships between hands. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on InterHand2.6M, HIC, and FreiHAND datasets, significantly advancing occlusion handling and interaction robustness. Our code will be publicly released.
♻ ☆ Vector-Quantized Vision Foundation Models for Object-Centric Learning ACM MM 2025
Perceiving visual scenes as objects and background--like humans do--Object-Centric Learning (OCL) aggregates image or video feature maps into object-level feature vectors, termed \textit{slots}. OCL's self-supervision of reconstructing the input from these aggregated slots struggles with complex object textures, thus Vision Foundation Model (VFM) representations are used as the aggregation input and reconstruction target. However, existing methods leverage VFM representations in diverse ways and often fail to fully exploit their potential. In response, we propose a clean architecture--Vector-Quantized VFMs for OCL (VQ-VFM-OCL, or VVO)--that unifies mainstream OCL methods. The key to our unification is simple yet effective, just shared quantizing the same VFM representation as the reconstruction target. Through mathematical modeling and statistical verification, we further analyze why VFM representations facilitate OCL aggregation and how their shared quantization as reconstruction targets strengthens OCL supervision. Experiments show that across different VFMs, aggregators and decoders, our VVO consistently outperforms baselines in object discovery and recognition, as well as downstream visual prediction and reasoning. The implementation and model checkpoints are available on https://github.com/Genera1Z/VQ-VFM-OCL.
comment: Accepted by ACM MM 2025
♻ ☆ ClaraVid: A Holistic Scene Reconstruction Benchmark From Aerial Perspective With Delentropy-Based Complexity Profiling ICCV 2025
The development of aerial holistic scene understanding algorithms is hindered by the scarcity of comprehensive datasets that enable both semantic and geometric reconstruction. While synthetic datasets offer an alternative, existing options exhibit task-specific limitations, unrealistic scene compositions, and rendering artifacts that compromise real-world applicability. We introduce ClaraVid, a synthetic aerial dataset specifically designed to overcome these limitations. Comprising 16,917 high-resolution images captured at 4032x3024 from multiple viewpoints across diverse landscapes, ClaraVid provides dense depth maps, panoptic segmentation, sparse point clouds, and dynamic object masks, while mitigating common rendering artifacts. To further advance neural reconstruction, we introduce the Delentropic Scene Profile (DSP), a novel complexity metric derived from differential entropy analysis, designed to quantitatively assess scene difficulty and inform reconstruction tasks. Utilizing DSP, we systematically benchmark neural reconstruction methods, uncovering a consistent, measurable correlation between scene complexity and reconstruction accuracy. Empirical results indicate that higher delentropy strongly correlates with increased reconstruction errors, validating DSP as a reliable complexity prior. The data and code are available on the project page at https://rdbch.github.io/claravid/
comment: Accepted ICCV 2025
♻ ☆ Generalizable Image Repair for Robust Visual Control IROS 2025
Vision-based control relies on accurate perception to achieve robustness. However, image distribution changes caused by sensor noise, adverse weather, and dynamic lighting can degrade perception, leading to suboptimal control decisions. Existing approaches, including domain adaptation and adversarial training, improve robustness but struggle to generalize to unseen corruptions while introducing computational overhead. To address this challenge, we propose a real-time image repair module that restores corrupted images before they are used by the controller. Our method leverages generative adversarial models, specifically CycleGAN and pix2pix, for image repair. CycleGAN enables unpaired image-to-image translation to adapt to novel corruptions, while pix2pix exploits paired image data when available to improve the quality. To ensure alignment with control performance, we introduce a control-focused loss function that prioritizes perceptual consistency in repaired images. We evaluated our method in a simulated autonomous racing environment with various visual corruptions. The results show that our approach significantly improves performance compared to baselines, mitigating distribution shift and enhancing controller reliability.
comment: 8 pages, 4 figures, 2 tables, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Beyond the Encoder: Joint Encoder-Decoder Contrastive Pre-Training Improves Dense Prediction
Contrastive learning methods in self-supervised settings have primarily focused on pre-training encoders, while decoders are typically introduced and trained separately for downstream dense prediction tasks. However, this conventional approach overlooks the potential benefits of jointly pre-training both encoder and decoder. In this paper, we propose DeCon, an efficient encoder-decoder self-supervised learning (SSL) framework that supports joint contrastive pre-training. We first extend existing SSL architectures to accommodate diverse decoders and their corresponding contrastive losses. Then, we introduce a weighted encoder-decoder contrastive loss with non-competing objectives to enable the joint pre-training of encoder-decoder architectures. By adapting an established contrastive SSL framework for dense prediction tasks, DeCon achieves new state-of-the-art results: on COCO object detection and instance segmentation when pre-trained on COCO dataset; across almost all dense downstream benchmark tasks when pre-trained on COCO+ and ImageNet-1K. Our results demonstrate that joint pre-training enhances the representation power of the encoder and improves performance in dense prediction tasks. This gain persists across heterogeneous decoder architectures, various encoder architectures, and in out-of-domain limited-data scenarios.
♻ ☆ Learning from Rendering: Realistic and Controllable Extreme Rainy Image Synthesis for Autonomous Driving Simulation
Autonomous driving simulators provide an effective and low-cost alternative for evaluating or enhancing visual perception models. However, the reliability of evaluation depends on the diversity and realism of the generated scenes. Extreme weather conditions, particularly extreme rainfalls, are rare and costly to capture in real-world settings. While simulated environments can help address this limitation, existing rainy image synthesizers often suffer from poor controllability over illumination and limited realism, which significantly undermines the effectiveness of the model evaluation. To that end, we propose a learning-from-rendering rainy image synthesizer, which combines the benefits of the realism of rendering-based methods and the controllability of learning-based methods. To validate the effectiveness of our extreme rainy image synthesizer on semantic segmentation task, we require a continuous set of well-labeled extreme rainy images. By integrating the proposed synthesizer with the CARLA driving simulator, we develop CARLARain an extreme rainy street scene simulator which can obtain paired rainy-clean images and labels under complex illumination conditions. Qualitative and quantitative experiments validate that CARLARain can effectively improve the accuracy of semantic segmentation models in extreme rainy scenes, with the models' accuracy (mIoU) improved by 5% - 8% on the synthetic dataset and significantly enhanced in real extreme rainy scenarios under complex illuminations. Our source code and datasets are available at https://github.com/kb824999404/CARLARain/.
♻ ☆ SDFit: 3D Object Pose and Shape by Fitting a Morphable SDF to a Single Image ICCV'25
Recovering 3D object pose and shape from a single image is a challenging and ill-posed problem. This is due to strong (self-)occlusions, depth ambiguities, the vast intra- and inter-class shape variance, and the lack of 3D ground truth for natural images. Existing deep-network methods are trained on synthetic datasets to predict 3D shapes, so they often struggle generalizing to real-world images. Moreover, they lack an explicit feedback loop for refining noisy estimates, and primarily focus on geometry without directly considering pixel alignment. To tackle these limitations, we develop a novel render-and-compare optimization framework, called SDFit. This has three key innovations: First, it uses a learned category-specific and morphable signed-distance-function (mSDF) model, and fits this to an image by iteratively refining both 3D pose and shape. The mSDF robustifies inference by constraining the search on the manifold of valid shapes, while allowing for arbitrary shape topologies. Second, SDFit retrieves an initial 3D shape that likely matches the image, by exploiting foundational models for efficient look-up into 3D shape databases. Third, SDFit initializes pose by establishing rich 2D-3D correspondences between the image and the mSDF through foundational features. We evaluate SDFit on three image datasets, i.e., Pix3D, Pascal3D+, and COMIC. SDFit performs on par with SotA feed-forward networks for unoccluded images and common poses, but is uniquely robust to occlusions and uncommon poses. Moreover, it requires no retraining for unseen images. Thus, SDFit contributes new insights for generalizing in the wild. Code is available at https://anticdimi.github.io/sdfit.
comment: ICCV'25 Camera Ready; 12 pages, 11 figures, 5 tables
♻ ☆ An Inversion-based Measure of Memorization for Diffusion Models ICCV 2025
The past few years have witnessed substantial advances in image generation powered by diffusion models. However, it was shown that diffusion models are susceptible to training data memorization, raising significant concerns regarding copyright infringement and privacy invasion. This study delves into a rigorous analysis of memorization in diffusion models. We introduce InvMM, an inversion-based measure of memorization, which is based on inverting a sensitive latent noise distribution accounting for the replication of an image. For accurate estimation of the measure, we propose an adaptive algorithm that balances the normality and sensitivity of the noise distribution. Comprehensive experiments across four datasets, conducted on both unconditional and text-guided diffusion models, demonstrate that InvMM provides a reliable and complete quantification of memorization. Notably, InvMM is commensurable between samples, reveals the true extent of memorization from an adversarial standpoint and implies how memorization differs from membership. In practice, it serves as an auditing tool for developers to reliably assess the risk of memorization, thereby contributing to the enhancement of trustworthiness and privacy-preserving capabilities of diffusion models.
comment: Accepted by ICCV 2025
♻ ☆ PatchTraj: Unified Time-Frequency Representation Learning via Dynamic Patches for Trajectory Prediction
Pedestrian trajectory prediction is crucial for autonomous driving and robotics. While existing point-based and grid-based methods expose two main limitations: insufficiently modeling human motion dynamics, as they fail to balance local motion details with long-range spatiotemporal dependencies, and the time representations lack interaction with their frequency components in jointly modeling trajectory sequences. To address these challenges, we propose PatchTraj, a dynamic patch-based framework that integrates time-frequency joint modeling for trajectory prediction. Specifically, we decompose the trajectory into raw time sequences and frequency components, and employ dynamic patch partitioning to perform multi-scale segmentation, capturing hierarchical motion patterns. Each patch undergoes adaptive embedding with scale-aware feature extraction, followed by hierarchical feature aggregation to model both fine-grained and long-range dependencies. The outputs of the two branches are further enhanced via cross-modal attention, facilitating complementary fusion of temporal and spectral cues. The resulting enhanced embeddings exhibit strong expressive power, enabling accurate predictions even when using a vanilla Transformer architecture. Extensive experiments on ETH-UCY, SDD, NBA, and JRDB datasets demonstrate that our method achieves state-of-the-art performance. Notably, on the egocentric JRDB dataset, PatchTraj attains significant relative improvements of 26.7% in ADE and 17.4% in FDE, underscoring its substantial potential in embodied intelligence.
♻ ☆ ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling
Most crowd counting methods directly regress blockwise density maps using Mean Squared Error (MSE) losses. This practice has two key limitations: (1) it fails to account for the extreme spatial sparsity of annotations - over 95% of 8x8 blocks are empty across standard benchmarks, so supervision signals in informative regions are diluted by the predominant zeros; (2) MSE corresponds to a Gaussian error model that poorly matches discrete, non-negative count data. To address these issues, we introduce ZIP, a scalable crowd counting framework that models blockwise counts with a Zero-Inflated Poisson likelihood: a zero-inflation term learns the probability a block is structurally empty (handling excess zeros), while the Poisson component captures expected counts when people are present (respecting discreteness). We provide a generalization analysis showing a tighter risk bound for ZIP than MSE-based losses and DMCount provided that the training resolution is moderately large. To assess the scalability of ZIP, we instantiate it on backbones spanning over 100x in parameters/compute. Experiments on ShanghaiTech A & B, UCF-QNRF, and NWPU-Crowd demonstrate that ZIP consistently surpasses state-of-the-art methods across all model scales.
comment: 15 pages, 11 figures
♻ ☆ Divided Attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots
We investigate the emergence of objects in visual perception in the absence of any semantic annotation. The resulting model has received no supervision, does not use any pre-trained features, and yet it can segment the domain of an image into multiple independently moving regions. The resulting motion segmentation method can handle an unknown and varying number of objects in real-time. The core multi-modal conditional encoder-decoder architecture has one modality (optical flow) feed the encoder to produce a collection of latent codes (slots), and the other modality (color image) conditions the decoder to generate the first modality (flow) from the slots. The training criterion is designed to foster 'information separation' among the slots, while the architecture explicitly allocates activations to individual slots, leading to a method we call Divided Attention (DivA). At test time, DivA handles a different number of objects and different image resolution than seen at training, and is invariant to permutations of the slots. DivA achieves state-of-the-art performance while tripling the runtime speed of comparable methods, up to 104 FPS, and reduces the performance gap from supervised methods to 12% or less. Objects bootstrapped by DivA can then be used to prime static classifiers via contrastive learning. On fewer than 5,000 video clips, training DINO on DivA's object proposals narrows the performance gap to ImageNet-based training by up to 30.2% compared to training directly on the video frames.
♻ ☆ SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms
Wave-like images-from attosecond streaking spectrograms to optical spectra, audio mel-spectrograms and periodic video frames-encode critical harmonic structures that elude conventional feature extractors. We propose a unified, matrix-equivalent framework that reinterprets convolution and attention as linear transforms on flattened inputs, revealing filter weights as basis vectors spanning latent feature subspaces. To infuse spectral priors we apply elementwise $\sin(\cdot)$ mappings to each weight matrix. Embedding these transforms into CNN, ViT and Capsule architectures yields Sin-Basis Networks with heightened sensitivity to periodic motifs and built-in invariance to spatial shifts. Experiments on a diverse collection of wave-like image datasets-including 80,000 synthetic attosecond streaking spectrograms, thousands of Raman, photoluminescence and FTIR spectra, mel-spectrograms from AudioSet and cycle-pattern frames from Kinetics-demonstrate substantial gains in reconstruction accuracy, translational robustness and zero-shot cross-domain transfer. Theoretical analysis via matrix isomorphism and Mercer-kernel truncation quantifies how sinusoidal reparametrization enriches expressivity while preserving stability in data-scarce regimes. Sin-Basis Networks thus offer a lightweight, physics-informed approach to deep learning across all wave-form imaging modalities.
♻ ☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Our code will be made public after the conference at https://github.com/Ellimac0/Snake-NeRF
♻ ☆ Comparative Performance of Finetuned ImageNet Pre-trained Models for Electronic Component Classification
Electronic component classification and detection are crucial in manufacturing industries, significantly reducing labor costs and promoting technological and industrial development. Pre-trained models, especially those trained on ImageNet, are highly effective in image classification, allowing researchers to achieve excellent results even with limited data. This paper compares the performance of twelve ImageNet pre-trained models in classifying electronic components. Our findings show that all models tested delivered respectable accuracies. MobileNet-V2 recorded the highest at 99.95%, while EfficientNet-B0 had the lowest at 92.26%. These results underscore the substantial benefits of using ImageNet pre-trained models in image classification tasks and confirm the practical applicability of these methods in the electronics manufacturing sector.
comment: Due to issues related to author order and some problems in the current version regarding methodology, we would like to withdraw the preprint to avoid potential conflicts
♻ ☆ MolParser: End-to-end Visual Recognition of Molecule Structures in the Wild
In recent decades, chemistry publications and patents have increased rapidly. A significant portion of key information is embedded in molecular structure figures, complicating large-scale literature searches and limiting the application of large language models in fields such as biology, chemistry, and pharmaceuticals. The automatic extraction of precise chemical structures is of critical importance. However, the presence of numerous Markush structures in real-world documents, along with variations in molecular image quality, drawing styles, and noise, significantly limits the performance of existing optical chemical structure recognition (OCSR) methods. We present MolParser, a novel end-to-end OCSR method that efficiently and accurately recognizes chemical structures from real-world documents, including difficult Markush structure. We use a extended SMILES encoding rule to annotate our training dataset. Under this rule, we build MolParser-7M, the largest annotated molecular image dataset to our knowledge. While utilizing a large amount of synthetic data, we employed active learning methods to incorporate substantial in-the-wild data, specifically samples cropped from real patents and scientific literature, into the training process. We trained an end-to-end molecular image captioning model, MolParser, using a curriculum learning approach. MolParser significantly outperforms classical and learning-based methods across most scenarios, with potential for broader downstream applications. The dataset is publicly available in huggingface.
♻ ☆ GenHancer: Imperfect Generative Models are Secretly Strong Vision-Centric Enhancers ICCV 2025
The synergy between generative and discriminative models receives growing attention. While discriminative Contrastive Language-Image Pre-Training (CLIP) excels in high-level semantics, it struggles with perceiving fine-grained visual details. Generally, to enhance representations, generative models take CLIP's visual features as conditions for reconstruction. However, the underlying principle remains underexplored. In this work, we empirically found that visually perfect generations are not always optimal for representation enhancement. The essence lies in effectively extracting fine-grained knowledge from generative models while mitigating irrelevant information. To explore critical factors, we delve into three aspects: (1) Conditioning mechanisms: We found that even a small number of local tokens can drastically reduce the difficulty of reconstruction, leading to collapsed training. We thus conclude that utilizing only global visual tokens as conditions is the most effective strategy. (2) Denoising configurations: We observed that end-to-end training introduces extraneous information. To address this, we propose a two-stage training strategy to prioritize learning useful visual knowledge. Additionally, we demonstrate that lightweight denoisers can yield remarkable improvements. (3) Generation paradigms: We explore both continuous and discrete denoisers with desirable outcomes, validating the versatility of our method. Through our in-depth explorations, we have finally arrived at an effective method, namely GenHancer, which consistently outperforms prior arts on the MMVP-VLM benchmark, e.g., 6.0% on OpenAICLIP. The enhanced CLIP can be further plugged into multimodal large language models for better vision-centric performance. All the models and codes are made publicly available.
comment: ICCV 2025. Project released at: https://mashijie1028.github.io/GenHancer/
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Color as the Impetus: Transforming Few-Shot Learner
Humans possess innate meta-learning capabilities, partly attributable to their exceptional color perception. In this paper, we pioneer an innovative viewpoint on few-shot learning by simulating human color perception mechanisms. We propose the ColorSense Learner, a bio-inspired meta-learning framework that capitalizes on inter-channel feature extraction and interactive learning. By strategically emphasizing distinct color information across different channels, our approach effectively filters irrelevant features while capturing discriminative characteristics. Color information represents the most intuitive visual feature, yet conventional meta-learning methods have predominantly neglected this aspect, focusing instead on abstract feature differentiation across categories. Our framework bridges the gap via synergistic color-channel interactions, enabling better intra-class commonality extraction and larger inter-class differences. Furthermore, we introduce a meta-distiller based on knowledge distillation, ColorSense Distiller, which incorporates prior teacher knowledge to augment the student network's meta-learning capacity. We've conducted comprehensive coarse/fine-grained and cross-domain experiments on eleven few-shot benchmarks for validation. Numerous experiments reveal that our methods have extremely strong generalization ability, robustness, and transferability, and effortless handle few-shot classification from the perspective of color perception.
♻ ☆ LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning ICCV 2025
Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.
comment: ICCV 2025 Workshop on What is Next in Multimodal Foundation Models
♻ ☆ Understanding implementation pitfalls of distance-based metrics for image segmentation
Distance-based metrics, such as the Hausdorff distance (HD), are widely used to validate segmentation performance in (bio)medical imaging. However, their implementation is complex, and critical differences across open-source tools remain largely unrecognized by the community. These discrepancies undermine benchmarking efforts, introduce bias in biomarker calculations, and potentially distort medical device development and clinical commissioning. In this study, we systematically dissect 11 open-source tools that implement distance-based metric computation by performing both a conceptual analysis of their computational steps and an empirical analysis on representative two- and three-dimensional image datasets. Alarmingly, we observed deviations in HD exceeding 100 mm and identified multiple statistically significant differences between tools - demonstrating that statistically significant improvements on the same set of segmentations can be achieved simply by selecting a particular implementation. These findings cast doubts on the validity of prior comparisons of results across studies without accounting for the differences in metric implementations. To address this, we provide practical recommendations for tool selection; additionally, our conceptual analysis informs about the future evolution of implementing open-source tools.
♻ ☆ BusterX++: Towards Unified Cross-Modal AI-Generated Content Detection and Explanation with MLLM
Recent advances in generative AI have dramatically improved image and video synthesis capabilities, significantly increasing the risk of misinformation through sophisticated fake content. In response, detection methods have evolved from traditional approaches to multimodal large language models (MLLMs), offering enhanced transparency and interpretability in identifying synthetic media. However, current detection systems remain fundamentally limited by their single-modality design. These approaches analyze images or videos separately, making them ineffective against synthetic content that combines multiple media formats. To address these challenges, we introduce \textbf{BusterX++}, a novel framework designed specifically for cross-modal detection and explanation of synthetic media. Our approach incorporates an advanced reinforcement learning (RL) post-training strategy that eliminates cold-start. Through Multi-stage Training, Thinking Reward, and Hybrid Reasoning, BusterX++ achieves stable and substantial performance improvements. To enable comprehensive evaluation, we also present \textbf{GenBuster++}, a cross-modal benchmark leveraging state-of-the-art image and video generation techniques. This benchmark comprises 4,000 images and video clips, meticulously curated by human experts using a novel filtering methodology to ensure high quality, diversity, and real-world applicability. Extensive experiments demonstrate the effectiveness and generalizability of our approach.
♻ ☆ BusterX: MLLM-Powered AI-Generated Video Forgery Detection and Explanation
Advances in AI generative models facilitate super-realistic video synthesis, amplifying misinformation risks via social media and eroding trust in digital content. Several research works have explored new deepfake detection methods on AI-generated images to alleviate these risks. However, with the fast development of video generation models, such as Sora and WanX, there is currently a lack of large-scale, high-quality AI-generated video datasets for forgery detection. In addition, existing detection approaches predominantly treat the task as binary classification, lacking explainability in model decision-making and failing to provide actionable insights or guidance for the public. To address these challenges, we propose \textbf{GenBuster-200K}, a large-scale AI-generated video dataset featuring 200K high-resolution video clips, diverse latest generative techniques, and real-world scenes. We further introduce \textbf{BusterX}, a novel AI-generated video detection and explanation framework leveraging multimodal large language model (MLLM) and reinforcement learning for authenticity determination and explainable rationale. To our knowledge, GenBuster-200K is the {\it \textbf{first}} large-scale, high-quality AI-generated video dataset that incorporates the latest generative techniques for real-world scenarios. BusterX is the {\it \textbf{first}} framework to integrate MLLM with reinforcement learning for explainable AI-generated video detection. Extensive comparisons with state-of-the-art methods and ablation studies validate the effectiveness and generalizability of BusterX. The code, models, and datasets will be released.
♻ ☆ MVG4D: Image Matrix-Based Multi-View and Motion Generation for 4D Content Creation from a Single Image
Advances in generative modeling have significantly enhanced digital content creation, extending from 2D images to complex 3D and 4D scenes. Despite substantial progress, producing high-fidelity and temporally consistent dynamic 4D content remains a challenge. In this paper, we propose MVG4D, a novel framework that generates dynamic 4D content from a single still image by combining multi-view synthesis with 4D Gaussian Splatting (4D GS). At its core, MVG4D employs an image matrix module that synthesizes temporally coherent and spatially diverse multi-view images, providing rich supervisory signals for downstream 3D and 4D reconstruction. These multi-view images are used to optimize a 3D Gaussian point cloud, which is further extended into the temporal domain via a lightweight deformation network. Our method effectively enhances temporal consistency, geometric fidelity, and visual realism, addressing key challenges in motion discontinuity and background degradation that affect prior 4D GS-based methods. Extensive experiments on the Objaverse dataset demonstrate that MVG4D outperforms state-of-the-art baselines in CLIP-I, PSNR, FVD, and time efficiency. Notably, it reduces flickering artifacts and sharpens structural details across views and time, enabling more immersive AR/VR experiences. MVG4D sets a new direction for efficient and controllable 4D generation from minimal inputs.
♻ ☆ Priority-Aware Clinical Pathology Hierarchy Training for Multiple Instance Learning MICCAI
Multiple Instance Learning (MIL) is increasingly being used as a support tool within clinical settings for pathological diagnosis decisions, achieving high performance and removing the annotation burden. However, existing approaches for clinical MIL tasks have not adequately addressed the priority issues that exist in relation to pathological symptoms and diagnostic classes, causing MIL models to ignore priority among classes. To overcome this clinical limitation of MIL, we propose a new method that addresses priority issues using two hierarchies: vertical inter-hierarchy and horizontal intra-hierarchy. The proposed method aligns MIL predictions across each hierarchical level and employs an implicit feature re-usability during training to facilitate clinically more serious classes within the same level. Experiments with real-world patient data show that the proposed method effectively reduces misdiagnosis and prioritizes more important symptoms in multiclass scenarios. Further analysis verifies the efficacy of the proposed components and qualitatively confirms the MIL predictions against challenging cases with multiple symptoms.
comment: 10 pages, 4 figures, Accepted for oral presentation by The 2nd MICCAI Student Board (MSB) EMERGE Workshop
♻ ☆ PLMP -- Point-Line Minimal Problems for Projective SfM
We completely classify all minimal problems for Structure-from-Motion (SfM) where arrangements of points and lines are fully observed by multiple uncalibrated pinhole cameras. We find 291 minimal problems, 73 of which have unique solutions and can thus be solved linearly. Two of the linear problems allow an arbitrary number of views, while all other minimal problems have at most 9 cameras. All minimal problems have at most 7 points and at most 12 lines. We compute the number of solutions of each minimal problem, as this gives a measurement of the problem's intrinsic difficulty, and find that these number are relatively low (e.g., when comparing with minimal problems for calibrated cameras). Finally, by exploring stabilizer subgroups of subarrangements, we develop a geometric and systematic way to 1) factorize minimal problems into smaller problems, 2) identify minimal problems in underconstrained problems, and 3) formally prove non-minimality.
♻ ☆ A Lightweight Optimization Framework for Estimating 3D Brain Tumor Infiltration
Glioblastoma, the most aggressive primary brain tumor, poses a severe clinical challenge due to its diffuse microscopic infiltration, which remains largely undetected on standard MRI. As a result, current radiotherapy planning employs a uniform 15 mm margin around the resection cavity, failing to capture patient-specific tumor spread. Tumor growth modeling offers a promising approach to reveal this hidden infiltration. However, methods based on partial differential equations or physics-informed neural networks tend to be computationally intensive or overly constrained, limiting their clinical adaptability to individual patients. In this work, we propose a lightweight, rapid, and robust optimization framework that estimates the 3D tumor concentration by fitting it to MRI tumor segmentations while enforcing a smooth concentration landscape. This approach achieves superior tumor recurrence prediction on 192 brain tumor patients across two public datasets, outperforming state-of-the-art baselines while reducing runtime from 30 minutes to less than one minute. Furthermore, we demonstrate the framework's versatility and adaptability by showing its ability to seamlessly integrate additional imaging modalities or physical constraints.
♻ ☆ Mocap-2-to-3: Multi-view Lifting for Monocular Motion Recovery with 2D Pretraining
Recovering absolute human motion from monocular inputs is challenging due to two main issues. First, existing methods depend on 3D training data collected from limited environments, constraining out-of-distribution generalization. The second issue is the difficulty of estimating metric-scale poses from monocular input. To address these challenges, we introduce Mocap-2-to-3, a novel framework that performs multi-view lifting from monocular input by leveraging 2D data pre-training, enabling the reconstruction of metrically accurate 3D motions with absolute positions. To leverage abundant 2D data, we decompose complex 3D motion into multi-view syntheses. We first pretrain a single-view diffusion model on extensive 2D datasets, then fine-tune a multi-view model using public 3D data to enable view-consistent motion generation from monocular input, allowing the model to acquire action priors and diversity through 2D data. Furthermore, to recover absolute poses, we propose a novel human motion representation that decouples the learning of local pose and global movements, while encoding geometric priors of the ground to accelerate convergence. This enables progressive recovery of motion in absolute space during inference. Experimental results on in-the-wild benchmarks demonstrate that our method surpasses state-of-the-art approaches in both camera-space motion realism and world-grounded human positioning, while exhibiting superior generalization capability. Our code will be made publicly available.
comment: Project page: https://wangzhumei.github.io/mocap-2-to-3/
♻ ☆ One Look is Enough: Seamless Patchwise Refinement for Zero-Shot Monocular Depth Estimation on High-Resolution Images ICCV 2025
Zero-shot depth estimation (DE) models exhibit strong generalization performance as they are trained on large-scale datasets. However, existing models struggle with high-resolution images due to the discrepancy in image resolutions of training (with smaller resolutions) and inference (for high resolutions). Processing them at full resolution leads to decreased estimation accuracy on depth with tremendous memory consumption, while downsampling to the training resolution results in blurred edges in the estimated depth images. Prevailing high-resolution depth estimation methods adopt a patch-based approach, which introduces depth discontinuity issues when reassembling the estimated depth patches, resulting in test-time inefficiency. Additionally, to obtain fine-grained depth details, these methods rely on synthetic datasets due to the real-world sparse ground truth depth, leading to poor generalizability. To tackle these limitations, we propose Patch Refine Once (PRO), an efficient and generalizable tile-based framework. Our PRO consists of two key components: (i) Grouped Patch Consistency Training that enhances test-time efficiency while mitigating the depth discontinuity problem by jointly processing four overlapping patches and enforcing a consistency loss on their overlapping regions within a single backpropagation step, and (ii) Bias Free Masking that prevents the DE models from overfitting to dataset-specific biases, enabling better generalization to real-world datasets even after training on synthetic data. Zero-shot evaluations on Booster, ETH3D, Middlebury 2014, and NuScenes demonstrate that our PRO can be seamlessly integrated into existing depth estimation models.
comment: ICCV 2025 (camera-ready version). [Project page](https://kaist-viclab.github.io/One-Look-is-Enough_site)
♻ ☆ Probabilistic Modeling of Jailbreak on Multimodal LLMs: From Quantification to Application
Recently, Multimodal Large Language Models (MLLMs) have demonstrated their superior ability in understanding multimodal content. However, they remain vulnerable to jailbreak attacks, which exploit weaknesses in their safety alignment to generate harmful responses. Previous studies categorize jailbreaks as successful or failed based on whether responses contain malicious content. However, given the stochastic nature of MLLM responses, this binary classification of an input's ability to jailbreak MLLMs is inappropriate. Derived from this viewpoint, we introduce jailbreak probability to quantify the jailbreak potential of an input, which represents the likelihood that MLLMs generated a malicious response when prompted with this input. We approximate this probability through multiple queries to MLLMs. After modeling the relationship between input hidden states and their corresponding jailbreak probability using Jailbreak Probability Prediction Network (JPPN), we use continuous jailbreak probability for optimization. Specifically, we propose Jailbreak-Probability-based Attack (JPA) that optimizes adversarial perturbations on input image to maximize jailbreak probability, and further enhance it as Multimodal JPA (MJPA) by including monotonic text rephrasing. To counteract attacks, we also propose Jailbreak-Probability-based Finetuning (JPF), which minimizes jailbreak probability through MLLM parameter updates. Extensive experiments show that (1) (M)JPA yields significant improvements when attacking a wide range of models under both white and black box settings. (2) JPF vastly reduces jailbreaks by at most over 60\%. Both of the above results demonstrate the significance of introducing jailbreak probability to make nuanced distinctions among input jailbreak abilities.
♻ ☆ Other Vehicle Trajectories Are Also Needed: A Driving World Model Unifies Ego-Other Vehicle Trajectories in Video Latent Space
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In this paper, we propose a driving World Model named EOT-WM, unifying Ego-Other vehicle Trajectories in videos for driving simulation. Specifically, it remains a challenge to match multiple trajectories in the BEV space with each vehicle in the video to control the video generation. We first project ego-other vehicle trajectories in the BEV space into the image coordinate for vehicle-trajectory match via pixel positions. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30% in FID and 55% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
comment: 8 pages, 7 figures
♻ ☆ Optimizing against Infeasible Inclusions from Data for Semantic Segmentation through Morphology
State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion, minimizing solely per-pixel or per-segment classification objectives on their training data. This purely data-driven paradigm often leads to absurd segmentations, especially when the domain of input images is shifted from the one encountered during training. For instance, state-of-the-art models may assign the label "road" to a segment that is included by another segment that is respectively labeled as "sky". However, the ground truth of the existing dataset at hand dictates that such inclusion is not feasible. Our method, Infeasible Semantic Inclusions (InSeIn), first extracts explicit inclusion constraints that govern spatial class relations from the semantic segmentation training set at hand in an offline, data-driven fashion, and then enforces a morphological yet differentiable loss that penalizes violations of these constraints during training to promote prediction feasibility. InSeIn is a light-weight plug-and-play method, constitutes a novel step towards minimizing infeasible semantic inclusions in the predictions of learned segmentation models, and yields consistent and significant performance improvements over diverse state-of-the-art networks across the ADE20K, Cityscapes, and ACDC datasets. https://github.com/SHAMIK-97/InSeIn
♻ ☆ DeepForest: Sensing Into Self-Occluding Volumes of Vegetation With Aerial Imaging
Access to below-canopy volumetric vegetation data is crucial for understanding ecosystem dynamics. We address the long-standing limitation of remote sensing to penetrate deep into dense canopy layers. LiDAR and radar are currently considered the primary options for measuring 3D vegetation structures, while cameras can only extract the reflectance and depth of top layers. Using conventional, high-resolution aerial images, our approach allows sensing deep into self-occluding vegetation volumes, such as forests. It is similar in spirit to the imaging process of wide-field microscopy, but can handle much larger scales and strong occlusion. We scan focal stacks by synthetic-aperture imaging with drones and reduce out-of-focus signal contributions using pre-trained 3D convolutional neural networks with mean squared error (MSE) as the loss function. The resulting volumetric reflectance stacks contain low-frequency representations of the vegetation volume. Combining multiple reflectance stacks from various spectral channels provides insights into plant health, growth, and environmental conditions throughout the entire vegetation volume. Compared with simulated ground truth, our correction leads to ~x7 average improvements (min: ~x2, max: ~x12) for forest densities of 220 trees/ha - 1680 trees/ha. In our field experiment, we achieved an MSE of 0.05 when comparing with the top-vegetation layer that was measured with classical multispectral aerial imaging.
♻ ☆ Butter: Frequency Consistency and Hierarchical Fusion for Autonomous Driving Object Detection
Hierarchical feature representations play a pivotal role in computer vision, particularly in object detection for autonomous driving. Multi-level semantic understanding is crucial for accurately identifying pedestrians, vehicles, and traffic signs in dynamic environments. However, existing architectures, such as YOLO and DETR, struggle to maintain feature consistency across different scales while balancing detection precision and computational efficiency. To address these challenges, we propose Butter, a novel object detection framework designed to enhance hierarchical feature representations for improving detection robustness. Specifically, Butter introduces two key innovations: Frequency-Adaptive Feature Consistency Enhancement (FAFCE) Component, which refines multi-scale feature consistency by leveraging adaptive frequency filtering to enhance structural and boundary precision, and Progressive Hierarchical Feature Fusion Network (PHFFNet) Module, which progressively integrates multi-level features to mitigate semantic gaps and strengthen hierarchical feature learning. Through extensive experiments on BDD100K, KITTI, and Cityscapes, Butter demonstrates superior feature representation capabilities, leading to notable improvements in detection accuracy while reducing model complexity. By focusing on hierarchical feature refinement and integration, Butter provides an advanced approach to object detection that achieves a balance between accuracy, deployability, and computational efficiency in real-time autonomous driving scenarios. Our model and implementation are publicly available at https://github.com/Aveiro-Lin/Butter, facilitating further research and validation within the autonomous driving community.
comment: 10 pages, 6 figures. Supplementary material: 8 pages, 7 figures. Accepted at ACM Multimedia 2025
♻ ☆ KAN or MLP? Point Cloud Shows the Way Forward
Multi-Layer Perceptrons (MLPs) have become one of the fundamental architectural component in point cloud analysis due to its effective feature learning mechanism. However, when processing complex geometric structures in point clouds, MLPs' fixed activation functions struggle to efficiently capture local geometric features, while suffering from poor parameter efficiency and high model redundancy. In this paper, we propose PointKAN, which applies Kolmogorov-Arnold Networks (KANs) to point cloud analysis tasks to investigate their efficacy in hierarchical feature representation. First, we introduce a Geometric Affine Module (GAM) to transform local features, improving the model's robustness to geometric variations. Next, in the Local Feature Processing (LFP), a parallel structure extracts both group-level features and global context, providing a rich representation of both fine details and overall structure. Finally, these features are combined and processed in the Global Feature Processing (GFP). By repeating these operations, the receptive field gradually expands, enabling the model to capture complete geometric information of the point cloud. To overcome the high parameter counts and computational inefficiency of standard KANs, we develop Efficient-KANs in the PointKAN-elite variant, which significantly reduces parameters while maintaining accuracy. Experimental results demonstrate that PointKAN outperforms PointMLP on benchmark datasets such as ModelNet40, ScanObjectNN, and ShapeNetPart, with particularly strong performance in Few-shot Learning task. Additionally, PointKAN achieves substantial reductions in parameter counts and computational complexity (FLOPs). This work highlights the potential of KANs-based architectures in 3D vision and opens new avenues for research in point cloud understanding.
♻ ☆ Estimating Scene Flow in Robot Surroundings with Distributed Miniaturized Time-of-Flight Sensors
Tracking motions of humans or objects in the surroundings of the robot is essential to improve safe robot motions and reactions. In this work, we present an approach for scene flow estimation from low-density and noisy point clouds acquired from miniaturized Time of Flight (ToF) sensors distributed on the robot body. The proposed method clusters points from consecutive frames and applies Iterative Closest Point (ICP) to estimate a dense motion flow, with additional steps introduced to mitigate the impact of sensor noise and low-density data points. Specifically, we employ a fitness-based classification to distinguish between stationary and moving points and an inlier removal strategy to refine geometric correspondences. The proposed approach is validated in an experimental setup where 24 ToF are used to estimate the velocity of an object moving at different controlled speeds. Experimental results show that the method consistently approximates the direction of the motion and its magnitude with an error which is in line with sensor noise.
comment: 7 pages, 5 figures, 2 tables, 1 algorithm, IEEE RO-MAN 2025 accepted paper
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach. The code and model checkpoints are available at: https://github.com/continental/EP-Diffuser.
♻ ☆ VisNumBench: Evaluating Number Sense of Multimodal Large Language Models ICCV 2025
Can Multimodal Large Language Models (MLLMs) develop an intuitive number sense similar to humans? Targeting this problem, we introduce Visual Number Benchmark (VisNumBench) to evaluate the number sense abilities of MLLMs across a wide range of visual numerical tasks. VisNumBench consists of about 1,900 multiple-choice question-answer pairs derived from both synthetic and real-world visual data, covering seven visual numerical attributes and four types of visual numerical estimation tasks. Our experiments on VisNumBench led to the following key findings: (i) The 17 MLLMs we tested, including open-source models such as Qwen2.5-VL and InternVL2.5, as well as proprietary models like GPT-4o and Gemini 2.0 Flash, perform significantly below human levels in number sense-related tasks. (ii) Multimodal mathematical models and multimodal chain-of-thought (CoT) models did not exhibit significant improvements in number sense abilities. (iii) Stronger MLLMs with larger parameter sizes and broader general abilities demonstrate modest gains in number sense abilities. We believe VisNumBench will serve as a valuable resource for the research community, encouraging further advancements in enhancing MLLMs' number sense abilities. Code and dataset are available at https://wwwtttjjj.github.io/VisNumBench/.
comment: accepted by ICCV 2025
♻ ☆ Mitigating Hallucination of Large Vision-Language Models via Dynamic Logits Calibration
Large Vision-Language Models (LVLMs) have demonstrated significant advancements in multimodal understanding, yet they are frequently hampered by hallucination-the generation of text that contradicts visual input. Existing training-free decoding strategies exhibit critical limitations, including the use of static constraints that do not adapt to semantic drift during generation, inefficiency stemming from the need for multiple forward passes, and degradation of detail due to overly rigid intervention rules. To overcome these challenges, this paper introduces Dynamic Logits Calibration (DLC), a novel training-free decoding framework designed to dynamically align text generation with visual evidence at inference time. At the decoding phase, DLC step-wise employs CLIP to assess the semantic alignment between the input image and the generated text sequence. Then, the Relative Visual Advantage (RVA) of candidate tokens is evaluated against a dynamically updated contextual baseline, adaptively adjusting output logits to favor tokens that are visually grounded. Furthermore, an adaptive weighting mechanism, informed by a real-time context alignment score, carefully balances the visual guidance while ensuring the overall quality of the textual output. Extensive experiments conducted across diverse benchmarks and various LVLM architectures (such as LLaVA, InstructBLIP, and MiniGPT-4) demonstrate that DLC significantly reduces hallucinations, outperforming current methods while maintaining high inference efficiency by avoiding multiple forward passes. Overall, we present an effective and efficient decoding-time solution to mitigate hallucinations, thereby enhancing the reliability of LVLMs for more practices. Code will be released on Github.
♻ ☆ Dual-Stream Global-Local Feature Collaborative Representation Network for Scene Classification of Mining Area IJCNN 2025
Scene classification of mining areas provides accurate foundational data for geological environment monitoring and resource development planning. This study fuses multi-source data to construct a multi-modal mine land cover scene classification dataset. A significant challenge in mining area classification lies in the complex spatial layout and multi-scale characteristics. By extracting global and local features, it becomes possible to comprehensively reflect the spatial distribution, thereby enabling a more accurate capture of the holistic characteristics of mining scenes. We propose a dual-branch fusion model utilizing collaborative representation to decompose global features into a set of key semantic vectors. This model comprises three key components:(1) Multi-scale Global Transformer Branch: It leverages adjacent large-scale features to generate global channel attention features for small-scale features, effectively capturing the multi-scale feature relationships. (2) Local Enhancement Collaborative Representation Branch: It refines the attention weights by leveraging local features and reconstructed key semantic sets, ensuring that the local context and detailed characteristics of the mining area are effectively integrated. This enhances the model's sensitivity to fine-grained spatial variations. (3) Dual-Branch Deep Feature Fusion Module: It fuses the complementary features of the two branches to incorporate more scene information. This fusion strengthens the model's ability to distinguish and classify complex mining landscapes. Finally, this study employs multi-loss computation to ensure a balanced integration of the modules. The overall accuracy of this model is 83.63%, which outperforms other comparative models. Additionally, it achieves the best performance across all other evaluation metrics.
comment: Accepted to IJCNN 2025
♻ ☆ Pruning All-Rounder: Rethinking and Improving Inference Efficiency for Large Vision Language Models ICCV 25
Although Large Vision-Language Models (LVLMs) have achieved impressive results, their high computational costs pose a significant barrier to wide application. To enhance inference efficiency, most existing approaches can be categorized as parameter-dependent or token-dependent strategies to reduce computational demands. However, parameter-dependent methods require retraining LVLMs to recover performance while token-dependent strategies struggle to consistently select the most relevant tokens. In this paper, we systematically analyze the above challenges and provide a series of valuable insights for inference acceleration. Based on these findings, we propose a novel framework, the Pruning All-Rounder (PAR). Different from previous works, PAR develops a meta-router to adaptively organize pruning flows across both tokens and layers. With a self-supervised learning manner, our method achieves a superior balance between performance and efficiency. Notably, PAR is highly flexible, offering multiple pruning versions to address a range of acceleration scenarios. The code for this work is publicly available at https://github.com/ASGO-MM/Pruning-All-Rounder.
comment: Accepted by ICCV 25
♻ ☆ Indian Sign Language Detection for Real-Time Translation using Machine Learning
Gestural language is used by deaf & mute communities to communicate through hand gestures & body movements that rely on visual-spatial patterns known as sign languages. Sign languages, which rely on visual-spatial patterns of hand gestures & body movements, are the primary mode of communication for deaf & mute communities worldwide. Effective communication is fundamental to human interaction, yet individuals in these communities often face significant barriers due to a scarcity of skilled interpreters & accessible translation technologies. This research specifically addresses these challenges within the Indian context by focusing on Indian Sign Language (ISL). By leveraging machine learning, this study aims to bridge the critical communication gap for the deaf & hard-of-hearing population in India, where technological solutions for ISL are less developed compared to other global sign languages. We propose a robust, real-time ISL detection & translation system built upon a Convolutional Neural Network (CNN). Our model is trained on a comprehensive ISL dataset & demonstrates exceptional performance, achieving a classification accuracy of 99.95%. This high precision underscores the model's capability to discern the nuanced visual features of different signs. The system's effectiveness is rigorously evaluated using key performance metrics, including accuracy, F1 score, precision & recall, ensuring its reliability for real-world applications. For real-time implementation, the framework integrates MediaPipe for precise hand tracking & motion detection, enabling seamless translation of dynamic gestures. This paper provides a detailed account of the model's architecture, the data preprocessing pipeline & the classification methodology. The research elaborates the model architecture, preprocessing & classification methodologies for enhancing communication in deaf & mute communities.
comment: 7 pages, 6 figures, 2 tables. Published in Proceedings of the 6th International Conference on Recent Advances in Information Technology (RAIT), 2025, IEEE
♻ ☆ Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection
In this paper, we introduce a new benchmark for continual learning in anomaly detection, aimed at better reflecting real-world deployment scenarios. Our benchmark, Continual-MEGA, includes a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with our newly proposed dataset, ContinualAD. In addition to standard continual learning with expanded quantity, we propose a novel scenario that measures zero-shot generalization to unseen classes, those not observed during continual adaptation. This setting poses a new problem setting that continual adaptation also enhances zero-shot performance. We also present a unified baseline algorithm that improves robustness in few-shot detection and maintains strong generalization. Through extensive evaluations, we report three key findings: (1) existing methods show substantial room for improvement, particularly in pixel-level defect localization; (2) our proposed method consistently outperforms prior approaches; and (3) the newly introduced ContinualAD dataset enhances the performance of strong anomaly detection models. We release the benchmark and code in https://github.com/Continual-Mega/Continual-Mega.
♻ ☆ FovEx: Human-Inspired Explanations for Vision Transformers and Convolutional Neural Networks
Explainability in artificial intelligence (XAI) remains a crucial aspect for fostering trust and understanding in machine learning models. Current visual explanation techniques, such as gradient-based or class-activation-based methods, often exhibit a strong dependence on specific model architectures. Conversely, perturbation-based methods, despite being model-agnostic, are computationally expensive as they require evaluating models on a large number of forward passes. In this work, we introduce Foveation-based Explanations (FovEx), a novel XAI method inspired by human vision. FovEx seamlessly integrates biologically inspired perturbations by iteratively creating foveated renderings of the image and combines them with gradient-based visual explorations to determine locations of interest efficiently. These locations are selected to maximize the performance of the model to be explained with respect to the downstream task and then combined to generate an attribution map. We provide a thorough evaluation with qualitative and quantitative assessments on established benchmarks. Our method achieves state-of-the-art performance on both transformers (on 4 out of 5 metrics) and convolutional models (on 3 out of 5 metrics), demonstrating its versatility among various architectures. Furthermore, we show the alignment between the explanation map produced by FovEx and human gaze patterns (+14\% in NSS compared to RISE, +203\% in NSS compared to GradCAM). This comparison enhances our confidence in FovEx's ability to close the interpretation gap between humans and machines.
comment: Accepted in the International Journal of Computer Vision (Springer Nature)
♻ ☆ EaqVLA: Encoding-aligned Quantization for Vision-Language-Action Models
With the development of Embodied Artificial intelligence, the end-to-end control policy such as Vision-Language-Action (VLA) model has become the mainstream. Existing VLA models faces expensive computing/storage cost, which need to be optimized. Quantization is considered as the most effective method which can not only reduce the memory cost but also achieve computation acceleration. However, we find the token alignment of VLA models hinders the application of existing quantization methods. To address this, we proposed an optimized framework called EaqVLA, which apply encoding-aligned quantization to VLA models. Specifically, we propose an complete analysis method to find the misalignment in various granularity. Based on the analysis results, we propose a mixed precision quantization with the awareness of encoding alignment. Experiments shows that the porposed EaqVLA achieves better quantization performance (with the minimal quantization loss for end-to-end action control and xxx times acceleration) than existing quantization methods.
comment: There is an error in this paper, and as the author, I request retraction
♻ ☆ LidaRefer: Context-aware Outdoor 3D Visual Grounding for Autonomous Driving
3D visual grounding (VG) aims to locate objects or regions within 3D scenes guided by natural language descriptions. While indoor 3D VG has advanced, outdoor 3D VG remains underexplored due to two challenges: (1) large-scale outdoor LiDAR scenes are dominated by background points and contain limited foreground information, making cross-modal alignment and contextual understanding more difficult; and (2) most outdoor datasets lack spatial annotations for referential non-target objects, which hinders explicit learning of referential context. To this end, we propose LidaRefer, a context-aware 3D VG framework for outdoor scenes. LidaRefer incorporates an object-centric feature selection strategy to focus on semantically relevant visual features while reducing computational overhead. Then, its transformer-based encoder-decoder architecture excels at establishing fine-grained cross-modal alignment between refined visual features and word-level text features, and capturing comprehensive global context. Additionally, we present Discriminative-Supportive Collaborative localization (DiSCo), a novel supervision strategy that explicitly models spatial relationships between target, contextual, and ambiguous objects for accurate target identification. To enable this without manual labeling, we introduce a pseudo-labeling approach that retrieves 3D localization labels for referential non-target objects. LidaRefer achieves state-of-the-art performance on Talk2Car-3D dataset under various evaluation settings.
comment: 18 pages, 5 figures
♻ ☆ Acknowledging Focus Ambiguity in Visual Questions
No published work on visual question answering (VQA) accounts for ambiguity regarding where the content described in the question is located in the image. To fill this gap, we introduce VQ-FocusAmbiguity, the first VQA dataset that visually grounds each plausible image region a question could refer to when arriving at valid answers. We next analyze and compare our dataset to existing datasets to reveal its unique properties. Finally, we benchmark modern models for two novel tasks related to acknowledging focus ambiguity: recognizing whether a visual question has focus ambiguity and locating all plausible focus regions within the image. Results show that the dataset is challenging for modern models. To facilitate future progress on these tasks, we publicly share the dataset with an evaluation server at https://vizwiz.org/tasks-and-datasets/focus-ambiguity-in-visual-questions.
♻ ☆ HER2 Expression Prediction with Flexible Multi-Modal Inputs via Dynamic Bidirectional Reconstruction ACM MM 2025
In breast cancer HER2 assessment, clinical evaluation relies on combined H&E and IHC images, yet acquiring both modalities is often hindered by clinical constraints and cost. We propose an adaptive bimodal prediction framework that flexibly supports single- or dual-modality inputs through two core innovations: a dynamic branch selector activating modality completion or joint inference based on input availability, and a cross-modal GAN (CM-GAN) enabling feature-space reconstruction of missing modalities. This design dramatically improves H&E-only accuracy from 71.44% to 94.25%, achieves 95.09% with full dual-modality inputs, and maintains 90.28% reliability under single-modality conditions. The "dual-modality preferred, single-modality compatible" architecture delivers near-dual-modality accuracy without mandatory synchronized acquisition, offering a cost-effective solution for resource-limited regions and significantly improving HER2 assessment accessibility.
comment: 8 pages,6 figures,3 tables,accepted by the 33rd ACM International Conference on Multimedia(ACM MM 2025)
♻ ☆ OpenFly: A Comprehensive Platform for Aerial Vision-Language Navigation
Vision-Language Navigation (VLN) aims to guide agents by leveraging language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising various rendering engines, a versatile toolchain, and a large-scale benchmark for aerial VLN. Firstly, we integrate diverse rendering engines and advanced techniques for environment simulation, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of our environments. Secondly, we develop a highly automated toolchain for aerial VLN data collection, streamlining point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Thirdly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. Moreover, we propose OpenFly-Agent, a keyframe-aware VLN model emphasizing key observations during flight. For benchmarking, extensive experiments and analyses are conducted, evaluating several recent VLN methods and showcasing the superiority of our OpenFly platform and agent. The toolchain, dataset, and codes will be open-sourced.
comment: 20 pages, 11 figures
♻ ☆ DHCP: Detecting Hallucinations by Cross-modal Attention Pattern in Large Vision-Language Models
Large vision-language models (LVLMs) have demonstrated exceptional performance on complex multimodal tasks. However, they continue to suffer from significant hallucination issues, including object, attribute, and relational hallucinations. To accurately detect these hallucinations, we investigated the variations in cross-modal attention patterns between hallucination and non-hallucination states. Leveraging these distinctions, we developed a lightweight detector capable of identifying hallucinations. Our proposed method, Detecting Hallucinations by Cross-modal Attention Patterns (DHCP), is straightforward and does not require additional LVLM training or extra LVLM inference steps. Experimental results show that DHCP achieves remarkable performance in hallucination detection. By offering novel insights into the identification and analysis of hallucinations in LVLMs, DHCP contributes to advancing the reliability and trustworthiness of these models. The code is available at https://github.com/btzyd/DHCP.
comment: Accepted by ACM Multimedia 2025
♻ ☆ LiteGS: A High-performance Framework to Train 3DGS in Subminutes via System and Algorithm Codesign
3D Gaussian Splatting (3DGS) has emerged as promising alternative in 3D representation. However, it still suffers from high training cost. This paper introduces LiteGS, a high performance framework that systematically optimizes the 3DGS training pipeline from multiple aspects. At the low-level computation layer, we design a ``warp-based raster'' associated with two hardware-aware optimizations to significantly reduce gradient reduction overhead. At the mid-level data management layer, we introduce dynamic spatial sorting based on Morton coding to enable a performant ``Cluster-Cull-Compact'' pipeline and improve data locality, therefore reducing cache misses. At the top-level algorithm layer, we establish a new robust densification criterion based on the variance of the opacity gradient, paired with a more stable opacity control mechanism, to achieve more precise parameter growth. Experimental results demonstrate that LiteGS accelerates the original 3DGS training by up to 13.4x with comparable or superior quality and surpasses the current SOTA in lightweight models by up to 1.4x speedup. For high-quality reconstruction tasks, LiteGS sets a new accuracy record and decreases the training time by an order of magnitude.
♻ ☆ When Words Smile: Generating Diverse Emotional Facial Expressions from Text
Enabling digital humans to express rich emotions has significant applications in dialogue systems, gaming, and other interactive scenarios. While recent advances in talking head synthesis have achieved impressive results in lip synchronization, they tend to overlook the rich and dynamic nature of facial expressions. To fill this critical gap, we introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics. Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent. To support this task, we introduce EmoAva, a large-scale and high-quality dataset containing 15,000 text-3D expression pairs. Extensive experiments on both existing datasets and EmoAva demonstrate that our method significantly outperforms baselines across multiple evaluation metrics, marking a significant advancement in the field.
comment: 19 pages. Resources: https://github.com/WalkerMitty/EmoAva
♻ ☆ Recovering Partially Corrupted Objects via Sketch-Guided Bidirectional Feature Interaction
Text-guided diffusion models have achieved remarkable success in object inpainting by providing high-level semantic guidance through text prompts. However, they often lack precise pixel-level spatial control, especially in scenarios involving partially corrupted objects where critical uncorrupted cues remain. To overcome this limitation, sketch-guided methods have been introduced, using either indirect gradient modulation or direct sketch injection to improve structural control. Yet, existing approaches typically establish a one-way mapping from the sketch to the masked regions only, neglecting the contextual information from unmasked object areas. This leads to a disconnection between the sketch and the uncorrupted content, thereby causing sketch-guided inconsistency and structural mismatch. To tackle this challenge, we propose a sketch-guided bidirectional feature interaction framework built upon a pretrained Stable Diffusion model. Our bidirectional interaction features two complementary directions, context-to-sketch and sketch-to-inpainting, that enable fine-grained spatial control for partially corrupted object inpainting. In the context-to-sketch direction, multi-scale latents from uncorrupted object regions are propagated to the sketch branch to generate a visual mask that adapts the sketch features to the visible context and denoising progress. In the sketch-to-inpainting direction, a sketch-conditional affine transformation modulates the influence of sketch guidance based on the learned visual mask, ensuring consistency with uncorrupted object content. This interaction is applied at multiple scales within the encoder of the diffusion U-Net, enabling the model to restore object structures with enhanced spatial fidelity. Extensive experiments on two newly constructed benchmark datasets demonstrate that our approach outperforms state-of-the-art methods.
comment: 13 pages. This work has been submitted to the IEEE for possible publication
♻ ☆ Insights into Closed-form IPM-GAN Discriminator Guidance for Diffusion Modeling
Diffusion models are a state-of-the-art generative modeling framework that transform noise to images via Langevin sampling, guided by the score, which is the gradient of the logarithm of the data distribution. Recent works have shown empirically that the generation quality can be improved when guided by classifier network, which is typically the discriminator trained in a generative adversarial network (GAN) setting. In this paper, we propose a theoretical framework to analyze the effect of the GAN discriminator on Langevin-based sampling, and show that the IPM-GAN optimization can be seen as one of smoothed score-matching, wherein the scores of the data and the generator distributions are convolved with the kernel function associated with the IPM. The proposed approach serves to unify score-based training and optimization of IPM-GANs. Based on these insights, we demonstrate that closed-form kernel-based discriminator guidance, results in improvements (in terms of CLIP-FID and KID metrics) when applied atop baseline diffusion models. We demonstrate these results on the denoising diffusion implicit model (DDIM) and latent diffusion model (LDM) settings on various standard datasets. We also show that the proposed approach can be combined with existing accelerated-diffusion techniques to improve latent-space image generation.
♻ ☆ Uncovering Cultural Representation Disparities in Vision-Language Models
Vision-Language Models (VLMs) have demonstrated impressive capabilities across a range of tasks, yet concerns about their potential biases exist. This work investigates the extent to which prominent VLMs exhibit cultural biases by evaluating their performance on an image-based country identification task at a country level. Utilizing the geographically diverse Country211 dataset, we probe several large vision language models (VLMs) under various prompting strategies: open-ended questions, multiple-choice questions (MCQs) including challenging setups like multilingual and adversarial settings. Our analysis aims to uncover disparities in model accuracy across different countries and question formats, providing insights into how training data distribution and evaluation methodologies might influence cultural biases in VLMs. The findings highlight significant variations in performance, suggesting that while VLMs possess considerable visual understanding, they inherit biases from their pre-training data and scale that impact their ability to generalize uniformly across diverse global contexts.
comment: 28 pages, 36 figures
♻ ☆ VRM: Knowledge Distillation via Virtual Relation Matching ICCV 2025
Knowledge distillation (KD) aims to transfer the knowledge of a more capable yet cumbersome teacher model to a lightweight student model. In recent years, relation-based KD methods have fallen behind, as their instance-matching counterparts dominate in performance. In this paper, we revive relational KD by identifying and tackling several key issues in relation-based methods, including their susceptibility to overfitting and spurious responses. Specifically, we transfer novelly constructed affinity graphs that compactly encapsulate a wealth of beneficial inter-sample, inter-class, and inter-view correlations by exploiting virtual views and relations as a new kind of knowledge. As a result, the student has access to richer guidance signals and stronger regularisation throughout the distillation process. To further mitigate the adverse impact of spurious responses, we prune the affinity graphs by dynamically detaching redundant and unreliable edges. Extensive experiments on CIFAR-100, ImageNet, and MS-COCO datasets demonstrate the superior performance of the proposed virtual relation matching (VRM) method, where it consistently sets new state-of-the-art records over a range of models, architectures, tasks, and set-ups. For instance, VRM for the first time hits 74.0% accuracy for ResNet50-to-MobileNetV2 distillation on ImageNet, and improves DeiT-T by 14.44% on CIFAR-100 with a ResNet56 teacher.
comment: Accepted by ICCV 2025 (Highlight)
♻ ☆ KineDepth: Utilizing Robot Kinematics for Online Metric Depth Estimation
Depth perception is essential for a robot's spatial and geometric understanding of its environment, with many tasks traditionally relying on hardware-based depth sensors like RGB-D or stereo cameras. However, these sensors face practical limitations, including issues with transparent and reflective objects, high costs, calibration complexity, spatial and energy constraints, and increased failure rates in compound systems. While monocular depth estimation methods offer a cost-effective and simpler alternative, their adoption in robotics is limited due to their output of relative rather than metric depth, which is crucial for robotics applications. In this paper, we propose a method that utilizes a single calibrated camera, enabling the robot to act as a "measuring stick" to convert relative depth estimates into metric depth in real-time as tasks are performed. Our approach employs an LSTM-based metric depth regressor, trained online and refined through probabilistic filtering, to accurately restore the metric depth across the monocular depth map, particularly in areas proximal to the robot's motion. Experiments with real robots demonstrate that our method significantly outperforms current state-of-the-art monocular metric depth estimation techniques, achieving a 22.1% reduction in depth error and a 52% increase in success rate for a downstream task.
comment: 8 pages, 5 figures
♻ ☆ TARS: MinMax Token-Adaptive Preference Strategy for Hallucination Reduction in MLLMs
Multimodal large language models (MLLMs) enable vision-language reasoning, yet often generate plausible outputs that are factually incorrect or visually ungrounded, thereby compromising their reliability. Direct preference optimization (DPO) is a common strategy for correcting hallucinations by aligning model outputs with human preferences. Existing DPO strategies typically treat hallucination-related preferences as fixed targets, relying on static supervision signals during training. This approach tends to overfit to superficial linguistic cues in preference data, leading to distributional rigidity and spurious correlations that impair grounding in causally relevant visual information. To overcome this limitation, we propose TARS, a token-adaptive preference strategy that reformulates DPO as a min-max optimization problem. TARS maximizes token-level distributional shifts under semantic constraints to simulate alignment uncertainty, and simultaneously minimizes the expected preference loss under these controlled perturbations. This joint objective preserves causal grounding while mitigating overfitting to preference patterns, thereby reducing hallucinations in multimodal reasoning. We evaluate TARS on multiple hallucination benchmarks and find consistently strong performance. Using only 4.8k preference samples and no expert feedback, TARS reduces hallucination rates from 26.4% to 13.2% and decreases cognition value from 2.5 to 0.4. It outperforms standard DPO and matches GPT-4o on several key metrics.
♻ ☆ Multi-Task Label Discovery via Hierarchical Task Tokens for Partially Annotated Dense Predictions
In recent years, simultaneous learning of multiple dense prediction tasks with partially annotated label data has emerged as an important research area. Previous works primarily focus on leveraging cross-task relations or conducting adversarial training for extra regularization, which achieve promising performance improvements, while still suffering from the lack of direct pixel-wise supervision and extra training of heavy mapping networks. To effectively tackle this challenge, we propose a novel approach to optimize a set of compact learnable hierarchical task tokens, including global and fine-grained ones, to discover consistent pixel-wise supervision signals in both feature and prediction levels. Specifically, the global task tokens are designed for effective cross-task feature interactions in a global context. Then, a group of fine-grained task-specific spatial tokens for each task is learned from the corresponding global task tokens. It is embedded to have dense interactions with each task-specific feature map. The learned global and local fine-grained task tokens are further used to discover pseudo task-specific dense labels at different levels of granularity, and they can be utilized to directly supervise the learning of the multi-task dense prediction framework. Extensive experimental results on challenging NYUD-v2, Cityscapes, and PASCAL Context datasets demonstrate significant improvements over existing state-of-the-art methods for partially annotated multi-task dense prediction.
♻ ☆ Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
comment: code: https://github.com/stepfun-ai/Step1X-Edit
Balancing Task-invariant Interaction and Task-specific Adaptation for Unified Image Fusion ICCV 2025
Unified image fusion aims to integrate complementary information from multi-source images, enhancing image quality through a unified framework applicable to diverse fusion tasks. While treating all fusion tasks as a unified problem facilitates task-invariant knowledge sharing, it often overlooks task-specific characteristics, thereby limiting the overall performance. Existing general image fusion methods incorporate explicit task identification to enable adaptation to different fusion tasks. However, this dependence during inference restricts the model's generalization to unseen fusion tasks. To address these issues, we propose a novel unified image fusion framework named "TITA", which dynamically balances both Task-invariant Interaction and Task-specific Adaptation. For task-invariant interaction, we introduce the Interaction-enhanced Pixel Attention (IPA) module to enhance pixel-wise interactions for better multi-source complementary information extraction. For task-specific adaptation, the Operation-based Adaptive Fusion (OAF) module dynamically adjusts operation weights based on task properties. Additionally, we incorporate the Fast Adaptive Multitask Optimization (FAMO) strategy to mitigate the impact of gradient conflicts across tasks during joint training. Extensive experiments demonstrate that TITA not only achieves competitive performance compared to specialized methods across three image fusion scenarios but also exhibits strong generalization to unseen fusion tasks. The source codes are released at https://github.com/huxingyuabc/TITA.
comment: Accepted by ICCV 2025
♻ ☆ YOLO-FireAD: Efficient Fire Detection via Attention-Guided Inverted Residual Learning and Dual-Pooling Feature Preservation
Fire detection in dynamic environments faces continuous challenges, including the interference of illumination changes, many false detections or missed detections, and it is difficult to achieve both efficiency and accuracy. To address the problem of feature extraction limitation and information loss in the existing YOLO-based models, this study propose You Only Look Once for Fire Detection with Attention-guided Inverted Residual and Dual-pooling Downscale Fusion (YOLO-FireAD) with two core innovations: (1) Attention-guided Inverted Residual Block (AIR) integrates hybrid channel-spatial attention with inverted residuals to adaptively enhance fire features and suppress environmental noise; (2) Dual Pool Downscale Fusion Block (DPDF) preserves multi-scale fire patterns through learnable fusion of max-average pooling outputs, mitigating small-fire detection failures. Extensive evaluation on two public datasets shows the efficient performance of our model. Our proposed model keeps the sum amount of parameters (1.45M, 51.8% lower than YOLOv8n) (4.6G, 43.2% lower than YOLOv8n), and mAP75 is higher than the mainstream real-time object detection models YOLOv8n, YOL-Ov9t, YOLOv10n, YOLO11n, YOLOv12n and other YOLOv8 variants 1.3-5.5%. For more details, please visit our repository: https://github.com/JEFfersusu/YOLO-FireAD
comment: 2025 International Conference on Intelligent Computing (ICIC 2025)
♻ ☆ Detecting Visual Information Manipulation Attacks in Augmented Reality: A Multimodal Semantic Reasoning Approach
The virtual content in augmented reality (AR) can introduce misleading or harmful information, leading to semantic misunderstandings or user errors. In this work, we focus on visual information manipulation (VIM) attacks in AR where virtual content changes the meaning of real-world scenes in subtle but impactful ways. We introduce a taxonomy that categorizes these attacks into three formats: character, phrase, and pattern manipulation, and three purposes: information replacement, information obfuscation, and extra wrong information. Based on the taxonomy, we construct a dataset, AR-VIM. It consists of 452 raw-AR video pairs spanning 202 different scenes, each simulating a real-world AR scenario. To detect such attacks, we propose a multimodal semantic reasoning framework, VIM-Sense. It combines the language and visual understanding capabilities of vision-language models (VLMs) with optical character recognition (OCR)-based textual analysis. VIM-Sense achieves an attack detection accuracy of 88.94% on AR-VIM, consistently outperforming vision-only and text-only baselines. The system reaches an average attack detection latency of 7.07 seconds in a simulated video processing framework and 7.17 seconds in a real-world evaluation conducted on a mobile Android AR application.
comment: 11 pages, 7 figures
♻ ☆ Adapt before Continual Learning
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). Although pre-trained models (PTMs) have provided a strong foundation for CL, existing approaches face a fundamental challenge in balancing these two competing objectives. Current methods typically address stability by freezing the PTM backbone, which severely limits the model's plasticity, particularly when incoming data distribution diverges largely from the pre-training data. Alternatively, sequentially fine-tuning the entire PTM can adapt to new knowledge but often leads to catastrophic forgetting, highlighting the critical stability-plasticity trade-off in PTM-based CL. To address this limitation, we propose Adapting PTMs before the core CL} process (ACL), a novel framework that introduces a plug-and-play adaptation phase prior to learning each new task. During this phase, ACL refines the PTM backbone by aligning embeddings with their original class prototypes while distancing them from irrelevant classes. This mechanism theoretically and empirically demonstrates desirable balance between stability and plasticity, significantly improving CL performance across benchmarks and integrated methods. Code is available at https://github.com/byyx666/ACL_code.
♻ ☆ DisTime: Distribution-based Time Representation for Video Large Language Models ICCV 2025
Despite advances in general video understanding, Video Large Language Models (Video-LLMs) face challenges in precise temporal localization due to discrete time representations and limited temporally aware datasets. Existing methods for temporal expression either conflate time with text-based numerical values, add a series of dedicated temporal tokens, or regress time using specialized temporal grounding heads. To address these issues, we introduce DisTime, a lightweight framework designed to enhance temporal comprehension in Video-LLMs. DisTime employs a learnable token to create a continuous temporal embedding space and incorporates a Distribution-based Time Decoder that generates temporal probability distributions, effectively mitigating boundary ambiguities and maintaining temporal continuity. Additionally, the Distribution-based Time Encoder re-encodes timestamps to provide time markers for Video-LLMs. To overcome temporal granularity limitations in existing datasets, we propose an automated annotation paradigm that combines the captioning capabilities of Video-LLMs with the localization expertise of dedicated temporal models. This leads to the creation of InternVid-TG, a substantial dataset with 1.25M temporally grounded events across 179k videos, surpassing ActivityNet-Caption by 55 times. Extensive experiments demonstrate that DisTime achieves state-of-the-art performance across benchmarks in three time-sensitive tasks while maintaining competitive performance in Video QA tasks. Code and data are released at https://github.com/josephzpng/DisTime.
comment: Accepted by ICCV 2025
♻ ☆ Learning 3D Scene Analogies with Neural Contextual Scene Maps ICCV 2025
Understanding scene contexts is crucial for machines to perform tasks and adapt prior knowledge in unseen or noisy 3D environments. As data-driven learning is intractable to comprehensively encapsulate diverse ranges of layouts and open spaces, we propose teaching machines to identify relational commonalities in 3D spaces. Instead of focusing on point-wise or object-wise representations, we introduce 3D scene analogies, which are smooth maps between 3D scene regions that align spatial relationships. Unlike well-studied single instance-level maps, these scene-level maps smoothly link large scene regions, potentially enabling unique applications in trajectory transfer in AR/VR, long demonstration transfer for imitation learning, and context-aware object rearrangement. To find 3D scene analogies, we propose neural contextual scene maps, which extract descriptor fields summarizing semantic and geometric contexts, and holistically align them in a coarse-to-fine manner for map estimation. This approach reduces reliance on individual feature points, making it robust to input noise or shape variations. Experiments demonstrate the effectiveness of our approach in identifying scene analogies and transferring trajectories or object placements in diverse indoor scenes, indicating its potential for robotics and AR/VR applications. Project page including the code is available through this link: https://82magnolia.github.io/3d_scene_analogies/.
comment: Accepted to ICCV 2025
♻ ☆ Exploiting Scale-Variant Attention for Segmenting Small Medical Objects
Early detection and accurate diagnosis can predict the risk of malignant disease transformation, thereby increasing the probability of effective treatment. Identifying mild syndrome with small pathological regions serves as an ominous warning and is fundamental in the early diagnosis of diseases. While deep learning algorithms, particularly convolutional neural networks (CNNs), have shown promise in segmenting medical objects, analyzing small areas in medical images remains challenging. This difficulty arises due to information losses and compression defects from convolution and pooling operations in CNNs, which become more pronounced as the network deepens, especially for small medical objects. To address these challenges, we propose a novel scale-variant attention-based network (SvANet) for accurately segmenting small-scale objects in medical images. The SvANet consists of scale-variant attention, cross-scale guidance, Monte Carlo attention, and vision transformer, which incorporates cross-scale features and alleviates compression artifacts for enhancing the discrimination of small medical objects. Quantitative experimental results demonstrate the superior performance of SvANet, achieving 96.12%, 96.11%, 89.79%, 84.15%, 80.25%, 73.05%, and 72.58% in mean Dice coefficient for segmenting kidney tumors, skin lesions, hepatic tumors, polyps, surgical excision cells, retinal vasculatures, and sperms, which occupy less than 1% of the image areas in KiTS23, ISIC 2018, ATLAS, PolypGen, TissueNet, FIVES, and SpermHealth datasets, respectively.
comment: 14 pages, 9 figures, under review
♻ ☆ Revisiting the Evaluation Bias Introduced by Frame Sampling Strategies in Surgical Video Segmentation Using SAM2 MICCAI
Real-time video segmentation is a promising opportunity for AI-assisted surgery, offering intraoperative guidance by identifying tools and anatomical structures. Despite growing interest in surgical video segmentation, annotation protocols vary widely across datasets -- some provide dense, frame-by-frame labels, while others rely on sparse annotations sampled at low frame rates such as 1 FPS. In this study, we investigate how such inconsistencies in annotation density and frame rate sampling influence the evaluation of zero-shot segmentation models, using SAM2 as a case study for cholecystectomy procedures. Surprisingly, we find that under conventional sparse evaluation settings, lower frame rates can appear to outperform higher ones due to a smoothing effect that conceals temporal inconsistencies. However, when assessed under real-time streaming conditions, higher frame rates yield superior segmentation stability, particularly for dynamic objects like surgical graspers. To understand how these differences align with human perception, we conducted a survey among surgeons, nurses, and machine learning engineers and found that participants consistently preferred high-FPS segmentation overlays, reinforcing the importance of evaluating every frame in real-time applications rather than relying on sparse sampling strategies. Our findings highlight the risk of evaluation bias that is introduced by inconsistent dataset protocols and bring attention to the need for temporally fair benchmarking in surgical video AI.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Fairness of AI in Medical Imaging (FAIMI), 2025
♻ ☆ Prompt-Based Exemplar Super-Compression and Regeneration for Class-Incremental Learning BMVC 2025
Replay-based methods in class-incremental learning (CIL) have attained remarkable success. Despite their effectiveness, the inherent memory restriction results in saving a limited number of exemplars with poor diversity. In this paper, we introduce PESCR, a novel approach that substantially increases the quantity and enhances the diversity of exemplars based on a pre-trained general-purpose diffusion model, without fine-tuning it on target datasets or storing it in the memory buffer. Images are compressed into visual and textual prompts, which are saved instead of the original images, decreasing memory consumption by a factor of 24. In subsequent phases, diverse exemplars are regenerated by the diffusion model. We further propose partial compression and diffusion-based data augmentation to minimize the domain gap between generated exemplars and real images. PESCR significantly improves CIL performance across multiple benchmarks, e.g., 3.2% above the previous state-of-the-art on ImageNet-100.
comment: BMVC 2025. Code: https://github.com/KerryDRX/PESCR
♻ ☆ EgoOops: A Dataset for Mistake Action Detection from Egocentric Videos referring to Procedural Texts
Mistake action detection is crucial for developing intelligent archives that detect workers' errors and provide feedback. Existing studies have focused on visually apparent mistakes in free-style activities, resulting in video-only approaches to mistake detection. However, in text-following activities, models cannot determine the correctness of some actions without referring to the texts. Additionally, current mistake datasets rarely use procedural texts for video recording except for cooking. To fill these gaps, this paper proposes the EgoOops dataset, where egocentric videos record erroneous activities when following procedural texts across diverse domains. It features three types of annotations: video-text alignment, mistake labels, and descriptions for mistakes. We also propose a mistake detection approach, combining video-text alignment and mistake label classification to leverage the texts. Our experimental results show that incorporating procedural texts is essential for mistake detection. Data is available through https://y-haneji.github.io/EgoOops-project-page/.
comment: Main 8 pages, supplementary 6 pages
♻ ☆ Sparfels: Fast Reconstruction from Sparse Unposed Imagery ICCV 2025
We present a method for Sparse view reconstruction with surface element splatting that runs within 3 minutes on a consumer grade GPU. While few methods address sparse radiance field learning from noisy or unposed sparse cameras, shape recovery remains relatively underexplored in this setting. Several radiance and shape learning test-time optimization methods address the sparse posed setting by learning data priors or using combinations of external monocular geometry priors. Differently, we propose an efficient and simple pipeline harnessing a single recent 3D foundation model. We leverage its various task heads, notably point maps and camera initializations to instantiate a bundle adjusting 2D Gaussian Splatting (2DGS) model, and image correspondences to guide camera optimization midst 2DGS training. Key to our contribution is a novel formulation of splatted color variance along rays, which can be computed efficiently. Reducing this moment in training leads to more accurate shape reconstructions. We demonstrate state-of-the-art performances in the sparse uncalibrated setting in reconstruction and novel view benchmarks based on established multi-view datasets.
comment: ICCV 2025. Project page : https://shubhendu-jena.github.io/Sparfels-web/
♻ ☆ RoCo-Sim: Enhancing Roadside Collaborative Perception through Foreground Simulation
Roadside Collaborative Perception refers to a system where multiple roadside units collaborate to pool their perceptual data, assisting vehicles in enhancing their environmental awareness. Existing roadside perception methods concentrate on model design but overlook data issues like calibration errors, sparse information, and multi-view consistency, leading to poor performance on recent published datasets. To significantly enhance roadside collaborative perception and address critical data issues, we present the first simulation framework RoCo-Sim for road-side collaborative perception. RoCo-Sim is capable of generating diverse, multi-view consistent simulated roadside data through dynamic foreground editing and full-scene style transfer of a single image. RoCo-Sim consists of four components: (1) Camera Extrinsic Optimization ensures accurate 3D to 2D projection for roadside cameras; (2) A novel Multi-View Occlusion-Aware Sampler (MOAS) determines the placement of diverse digital assets within 3D space; (3) DepthSAM innovatively models foreground-background relationships from single-frame fixed-view images, ensuring multi-view consistency of foreground; and (4) Scalable Post-Processing Toolkit generates more realistic and enriched scenes through style transfer and other enhancements. RoCo-Sim significantly improves roadside 3D object detection, outperforming SOTA methods by 83.74 on Rcooper-Intersection and 83.12 on TUMTraf-V2X for AP70. RoCo-Sim fills a critical gap in roadside perception simulation. Code and pre-trained models will be released soon: https://github.com/duyuwen-duen/RoCo-Sim
Artificial Intelligence 137
☆ SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions ICCV 2025
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.
comment: Accepted at ICCV 2025
☆ Phi-Ground Tech Report: Advancing Perception in GUI Grounding
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from \textit{"Iron Man"}, are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the \textbf{Phi-Ground} model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under $10B$ parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textit{\textbf{43.2}} on ScreenSpot-pro and \textit{\textbf{27.2}} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: \href{https://zhangmiaosen2000.github.io/Phi-Ground/}{https://zhangmiaosen2000.github.io/Phi-Ground/}
☆ SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model
AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.
☆ Consensus-Driven Active Model Selection ICCV 2025
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.
comment: ICCV 2025 Highlight. 16 pages, 8 figures
☆ CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks
We propose CoT-Self-Instruct, a synthetic data generation method that instructs LLMs to first reason and plan via Chain-of-Thought (CoT) based on the given seed tasks, and then to generate a new synthetic prompt of similar quality and complexity for use in LLM training, followed by filtering for high-quality data with automatic metrics. In verifiable reasoning, our synthetic data significantly outperforms existing training datasets, such as s1k and OpenMathReasoning, across MATH500, AMC23, AIME24 and GPQA-Diamond. For non-verifiable instruction-following tasks, our method surpasses the performance of human or standard self-instruct prompts on both AlpacaEval 2.0 and Arena-Hard.
☆ Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.
☆ Distributed AI Agents for Cognitive Underwater Robot Autonomy
Achieving robust cognitive autonomy in robots navigating complex, unpredictable environments remains a fundamental challenge in robotics. This paper presents Underwater Robot Self-Organizing Autonomy (UROSA), a groundbreaking architecture leveraging distributed Large Language Model AI agents integrated within the Robot Operating System 2 (ROS 2) framework to enable advanced cognitive capabilities in Autonomous Underwater Vehicles. UROSA decentralises cognition into specialised AI agents responsible for multimodal perception, adaptive reasoning, dynamic mission planning, and real-time decision-making. Central innovations include flexible agents dynamically adapting their roles, retrieval-augmented generation utilising vector databases for efficient knowledge management, reinforcement learning-driven behavioural optimisation, and autonomous on-the-fly ROS 2 node generation for runtime functional extensibility. Extensive empirical validation demonstrates UROSA's promising adaptability and reliability through realistic underwater missions in simulation and real-world deployments, showing significant advantages over traditional rule-based architectures in handling unforeseen scenarios, environmental uncertainties, and novel mission objectives. This work not only advances underwater autonomy but also establishes a scalable, safe, and versatile cognitive robotics framework capable of generalising to a diverse array of real-world applications.
☆ Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving
LLMs have demonstrated strong mathematical reasoning abilities by leveraging reinforcement learning with long chain-of-thought, yet they continue to struggle with theorem proving due to the lack of clear supervision signals when solely using natural language. Dedicated domain-specific languages like Lean provide clear supervision via formal verification of proofs, enabling effective training through reinforcement learning. In this work, we propose \textbf{Seed-Prover}, a lemma-style whole-proof reasoning model. Seed-Prover can iteratively refine its proof based on Lean feedback, proved lemmas, and self-summarization. To solve IMO-level contest problems, we design three test-time inference strategies that enable both deep and broad reasoning. Seed-Prover proves $78.1\%$ of formalized past IMO problems, saturates MiniF2F, and achieves over 50\% on PutnamBench, outperforming the previous state-of-the-art by a large margin. To address the lack of geometry support in Lean, we introduce a geometry reasoning engine \textbf{Seed-Geometry}, which outperforms previous formal geometry engines. We use these two systems to participate in IMO 2025 and fully prove 5 out of 6 problems. This work represents a significant advancement in automated mathematical reasoning, demonstrating the effectiveness of formal verification with long chain-of-thought reasoning.
☆ Enhanced Velocity Field Modeling for Gaussian Video Reconstruction
High-fidelity 3D video reconstruction is essential for enabling real-time rendering of dynamic scenes with realistic motion in virtual and augmented reality (VR/AR). The deformation field paradigm of 3D Gaussian splatting has achieved near-photorealistic results in video reconstruction due to the great representation capability of deep deformation networks. However, in videos with complex motion and significant scale variations, deformation networks often overfit to irregular Gaussian trajectories, leading to suboptimal visual quality. Moreover, the gradient-based densification strategy designed for static scene reconstruction proves inadequate to address the absence of dynamic content. In light of these challenges, we propose a flow-empowered velocity field modeling scheme tailored for Gaussian video reconstruction, dubbed FlowGaussian-VR. It consists of two core components: a velocity field rendering (VFR) pipeline which enables optical flow-based optimization, and a flow-assisted adaptive densification (FAD) strategy that adjusts the number and size of Gaussians in dynamic regions. We validate our model's effectiveness on multi-view dynamic reconstruction and novel view synthesis with multiple real-world datasets containing challenging motion scenarios, demonstrating not only notable visual improvements (over 2.5 dB gain in PSNR) and less blurry artifacts in dynamic textures, but also regularized and trackable per-Gaussian trajectories.
comment: 17 pages, 8 figures
☆ TextQuests: How Good are LLMs at Text-Based Video Games?
Evaluating AI agents within complex, interactive environments that mirror real-world challenges is critical for understanding their practical capabilities. While existing agent benchmarks effectively assess skills like tool use or performance on structured tasks, they often do not fully capture an agent's ability to operate autonomously in exploratory environments that demand sustained, self-directed reasoning over a long and growing context. To spur the development of agents capable of more robust intrinsic reasoning over long horizons, we introduce TextQuests, a benchmark based on the Infocom suite of interactive fiction games. These text-based adventures, which can take human players over 30 hours and require hundreds of precise actions to solve, serve as an effective proxy for evaluating AI agents on focused, stateful tasks. The benchmark is specifically designed to assess an LLM agent's capacity for self-contained problem-solving by precluding the use of external tools, thereby focusing on intrinsic long-context reasoning capabilities in an exploratory environment characterized by the need for trial-and-error learning and sustained problem-solving within a single interactive session. We release TextQuests at https://textquests.ai.
☆ Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents
While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by $4\times$ and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.
☆ A survey of multi-agent geosimulation methodologies: from ABM to LLM
We provide a comprehensive examination of agent-based approaches that codify the principles and linkages underlying multi-agent systems, simulations, and information systems. Based on two decades of study, this paper confirms a framework intended as a formal specification for geosimulation platforms. Our findings show that large language models (LLMs) can be effectively incorporated as agent components if they follow a structured architecture specific to fundamental agent activities such as perception, memory, planning, and action. This integration is precisely consistent with the architecture that we formalize, providing a solid platform for next-generation geosimulation systems.
comment: 20 pages, 1 table
☆ villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
comment: Project page: https://aka.ms/villa-x
☆ Automating AI Failure Tracking: Semantic Association of Reports in AI Incident Database
Artificial Intelligence (AI) systems are transforming critical sectors such as healthcare, finance, and transportation, enhancing operational efficiency and decision-making processes. However, their deployment in high-stakes domains has exposed vulnerabilities that can result in significant societal harm. To systematically study and mitigate these risk, initiatives like the AI Incident Database (AIID) have emerged, cataloging over 3,000 real-world AI failure reports. Currently, associating a new report with the appropriate AI Incident relies on manual expert intervention, limiting scalability and delaying the identification of emerging failure patterns. To address this limitation, we propose a retrieval-based framework that automates the association of new reports with existing AI Incidents through semantic similarity modeling. We formalize the task as a ranking problem, where each report-comprising a title and a full textual description-is compared to previously documented AI Incidents based on embedding cosine similarity. Benchmarking traditional lexical methods, cross-encoder architectures, and transformer-based sentence embedding models, we find that the latter consistently achieve superior performance. Our analysis further shows that combining titles and descriptions yields substantial improvements in ranking accuracy compared to using titles alone. Moreover, retrieval performance remains stable across variations in description length, highlighting the robustness of the framework. Finally, we find that retrieval performance consistently improves as the training set expands. Our approach provides a scalable and efficient solution for supporting the maintenance of the AIID.
comment: Accepted at the 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ Personalized Education with Ranking Alignment Recommendation
Personalized question recommendation aims to guide individual students through questions to enhance their mastery of learning targets. Most previous methods model this task as a Markov Decision Process and use reinforcement learning to solve, but they struggle with efficient exploration, failing to identify the best questions for each student during training. To address this, we propose Ranking Alignment Recommendation (RAR), which incorporates collaborative ideas into the exploration mechanism, enabling more efficient exploration within limited training episodes. Experiments show that RAR effectively improves recommendation performance, and our framework can be applied to any RL-based question recommender. Our code is available in https://github.com/wuming29/RAR.git.
☆ Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation
Few-shot classification and segmentation (FS-CS) focuses on jointly performing multi-label classification and multi-class segmentation using few annotated examples. Although the current state of the art (SOTA) achieves high accuracy in both tasks, it struggles with small objects. To overcome this, we propose the Efficient Masked Attention Transformer (EMAT), which improves classification and segmentation accuracy, especially for small objects. EMAT introduces three modifications: a novel memory-efficient masked attention mechanism, a learnable downscaling strategy, and parameter-efficiency enhancements. EMAT outperforms all FS-CS methods on the PASCAL-5$^i$ and COCO-20$^i$ datasets, using at least four times fewer trainable parameters. Moreover, as the current FS-CS evaluation setting discards available annotations, despite their costly collection, we introduce two novel evaluation settings that consider these annotations to better reflect practical scenarios.
comment: Accepted for GCPR 2025. Project page: https://visinf.github.io/emat
☆ OptiGradTrust: Byzantine-Robust Federated Learning with Multi-Feature Gradient Analysis and Reinforcement Learning-Based Trust Weighting
Federated Learning (FL) enables collaborative model training across distributed medical institutions while preserving patient privacy, but remains vulnerable to Byzantine attacks and statistical heterogeneity. We present OptiGradTrust, a comprehensive defense framework that evaluates gradient updates through a novel six-dimensional fingerprint including VAE reconstruction error, cosine similarity metrics, $L_2$ norm, sign-consistency ratio, and Monte Carlo Shapley value, which drive a hybrid RL-attention module for adaptive trust scoring. To address convergence challenges under data heterogeneity, we develop FedBN-Prox (FedBN-P), combining Federated Batch Normalization with proximal regularization for optimal accuracy-convergence trade-offs. Extensive evaluation across MNIST, CIFAR-10, and Alzheimer's MRI datasets under various Byzantine attack scenarios demonstrates significant improvements over state-of-the-art defenses, achieving up to +1.6 percentage points over FLGuard under non-IID conditions while maintaining robust performance against diverse attack patterns through our adaptive learning approach.
☆ MemoCue: Empowering LLM-Based Agents for Human Memory Recall via Strategy-Guided Querying
Agent-assisted memory recall is one critical research problem in the field of human-computer interaction. In conventional methods, the agent can retrieve information from its equipped memory module to help the person recall incomplete or vague memories. The limited size of memory module hinders the acquisition of complete memories and impacts the memory recall performance in practice. Memory theories suggest that the person's relevant memory can be proactively activated through some effective cues. Inspired by this, we propose a novel strategy-guided agent-assisted memory recall method, allowing the agent to transform an original query into a cue-rich one via the judiciously designed strategy to help the person recall memories. To this end, there are two key challenges. (1) How to choose the appropriate recall strategy for diverse forgetting scenarios with distinct memory-recall characteristics? (2) How to obtain the high-quality responses leveraging recall strategies, given only abstract and sparsely annotated strategy patterns? To address the challenges, we propose a Recall Router framework. Specifically, we design a 5W Recall Map to classify memory queries into five typical scenarios and define fifteen recall strategy patterns across the corresponding scenarios. We then propose a hierarchical recall tree combined with the Monte Carlo Tree Search algorithm to optimize the selection of strategy and the generation of strategy responses. We construct an instruction tuning dataset and fine-tune multiple open-source large language models (LLMs) to develop MemoCue, an agent that excels in providing memory-inspired responses. Experiments on three representative datasets show that MemoCue surpasses LLM-based methods by 17.74% in recall inspiration. Further human evaluation highlights its advantages in memory-recall applications.
☆ L-GTA: Latent Generative Modeling for Time Series Augmentation
Data augmentation is gaining importance across various aspects of time series analysis, from forecasting to classification and anomaly detection tasks. We introduce the Latent Generative Transformer Augmentation (L-GTA) model, a generative approach using a transformer-based variational recurrent autoencoder. This model uses controlled transformations within the latent space of the model to generate new time series that preserve the intrinsic properties of the original dataset. L-GTA enables the application of diverse transformations, ranging from simple jittering to magnitude warping, and combining these basic transformations to generate more complex synthetic time series datasets. Our evaluation of several real-world datasets demonstrates the ability of L-GTA to produce more reliable, consistent, and controllable augmented data. This translates into significant improvements in predictive accuracy and similarity measures compared to direct transformation methods.
☆ LLM-Based Identification of Infostealer Infection Vectors from Screenshots: The Case of Aurora
Infostealers exfiltrate credentials, session cookies, and sensitive data from infected systems. With over 29 million stealer logs reported in 2024, manual analysis and mitigation at scale are virtually unfeasible/unpractical. While most research focuses on proactive malware detection, a significant gap remains in leveraging reactive analysis of stealer logs and their associated artifacts. Specifically, infection artifacts such as screenshots, image captured at the point of compromise, are largely overlooked by the current literature. This paper introduces a novel approach leveraging Large Language Models (LLMs), more specifically gpt-4o-mini, to analyze infection screenshots to extract potential Indicators of Compromise (IoCs), map infection vectors, and track campaigns. Focusing on the Aurora infostealer, we demonstrate how LLMs can process screenshots to identify infection vectors, such as malicious URLs, installer files, and exploited software themes. Our method extracted 337 actionable URLs and 246 relevant files from 1000 screenshots, revealing key malware distribution methods and social engineering tactics. By correlating extracted filenames, URLs, and infection themes, we identified three distinct malware campaigns, demonstrating the potential of LLM-driven analysis for uncovering infection workflows and enhancing threat intelligence. By shifting malware analysis from traditional log-based detection methods to a reactive, artifact-driven approach that leverages infection screenshots, this research presents a scalable method for identifying infection vectors and enabling early intervention.
☆ Deep Learning-based Prediction of Clinical Trial Enrollment with Uncertainty Estimates
Clinical trials are a systematic endeavor to assess the safety and efficacy of new drugs or treatments. Conducting such trials typically demands significant financial investment and meticulous planning, highlighting the need for accurate predictions of trial outcomes. Accurately predicting patient enrollment, a key factor in trial success, is one of the primary challenges during the planning phase. In this work, we propose a novel deep learning-based method to address this critical challenge. Our method, implemented as a neural network model, leverages pre-trained language models (PLMs) to capture the complexities and nuances of clinical documents, transforming them into expressive representations. These representations are then combined with encoded tabular features via an attention mechanism. To account for uncertainties in enrollment prediction, we enhance the model with a probabilistic layer based on the Gamma distribution, which enables range estimation. We apply the proposed model to predict clinical trial duration, assuming site-level enrollment follows a Poisson-Gamma process. We carry out extensive experiments on real-world clinical trial data, and show that the proposed method can effectively predict the number of patients enrolled at a number of sites for a given clinical trial, outperforming established baseline models.
☆ Can LLM-Reasoning Models Replace Classical Planning? A Benchmark Study
Recent advancements in Large Language Models have sparked interest in their potential for robotic task planning. While these models demonstrate strong generative capabilities, their effectiveness in producing structured and executable plans remains uncertain. This paper presents a systematic evaluation of a broad spectrum of current state of the art language models, each directly prompted using Planning Domain Definition Language domain and problem files, and compares their planning performance with the Fast Downward planner across a variety of benchmarks. In addition to measuring success rates, we assess how faithfully the generated plans translate into sequences of actions that can actually be executed, identifying both strengths and limitations of using these models in this setting. Our findings show that while the models perform well on simpler planning tasks, they continue to struggle with more complex scenarios that require precise resource management, consistent state tracking, and strict constraint compliance. These results underscore fundamental challenges in applying language models to robotic planning in real world environments. By outlining the gaps that emerge during execution, we aim to guide future research toward combined approaches that integrate language models with classical planners in order to enhance the reliability and scalability of planning in autonomous robotics.
☆ Semantic Chain-of-Trust: Autonomous Trust Orchestration for Collaborator Selection via Hypergraph-Aided Agentic AI
In collaborative systems, the effective completion of tasks hinges on task-specific trust evaluations of potential devices for distributed collaboration. However, the complexity of tasks, the spatiotemporal dynamism of distributed device resources, and the inevitable assessment overhead dramatically increase the complexity and resource consumption of the trust evaluation process. As a result, ill-timed or overly frequent trust evaluations can reduce utilization rate of constrained resources, negatively affecting collaborative task execution. To address this challenge, this paper proposes an autonomous trust orchestration method based on a new concept of semantic chain-of-trust. Our technique employs agentic AI and hypergraph to establish and maintain trust relationships among devices. By leveraging its strengths in autonomous perception, task decomposition, and semantic reasoning, we propose agentic AI to perceive device states and autonomously perform trust evaluations of collaborators based on historical performance data only during device idle periods, thereby enabling efficient utilization of distributed resources. In addition, agentic AI performs task-specific trust evaluations on collaborator resources by analyzing the alignment between resource capabilities and task requirements. Moreover, by maintaining a trust hypergraph embedded with trust semantics for each device, agentic AI enables hierarchical management of collaborators and identifies collaborators requiring trust evaluation based on trust semantics, thereby achieving a balance between overhead and trust accuracy. Furthermore, local trust hypergraphs from multiple devices can be chained together to support multi-hop collaboration, enabling efficient coordination in large-scale systems. Experimental results demonstrate that the proposed method achieves resource-efficient trust evaluation.
☆ DICE: Dynamic In-Context Example Selection in LLM Agents via Efficient Knowledge Transfer
Large language model-based agents, empowered by in-context learning (ICL), have demonstrated strong capabilities in complex reasoning and tool-use tasks. However, existing works have shown that the effectiveness of ICL is highly sensitive to the choice of demonstrations, with suboptimal examples often leading to unstable or degraded performance. While prior work has explored example selection, including in some agentic or multi-step settings, existing approaches typically rely on heuristics or task-specific designs and lack a general, theoretically grounded criterion for what constitutes an effective demonstration across reasoning steps. Therefore, it is non-trivial to develop a principled, general-purpose method for selecting demonstrations that consistently benefit agent performance. In this paper, we address this challenge with DICE, Dynamic In-Context Example Selection for LLM Agents, a theoretically grounded ICL framework for agentic tasks that selects the most relevant demonstrations at each step of reasoning. Our approach decomposes demonstration knowledge into transferable and non-transferable components through a causal lens, showing how the latter can introduce spurious dependencies that impair generalization. We further propose a stepwise selection criterion with a formal guarantee of improved agent performance. Importantly, DICE is a general, framework-agnostic solution that can be integrated as a plug-in module into existing agentic frameworks without any additional training cost. Extensive experiments across diverse domains demonstrate our method's effectiveness and generality, highlighting the importance of principled, context-aware demo selection for robust and efficient LLM agents.
☆ ART: Adaptive Relation Tuning for Generalized Relation Prediction ICCV 2025
Visual relation detection (VRD) is the task of identifying the relationships between objects in a scene. VRD models trained solely on relation detection data struggle to generalize beyond the relations on which they are trained. While prompt tuning has been used to adapt vision-language models (VLMs) for VRD, it uses handcrafted prompts and struggles with novel or complex relations. We argue that instruction tuning offers a more effective solution by fine-tuning VLMs on diverse instructional data. We thus introduce ART, an Adaptive Relation Tuning framework that adapts VLMs for VRD through instruction tuning and strategic instance selection. By converting VRD datasets into an instruction tuning format and employing an adaptive sampling algorithm, ART directs the VLM to focus on informative relations while maintaining generalizability. Specifically, we focus on the relation classification, where subject-object boxes are given and the model predicts the predicate between them. We tune on a held-in set and evaluate across multiple held-out datasets of varying complexity. Our approach strongly improves over its baselines and can infer unseen relation concepts, a capability absent in mainstream VRD methods. We demonstrate ART's practical value by using the predicted relations for segmenting complex scenes.
comment: Accepted for publication in ICCV 2025
☆ A Unified Perception-Language-Action Framework for Adaptive Autonomous Driving
Autonomous driving systems face significant challenges in achieving human-like adaptability, robustness, and interpretability in complex, open-world environments. These challenges stem from fragmented architectures, limited generalization to novel scenarios, and insufficient semantic extraction from perception. To address these limitations, we propose a unified Perception-Language-Action (PLA) framework that integrates multi-sensor fusion (cameras, LiDAR, radar) with a large language model (LLM)-augmented Vision-Language-Action (VLA) architecture, specifically a GPT-4.1-powered reasoning core. This framework unifies low-level sensory processing with high-level contextual reasoning, tightly coupling perception with natural language-based semantic understanding and decision-making to enable context-aware, explainable, and safety-bounded autonomous driving. Evaluations on an urban intersection scenario with a construction zone demonstrate superior performance in trajectory tracking, speed prediction, and adaptive planning. The results highlight the potential of language-augmented cognitive frameworks for advancing the safety, interpretability, and scalability of autonomous driving systems.
☆ From LLMs to Edge: Parameter-Efficient Fine-Tuning on Edge Devices
Parameter-efficient fine-tuning (PEFT) methods reduce the computational costs of updating deep learning models by minimizing the number of additional parameters used to adapt a model to a down- stream task. While extensively researched in large language models (LLMs), their application to smaller models used on edge devices, such as convolutional neural networks, remains underexplored. This paper benchmarks and analyzes popular PEFT methods on convolutional architectures typically deployed in resource-constrained edge environments. We evaluate LoRA, DoRA, and GaLore for updating standard and depthwise convolutional architectures to handle distribution shifts and accommodate unseen classes. We utilize recently proposed PyTorch profilers to compare the updated model performance and computational costs of these PEFT methods with traditional fine-tuning approaches. With resource efficiency in mind, we investigate their update behavior across different rank dimensions. We find that the evaluated PEFT methods are only half as memory-efficient when applied to depthwise-separable convolution architectures, compared to their efficiency with LLMs. Conversely, when targeting convolu- tional architectures optimized for edge deployment, adapter-based PEFT methods can reduce floating point operations (FLOPs) during model updates by up to 95%. These insights offer valuable guidance for selecting PEFT methods based on hardware constraints, performance requirements, and application needs. Our code is online.
☆ Transparent AI: The Case for Interpretability and Explainability
As artificial intelligence systems increasingly inform high-stakes decisions across sectors, transparency has become foundational to responsible and trustworthy AI implementation. Leveraging our role as a leading institute in advancing AI research and enabling industry adoption, we present key insights and lessons learned from practical interpretability applications across diverse domains. This paper offers actionable strategies and implementation guidance tailored to organizations at varying stages of AI maturity, emphasizing the integration of interpretability as a core design principle rather than a retrospective add-on.
☆ MECAT: A Multi-Experts Constructed Benchmark for Fine-Grained Audio Understanding Tasks
While large audio-language models have advanced open-ended audio understanding, they still fall short of nuanced human-level comprehension. This gap persists largely because current benchmarks, limited by data annotations and evaluation metrics, fail to reliably distinguish between generic and highly detailed model outputs. To this end, this work introduces MECAT, a Multi-Expert Constructed Benchmark for Fine-Grained Audio Understanding Tasks. Generated via a pipeline that integrates analysis from specialized expert models with Chain-of-Thought large language model reasoning, MECAT provides multi-perspective, fine-grained captions and open-set question-answering pairs. The benchmark is complemented by a novel metric: DATE (Discriminative-Enhanced Audio Text Evaluation). This metric penalizes generic terms and rewards detailed descriptions by combining single-sample semantic similarity with cross-sample discriminability. A comprehensive evaluation of state-of-the-art audio models is also presented, providing new insights into their current capabilities and limitations. The data and code are available at https://github.com/xiaomi-research/mecat
comment: 9 main pages, 5 figures, 3 tables, and 14 appendix pages
☆ I Am Big, You Are Little; I Am Right, You Are Wrong ICCV 2025
Machine learning for image classification is an active and rapidly developing field. With the proliferation of classifiers of different sizes and different architectures, the problem of choosing the right model becomes more and more important. While we can assess a model's classification accuracy statistically, our understanding of the way these models work is unfortunately limited. In order to gain insight into the decision-making process of different vision models, we propose using minimal sufficient pixels sets to gauge a model's `concentration': the pixels that capture the essence of an image through the lens of the model. By comparing position, overlap, and size of sets of pixels, we identify that different architectures have statistically different concentration, in both size and position. In particular, ConvNext and EVA models differ markedly from the others. We also identify that images which are misclassified are associated with larger pixels sets than correct classifications.
comment: 10 pages, International Conference on Computer Vision, ICCV 2025
☆ Causal Identification of Sufficient, Contrastive and Complete Feature Sets in Image Classification
Existing algorithms for explaining the outputs of image classifiers are based on a variety of approaches and produce explanations that lack formal rigor. On the other hand, logic-based explanations are formally and rigorously defined but their computability relies on strict assumptions about the model that do not hold on image classifiers. In this paper, we show that causal explanations, in addition to being formally and rigorously defined, enjoy the same formal properties as logic-based ones, while still lending themselves to black-box algorithms and being a natural fit for image classifiers. We prove formal properties of causal explanations and introduce contrastive causal explanations for image classifiers. Moreover, we augment the definition of explanation with confidence awareness and introduce complete causal explanations: explanations that are classified with exactly the same confidence as the original image. We implement our definitions, and our experimental results demonstrate that different models have different patterns of sufficiency, contrastiveness, and completeness. Our algorithms are efficiently computable, taking on average 6s per image on a ResNet50 model to compute all types of explanations, and are totally black-box, needing no knowledge of the model, no access to model internals, no access to gradient, nor requiring any properties, such as monotonicity, of the model.
comment: 13 pages, 13 figures, appendix included
☆ Digital literacy interventions can boost humans in discerning deepfakes
Deepfakes, i.e., images generated by artificial intelligence (AI), can erode trust in institutions and compromise election outcomes, as people often struggle to discern real images from deepfakes. Improving digital literacy can help address these challenges, yet scalable and effective approaches remain largely unexplored. Here, we compare the efficacy of five digital literacy interventions to boost people's ability to discern deepfakes: (1) textual guidance on common indicators of deepfakes; (2) visual demonstrations of these indicators; (3) a gamified exercise for identifying deepfakes; (4) implicit learning through repeated exposure and feedback; and (5) explanations of how deepfakes are generated with the help of AI. We conducted an experiment with N=1,200 participants from the United States to test the immediate and long-term effectiveness of our interventions. Our results show that our interventions can boost deepfake discernment by up to 13 percentage points while maintaining trust in real images. Altogether, our approach is scalable, suitable for diverse populations, and highly effective for boosting deepfake detection while maintaining trust in truthful information.
☆ Causal Reasoning in Pieces: Modular In-Context Learning for Causal Discovery
Causal inference remains a fundamental challenge for large language models. Recent advances in internal reasoning with large language models have sparked interest in whether state-of-the-art reasoning models can robustly perform causal discovery-a task where conventional models often suffer from severe overfitting and near-random performance under data perturbations. We study causal discovery on the Corr2Cause benchmark using the emergent OpenAI's o-series and DeepSeek-R model families and find that these reasoning-first architectures achieve significantly greater native gains than prior approaches. To capitalize on these strengths, we introduce a modular in-context pipeline inspired by the Tree-of-Thoughts and Chain-of-Thoughts methodologies, yielding nearly three-fold improvements over conventional baselines. We further probe the pipeline's impact by analyzing reasoning chain length, complexity, and conducting qualitative and quantitative comparisons between conventional and reasoning models. Our findings suggest that while advanced reasoning models represent a substantial leap forward, carefully structured in-context frameworks are essential to maximize their capabilities and offer a generalizable blueprint for causal discovery across diverse domains.
☆ Automated Feedback on Student-Generated UML and ER Diagrams Using Large Language Models
UML and ER diagrams are foundational in computer science education but come with challenges for learners due to the need for abstract thinking, contextual understanding, and mastery of both syntax and semantics. These complexities are difficult to address through traditional teaching methods, which often struggle to provide scalable, personalized feedback, especially in large classes. We introduce DUET (Diagrammatic UML & ER Tutor), a prototype of an LLM-based tool, which converts a reference diagram and a student-submitted diagram into a textual representation and provides structured feedback based on the differences. It uses a multi-stage LLM pipeline to compare diagrams and generate reflective feedback. Furthermore, the tool enables analytical insights for educators, aiming to foster self-directed learning and inform instructional strategies. We evaluated DUET through semi-structured interviews with six participants, including two educators and four teaching assistants. They identified strengths such as accessibility, scalability, and learning support alongside limitations, including reliability and potential misuse. Participants also suggested potential improvements, such as bulk upload functionality and interactive clarification features. DUET presents a promising direction for integrating LLMs into modeling education and offers a foundation for future classroom integration and empirical evaluation.
comment: Learnersourcing: Student-generated Content @ Scale Workshop at L@S 2025
☆ Role-Aware Language Models for Secure and Contextualized Access Control in Organizations
As large language models (LLMs) are increasingly deployed in enterprise settings, controlling model behavior based on user roles becomes an essential requirement. Existing safety methods typically assume uniform access and focus on preventing harmful or toxic outputs, without addressing role-specific access constraints. In this work, we investigate whether LLMs can be fine-tuned to generate responses that reflect the access privileges associated with different organizational roles. We explore three modeling strategies: a BERT-based classifier, an LLM-based classifier, and role-conditioned generation. To evaluate these approaches, we construct two complementary datasets. The first is adapted from existing instruction-tuning corpora through clustering and role labeling, while the second is synthetically generated to reflect realistic, role-sensitive enterprise scenarios. We assess model performance across varying organizational structures and analyze robustness to prompt injection, role mismatch, and jailbreak attempts.
☆ Mitigating Resolution-Drift in Federated Learning: Case of Keypoint Detection
The Federated Learning (FL) approach enables effective learning across distributed systems, while preserving user data privacy. To date, research has primarily focused on addressing statistical heterogeneity and communication efficiency, through which FL has achieved success in classification tasks. However, its application to non-classification tasks, such as human pose estimation, remains underexplored. This paper identifies and investigates a critical issue termed ``resolution-drift,'' where performance degrades significantly due to resolution variability across clients. Unlike class-level heterogeneity, resolution drift highlights the importance of resolution as another axis of not independent or identically distributed (non-IID) data. To address this issue, we present resolution-adaptive federated learning (RAF), a method that leverages heatmap-based knowledge distillation. Through multi-resolution knowledge distillation between higher-resolution outputs (teachers) and lower-resolution outputs (students), our approach enhances resolution robustness without overfitting. Extensive experiments and theoretical analysis demonstrate that RAF not only effectively mitigates resolution drift and achieves significant performance improvements, but also can be integrated seamlessly into existing FL frameworks. Furthermore, although this paper focuses on human pose estimation, our t-SNE analysis reveals distinct characteristics between classification and high-resolution representation tasks, supporting the generalizability of RAF to other tasks that rely on preserving spatial detail.
☆ KLAN: Kuaishou Landing-page Adaptive Navigator
Modern online platforms configure multiple pages to accommodate diverse user needs. This multi-page architecture inherently establishes a two-stage interaction paradigm between the user and the platform: (1) Stage I: page navigation, navigating users to a specific page and (2) Stage II: in-page interaction, where users engage with customized content within the specific page. While the majority of research has been focusing on the sequential recommendation task that improves users' feedback in Stage II, there has been little investigation on how to achieve better page navigation in Stage I. To fill this gap, we formally define the task of Personalized Landing Page Modeling (PLPM) into the field of recommender systems: Given a user upon app entry, the goal of PLPM is to proactively select the most suitable landing page from a set of candidates (e.g., functional tabs, content channels, or aggregation pages) to optimize the short-term PDR metric and the long-term user engagement and satisfaction metrics, while adhering to industrial constraints. Additionally, we propose KLAN (Kuaishou Landing-page Adaptive Navigator), a hierarchical solution framework designed to provide personalized landing pages under the formulation of PLPM. KLAN comprises three key components: (1) KLAN-ISP captures inter-day static page preference; (2) KLAN-IIT captures intra-day dynamic interest transitions and (3) KLAN-AM adaptively integrates both components for optimal navigation decisions. Extensive online experiments conducted on the Kuaishou platform demonstrate the effectiveness of KLAN, obtaining +0.205% and +0.192% improvements on in Daily Active Users (DAU) and user Lifetime (LT). Our KLAN is ultimately deployed on the online platform at full traffic, serving hundreds of millions of users. To promote further research in this important area, we will release our dataset and code upon paper acceptance.
comment: We propose PLPM, a new task for selecting optimal landing pages upon user entry. Our solution, KLAN, models static and dynamic user interests and is successfully deployed on Kuaishou, improving DAU and user lifetime
☆ Machine learning and machine learned prediction in chest X-ray images
Machine learning and artificial intelligence are fast-growing fields of research in which data is used to train algorithms, learn patterns, and make predictions. This approach helps to solve seemingly intricate problems with significant accuracy without explicit programming by recognizing complex relationships in data. Taking an example of 5824 chest X-ray images, we implement two machine learning algorithms, namely, a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments. Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work. Gradient-weighted class activation mapping shows that DenseNet-121 correctly focuses on essential parts of the input chest X-ray images in its decision-making more than the baseline CNN.
comment: 8 pages, 7 figures
☆ Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation ACL 2025
Large language models (LLMs) with instruction following capabilities have demonstrated impressive problem-solving abilities. While synthesizing instructional data from unsupervised text has become a common approach for training such models, conventional methods rely heavily on human effort for data annotation. Although existing automated synthesis paradigms have alleviated this constraint, they still exhibit significant limitations in ensuring adequate diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an innovative LLM-driven method for instruction synthesis. This approach introduces a "Micro-Scatter-Macro" multi-level foveation methodology that effectively guides the LLM to deeply excavate fine-grained information embedded in unsupervised text, thereby enhancing both the diversity and difficulty of synthesized instructions. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures validate the effectiveness and superiority of our proposed method. We publicly release our data and codes: https://github.com/Mubuky/Self-Foveate
comment: Accepted by Findings of ACL 2025
☆ Chatting with your ERP: A Recipe
This paper presents the design, implementation, and evaluation behind a Large Language Model (LLM) agent that chats with an industrial production-grade ERP system. The agent is capable of interpreting natural language queries and translating them into executable SQL statements, leveraging open-weight LLMs. A novel dual-agent architecture combining reasoning and critique stages was proposed to improve query generation reliability.
comment: 11 pages, includes 3 tables summarizing schema and model performance. Submitted on July 31, 2025. Targets integration of LLM agents with ERP systems using open-weight models and Ollama deployment
☆ AGA: An adaptive group alignment framework for structured medical cross-modal representation learning
Learning medical visual representations from paired images and reports is a promising direction in representation learning. However, current vision-language pretraining methods in the medical domain often simplify clinical reports into single entities or fragmented tokens, ignoring their inherent structure. In addition, contrastive learning frameworks typically depend on large quantities of hard negative samples, which is impractical for small-scale medical datasets. To tackle these challenges, we propose Adaptive Grouped Alignment (AGA), a new framework that captures structured semantics from paired medical images and reports. AGA introduces a bidirectional grouping mechanism based on a sparse similarity matrix. For each image-report pair, we compute fine-grained similarities between text tokens and image patches. Each token selects its top-matching patches to form a visual group, and each patch selects its most related tokens to form a language group. To enable adaptive grouping, we design two threshold gating modules, called Language Grouped Threshold Gate and Vision Grouped Threshold Gate, which learn grouping thresholds dynamically. Group representations are computed as weighted averages based on similarity scores. To align each token with its group representation, we introduce an Instance Aware Group Alignment loss that operates within each image-text pair, removing the need for external negatives. Finally, a Bidirectional Cross-modal Grouped Alignment module is applied to enhance fine-grained alignment between visual and linguistic group representations. Extensive experiments on public and private datasets show that our method achieves strong performance on image-text retrieval and classification tasks under both fine-tuning and zero-shot settings.
☆ Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models
Decoder-only large language models (LLMs) are increasingly used to build embedding models that effectively encode the semantic information of natural language texts into dense vector representations for various embedding tasks. However, many existing methods primarily focus on removing the causal attention mask in LLMs to enable bidirectional attention, potentially undermining the model's ability to extract semantic information acquired during pretraining. Additionally, leading unidirectional approaches often rely on extra input text to overcome the inherent limitations of causal attention, inevitably increasing computational costs. In this work, we propose Causal2Vec, a general-purpose embedding model tailored to enhance the performance of decoder-only LLMs without altering their original architectures or introducing significant computational overhead. Specifically, we first employ a lightweight BERT-style model to pre-encode the input text into a single Contextual token, which is then prepended to the LLM's input sequence, allowing each token to capture contextualized information even without attending to future tokens. Furthermore, to mitigate the recency bias introduced by last-token pooling and help LLMs better leverage the semantic information encoded in the Contextual token, we concatenate the last hidden states of Contextual and EOS tokens as the final text embedding. In practice, Causal2Vec achieves state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB) among models trained solely on publicly available retrieval datasets, while reducing the required sequence length by up to 85% and inference time by up to 82% compared to best-performing methods.
☆ MPCC: A Novel Benchmark for Multimodal Planning with Complex Constraints in Multimodal Large Language Models
Multimodal planning capabilities refer to the ability to predict, reason, and design steps for task execution with multimodal context, which is essential for complex reasoning and decision-making across multiple steps. However, current benchmarks face two key challenges: (1) they cannot directly assess multimodal real-world planning capabilities, and (2) they lack constraints or implicit constraints across modalities. To address these issues, we introduce Multimodal Planning with Complex Constraints (MPCC), the first benchmark to systematically evaluate MLLMs' ability to handle multimodal constraints in planning. To address the first challenge, MPCC focuses on three real-world tasks: Flight Planning, Calendar Planning, and Meeting Planning. To solve the second challenge, we introduce complex constraints (e.g. budget, temporal, and spatial) in these tasks, with graded difficulty levels (EASY, MEDIUM, HARD) to separate constraint complexity from search space expansion. Experiments on 13 advanced MLLMs reveal significant challenges: closed-source models achieve only 21.3% feasible plans, while open-source models average below 11%. Additionally, we observe that MLLMs are highly sensitive to constraint complexity and that traditional multimodal prompting strategies fail in multi-constraint scenarios. Our work formalizes multimodal constraints in planning, provides a rigorous evaluation framework, and highlights the need for advancements in constraint-aware reasoning for real-world MLLM applications.
comment: Accepted to ACM Multimedia 2025
☆ LLM4Rail: An LLM-Augmented Railway Service Consulting Platform
Large language models (LLMs) have significantly reshaped different walks of business. To meet the increasing demands for individualized railway service, we develop LLM4Rail - a novel LLM-augmented railway service consulting platform. Empowered by LLM, LLM4Rail can provide custom modules for ticketing, railway food & drink recommendations, weather information, and chitchat. In LLM4Rail, we propose the iterative "Question-Thought-Action-Observation (QTAO)" prompting framework. It meticulously integrates verbal reasoning with task-oriented actions, that is, reasoning to guide action selection, to effectively retrieve external observations relevant to railway operation and service to generate accurate responses. To provide personalized onboard dining services, we first construct the Chinese Railway Food and Drink (CRFD-25) - a publicly accessible takeout dataset tailored for railway services. CRFD-25 covers a wide range of signature dishes categorized by cities, cuisines, age groups, and spiciness levels. We further introduce an LLM-based zero-shot conversational recommender for railway catering. To address the unconstrained nature of open recommendations, the feature similarity-based post-processing step is introduced to ensure all the recommended items are aligned with CRFD-25 dataset.
Trae Agent: An LLM-based Agent for Software Engineering with Test-time Scaling
Software issue resolution is a critical challenge in software engineering and has garnered increasing attention in recent years. With the rapid advancement of large language models (LLMs), substantial progress has been made in addressing real-world software engineering tasks. Recent studies have introduced ensemble reasoning techniques to enhance the performance of LLM-based issue resolution. However, existing prompting-based methods still face limitations in effectively exploring large ensemble spaces and lack the capacity for repository-level understanding, both of which constrain their overall effectiveness. In this paper, we propose Trae Agent, the first agent-based ensemble reasoning approach for repository-level issue resolution. Trae Agent formulates our goal as an optimal solution search problem and addresses two key challenges, i.e., large ensemble spaces and repository-level understanding, through modular agents for generation, pruning, and selection. We conduct extensive experiments using three leading LLMs on the widely-adopted SWE-bench benchmark, comparing Trae Agent against four state-of-the-art ensemble reasoning techniques. Experimental results demonstrate that Trae Agent consistently achieves superior performance, with an average improvement of 10.22% over all baselines in terms of Pass@1. Trae Agent has achieved first place on the SWE-bench Verified leaderboard, with a notable Pass@1 score of 75.20%. We are pleased to release Trae Agent as an open-source project to support the research community, with all resources available at https://github.com/bytedance/trae-agent.
comment: Pengfei Gao and Zhao Tian contributed equally to this technical report
☆ "I made this (sort of)": Negotiating authorship, confronting fraudulence, and exploring new musical spaces with prompt-based AI music generation
I reflect on my experience creating two music albums centered on state-of-the-art prompt-based AI music generation platforms. The first album explicitly poses the question: What happens when I collide my junk mail with these platforms? The second album is a direct response to the first, and toys with the inability of state-of-the-art prompt-based AI music generation platforms to generate music that is not ``practiced'', ``polished'', and ``produced''. I seed a large language model (LLM) with information about these albums and have it interview me, which results in the exploration of several deeper questions: To what extent am I the author? Where am I in the resulting music? How is my musical identity changing as I am faced with machines that are in some ways far more talented than I? What new musical spaces does my work open, for me or anyone/thing else? I conclude by reflecting on my reflections, as well as LLM-mediated self-reflection as method.
☆ Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch without supervision using its inherent SQL programming capabilities combined with dialogue theory provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of dialogue theory. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and ArXiv dataset. We view this as a step towards broader application of ontologies to increase LLM explainability.
☆ Quality Evaluation of COBOL to Java Code Transformation
We present an automated evaluation system for assessing COBOL-to-Java code translation within IBM's watsonx Code Assistant for Z (WCA4Z). The system addresses key challenges in evaluating LLM-based translators, including model opacity and the complexity of translation quality assessment. Our approach combines analytic checkers with LLM-as-a-judge (LaaJ) techniques to deliver scalable, multi-faceted evaluations. The system supports continuous integration workflows, enables large-scale benchmarking, and reduces reliance on manual review. We describe the system architecture, evaluation strategies, and reporting mechanisms that provide actionable insights for developers and project managers, facilitating the evolution of high-quality, modernized codebases.
comment: Submitted to ASE 2025
☆ Multi-Waypoint Path Planning and Motion Control for Non-holonomic Mobile Robots in Agricultural Applications
There is a growing demand for autonomous mobile robots capable of navigating unstructured agricultural environments. Tasks such as weed control in meadows require efficient path planning through an unordered set of coordinates while minimizing travel distance and adhering to curvature constraints to prevent soil damage and protect vegetation. This paper presents an integrated navigation framework combining a global path planner based on the Dubins Traveling Salesman Problem (DTSP) with a Nonlinear Model Predictive Control (NMPC) strategy for local path planning and control. The DTSP generates a minimum-length, curvature-constrained path that efficiently visits all targets, while the NMPC leverages this path to compute control signals to accurately reach each waypoint. The system's performance was validated through comparative simulation analysis on real-world field datasets, demonstrating that the coupled DTSP-based planner produced smoother and shorter paths, with a reduction of about 16% in the provided scenario, compared to decoupled methods. Based thereon, the NMPC controller effectively steered the robot to the desired waypoints, while locally optimizing the trajectory and ensuring adherence to constraints. These findings demonstrate the potential of the proposed framework for efficient autonomous navigation in agricultural environments.
comment: 6 pages
☆ DSBC : Data Science task Benchmarking with Context engineering
Recent advances in large language models (LLMs) have significantly impacted data science workflows, giving rise to specialized data science agents designed to automate analytical tasks. Despite rapid adoption, systematic benchmarks evaluating the efficacy and limitations of these agents remain scarce. In this paper, we introduce a comprehensive benchmark specifically crafted to reflect real-world user interactions with data science agents by observing usage of our commercial applications. We evaluate three LLMs: Claude-4.0-Sonnet, Gemini-2.5-Flash, and OpenAI-o4-Mini across three approaches: zero-shot with context engineering, multi-step with context engineering, and with SmolAgent. Our benchmark assesses performance across a diverse set of eight data science task categories, additionally exploring the sensitivity of models to common prompting issues, such as data leakage and slightly ambiguous instructions. We further investigate the influence of temperature parameters on overall and task-specific outcomes for each model and approach. Our findings reveal distinct performance disparities among the evaluated models and methodologies, highlighting critical factors that affect practical deployment. The benchmark dataset and evaluation framework introduced herein aim to provide a foundation for future research of more robust and effective data science agents.
comment: 32 pages
☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: 8 pages, 2 figures
☆ AI Must not be Fully Autonomous
Autonomous Artificial Intelligence (AI) has many benefits. It also has many risks. In this work, we identify the 3 levels of autonomous AI. We are of the position that AI must not be fully autonomous because of the many risks, especially as artificial superintelligence (ASI) is speculated to be just decades away. Fully autonomous AI, which can develop its own objectives, is at level 3 and without responsible human oversight. However, responsible human oversight is crucial for mitigating the risks. To ague for our position, we discuss theories of autonomy, AI and agents. Then, we offer 12 distinct arguments and 6 counterarguments with rebuttals to the counterarguments. We also present 15 pieces of recent evidence of AI misaligned values and other risks in the appendix.
comment: 11 pages, 1 figure
FastDriveVLA: Efficient End-to-End Driving via Plug-and-Play Reconstruction-based Token Pruning
Vision-Language-Action (VLA) models have demonstrated significant potential in complex scene understanding and action reasoning, leading to their increasing adoption in end-to-end autonomous driving systems. However, the long visual tokens of VLA models greatly increase computational costs. Current visual token pruning methods in Vision-Language Models (VLM) rely on either visual token similarity or visual-text attention, but both have shown poor performance in autonomous driving scenarios. Given that human drivers concentrate on relevant foreground areas while driving, we assert that retaining visual tokens containing this foreground information is essential for effective decision-making. Inspired by this, we propose FastDriveVLA, a novel reconstruction-based vision token pruning framework designed specifically for autonomous driving. FastDriveVLA includes a plug-and-play visual token pruner called ReconPruner, which prioritizes foreground information through MAE-style pixel reconstruction. A novel adversarial foreground-background reconstruction strategy is designed to train ReconPruner for the visual encoder of VLA models. Once trained, ReconPruner can be seamlessly applied to different VLA models with the same visual encoder without retraining. To train ReconPruner, we also introduce a large-scale dataset called nuScenes-FG, consisting of 241K image-mask pairs with annotated foreground regions. Our approach achieves state-of-the-art results on the nuScenes closed-loop planning benchmark across different pruning ratios.
comment: 9 pages, 5 figures
☆ Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.
comment: 13 pages, 4 figures, 4 tables. Includes ablation study and evaluation on 7 lightweight deep learning models. Code and logs available at https://github.com/VineetKumarRakesh/lcnn-opt
☆ Evaluating the Dynamics of Membership Privacy in Deep Learning
Membership inference attacks (MIAs) pose a critical threat to the privacy of training data in deep learning. Despite significant progress in attack methodologies, our understanding of when and how models encode membership information during training remains limited. This paper presents a dynamic analytical framework for dissecting and quantifying privacy leakage dynamics at the individual sample level. By tracking per-sample vulnerabilities on an FPR-TPR plane throughout training, our framework systematically measures how factors such as dataset complexity, model architecture, and optimizer choice influence the rate and severity at which samples become vulnerable. Crucially, we discover a robust correlation between a sample's intrinsic learning difficulty, and find that the privacy risk of samples highly vulnerable in the final trained model is largely determined early during training. Our results thus provide a deeper understanding of how privacy risks dynamically emerge during training, laying the groundwork for proactive, privacy-aware model training strategies.
☆ How Far Are AI Scientists from Changing the World?
The emergence of large language models (LLMs) is propelling automated scientific discovery to the next level, with LLM-based Artificial Intelligence (AI) Scientist systems now taking the lead in scientific research. Several influential works have already appeared in the field of AI Scientist systems, with AI-generated research papers having been accepted at the ICLR 2025 workshop, suggesting that a human-level AI Scientist capable of uncovering phenomena previously unknown to humans, may soon become a reality. In this survey, we focus on the central question: How far are AI scientists from changing the world and reshaping the scientific research paradigm? To answer this question, we provide a prospect-driven review that comprehensively analyzes the current achievements of AI Scientist systems, identifying key bottlenecks and the critical components required for the emergence of a scientific agent capable of producing ground-breaking discoveries that solve grand challenges. We hope this survey will contribute to a clearer understanding of limitations of current AI Scientist systems, showing where we are, what is missing, and what the ultimate goals for scientific AI should be.
☆ Towards Affordable Tumor Segmentation and Visualization for 3D Breast MRI Using SAM2 MICCAI
Breast MRI provides high-resolution volumetric imaging critical for tumor assessment and treatment planning, yet manual interpretation of 3D scans remains labor-intensive and subjective. While AI-powered tools hold promise for accelerating medical image analysis, adoption of commercial medical AI products remains limited in low- and middle-income countries due to high license costs, proprietary software, and infrastructure demands. In this work, we investigate whether the Segment Anything Model 2 (SAM2) can be adapted for low-cost, minimal-input 3D tumor segmentation in breast MRI. Using a single bounding box annotation on one slice, we propagate segmentation predictions across the 3D volume using three different slice-wise tracking strategies: top-to-bottom, bottom-to-top, and center-outward. We evaluate these strategies across a large cohort of patients and find that center-outward propagation yields the most consistent and accurate segmentations. Despite being a zero-shot model not trained for volumetric medical data, SAM2 achieves strong segmentation performance under minimal supervision. We further analyze how segmentation performance relates to tumor size, location, and shape, identifying key failure modes. Our results suggest that general-purpose foundation models such as SAM2 can support 3D medical image analysis with minimal supervision, offering an accessible and affordable alternative for resource-constrained settings.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2nd Deep Breast Workshop on AI and Imaging for Diagnostic and Treatment Challenges in Breast Care (DeepBreath), 2025
☆ XABPs: Towards eXplainable Autonomous Business Processes
Autonomous business processes (ABPs), i.e., self-executing workflows leveraging AI/ML, have the potential to improve operational efficiency, reduce errors, lower costs, improve response times, and free human workers for more strategic and creative work. However, ABPs may raise specific concerns including decreased stakeholder trust, difficulties in debugging, hindered accountability, risk of bias, and issues with regulatory compliance. We argue for eXplainable ABPs (XABPs) to address these concerns by enabling systems to articulate their rationale. The paper outlines a systematic approach to XABPs, characterizing their forms, structuring explainability, and identifying key BPM research challenges towards XABPs.
☆ DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System
Current multi-agent systems (MAS) frameworks often rely on manually designed and static collaboration graph structures, limiting adaptability and performance. To address these limitations, we propose DynaSwarm, a dynamic framework that enhances LLM-based MAS through two key innovations: (1) an actor-critic reinforcement learning (A2C) mechanism to optimize graph structures with improved stability over prior RL methods, and (2) a dynamic graph selector that adaptively chooses the optimal graph structure for each input sample via parameter-efficient LLM fine-tuning. DynaSwarm eliminates the need for rigid, one-fits-all graph architectures, instead leveraging sample-specific idiosyncrasies to dynamically route queries through specialized agent networks. (c) We propose to fine-tune the demonstration retriever to fully exploit the power of in-context learning (ICL). Extensive experiments on question answering, mathematical reasoning, and coding tasks demonstrate that DynaSwarm consistently outperforms state-of-the-art single-agent and MAS baselines across multiple LLM backbones. Our findings highlight the importance of sample-aware structural flexibility in LLM MAS designs.
☆ Efficient Machine Unlearning via Influence Approximation
Due to growing privacy concerns, machine unlearning, which aims at enabling machine learning models to ``forget" specific training data, has received increasing attention. Among existing methods, influence-based unlearning has emerged as a prominent approach due to its ability to estimate the impact of individual training samples on model parameters without retraining. However, this approach suffers from prohibitive computational overhead arising from the necessity to compute the Hessian matrix and its inverse across all training samples and parameters, rendering it impractical for large-scale models and scenarios involving frequent data deletion requests. This highlights the difficulty of forgetting. Inspired by cognitive science, which suggests that memorizing is easier than forgetting, this paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning). This connection allows machine unlearning to be addressed from the perspective of incremental learning. Unlike the time-consuming Hessian computations in unlearning (forgetting), incremental learning (memorizing) typically relies on more efficient gradient optimization, which supports the aforementioned cognitive theory. Based on this connection, we introduce the Influence Approximation Unlearning (IAU) algorithm for efficient machine unlearning from the incremental perspective. Extensive empirical evaluations demonstrate that IAU achieves a superior balance among removal guarantee, unlearning efficiency, and comparable model utility, while outperforming state-of-the-art methods across diverse datasets and model architectures. Our code is available at https://github.com/Lolo1222/IAU.
comment: 12 pages, 4 figures
☆ An Information Bottleneck Asset Pricing Model
Deep neural networks (DNNs) have garnered significant attention in financial asset pricing, due to their strong capacity for modeling complex nonlinear relationships within financial data. However, sophisticated models are prone to over-fitting to the noise information in financial data, resulting in inferior performance. To address this issue, we propose an information bottleneck asset pricing model that compresses data with low signal-to-noise ratios to eliminate redundant information and retain the critical information for asset pricing. Our model imposes constraints of mutual information during the nonlinear mapping process. Specifically, we progressively reduce the mutual information between the input data and the compressed representation while increasing the mutual information between the compressed representation and the output prediction. The design ensures that irrelevant information, which is essentially the noise in the data, is forgotten during the modeling of financial nonlinear relationships without affecting the final asset pricing. By leveraging the constraints of the Information bottleneck, our model not only harnesses the nonlinear modeling capabilities of deep networks to capture the intricate relationships within financial data but also ensures that noise information is filtered out during the information compression process.
☆ Zero-Shot Document Understanding using Pseudo Table of Contents-Guided Retrieval-Augmented Generation
Understanding complex multimodal documents remains challenging due to their structural inconsistencies and limited training data availability. We introduce \textit{DocsRay}, a training-free document understanding system that integrates pseudo Table of Contents (TOC) generation with hierarchical Retrieval-Augmented Generation (RAG). Our approach leverages multimodal Large Language Models' (LLMs) native capabilities to seamlessly process documents containing diverse elements such as text, images, charts, and tables without requiring specialized models or additional training. DocsRay's framework synergistically combines three key techniques: (1) a semantic structuring module using prompt-based LLM interactions to generate a hierarchical pseudo-TOC, (2) zero-shot multimodal analysis that converts diverse document elements into unified, text-centric representations using the inherent capabilities of multimodal LLMs, and (3) an efficient two-stage hierarchical retrieval system that reduces retrieval complexity from $O(N)$ to $O(S + k_1 \cdot N_s)$. Evaluated on documents averaging 49.4 pages and 20,971 textual tokens, DocsRay reduced query latency from 3.89 to 2.12 seconds, achieving a 45% efficiency improvement. On the MMLongBench-Doc benchmark, DocsRay-Pro attains an accuracy of 64.7%, substantially surpassing previous state-of-the-art results.
☆ Solution-aware vs global ReLU selection: partial MILP strikes back for DNN verification
To handle complex instances, we revisit a divide-and-conquer approach to break down the complexity: instead of few complex BaB calls, we rely on many small {\em partial} MILP calls. The crucial step is to select very few but very important ReLUs to treat using (costly) binary variables. The previous attempts were suboptimal in that respect. To select these important ReLU variables, we propose a novel {\em solution-aware} ReLU scoring ({\sf SAS}), as well as adapt the BaB-SR and BaB-FSB branching functions as {\em global} ReLU scoring ({\sf GS}) functions. We compare them theoretically as well as experimentally, and {\sf SAS} is more efficient at selecting a set of variables to open using binary variables. Compared with previous attempts, SAS reduces the number of binary variables by around 6 times, while maintaining the same level of accuracy. Implemented in {\em Hybrid MILP}, calling first $\alpha,\beta$-CROWN with a short time-out to solve easier instances, and then partial MILP, produces a very accurate yet efficient verifier, reducing by up to $40\%$ the number of undecided instances to low levels ($8-15\%$), while keeping a reasonable runtime ($46s-417s$ on average per instance), even for fairly large CNNs with 2 million parameters.
☆ Geak: Introducing Triton Kernel AI Agent & Evaluation Benchmarks
The demand for AI-generated GPU kernels is rapidly growing, influenced by the need for scalable, hardware-optimized solutions in both industry and academia. As deep learning workloads grow in complexity and diversity, it is imperative to automate low-level kernel development to meet performance and productivity demands. Major cloud providers, semiconductor companies, and research institutions are now investing heavily in AI-driven code generation for GPUs, aiming to reduce manual optimization efforts while achieving near-expert performance on hardware like AMD MI300X. The Triton language, a Python-based DSL for GPU programming, has emerged as a popular target for such AI-generated kernels due to its balance of performance and ease-of-coding. In this work, we present an evaluation suite for Triton-based GPU kernels and GEAK (Generating Efficient AI-centric GPU Kernels)-a framework that leverages cutting-edge LLMs to generate performant Triton code specifically for AMD GPUs, including the AMD MI300X and MI250. GEAK leverages inference-time compute scaling to produce Triton-based GPU kernels using a reasoning loop adapted from Reflexion-style feedback mechanisms. On two evaluation benchmarks, GEAK significantly outperformed the baselines of directly prompting frontier LLMs as well as Reflexion-based generation pipelines by achieving correctness up to $63$% and execution speed up of up to $2.59$X. These results highlight the promise of GEAK-like agentic code generation for accelerating the adoption of diverse hardware platforms and democratizing access to expert-level kernel performance.
☆ Tractable Responsibility Measures for Ontology-Mediated Query Answering KR 2025
Recent work on quantitative approaches to explaining query answers employs responsibility measures to assign scores to facts in order to quantify their respective contributions to obtaining a given answer. In this paper, we study the complexity of computing such responsibility scores in the setting of ontology-mediated query answering, focusing on a very recently introduced family of Shapley-value-based responsibility measures defined in terms of weighted sums of minimal supports (WSMS). By exploiting results from the database setting, we can show that such measures enjoy polynomial data complexity for classes of ontology-mediated queries that are first-order-rewritable, whereas the problem becomes "shP"-hard when the ontology language can encode reachability queries (via axioms like $\exists R. A \sqsubseteq A$). To better understand the tractability frontier, we next explore the combined complexity of WSMS computation. We prove that intractability applies already to atomic queries if the ontology language supports conjunction, as well as to unions of `well-behaved' conjunctive queries, even in the absence of an ontology. By contrast, our study yields positive results for common DL-Lite dialects: by means of careful analysis, we identify classes of structurally restricted conjunctive queries (which intuitively disallow undesirable interactions between query atoms) that admit tractable WSMS computation.
comment: Long version of a paper to appear at KR 2025, which contains further proof details in the appendix
☆ Accessibility Scout: Personalized Accessibility Scans of Built Environments
Assessing the accessibility of unfamiliar built environments is critical for people with disabilities. However, manual assessments, performed by users or their personal health professionals, are laborious and unscalable, while automatic machine learning methods often neglect an individual user's unique needs. Recent advances in Large Language Models (LLMs) enable novel approaches to this problem, balancing personalization with scalability to enable more adaptive and context-aware assessments of accessibility. We present Accessibility Scout, an LLM-based accessibility scanning system that identifies accessibility concerns from photos of built environments. With use, Accessibility Scout becomes an increasingly capable "accessibility scout", tailoring accessibility scans to an individual's mobility level, preferences, and specific environmental interests through collaborative Human-AI assessments. We present findings from three studies: a formative study with six participants to inform the design of Accessibility Scout, a technical evaluation of 500 images of built environments, and a user study with 10 participants of varying mobility. Results from our technical evaluation and user study show that Accessibility Scout can generate personalized accessibility scans that extend beyond traditional ADA considerations. Finally, we conclude with a discussion on the implications of our work and future steps for building more scalable and personalized accessibility assessments of the physical world.
comment: 18 pages, 16 figures. Presented at ACM UIST 2025
☆ AutoBridge: Automating Smart Device Integration with Centralized Platform
Multimodal IoT systems coordinate diverse IoT devices to deliver human-centered services. The ability to incorporate new IoT devices under the management of a centralized platform is an essential requirement. However, it requires significant human expertise and effort to program the complex IoT integration code that enables the platform to understand and control the device functions. Therefore, we propose AutoBridge to automate IoT integration code generation. Specifically, AutoBridge adopts a divide-and-conquer strategy: it first generates device control logic by progressively retrieving device-specific knowledge, then synthesizes platformcompliant integration code using platform-specific knowledge. To ensure correctness, AutoBridge features a multi-stage debugging pipeline, including an automated debugger for virtual IoT device testing and an interactive hardware-in-the-loop debugger that requires only binary user feedback (yes and no) for real-device verification. We evaluate AutoBridge on a benchmark of 34 IoT devices across two open-source IoT platforms. The results demonstrate that AutoBridge can achieves an average success rate of 93.87% and an average function coverage of 94.87%, without any human involvement. With minimal binary yes and no feedback from users, the code is then revised to reach 100% function coverage. A user study with 15 participants further shows that AutoBridge outperforms expert programmers by 50% to 80% in code accuracy, even when the programmers are allowed to use commercial code LLMs.
comment: 14 pages, 12 figures, under review
☆ LENS: Learning Ensemble Confidence from Neural States for Multi-LLM Answer Integration
Large Language Models (LLMs) have demonstrated impressive performance across various tasks, with different models excelling in distinct domains and specific abilities. Effectively combining the predictions of multiple LLMs is crucial for enhancing system robustness and performance. However, existing ensemble methods often rely on simple techniques like voting or logits ensembling, which overlook the varying confidence and reliability of models in different contexts. In this work, we propose LENS (Learning ENsemble confidence from Neural States), a novel approach that learns to estimate model confidence by analyzing internal representations. For each LLM, we train a lightweight linear confidence predictor that leverages layer-wise hidden states and normalized probabilities as inputs. This allows for more nuanced weighting of model predictions based on their context-dependent reliability. Our method does not require modifying the model parameters and requires negligible additional computation. Experimental results on multiple-choice and boolean question-answering tasks demonstrate that LENS outperforms traditional ensemble methods by a substantial margin. Our findings suggest that internal representations provide valuable signals for determining model confidence and can be effectively leveraged for ensemble learning.
♻ ☆ Neutral Residues: Revisiting Adapters for Model Extension ICML 2025
We address the problem of extending a pretrained large language model to a new domain that was not seen during training. Standard techniques, such as finetuning or low-rank adaptation (LoRA) are successful at domain adaptation, but do not formally add capacity to the model. This often leads to a trade-off, between performing well on the new domain vs. degrading performance on the original domain. Here, we revisit and improve adapters to extend LLMs from three angles: data, architecture and training procedure, which are advantageously considered jointly. The resulting method, called neutral residues, modifies adapters in a way that leads each new residual block to output near-zeros on the original domain. This solution leads to strong results when adapting a state-of-the-art model originally trained on English to a new language. Neutral residues significantly outperform competing approaches such as finetuning, LoRA or vanilla adapters in terms of the trade-off between learning the new language and not forgetting English.
comment: Accepted at ICML 2025
♻ ☆ G-Core: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has become an increasingly popular paradigm for training large language models (LLMs) and diffusion models. While existing RLHF training systems have enabled significant progress, they often face challenges in scaling to multi-modal and diffusion workflows and adapting to dynamic workloads. In particular, current approaches may encounter limitations in controller scalability, flexible resource placement, and efficient orchestration when handling complex RLHF pipelines, especially in scenarios involving dynamic sampling or generative reward modeling. In this paper, we present \textbf{G-Core}, a simple, scalable, and balanced RLHF training framework designed to address these challenges. G-Core introduces a parallel controller programming model, enabling flexible and efficient orchestration of complex RLHF workflows without the bottlenecks of a single centralized controller. Furthermore, we propose a dynamic placement schema that adaptively partitions resources and schedules workloads, significantly reducing hardware idle time and improving utilization, even under highly variable training conditions. G-Core has successfully trained models that support WeChat product features serving a large-scale user base, demonstrating its effectiveness and robustness in real-world scenarios. Our results show that G-Core advances the state of the art in RLHF training, providing a solid foundation for future research and deployment of large-scale, human-aligned models.
comment: I haven't received company approval yet, and I uploaded it by mistake
♻ ☆ Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies
This paper introduces Team-Attention-Actor-Critic (TAAC), a reinforcement learning algorithm designed to enhance multi-agent collaboration in cooperative environments. TAAC employs a Centralized Training/Centralized Execution scheme incorporating multi-headed attention mechanisms in both the actor and critic. This design facilitates dynamic, inter-agent communication, allowing agents to explicitly query teammates, thereby efficiently managing the exponential growth of joint-action spaces while ensuring a high degree of collaboration. We further introduce a penalized loss function which promotes diverse yet complementary roles among agents. We evaluate TAAC in a simulated soccer environment against benchmark algorithms representing other multi-agent paradigms, including Proximal Policy Optimization and Multi-Agent Actor-Attention-Critic. We find that TAAC exhibits superior performance and enhanced collaborative behaviors across a variety of metrics (win rates, goal differentials, Elo ratings, inter-agent connectivity, balanced spatial distributions, and frequent tactical interactions such as ball possession swaps).
comment: 8 pages
♻ ☆ Ultra3D: Efficient and High-Fidelity 3D Generation with Part Attention
Recent advances in sparse voxel representations have significantly improved the quality of 3D content generation, enabling high-resolution modeling with fine-grained geometry. However, existing frameworks suffer from severe computational inefficiencies due to the quadratic complexity of attention mechanisms in their two-stage diffusion pipelines. In this work, we propose Ultra3D, an efficient 3D generation framework that significantly accelerates sparse voxel modeling without compromising quality. Our method leverages the compact VecSet representation to efficiently generate a coarse object layout in the first stage, reducing token count and accelerating voxel coordinate prediction. To refine per-voxel latent features in the second stage, we introduce Part Attention, a geometry-aware localized attention mechanism that restricts attention computation within semantically consistent part regions. This design preserves structural continuity while avoiding unnecessary global attention, achieving up to 6.7x speed-up in latent generation. To support this mechanism, we construct a scalable part annotation pipeline that converts raw meshes into part-labeled sparse voxels. Extensive experiments demonstrate that Ultra3D supports high-resolution 3D generation at 1024 resolution and achieves state-of-the-art performance in both visual fidelity and user preference.
comment: Project Page: https://buaacyw.github.io/ultra3d/
♻ ☆ H2Tune: Federated Foundation Model Fine-Tuning with Hybrid Heterogeneity
Different from existing federated fine-tuning (FFT) methods for foundation models, hybrid heterogeneous federated fine-tuning (HHFFT) is an under-explored scenario where clients exhibit double heterogeneity in model architectures and downstream tasks. This hybrid heterogeneity introduces two significant challenges: 1) heterogeneous matrix aggregation, where clients adopt different large-scale foundation models based on their task requirements and resource limitations, leading to dimensional mismatches during LoRA parameter aggregation; and 2) multi-task knowledge interference, where local shared parameters, trained with both task-shared and task-specific knowledge, cannot ensure only task-shared knowledge is transferred between clients. To address these challenges, we propose H2Tune, a federated foundation model fine-tuning with hybrid heterogeneity. Our framework H2Tune consists of three key components: (i) sparsified triple matrix decomposition to align hidden dimensions across clients through constructing rank-consistent middle matrices, with adaptive sparsification based on client resources; (ii) relation-guided matrix layer alignment to handle heterogeneous layer structures and representation capabilities; and (iii) alternating task-knowledge disentanglement mechanism to decouple shared and specific knowledge of local model parameters through alternating optimization. Theoretical analysis proves a convergence rate of O(1/\sqrt{T}). Extensive experiments show our method achieves up to 15.4% accuracy improvement compared to state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/H2Tune-1407.
♻ ☆ VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning
Reinforcement learning has proven its effectiveness in enhancing the reasoning capabilities of large language models. Recent research efforts have progressively extended this paradigm to multimodal reasoning tasks. Due to the inherent complexity and diversity of multimodal tasks, especially in semantic content and problem formulations, existing models often exhibit unstable performance across various domains and difficulty levels. To address these limitations, we propose VL-Cogito, an advanced multimodal reasoning model trained via a novel multi-stage Progressive Curriculum Reinforcement Learning (PCuRL) framework. PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts. The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity, thus balancing reasoning efficiency with correctness. Experimental evaluations demonstrate that VL-Cogito consistently matches or surpasses existing reasoning-oriented models across mainstream multimodal benchmarks spanning mathematics, science, logic, and general understanding, validating the effectiveness of our approach.
comment: 21 pages, 5 figures, 6 tables. Work in progress
♻ ☆ MultiEditor: Controllable Multimodal Object Editing for Driving Scenarios Using 3D Gaussian Splatting Priors
Autonomous driving systems rely heavily on multimodal perception data to understand complex environments. However, the long-tailed distribution of real-world data hinders generalization, especially for rare but safety-critical vehicle categories. To address this challenge, we propose MultiEditor, a dual-branch latent diffusion framework designed to edit images and LiDAR point clouds in driving scenarios jointly. At the core of our approach is introducing 3D Gaussian Splatting (3DGS) as a structural and appearance prior for target objects. Leveraging this prior, we design a multi-level appearance control mechanism--comprising pixel-level pasting, semantic-level guidance, and multi-branch refinement--to achieve high-fidelity reconstruction across modalities. We further propose a depth-guided deformable cross-modality condition module that adaptively enables mutual guidance between modalities using 3DGS-rendered depth, significantly enhancing cross-modality consistency. Extensive experiments demonstrate that MultiEditor achieves superior performance in visual and geometric fidelity, editing controllability, and cross-modality consistency. Furthermore, generating rare-category vehicle data with MultiEditor substantially enhances the detection accuracy of perception models on underrepresented classes.
♻ ☆ HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors MICCAI 2025
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.
comment: Accepted by MICCAI 2025
♻ ☆ Robust Adverse Weather Removal via Spectral-based Spatial Grouping ICCV25
Adverse weather conditions cause diverse and complex degradation patterns, driving the development of All-in-One (AiO) models. However, recent AiO solutions still struggle to capture diverse degradations, since global filtering methods like direct operations on the frequency domain fail to handle highly variable and localized distortions. To address these issue, we propose Spectral-based Spatial Grouping Transformer (SSGformer), a novel approach that leverages spectral decomposition and group-wise attention for multi-weather image restoration. SSGformer decomposes images into high-frequency edge features using conventional edge detection and low-frequency information via Singular Value Decomposition. We utilize multi-head linear attention to effectively model the relationship between these features. The fused features are integrated with the input to generate a grouping-mask that clusters regions based on the spatial similarity and image texture. To fully leverage this mask, we introduce a group-wise attention mechanism, enabling robust adverse weather removal and ensuring consistent performance across diverse weather conditions. We also propose a Spatial Grouping Transformer Block that uses both channel attention and spatial attention, effectively balancing feature-wise relationships and spatial dependencies. Extensive experiments show the superiority of our approach, validating its effectiveness in handling the varied and intricate adverse weather degradations.
comment: accepted by ICCV25
♻ ☆ LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks ACM MM 2025
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.
comment: This paper has been accepted by ACM MM 2025
♻ ☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
comment: arXiv admin note: text overlap with arXiv:2507.21881, arXiv:2507.21875
♻ ☆ Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image
Pain is a multifaceted phenomenon that affects a substantial portion of the population. Reliable and consistent evaluation benefits those experiencing pain and underpins the development of effective and advanced management strategies. Automatic pain-assessment systems deliver continuous monitoring, inform clinical decision-making, and aim to reduce distress while preventing functional decline. By incorporating physiological signals, these systems provide objective, accurate insights into an individual's condition. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages electrodermal activity signals as input modality. Multiple representations of the signal are created and visualized as waveforms, and they are jointly visualized within a single multi-representation diagram. Extensive experiments incorporating various processing and filtering techniques, along with multiple representation combinations, demonstrate the effectiveness of the proposed approach. It consistently yields comparable, and in several cases superior, results to traditional fusion methods, establishing it as a robust alternative for integrating different signal representations or modalities.
comment: arXiv admin note: text overlap with arXiv:2507.21875
♻ ☆ Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
♻ ☆ LLM-Crowdsourced: A Benchmark-Free Paradigm for Mutual Evaluation of Large Language Models
Although large language models (LLMs) demonstrate remarkable capabilities across various tasks, evaluating their capabilities remains a challenging task. Existing evaluation methods suffer from issues such as data contamination, black-box operation, and subjective preference. These issues make it difficult to evaluate the LLMs' true capabilities comprehensively. To tackle these challenges, we propose a novel benchmark-free evaluation paradigm, LLM-Crowdsourced. It utilizes LLMs to generate questions, answer independently, and evaluate mutually. This method integrates four key evaluation criteria: dynamic, transparent, objective, and professional, which existing evaluation methods cannot satisfy simultaneously. Experiments on eight mainstream LLMs across mathematics and programming verify the advantages of our method in distinguishing LLM performance. Furthermore, our study reveals several novel findings that are difficult for traditional methods to detect, including but not limited to: (1) Gemini demonstrates the highest original and professional question-design capabilities among others; (2) Some LLMs exhibit ''memorization-based answering'' by misrecognizing questions as familiar ones with a similar structure; (3) LLM evaluation results demonstrate high consistency (robustness).
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
comment: 51 pages (13 pages for the main text, 9 pages for references, and 29 pages for the appendix)
♻ ☆ Learning to Align and Refine: A Foundation-to-Diffusion Framework for Occlusion-Robust Two-Hand Reconstruction
Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures and occlusions, causing significant difficulty in achieving plausible interaction alignment. Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts. To tackle this, we propose a dual-stage Foundation-to-Diffusion framework that precisely align 2D prior guidance from vision foundation models and diffusion-based generative 3D interaction refinement to achieve occlusion-robust two-hand reconstruction. First, we introduce a lightweight fusion alignment encoder that aligns fused multimodal 2D priors like key points, segmentation maps, and depth cues from vision foundation models during training. This provides robust structured guidance, further enabling efficient inference without heavy foundation model encoders at test time while maintaining high reconstruction accuracy. Second, we implement a two-hand diffusion model explicitly trained to convert interpenetrated 3D poses into plausible, penetration-free counterparts. Through collision gradient-guided denoising, the model rectifies artifacts while preserving natural spatial relationships between hands. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on InterHand2.6M, HIC, and FreiHAND datasets, significantly advancing occlusion handling and interaction robustness. Our code will be publicly released.
♻ ☆ Spatial-Temporal Reinforcement Learning for Network Routing with Non-Markovian Traffic
Reinforcement Learning (RL) has been widely used for packet routing in communication networks, but traditional RL methods rely on the Markov assumption that the current state contains all necessary information for decision-making. In reality, internet traffic is non-Markovian, and past states do influence routing performance. Moreover, common deep RL approaches use function approximators, such as neural networks, that do not model the spatial structure in network topologies. To address these shortcomings, we design a network environment with non-Markovian traffic and introduce a spatial-temporal RL (STRL) framework for packet routing. Our approach outperforms traditional baselines by more than 19% during training and 7% for inference despite a change in network topology.
♻ ☆ How AI Ideas Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large, Dynamic Experiment
Exposure to large language model output is rapidly increasing. How will seeing AI-generated ideas affect human ideas? We conducted an experiment (800+ participants, 40+ countries) where participants viewed creative ideas that were from ChatGPT or prior experimental participants and then brainstormed their own idea. We varied the number of AI-generated examples (none, low, or high exposure) and if the examples were labeled as 'AI' (disclosure). Our dynamic experiment design -- ideas from prior participants in an experimental condition are used as stimuli for future participants in the same experimental condition -- speaks to the interdependent process of cultural creation: creative ideas are built upon prior ideas. Hence, we capture the compounding effects of having LLMs 'in the culture loop'. We find that high AI exposure (but not low AI exposure) did not affect the creativity of individual ideas but did increase the average amount and rate of change of collective idea diversity. AI made ideas different, not better. There were no main effects of disclosure. We also found that self-reported creative people were less influenced by knowing an idea was from AI and that participants may knowingly adopt AI ideas when the task is difficult. Our findings suggest that introducing AI ideas may increase collective diversity but not individual creativity.
comment: Accepted at ACM Collective Intelligence 2025. Originally posted 2024
♻ ☆ Coordinating Search-Informed Reasoning and Reasoning-Guided Search in Claim Verification
Multi-hop claim verification is inherently challenging, requiring multi-step reasoning to construct verification chains while iteratively searching for information to uncover hidden bridging facts. This process is fundamentally interleaved, as effective reasoning relies on dynamically retrieved evidence, while effective search demands reasoning to refine queries based on partial information. To achieve this, we propose Hierarchical Agent Reasoning and Information Search (HARIS), explicitly modeling the coordinated process of reasoning-driven searching and search-informed reasoning. HARIS consists of a high-level reasoning agent that focuses on constructing the main verification chain, generating factual questions when more information is needed, and a low-level search agent that iteratively retrieves more information, refining its search based on intermediate findings. This design allows each agent to specialize in its respective task, enhancing verification accuracy and interpretability. HARIS is trained using reinforcement learning with outcome-based rewards. Experimental results on the EX-FEVER and HOVER benchmarks demonstrate that HARIS achieves strong performance, greatly advancing multi-hop claim verification.
comment: Work in progress
♻ ☆ Unable to Forget: Proactive Interference Reveals Working Memory Limits in LLMs Beyond Context Length ICML 2025
Information retrieval in Large Language Models (LLMs) is increasingly recognized as intertwined with generation capabilities rather than mere lookup. While longer contexts are often assumed to improve retrieval, the effects of intra-context interference remain understudied. To address this, we adapt the proactive interference (PI) paradigm from cognitive science, where earlier information disrupts recall of newer updates. In humans, susceptibility to such interference is inversely linked to working memory capacity. We introduce PI-LLM, an evaluation that sequentially streams semantically related key-value updates and queries only the final values. Although these final values are clearly positioned just before the query, LLM retrieval accuracy declines log-linearly toward zero as interference accumulates; errors arise from retrieving previously overwritten values. Attempts to mitigate interference via prompt engineering (e.g., instructing models to ignore earlier input) yield limited success. These findings reveal a fundamental constraint on LLMs' ability to disentangle interference and flexibly manipulate information, suggesting a working memory bottleneck beyond mere context access. This calls for approaches that strengthen models' ability to suppress irrelevant content during retrieval.
comment: Accepted at ICML 2025 Workshop on Long Context Foundation Models (ICFM). Code: https://github.com/zhuangziGiantfish/Unable-to-Forget
♻ ☆ Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models
Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.
♻ ☆ White-Basilisk: A Hybrid Model for Code Vulnerability Detection
The proliferation of software vulnerabilities presents a significant challenge to cybersecurity, necessitating more effective detection methodologies. We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance while challenging prevailing assumptions in AI model scaling. Utilizing an innovative architecture that integrates Mamba layers, linear self-attention, and a Mixture of Experts framework, White-Basilisk achieves state-of-the-art results in vulnerability detection tasks with a parameter count of only 200M. The model's capacity to process sequences of unprecedented length enables comprehensive analysis of extensive codebases in a single pass, surpassing the context limitations of current Large Language Models (LLMs). White-Basilisk exhibits robust performance on imbalanced, real-world datasets, while maintaining computational efficiency that facilitates deployment across diverse organizational scales. This research not only establishes new benchmarks in code security but also provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks, potentially redefining optimization strategies in AI development for domain-specific applications.
♻ ☆ Parallel Split Learning with Global Sampling
Distributed deep learning in resource-constrained environments faces scalability and generalization challenges due to large effective batch sizes and non-identically distributed client data. We introduce a server-driven sampling strategy that maintains a fixed global batch size by dynamically adjusting client-side batch sizes. This decouples the effective batch size from the number of participating devices and ensures that global batches better reflect the overall data distribution. Using standard concentration bounds, we establish tighter deviation guarantees compared to existing approaches. Empirical results on a benchmark dataset confirm that the proposed method improves model accuracy, training efficiency, and convergence stability, offering a scalable solution for learning at the network edge.
♻ ☆ How Can I Publish My LLM Benchmark Without Giving the True Answers Away? ICML 2025
Publishing a large language model (LLM) benchmark on the Internet risks contaminating future LLMs: the benchmark may be unintentionally (or intentionally) used to train or select a model. A common mitigation is to keep the benchmark private and let participants submit their models or predictions to the organizers. However, this strategy will require trust in a single organization and still permits test-set overfitting through repeated queries. To overcome this issue, we propose a way to publish benchmarks without completely disclosing the ground-truth answers to the questions, while still maintaining the ability to openly evaluate LLMs. Our main idea is to inject randomness to the answers by preparing several logically correct answers, and only include one of them as the solution in the benchmark. This reduces the best possible accuracy, i.e., Bayes accuracy, of the benchmark. Not only is this helpful to keep us from disclosing the ground truth, but this approach also offers a test for detecting data contamination. In principle, even fully capable models should not surpass the Bayes accuracy. If a model surpasses this ceiling despite this expectation, this is a strong signal of data contamination. We present experimental evidence that our method can detect data contamination accurately on a wide range of benchmarks, models, and training methodologies.
comment: Extended version of the paper presented as an Oral at the ICML 2025 Workshop on the Impact of Memorization on Trustworthy Foundation Models
♻ ☆ Splits! A Flexible Dataset and Evaluation Framework for Sociocultural Linguistic Investigation
Variation in language use, shaped by speakers' sociocultural background and specific context of use, offers a rich lens into cultural perspectives, values, and opinions. However, the computational study of these Sociocultural Linguistic Phenomena (SLP) has often been limited to bespoke analyses of specific groups or topics, hindering the pace of scientific discovery. To address this, we introduce Splits!, a 9.7 million-post dataset from Reddit designed for systematic and flexible research. The dataset contains posts from over 53,000 users across 6 demographic groups, organized into 89 discussion topics to enable comparative analysis. We validate Splits! via self-identification and by successfully replicating several known SLPs from existing literature. We complement this dataset with a framework that leverages efficient retrieval methods to rapidly validate potential SLPs (PSLPs) by automatically evaluating whether a given hypothesis is supported by our data. Crucially, to distinguish between novel and obvious insights, the framework incorporates a human-validated measure of a hypothesis's ``unexpectedness.'' We demonstrate that the two-stage process reduces the number of statistically significant findings requiring manual inspection by a factor of 1.5-1.8x, streamlining the discovery of promising phenomena for further investigation.
comment: Preprint, under review
♻ ☆ Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate ($\eta$=17.53$\%$). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.
comment: Accepted at ApJ
♻ ☆ PatchTraj: Unified Time-Frequency Representation Learning via Dynamic Patches for Trajectory Prediction
Pedestrian trajectory prediction is crucial for autonomous driving and robotics. While existing point-based and grid-based methods expose two main limitations: insufficiently modeling human motion dynamics, as they fail to balance local motion details with long-range spatiotemporal dependencies, and the time representations lack interaction with their frequency components in jointly modeling trajectory sequences. To address these challenges, we propose PatchTraj, a dynamic patch-based framework that integrates time-frequency joint modeling for trajectory prediction. Specifically, we decompose the trajectory into raw time sequences and frequency components, and employ dynamic patch partitioning to perform multi-scale segmentation, capturing hierarchical motion patterns. Each patch undergoes adaptive embedding with scale-aware feature extraction, followed by hierarchical feature aggregation to model both fine-grained and long-range dependencies. The outputs of the two branches are further enhanced via cross-modal attention, facilitating complementary fusion of temporal and spectral cues. The resulting enhanced embeddings exhibit strong expressive power, enabling accurate predictions even when using a vanilla Transformer architecture. Extensive experiments on ETH-UCY, SDD, NBA, and JRDB datasets demonstrate that our method achieves state-of-the-art performance. Notably, on the egocentric JRDB dataset, PatchTraj attains significant relative improvements of 26.7% in ADE and 17.4% in FDE, underscoring its substantial potential in embodied intelligence.
♻ ☆ MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
♻ ☆ Automated Code Review Using Large Language Models at Ericsson: An Experience Report
Code review is one of the primary means of assuring the quality of released software along with testing and static analysis. However, code review requires experienced developers who may not always have the time to perform an in-depth review of code. Thus, automating code review can help alleviate the cognitive burden on experienced software developers allowing them to focus on their primary activities of writing code to add new features and fix bugs. In this paper, we describe our experience in using Large Language Models towards automating the code review process in Ericsson. We describe the development of a lightweight tool using LLMs and static program analysis. We then describe our preliminary experiments with experienced developers in evaluating our code review tool and the encouraging results.
comment: 6 pages, 4 figures, 1 table. Accepted in ICSME 2025 conference in Auckland
♻ ☆ Divided Attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots
We investigate the emergence of objects in visual perception in the absence of any semantic annotation. The resulting model has received no supervision, does not use any pre-trained features, and yet it can segment the domain of an image into multiple independently moving regions. The resulting motion segmentation method can handle an unknown and varying number of objects in real-time. The core multi-modal conditional encoder-decoder architecture has one modality (optical flow) feed the encoder to produce a collection of latent codes (slots), and the other modality (color image) conditions the decoder to generate the first modality (flow) from the slots. The training criterion is designed to foster 'information separation' among the slots, while the architecture explicitly allocates activations to individual slots, leading to a method we call Divided Attention (DivA). At test time, DivA handles a different number of objects and different image resolution than seen at training, and is invariant to permutations of the slots. DivA achieves state-of-the-art performance while tripling the runtime speed of comparable methods, up to 104 FPS, and reduces the performance gap from supervised methods to 12% or less. Objects bootstrapped by DivA can then be used to prime static classifiers via contrastive learning. On fewer than 5,000 video clips, training DINO on DivA's object proposals narrows the performance gap to ImageNet-based training by up to 30.2% compared to training directly on the video frames.
♻ ☆ SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms
Wave-like images-from attosecond streaking spectrograms to optical spectra, audio mel-spectrograms and periodic video frames-encode critical harmonic structures that elude conventional feature extractors. We propose a unified, matrix-equivalent framework that reinterprets convolution and attention as linear transforms on flattened inputs, revealing filter weights as basis vectors spanning latent feature subspaces. To infuse spectral priors we apply elementwise $\sin(\cdot)$ mappings to each weight matrix. Embedding these transforms into CNN, ViT and Capsule architectures yields Sin-Basis Networks with heightened sensitivity to periodic motifs and built-in invariance to spatial shifts. Experiments on a diverse collection of wave-like image datasets-including 80,000 synthetic attosecond streaking spectrograms, thousands of Raman, photoluminescence and FTIR spectra, mel-spectrograms from AudioSet and cycle-pattern frames from Kinetics-demonstrate substantial gains in reconstruction accuracy, translational robustness and zero-shot cross-domain transfer. Theoretical analysis via matrix isomorphism and Mercer-kernel truncation quantifies how sinusoidal reparametrization enriches expressivity while preserving stability in data-scarce regimes. Sin-Basis Networks thus offer a lightweight, physics-informed approach to deep learning across all wave-form imaging modalities.
Where Paths Collide: A Comprehensive Survey of Classic and Learning-Based Multi-Agent Pathfinding
Multi-Agent Path Finding (MAPF) is a fundamental problem in artificial intelligence and robotics, requiring the computation of collision-free paths for multiple agents navigating from their start locations to designated goals. As autonomous systems become increasingly prevalent in warehouses, urban transportation, and other complex environments, MAPF has evolved from a theoretical challenge to a critical enabler of real-world multi-robot coordination. This comprehensive survey bridges the long-standing divide between classical algorithmic approaches and emerging learning-based methods in MAPF research. We present a unified framework that encompasses search-based methods (including Conflict-Based Search, Priority-Based Search, and Large Neighborhood Search), compilation-based approaches (SAT, SMT, CSP, ASP, and MIP formulations), and data-driven techniques (reinforcement learning, supervised learning, and hybrid strategies). Through systematic analysis of experimental practices across 200+ papers, we uncover significant disparities in evaluation methodologies, with classical methods typically tested on larger-scale instances (up to 200 by 200 grids with 1000+ agents) compared to learning-based approaches (predominantly 10-100 agents). We provide a comprehensive taxonomy of evaluation metrics, environment types, and baseline selections, highlighting the need for standardized benchmarking protocols. Finally, we outline promising future directions including mixed-motive MAPF with game-theoretic considerations, language-grounded planning with large language models, and neural solver architectures that combine the rigor of classical methods with the flexibility of deep learning. This survey serves as both a comprehensive reference for researchers and a practical guide for deploying MAPF solutions in increasingly complex real-world applications.
comment: 112 pages, 21 figures, 20 tables. The project website is: https://wangsh1yue.github.io/Where-Paths-Collide
♻ ☆ DrugMCTS: a drug repurposing framework combining multi-agent, RAG and Monte Carlo Tree Search
Recent advances in large language models have demonstrated considerable potential in scientific domains such as drug repositioning. However, their effectiveness remains constrained when reasoning extends beyond the knowledge acquired during pretraining. Conventional approaches, such as fine-tuning or retrieval-augmented generation, face limitations in either imposing high computational overhead or failing to fully exploit structured scientific data. To overcome these challenges, we propose DrugMCTS, a novel framework that synergistically integrates RAG, multi-agent collaboration, and Monte Carlo Tree Search for drug repositioning. The framework employs five specialized agents tasked with retrieving and analyzing molecular and protein information, thereby enabling structured and iterative reasoning. Extensive experiments on the DrugBank and KIBA datasets demonstrate that DrugMCTS achieves substantially higher recall and robustness compared to both general-purpose LLMs and deep learning baselines. Our results highlight the importance of structured reasoning, agent-based collaboration, and feedback-driven search mechanisms in advancing LLM applications for drug repositioning.
♻ ☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Our code will be made public after the conference at https://github.com/Ellimac0/Snake-NeRF
♻ ☆ TrIM, Triangular Input Movement Systolic Array for Convolutional Neural Networks: Dataflow and Analytical Modelling
In order to follow the ever-growing computational complexity and data intensity of state-of-the-art AI models, new computing paradigms are being proposed. These paradigms aim at achieving high energy efficiency by mitigating the Von Neumann bottleneck that relates to the energy cost of moving data between the processing cores and the memory. Convolutional Neural Networks (CNNs) are susceptible to this bottleneck, given the massive data they have to manage. Systolic arrays (SAs) are promising architectures to mitigate data transmission cost, thanks to high data utilization of Processing Elements (PEs). These PEs continuously exchange and process data locally based on specific dataflows (such as weight stationary and row stationary), in turn reducing the number of memory accesses to the main memory. In SAs, convolutions are managed either as matrix multiplications or exploiting the raster-order scan of sliding windows. However, data redundancy is a primary concern affecting area, power, and energy. In this paper, we propose TrIM: a novel dataflow for SAs based on a Triangular Input Movement and compatible with CNN computing. TrIM maximizes the local input utilization, minimizes the weight data movement, and solves the data redundancy problem. Furthermore, TrIM does not incur the significant on-chip memory penalty introduced by the row stationary dataflow. When compared to state-of-the-art SA dataflows, the high data utilization offered by TrIM guarantees ~10X less memory access. Furthermore, considering that PEs continuously overlap multiplications and accumulations, TrIM achieves high throughput (up to 81.8% higher than row stationary), other than requiring a limited number of registers (up to 15.6X fewer registers than row stationary).
comment: This work has been accepted by IEEE TCASAI for publication
♻ ☆ LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning ICCV 2025
Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.
comment: ICCV 2025 Workshop on What is Next in Multimodal Foundation Models
♻ ☆ Automated Strategy Invention for Confluence of Term Rewrite Systems
Term rewriting plays a crucial role in software verification and compiler optimization. With dozens of highly parameterizable techniques developed to prove various system properties, automatic term rewriting tools work in an extensive parameter space. This complexity exceeds human capacity for parameter selection, motivating an investigation into automated strategy invention. In this paper, we focus on confluence, an important property of term rewrite systems, and apply machine learning to develop the first learning-guided automatic confluence prover. Moreover, we randomly generate a large dataset to analyze confluence for term rewrite systems. Our results focus on improving the state-of-the-art automatic confluence prover CSI: When equipped with our invented strategies, it surpasses its human-designed strategies both on the augmented dataset and on the original human-created benchmark dataset Cops, proving/disproving the confluence of several term rewrite systems for which no automated proofs were known before.
♻ ☆ EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
comment: Paper URL: https://aclanthology.org/2025.acl-long.1576 ;Presentation Video: https://www.youtube.com/watch?v=j63ooKE50I0
♻ ☆ RAVine: Reality-Aligned Evaluation for Agentic Search
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.
♻ ☆ Artificial Inductive Bias for Synthetic Tabular Data Generation in Data-Scarce Scenarios
While synthetic tabular data generation using Deep Generative Models (DGMs) offers a compelling solution to data scarcity and privacy concerns, their effectiveness relies on the availability of substantial training data, often lacking in real-world scenarios. To overcome this limitation, we propose a novel methodology that explicitly integrates artificial inductive biases into the generative process to improve data quality in low-data regimes. Our framework leverages transfer learning and meta-learning techniques to construct and inject informative inductive biases into DGMs. We evaluate four approaches (pre-training, model averaging, Model-Agnostic Meta-Learning (MAML), and Domain Randomized Search (DRS)) and analyze their impact on the quality of the generated text. Experimental results show that incorporating inductive bias substantially improves performance, with transfer learning methods outperforming meta-learning, achieving up to 60\% gains in Jensen-Shannon divergence. The methodology is model-agnostic and especially relevant in domains such as healthcare and finance, where high-quality synthetic data are essential, and data availability is often limited.
comment: 19 pages, 6 Figures
♻ ☆ Other Vehicle Trajectories Are Also Needed: A Driving World Model Unifies Ego-Other Vehicle Trajectories in Video Latent Space
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In this paper, we propose a driving World Model named EOT-WM, unifying Ego-Other vehicle Trajectories in videos for driving simulation. Specifically, it remains a challenge to match multiple trajectories in the BEV space with each vehicle in the video to control the video generation. We first project ego-other vehicle trajectories in the BEV space into the image coordinate for vehicle-trajectory match via pixel positions. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30% in FID and 55% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
comment: 8 pages, 7 figures
♻ ☆ Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models ACL 2025
Large language models (LLMs) have shown strong performance across natural language reasoning tasks, yet their reasoning processes remain brittle and difficult to interpret. Prompting techniques like Chain-of-Thought (CoT) enhance reliability by eliciting intermediate reasoning steps or aggregating multiple outputs. However, they lack mechanisms for enforcing logical structure and assessing internal coherence. We introduce Theorem-of-Thought (ToTh), a novel framework that models reasoning as collaboration among three parallel agents, each simulating a distinct mode of inference: abductive, deductive, and inductive. Each agent produces a reasoning trace, which is structured into a formal reasoning graph. To evaluate consistency, we apply Bayesian belief propagation guided by natural language inference (NLI), assigning confidence scores to each step. The most coherent graph is selected to derive the final answer. Experiments on symbolic (WebOfLies) and numerical (MultiArith) reasoning benchmarks show that ToTh consistently outperforms CoT, Self-Consistency, and CoT-Decoding across multiple LLMs, while producing interpretable and logically grounded reasoning chains. Our findings suggest a promising direction for building more robust and cognitively inspired LLM reasoning. The implementation is available at https://github.com/KurbanIntelligenceLab/theorem-of-thought.
comment: ACL 2025 KnowFM
♻ ☆ Robust and Fine-Grained Detection of AI Generated Texts
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
comment: 18 pages, 6 figures
♻ ☆ KeyKnowledgeRAG (K^2RAG): An Enhanced RAG method for improved LLM question-answering capabilities
Fine-tuning is an immensely resource-intensive process when retraining Large Language Models (LLMs) to incorporate a larger body of knowledge. Although many fine-tuning techniques have been developed to reduce the time and computational cost involved, the challenge persists as LLMs continue to grow in size and complexity. To address this, a new approach to knowledge expansion in LLMs is needed. Retrieval-Augmented Generation (RAG) offers one such alternative by storing external knowledge in a database and retrieving relevant chunks to support question answering. However, naive implementations of RAG face significant limitations in scalability and answer accuracy. This paper introduces KeyKnowledgeRAG (K2RAG), a novel framework designed to overcome these limitations. Inspired by the divide-and-conquer paradigm, K2RAG integrates dense and sparse vector search, knowledge graphs, and text summarization to improve retrieval quality and system efficiency. The framework also includes a preprocessing step that summarizes the training data, significantly reducing the training time. K2RAG was evaluated using the MultiHopRAG dataset, where the proposed pipeline was trained on the document corpus and tested on a separate evaluation set. Results demonstrated notable improvements over common naive RAG implementations. K2RAG achieved the highest mean answer similarity score of 0.57, and reached the highest third quartile (Q3) similarity of 0.82, indicating better alignment with ground-truth answers. In addition to improved accuracy, the framework proved highly efficient. The summarization step reduced the average training time of individual components by 93%, and execution speed was up to 40% faster than traditional knowledge graph-based RAG systems. K2RAG also demonstrated superior scalability, requiring three times less VRAM than several naive RAG implementations tested in this study.
comment: 21 pages, 14 figures
♻ ☆ Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance
Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM \textbf{Mantra-14B} with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages.
comment: 24 pages, 18 figures
♻ ☆ HER2 Expression Prediction with Flexible Multi-Modal Inputs via Dynamic Bidirectional Reconstruction ACM MM 2025
In breast cancer HER2 assessment, clinical evaluation relies on combined H&E and IHC images, yet acquiring both modalities is often hindered by clinical constraints and cost. We propose an adaptive bimodal prediction framework that flexibly supports single- or dual-modality inputs through two core innovations: a dynamic branch selector activating modality completion or joint inference based on input availability, and a cross-modal GAN (CM-GAN) enabling feature-space reconstruction of missing modalities. This design dramatically improves H&E-only accuracy from 71.44% to 94.25%, achieves 95.09% with full dual-modality inputs, and maintains 90.28% reliability under single-modality conditions. The "dual-modality preferred, single-modality compatible" architecture delivers near-dual-modality accuracy without mandatory synchronized acquisition, offering a cost-effective solution for resource-limited regions and significantly improving HER2 assessment accessibility.
comment: 8 pages,6 figures,3 tables,accepted by the 33rd ACM International Conference on Multimedia(ACM MM 2025)
♻ ☆ DHCP: Detecting Hallucinations by Cross-modal Attention Pattern in Large Vision-Language Models
Large vision-language models (LVLMs) have demonstrated exceptional performance on complex multimodal tasks. However, they continue to suffer from significant hallucination issues, including object, attribute, and relational hallucinations. To accurately detect these hallucinations, we investigated the variations in cross-modal attention patterns between hallucination and non-hallucination states. Leveraging these distinctions, we developed a lightweight detector capable of identifying hallucinations. Our proposed method, Detecting Hallucinations by Cross-modal Attention Patterns (DHCP), is straightforward and does not require additional LVLM training or extra LVLM inference steps. Experimental results show that DHCP achieves remarkable performance in hallucination detection. By offering novel insights into the identification and analysis of hallucinations in LVLMs, DHCP contributes to advancing the reliability and trustworthiness of these models. The code is available at https://github.com/btzyd/DHCP.
comment: Accepted by ACM Multimedia 2025
♻ ☆ MemShare: Memory Efficient Inference for Large Reasoning Models through KV Cache Reuse
Large Reasoning Models (LRMs) have achieved significant advances in mathematical reasoning and formal logic tasks. However, their tendency to generate lengthy chain-of-thought sequences leads to substantial memory overhead during inference. We observe that LRMs frequently produce highly similar intermediate reasoning steps, which correspond to similar KV cache states across layers. Motivated by this observation, we propose MemShare, a novel KV cache management approach that effectively reduces memory overhead. MemShare employs a collaborative filtering algorithm to efficiently identify reusable KV cache blocks and enables zero copy cache reuse to significantly reduce memory overhead, improve throughput while maintaining accuracy. Experimental results demonstrate that MemShare delivers up to 84.79\% improvement in throughput while maintaining better accuracy compared to existing KV cache management methods.
comment: 11 pages, 7 figures
♻ ☆ EEG-SCMM: Soft Contrastive Masked Modeling for Cross-Corpus EEG-Based Emotion Recognition
Emotion recognition using electroencephalography (EEG) signals has attracted increasing attention in recent years. However, existing methods often lack generalization in cross-corpus settings, where a model trained on one dataset is directly applied to another without retraining, due to differences in data distribution and recording conditions. To tackle the challenge of cross-corpus EEG-based emotion recognition, we propose a novel framework termed Soft Contrastive Masked Modeling (SCMM). Grounded in the theory of emotional continuity, SCMM integrates soft contrastive learning with a hybrid masking strategy to effectively capture emotion dynamics (refer to short-term continuity). Specifically, in the self-supervised learning stage, we propose a soft weighting mechanism that assigns similarity scores to sample pairs, enabling fine-grained modeling of emotional transitions and capturing the temporal continuity of human emotions. To further enhance representation learning, we design a similarity-aware aggregator that fuses complementary information from semantically related samples based on pairwise similarities, thereby improving feature expressiveness and reconstruction quality. This dual design contributes to a more discriminative and transferable representation, which is crucial for robust cross-corpus generalization. Extensive experiments on the SEED, SEED-IV, and DEAP datasets show that SCMM achieves state-of-the-art (SOTA) performance, outperforming the second-best method by an average accuracy of 4.26% under both same-class and different-class cross-corpus settings. The source code is available at https://github.com/Kyler-RL/SCMM.
comment: 18 pages, 10 figures, 14 tables. Accepted in ACMMM 2025
♻ ☆ A Compute-Matched Re-Evaluation of TroVE on MATH
Reusing established theorems and formulas is central to mathematical problem solving, serving as essential building blocks for tackling increasingly complex challenges. Recent work, TroVE, argues that code-generating Large Language Models (LLMs) can benefit similarly on the MATH benchmark by inducing and reusing higher-level toolboxes. By allocating computational budget across an ensemble of three modes -- directly generating code, creating tools, and reusing tools -- TroVE claims to outperform a PRIMITIVE baseline that only performs direct generation. However, recent analysis (Berlot-Attwell et al., 2024) casts doubt on these gains, noting that the tools created are often trivial or rarely reused, suggesting that improvements may stem from self-consistency or self-correction. In this work, we re-evaluate TroVE on MATH, analyze the impact of each of its modes, and show that its benefit does not come from these mechanisms, but simply from a higher computational budget spent for TroVE compared to PRIMITIVE. To this end, we also perform a small correction in the original implementation of TroVE's selection mechanism, boosting TroVE's performance on MATH by 3\% in accuracy. After matching for compute, the benefit of TroVE reduces to a marginal improvement of 1\%, suggesting that this toolbox approach does not provide a significant benefit on MATH.
♻ ☆ When Words Smile: Generating Diverse Emotional Facial Expressions from Text
Enabling digital humans to express rich emotions has significant applications in dialogue systems, gaming, and other interactive scenarios. While recent advances in talking head synthesis have achieved impressive results in lip synchronization, they tend to overlook the rich and dynamic nature of facial expressions. To fill this critical gap, we introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics. Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent. To support this task, we introduce EmoAva, a large-scale and high-quality dataset containing 15,000 text-3D expression pairs. Extensive experiments on both existing datasets and EmoAva demonstrate that our method significantly outperforms baselines across multiple evaluation metrics, marking a significant advancement in the field.
comment: 19 pages. Resources: https://github.com/WalkerMitty/EmoAva
♻ ☆ Enhancing AI System Resiliency: Formulation and Guarantee for LSTM Resilience Based on Control Theory
This paper proposes a novel theoretical framework for guaranteeing and evaluating the resilience of long short-term memory (LSTM) networks in control systems. We introduce "recovery time" as a new metric of resilience in order to quantify the time required for an LSTM to return to its normal state after anomalous inputs. By mathematically refining incremental input-to-state stability ($\delta$ISS) theory for LSTM, we derive a practical data-independent upper bound on recovery time. This upper bound gives us resilience-aware training. Experimental validation on simple models demonstrates the effectiveness of our resilience estimation and control methods, enhancing a foundation for rigorous quality assurance in safety-critical AI applications.
comment: 9 pages, 6 figures. Appendix: 17 pages. First three listed authors have equal contributions
♻ ☆ Iterative Repair with Weak Verifiers for Few-shot Transfer in KBQA with Unanswerability
Real-world applications of KBQA require models to handle unanswerable questions with a limited volume of in-domain labeled training data. We propose the novel task of few-shot transfer for KBQA with unanswerable questions and contribute two new datasets for performance evaluation. We present FUn-FuSIC - a novel solution for our task that extends FuSIC KBQA, the state-of-the-art few-shot transfer model for answerable-only KBQA. We first note that FuSIC-KBQA's iterative repair makes a strong assumption that all questions are unanswerable. As a remedy, we propose Feedback for Unanswerability (FUn), which uses iterative repair using feedback from a suite of strong and weak verifiers, and an adaptation of self consistency for unanswerabilty to better assess the answerability of a question. Our experiments show that FUn-FuSIC significantly outperforms suitable adaptations of multiple LLM based and supervised SoTA models on our task, while establishing a new SoTA for answerable few-shot transfer as well.
♻ ☆ An Efficient Intelligent Semi-Automated Warehouse Inventory Stocktaking System
In the context of evolving supply chain management, the significance of efficient inventory management has grown substantially for businesses. However, conventional manual and experience-based approaches often struggle to meet the complexities of modern market demands. This research introduces an intelligent inventory management system to address challenges related to inaccurate data, delayed monitoring, and overreliance on subjective experience in forecasting. The proposed system integrates bar code and distributed flutter application technologies for intelligent perception, alongside comprehensive big data analytics to enable data-driven decision-making. Through meticulous analysis, system design, critical technology exploration, and simulation validation, the effectiveness of the proposed system is successfully demonstrated. The intelligent system facilitates second-level monitoring, high-frequency checks, and artificial intelligence-driven forecasting, consequently enhancing the automation, precision, and intelligence of inventory management. This system contributes to cost reduction and optimized inventory sizes through accurate predictions and informed decisions, ultimately achieving a mutually beneficial scenario. The outcomes of this research offer
♻ ☆ AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 95\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
comment: 9 pages, preprint, code: https://github.com/HKUST-KnowComp/AutoSchemaKG
♻ ☆ CodeIF-Bench: Evaluating Instruction-Following Capabilities of Large Language Models in Interactive Code Generation
Large Language Models (LLMs) have demonstrated exceptional performance in code generation tasks and have become indispensable programming assistants for developers. However, existing code generation benchmarks primarily assess the functional correctness of code generated by LLMs in single-turn interactions. They offer limited insight into LLMs' abilities to generate code that strictly follows users' instructions in multi-turn interaction scenarios. In this paper, we introduce CodeIF-Bench, a benchmark for evaluating the instruction-following capabilities of LLMs in interactive code generation. Specifically, CodeIF-Bench incorporates nine types of verifiable instructions aligned with the real-world software development requirements, which can be independently and objectively validated through specified test cases, facilitating the evaluation of instruction-following capability in multi-turn interactions. In both \textit{Static Conversation} and \textit{Dynamic Conversation} settings, we evaluate the performance of 7 state-of-the-art LLMs and summarize the important factors influencing the instruction-following ability of LLMs in multi-turn interactions, as well as potential directions for improvement.
♻ ☆ AI Should Sense Better, Not Just Scale Bigger: Adaptive Sensing as a Paradigm Shift
Current AI advances largely rely on scaling neural models and expanding training datasets to achieve generalization and robustness. Despite notable successes, this paradigm incurs significant environmental, economic, and ethical costs, limiting sustainability and equitable access. Inspired by biological sensory systems, where adaptation occurs dynamically at the input (e.g., adjusting pupil size, refocusing vision)--we advocate for adaptive sensing as a necessary and foundational shift. Adaptive sensing proactively modulates sensor parameters (e.g., exposure, sensitivity, multimodal configurations) at the input level, significantly mitigating covariate shifts and improving efficiency. Empirical evidence from recent studies demonstrates that adaptive sensing enables small models (e.g., EfficientNet-B0) to surpass substantially larger models (e.g., OpenCLIP-H) trained with significantly more data and compute. We (i) outline a roadmap for broadly integrating adaptive sensing into real-world applications spanning humanoid, healthcare, autonomous systems, agriculture, and environmental monitoring, (ii) critically assess technical and ethical integration challenges, and (iii) propose targeted research directions, such as standardized benchmarks, real-time adaptive algorithms, multimodal integration, and privacy-preserving methods. Collectively, these efforts aim to transition the AI community toward sustainable, robust, and equitable artificial intelligence systems.
♻ ☆ Framing Political Bias in Multilingual LLMs Across Pakistani Languages
Large Language Models (LLMs) increasingly shape public discourse, yet most evaluations of political and economic bias have focused on high-resource, Western languages and contexts. This leaves critical blind spots in low-resource, multilingual regions such as Pakistan, where linguistic identity is closely tied to political, religious, and regional ideologies. We present a systematic evaluation of political bias in 13 state-of-the-art LLMs across five Pakistani languages: Urdu, Punjabi, Sindhi, Pashto, and Balochi. Our framework integrates a culturally adapted Political Compass Test (PCT) with multi-level framing analysis, capturing both ideological stance (economic/social axes) and stylistic framing (content, tone, emphasis). Prompts are aligned with 11 socio-political themes specific to the Pakistani context. Results show that while LLMs predominantly reflect liberal-left orientations consistent with Western training data, they exhibit more authoritarian framing in regional languages, highlighting language-conditioned ideological modulation. We also identify consistent model-specific bias patterns across languages. These findings show the need for culturally grounded, multilingual bias auditing frameworks in global NLP.
comment: Preprint
♻ ☆ AgentSpec: Customizable Runtime Enforcement for Safe and Reliable LLM Agents ICSE 2026
Agents built on LLMs are increasingly deployed across diverse domains, automating complex decision-making and task execution. However, their autonomy introduces safety risks, including security vulnerabilities, legal violations, and unintended harmful actions. Existing mitigation methods, such as model-based safeguards and early enforcement strategies, fall short in robustness, interpretability, and adaptability. To address these challenges, we propose AgentSpec, a lightweight domain-specific language for specifying and enforcing runtime constraints on LLM agents. With AgentSpec, users define structured rules that incorporate triggers, predicates, and enforcement mechanisms, ensuring agents operate within predefined safety boundaries. We implement AgentSpec across multiple domains, including code execution, embodied agents, and autonomous driving, demonstrating its adaptability and effectiveness. Our evaluation shows that AgentSpec successfully prevents unsafe executions in over 90% of code agent cases, eliminates all hazardous actions in embodied agent tasks, and enforces 100% compliance by autonomous vehicles (AVs). Despite its strong safety guarantees, AgentSpec remains computationally lightweight, with overheads in milliseconds. By combining interpretability, modularity, and efficiency, AgentSpec provides a practical and scalable solution for enforcing LLM agent safety across diverse applications. We also automate the generation of rules using LLMs and assess their effectiveness. Our evaluation shows that the rules generated by OpenAI o1 achieve a precision of 95.56% and recall of 70.96% for embodied agents, successfully identify 87.26% of the risky code, and prevent AVs from breaking laws in 5 out of 8 scenarios.
comment: Accepted by the 48th IEEE/ACM International Conference on Software Engineering (ICSE 2026)
♻ ☆ Accumulator-Aware Post-Training Quantization for Large Language Models
When quantizing weights and activations to increasingly narrower representations, the cost of additions begins to dominate that of multiplications in multiply-accumulate (MAC) units. Recent studies show that reducing addition costs via low-precision accumulation improves throughput, power, and area across inference platforms, albeit with an increased risk of overflow. Accumulator-aware quantization research has so far only considered the quantization-aware training (QAT) paradigm, in which models are fine-tuned or trained from scratch with quantization in the loop. As models and datasets continue to grow in size, QAT techniques become increasingly more expensive, which has motivated the recent surge in post-training quantization (PTQ) research. To bridge this gap, we introduce AXE, the first accumulator-aware quantization framework explicitly designed to endow overflow avoidance guarantees to PTQ algorithms. We present theoretical motivation for AXE and demonstrate its flexibility by implementing it on top of two existing algorithms: GPFQ and OPTQ. We design AXE to support multi-stage accumulation, opening the door to full datapath optimization for the first time. We evaluate AXE using recent language generation models; when quantizing Llama3 8B for a 16-bit multi-stage accumulation datapath, AXE maintains up to 98% of the FP16 perplexity, surpassing naive bit width manipulation by up to 15%.
♻ ☆ Navigating the Alpha Jungle: An LLM-Powered MCTS Framework for Formulaic Factor Mining
Alpha factor mining is pivotal in quantitative investment for identifying predictive signals from complex financial data. While traditional formulaic alpha mining relies on human expertise, contemporary automated methods, such as those based on genetic programming or reinforcement learning, often struggle with search inefficiency or yield alpha factors that are difficult to interpret. This paper introduces a novel framework that integrates Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS) to overcome these limitations. Our framework leverages the LLM's instruction-following and reasoning capability to iteratively generate and refine symbolic alpha formulas within an MCTS-driven exploration. A key innovation is the guidance of MCTS exploration by rich, quantitative feedback from financial backtesting of each candidate factor, enabling efficient navigation of the vast search space. Furthermore, a frequent subtree avoidance mechanism is introduced to enhance search diversity and prevent formulaic homogenization, further improving performance. Experimental results on real-world stock market data demonstrate that our LLM-based framework outperforms existing methods by mining alphas with superior predictive accuracy and trading performance. The resulting formulas are also more amenable to human interpretation, establishing a more effective and efficient paradigm for formulaic alpha mining.
♻ ☆ Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles
Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with Internet of electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
comment: 11 Pages
♻ ☆ Cultural Bias in Large Language Models: Evaluating AI Agents through Moral Questionnaires
Are AI systems truly representing human values, or merely averaging across them? Our study suggests a concerning reality: Large Language Models (LLMs) fail to represent diverse cultural moral frameworks despite their linguistic capabilities. We expose significant gaps between AI-generated and human moral intuitions by applying the Moral Foundations Questionnaire across 19 cultural contexts. Comparing multiple state-of-the-art LLMs' origins against human baseline data, we find these models systematically homogenize moral diversity. Surprisingly, increased model size doesn't consistently improve cultural representation fidelity. Our findings challenge the growing use of LLMs as synthetic populations in social science research and highlight a fundamental limitation in current AI alignment approaches. Without data-driven alignment beyond prompting, these systems cannot capture the nuanced, culturally-specific moral intuitions. Our results call for more grounded alignment objectives and evaluation metrics to ensure AI systems represent diverse human values rather than flattening the moral landscape.
comment: 15pages, 1 figure, 2 tables
♻ ☆ FGeo-HyperGNet: Geometric Problem Solving Integrating FormalGeo Symbolic System and Hypergraph Neural Network IJCAI 2025
Geometric problem solving has always been a long-standing challenge in the fields of mathematical reasoning and artificial intelligence. We built a neural-symbolic system, called FGeo-HyperGNet, to automatically perform human-like geometric problem solving. The symbolic component is a formal system built on FormalGeo, which can automatically perform geometric relational reasoning and algebraic calculations and organize the solution into a hypergraph with conditions as hypernodes and theorems as hyperedges. The neural component, called HyperGNet, is a hypergraph neural network based on the attention mechanism, including an encoder to encode the structural and semantic information of the hypergraph and a theorem predictor to provide guidance in solving problems. The neural component predicts theorems according to the hypergraph, and the symbolic component applies theorems and updates the hypergraph, thus forming a predict-apply cycle to ultimately achieve readable and traceable automatic solving of geometric problems. Experiments demonstrate the effectiveness of this neural-symbolic architecture. We achieved state-of-the-art results with a TPA of 93.50% and a PSSR of 88.36% on the FormalGeo7K dataset. The code is available at https://github.com/BitSecret/HyperGNet.
comment: Accepted by IJCAI 2025
♻ ☆ Revisiting the Evaluation Bias Introduced by Frame Sampling Strategies in Surgical Video Segmentation Using SAM2 MICCAI
Real-time video segmentation is a promising opportunity for AI-assisted surgery, offering intraoperative guidance by identifying tools and anatomical structures. Despite growing interest in surgical video segmentation, annotation protocols vary widely across datasets -- some provide dense, frame-by-frame labels, while others rely on sparse annotations sampled at low frame rates such as 1 FPS. In this study, we investigate how such inconsistencies in annotation density and frame rate sampling influence the evaluation of zero-shot segmentation models, using SAM2 as a case study for cholecystectomy procedures. Surprisingly, we find that under conventional sparse evaluation settings, lower frame rates can appear to outperform higher ones due to a smoothing effect that conceals temporal inconsistencies. However, when assessed under real-time streaming conditions, higher frame rates yield superior segmentation stability, particularly for dynamic objects like surgical graspers. To understand how these differences align with human perception, we conducted a survey among surgeons, nurses, and machine learning engineers and found that participants consistently preferred high-FPS segmentation overlays, reinforcing the importance of evaluating every frame in real-time applications rather than relying on sparse sampling strategies. Our findings highlight the risk of evaluation bias that is introduced by inconsistent dataset protocols and bring attention to the need for temporally fair benchmarking in surgical video AI.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Fairness of AI in Medical Imaging (FAIMI), 2025
♻ ☆ EgoOops: A Dataset for Mistake Action Detection from Egocentric Videos referring to Procedural Texts
Mistake action detection is crucial for developing intelligent archives that detect workers' errors and provide feedback. Existing studies have focused on visually apparent mistakes in free-style activities, resulting in video-only approaches to mistake detection. However, in text-following activities, models cannot determine the correctness of some actions without referring to the texts. Additionally, current mistake datasets rarely use procedural texts for video recording except for cooking. To fill these gaps, this paper proposes the EgoOops dataset, where egocentric videos record erroneous activities when following procedural texts across diverse domains. It features three types of annotations: video-text alignment, mistake labels, and descriptions for mistakes. We also propose a mistake detection approach, combining video-text alignment and mistake label classification to leverage the texts. Our experimental results show that incorporating procedural texts is essential for mistake detection. Data is available through https://y-haneji.github.io/EgoOops-project-page/.
comment: Main 8 pages, supplementary 6 pages
♻ ☆ Leveraging LLMs to Create Content Corpora for Niche Domains
Constructing specialized content corpora from vast, unstructured web sources for domain-specific applications poses substantial data curation challenges. In this paper, we introduce a streamlined approach for generating high-quality, domain-specific corpora by efficiently acquiring, filtering, structuring, and cleaning web-based data. We showcase how Large Language Models (LLMs) can be leveraged to address complex data curation at scale, and propose a strategical framework incorporating LLM-enhanced techniques for structured content extraction and semantic deduplication. We validate our approach in the behavior education domain through its integration into 30 Day Me, a habit formation application. Our data pipeline, named 30DayGen, enabled the extraction and synthesis of 3,531 unique 30-day challenges from over 15K webpages. A user survey reports a satisfaction score of 4.3 out of 5, with 91% of respondents indicating willingness to use the curated content for their habit-formation goals.
comment: 9 pages (main content), 5 figures. Supplementary materials can be found at https://github.com/pigfyy/30DayGen-Supplementary-Materials
♻ ☆ Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
comment: The project has been open sourced at Github (https://github.com/fanglioc/Compositional_Function_Networks)
Machine Learning 140
☆ SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions ICCV 2025
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.
comment: Accepted at ICCV 2025
☆ XSpecMesh: Quality-Preserving Auto-Regressive Mesh Generation Acceleration via Multi-Head Speculative Decoding
Current auto-regressive models can generate high-quality, topologically precise meshes; however, they necessitate thousands-or even tens of thousands-of next-token predictions during inference, resulting in substantial latency. We introduce XSpecMesh, a quality-preserving acceleration method for auto-regressive mesh generation models. XSpecMesh employs a lightweight, multi-head speculative decoding scheme to predict multiple tokens in parallel within a single forward pass, thereby accelerating inference. We further propose a verification and resampling strategy: the backbone model verifies each predicted token and resamples any tokens that do not meet the quality criteria. In addition, we propose a distillation strategy that trains the lightweight decoding heads by distilling from the backbone model, encouraging their prediction distributions to align and improving the success rate of speculative predictions. Extensive experiments demonstrate that our method achieves a 1.7x speedup without sacrificing generation quality. Our code will be released.
☆ SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model
AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.
☆ Consensus-Driven Active Model Selection ICCV 2025
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.
comment: ICCV 2025 Highlight. 16 pages, 8 figures
☆ Formal Bayesian Transfer Learning via the Total Risk Prior
In analyses with severe data-limitations, augmenting the target dataset with information from ancillary datasets in the application domain, called source datasets, can lead to significantly improved statistical procedures. However, existing methods for this transfer learning struggle to deal with situations where the source datasets are also limited and not guaranteed to be well-aligned with the target dataset. A typical strategy is to use the empirical loss minimizer on the source data as a prior mean for the target parameters, which places the estimation of source parameters outside of the Bayesian formalism. Our key conceptual contribution is to use a risk minimizer conditional on source parameters instead. This allows us to construct a single joint prior distribution for all parameters from the source datasets as well as the target dataset. As a consequence, we benefit from full Bayesian uncertainty quantification and can perform model averaging via Gibbs sampling over indicator variables governing the inclusion of each source dataset. We show how a particular instantiation of our prior leads to a Bayesian Lasso in a transformed coordinate system and discuss computational techniques to scale our approach to moderately sized datasets. We also demonstrate that recently proposed minimax-frequentist transfer learning techniques may be viewed as an approximate Maximum a Posteriori approach to our model. Finally, we demonstrate superior predictive performance relative to the frequentist baseline on a genetics application, especially when the source data are limited.
☆ Scaled Beta Models and Feature Dilution for Dynamic Ticket Pricing
A novel approach is presented for identifying distinct signatures of performing acts in the secondary ticket resale market by analyzing dynamic pricing distributions. Using a newly curated, time series dataset from the SeatGeek API, we model ticket pricing distributions as scaled Beta distributions. This enables accurate parameter estimation from incomplete statistical data using a hybrid of quantile matching and the method of moments. Incorporating the estimated $\alpha$ and $\beta$ parameters into Random Forest classifiers significantly improves pairwise artist classification accuracy, demonstrating the unique economic signatures in event pricing data. Additionally, we provide theoretical and empirical evidence that incorporating zero-variance (constant-value) features into Random Forest models acts as an implicit regularizer, enhancing feature variety and robustness. This regularization promotes deeper, more varied trees in the ensemble, improving the bias-variance tradeoff and mitigating overfitting to dominant features. These findings are validated on both the new ticket pricing dataset and the standard UCI ML handwritten digits dataset.
comment: 27 pages, 11 figures, 3 tables
☆ Improving annotator selection in Active Learning using a mood and fatigue-aware Recommender System
This study centers on overcoming the challenge of selecting the best annotators for each query in Active Learning (AL), with the objective of minimizing misclassifications. AL recognizes the challenges related to cost and time when acquiring labeled data, and decreases the number of labeled data needed. Nevertheless, there is still the necessity to reduce annotation errors, aiming to be as efficient as possible, to achieve the expected accuracy faster. Most strategies for query-annotator pairs do not consider internal factors that affect productivity, such as mood, attention, motivation, and fatigue levels. This work addresses this gap in the existing literature, by not only considering how the internal factors influence annotators (mood and fatigue levels) but also presenting a new query-annotator pair strategy, using a Knowledge-Based Recommendation System (RS). The RS ranks the available annotators, allowing to choose one or more to label the queried instance using their past accuracy values, and their mood and fatigue levels, as well as information about the instance queried. This work bases itself on existing literature on mood and fatigue influence on human performance, simulating annotators in a realistic manner, and predicting their performance with the RS. The results show that considering past accuracy values, as well as mood and fatigue levels reduces the number of annotation errors made by the annotators, and the uncertainty of the model through its training, when compared to not using internal factors. Accuracy and F1-score values were also better in the proposed approach, despite not being as substantial as the aforementioned. The methodologies and findings presented in this study begin to explore the open challenge of human cognitive factors affecting AL.
☆ Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.
☆ DICOM De-Identification via Hybrid AI and Rule-Based Framework for Scalable, Uncertainty-Aware Redaction
Access to medical imaging and associated text data has the potential to drive major advances in healthcare research and patient outcomes. However, the presence of Protected Health Information (PHI) and Personally Identifiable Information (PII) in Digital Imaging and Communications in Medicine (DICOM) files presents a significant barrier to the ethical and secure sharing of imaging datasets. This paper presents a hybrid de-identification framework developed by Impact Business Information Solutions (IBIS) that combines rule-based and AI-driven techniques, and rigorous uncertainty quantification for comprehensive PHI/PII removal from both metadata and pixel data. Our approach begins with a two-tiered rule-based system targeting explicit and inferred metadata elements, further augmented by a large language model (LLM) fine-tuned for Named Entity Recognition (NER), and trained on a suite of synthetic datasets simulating realistic clinical PHI/PII. For pixel data, we employ an uncertainty-aware Faster R-CNN model to localize embedded text, extract candidate PHI via Optical Character Recognition (OCR), and apply the NER pipeline for final redaction. Crucially, uncertainty quantification provides confidence measures for AI-based detections to enhance automation reliability and enable informed human-in-the-loop verification to manage residual risks. This uncertainty-aware deidentification framework achieves robust performance across benchmark datasets and regulatory standards, including DICOM, HIPAA, and TCIA compliance metrics. By combining scalable automation, uncertainty quantification, and rigorous quality assurance, our solution addresses critical challenges in medical data de-identification and supports the secure, ethical, and trustworthy release of imaging data for research.
comment: 15 pages, 6 figures,
☆ Anomalous Samples for Few-Shot Anomaly Detection
Several anomaly detection and classification methods rely on large amounts of non-anomalous or "normal" samples under the assump- tion that anomalous data is typically harder to acquire. This hypothesis becomes questionable in Few-Shot settings, where as little as one anno- tated sample can make a significant difference. In this paper, we tackle the question of utilizing anomalous samples in training a model for bi- nary anomaly classification. We propose a methodology that incorporates anomalous samples in a multi-score anomaly detection score leveraging recent Zero-Shot and memory-based techniques. We compare the utility of anomalous samples to that of regular samples and study the benefits and limitations of each. In addition, we propose an augmentation-based validation technique to optimize the aggregation of the different anomaly scores and demonstrate its effectiveness on popular industrial anomaly detection datasets.
☆ villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
Visual-Language-Action (VLA) models have emerged as a popular paradigm for learning robot manipulation policies that can follow language instructions and generalize to novel scenarios. Recent work has begun to explore the incorporation of latent actions, an abstract representation of visual change between two frames, into VLA pre-training. In this paper, we introduce villa-X, a novel Visual-Language-Latent-Action (ViLLA) framework that advances latent action modeling for learning generalizable robot manipulation policies. Our approach improves both how latent actions are learned and how they are incorporated into VLA pre-training. Together, these contributions enable villa-X to achieve superior performance across simulated environments including SIMPLER and LIBERO, as well as on two real-world robot setups including gripper and dexterous hand manipulation. We believe the ViLLA paradigm holds significant promise, and that our villa-X provides a strong foundation for future research.
comment: Project page: https://aka.ms/villa-x
☆ DepMicroDiff: Diffusion-Based Dependency-Aware Multimodal Imputation for Microbiome Data
Microbiome data analysis is essential for understanding host health and disease, yet its inherent sparsity and noise pose major challenges for accurate imputation, hindering downstream tasks such as biomarker discovery. Existing imputation methods, including recent diffusion-based models, often fail to capture the complex interdependencies between microbial taxa and overlook contextual metadata that can inform imputation. We introduce DepMicroDiff, a novel framework that combines diffusion-based generative modeling with a Dependency-Aware Transformer (DAT) to explicitly capture both mutual pairwise dependencies and autoregressive relationships. DepMicroDiff is further enhanced by VAE-based pretraining across diverse cancer datasets and conditioning on patient metadata encoded via a large language model (LLM). Experiments on TCGA microbiome datasets show that DepMicroDiff substantially outperforms state-of-the-art baselines, achieving higher Pearson correlation (up to 0.712), cosine similarity (up to 0.812), and lower RMSE and MAE across multiple cancer types, demonstrating its robustness and generalizability for microbiome imputation.
☆ One-Step Flow Policy Mirror Descent
Diffusion policies have achieved great success in online reinforcement learning (RL) due to their strong expressive capacity. However, the inference of diffusion policy models relies on a slow iterative sampling process, which limits their responsiveness. To overcome this limitation, we propose Flow Policy Mirror Descent (FPMD), an online RL algorithm that enables 1-step sampling during policy inference. Our approach exploits a theoretical connection between the distribution variance and the discretization error of single-step sampling in straight interpolation flow matching models, and requires no extra distillation or consistency training. We present two algorithm variants based on flow policy and MeanFlow policy parametrizations, respectively. Extensive empirical evaluations on MuJoCo benchmarks demonstrate that our algorithms show strong performance comparable to diffusion policy baselines while requiring hundreds of times fewer function evaluations during inference.
☆ TweakLLM: A Routing Architecture for Dynamic Tailoring of Cached Responses
Large Language Models (LLMs) process millions of queries daily, making efficient response caching a compelling optimization for reducing cost and latency. However, preserving relevance to user queries using this approach proves difficult due to the personalized nature of chatbot interactions and the limited accuracy of semantic similarity search. To address this, we present TweakLLM, a novel routing architecture that employs a lightweight LLM to dynamically adapt cached responses to incoming prompts. Through comprehensive evaluation, including user studies with side-by-side comparisons, satisfaction voting, as well as multi-agent LLM debates, we demonstrate that TweakLLM maintains response quality comparable to frontier models while significantly improving cache effectiveness. Our results across real-world datasets highlight TweakLLM as a scalable, resource-efficient caching solution for high-volume LLM deployments without compromising user experience.
comment: 13 pages, 9 figures
☆ SAMSA: Segment Anything Model Enhanced with Spectral Angles for Hyperspectral Interactive Medical Image Segmentation
Hyperspectral imaging (HSI) provides rich spectral information for medical imaging, yet encounters significant challenges due to data limitations and hardware variations. We introduce SAMSA, a novel interactive segmentation framework that combines an RGB foundation model with spectral analysis. SAMSA efficiently utilizes user clicks to guide both RGB segmentation and spectral similarity computations. The method addresses key limitations in HSI segmentation through a unique spectral feature fusion strategy that operates independently of spectral band count and resolution. Performance evaluation on publicly available datasets has shown 81.0% 1-click and 93.4% 5-click DICE on a neurosurgical and 81.1% 1-click and 89.2% 5-click DICE on an intraoperative porcine hyperspectral dataset. Experimental results demonstrate SAMSA's effectiveness in few-shot and zero-shot learning scenarios and using minimal training examples. Our approach enables seamless integration of datasets with different spectral characteristics, providing a flexible framework for hyperspectral medical image analysis.
☆ SHAP-Guided Regularization in Machine Learning Models
Feature attribution methods such as SHapley Additive exPlanations (SHAP) have become instrumental in understanding machine learning models, but their role in guiding model optimization remains underexplored. In this paper, we propose a SHAP-guided regularization framework that incorporates feature importance constraints into model training to enhance both predictive performance and interpretability. Our approach applies entropy-based penalties to encourage sparse, concentrated feature attributions while promoting stability across samples. The framework is applicable to both regression and classification tasks. Our first exploration started with investigating a tree-based model regularization using TreeSHAP. Through extensive experiments on benchmark regression and classification datasets, we demonstrate that our method improves generalization performance while ensuring robust and interpretable feature attributions. The proposed technique offers a novel, explainability-driven regularization approach, making machine learning models both more accurate and more reliable.
☆ OptiGradTrust: Byzantine-Robust Federated Learning with Multi-Feature Gradient Analysis and Reinforcement Learning-Based Trust Weighting
Federated Learning (FL) enables collaborative model training across distributed medical institutions while preserving patient privacy, but remains vulnerable to Byzantine attacks and statistical heterogeneity. We present OptiGradTrust, a comprehensive defense framework that evaluates gradient updates through a novel six-dimensional fingerprint including VAE reconstruction error, cosine similarity metrics, $L_2$ norm, sign-consistency ratio, and Monte Carlo Shapley value, which drive a hybrid RL-attention module for adaptive trust scoring. To address convergence challenges under data heterogeneity, we develop FedBN-Prox (FedBN-P), combining Federated Batch Normalization with proximal regularization for optimal accuracy-convergence trade-offs. Extensive evaluation across MNIST, CIFAR-10, and Alzheimer's MRI datasets under various Byzantine attack scenarios demonstrates significant improvements over state-of-the-art defenses, achieving up to +1.6 percentage points over FLGuard under non-IID conditions while maintaining robust performance against diverse attack patterns through our adaptive learning approach.
☆ On the Expressiveness of Softmax Attention: A Recurrent Neural Network Perspective
Since its introduction, softmax attention has become the backbone of modern transformer architectures due to its expressiveness and scalability across a wide range of tasks. However, the main drawback of softmax attention is the quadratic memory requirement and computational complexity with respect to the sequence length. By replacing the softmax nonlinearity, linear attention and similar methods have been introduced to avoid the quadratic bottleneck of softmax attention. Despite these linear forms of attention being derived from the original softmax formulation, they typically lag in terms of downstream accuracy. While strong intuition of the softmax nonlinearity on the query and key inner product suggests that it has desirable properties compared to other nonlinearities, the question of why this discrepancy exists still remains unanswered. This work demonstrates that linear attention is an approximation of softmax attention by deriving the recurrent form of softmax attention. Using this form, each part of softmax attention can be described in the language of recurrent neural networks (RNNs). Describing softmax attention as an RNN allows for the ablation of the components of softmax attention to understand the importance of each part and how they interact. In this way, our work helps explain why softmax attention is more expressive than its counterparts.
☆ DivControl: Knowledge Diversion for Controllable Image Generation
Diffusion models have advanced from text-to-image (T2I) to image-to-image (I2I) generation by incorporating structured inputs such as depth maps, enabling fine-grained spatial control. However, existing methods either train separate models for each condition or rely on unified architectures with entangled representations, resulting in poor generalization and high adaptation costs for novel conditions. To this end, we propose DivControl, a decomposable pretraining framework for unified controllable generation and efficient adaptation. DivControl factorizes ControlNet via SVD into basic components-pairs of singular vectors-which are disentangled into condition-agnostic learngenes and condition-specific tailors through knowledge diversion during multi-condition training. Knowledge diversion is implemented via a dynamic gate that performs soft routing over tailors based on the semantics of condition instructions, enabling zero-shot generalization and parameter-efficient adaptation to novel conditions. To further improve condition fidelity and training efficiency, we introduce a representation alignment loss that aligns condition embeddings with early diffusion features. Extensive experiments demonstrate that DivControl achieves state-of-the-art controllability with 36.4$\times$ less training cost, while simultaneously improving average performance on basic conditions. It also delivers strong zero-shot and few-shot performance on unseen conditions, demonstrating superior scalability, modularity, and transferability.
☆ L-GTA: Latent Generative Modeling for Time Series Augmentation
Data augmentation is gaining importance across various aspects of time series analysis, from forecasting to classification and anomaly detection tasks. We introduce the Latent Generative Transformer Augmentation (L-GTA) model, a generative approach using a transformer-based variational recurrent autoencoder. This model uses controlled transformations within the latent space of the model to generate new time series that preserve the intrinsic properties of the original dataset. L-GTA enables the application of diverse transformations, ranging from simple jittering to magnitude warping, and combining these basic transformations to generate more complex synthetic time series datasets. Our evaluation of several real-world datasets demonstrates the ability of L-GTA to produce more reliable, consistent, and controllable augmented data. This translates into significant improvements in predictive accuracy and similarity measures compared to direct transformation methods.
☆ Consistent Point Matching
This study demonstrates that incorporating a consistency heuristic into the point-matching algorithm \cite{yerebakan2023hierarchical} improves robustness in matching anatomical locations across pairs of medical images. We validated our approach on diverse longitudinal internal and public datasets spanning CT and MRI modalities. Notably, it surpasses state-of-the-art results on the Deep Lesion Tracking dataset. Additionally, we show that the method effectively addresses landmark localization. The algorithm operates efficiently on standard CPU hardware and allows configurable trade-offs between speed and robustness. The method enables high-precision navigation between medical images without requiring a machine learning model or training data.
☆ Deep Learning-based Prediction of Clinical Trial Enrollment with Uncertainty Estimates
Clinical trials are a systematic endeavor to assess the safety and efficacy of new drugs or treatments. Conducting such trials typically demands significant financial investment and meticulous planning, highlighting the need for accurate predictions of trial outcomes. Accurately predicting patient enrollment, a key factor in trial success, is one of the primary challenges during the planning phase. In this work, we propose a novel deep learning-based method to address this critical challenge. Our method, implemented as a neural network model, leverages pre-trained language models (PLMs) to capture the complexities and nuances of clinical documents, transforming them into expressive representations. These representations are then combined with encoded tabular features via an attention mechanism. To account for uncertainties in enrollment prediction, we enhance the model with a probabilistic layer based on the Gamma distribution, which enables range estimation. We apply the proposed model to predict clinical trial duration, assuming site-level enrollment follows a Poisson-Gamma process. We carry out extensive experiments on real-world clinical trial data, and show that the proposed method can effectively predict the number of patients enrolled at a number of sites for a given clinical trial, outperforming established baseline models.
☆ Hierarchical Message-Passing Policies for Multi-Agent Reinforcement Learning
Decentralized Multi-Agent Reinforcement Learning (MARL) methods allow for learning scalable multi-agent policies, but suffer from partial observability and induced non-stationarity. These challenges can be addressed by introducing mechanisms that facilitate coordination and high-level planning. Specifically, coordination and temporal abstraction can be achieved through communication (e.g., message passing) and Hierarchical Reinforcement Learning (HRL) approaches to decision-making. However, optimization issues limit the applicability of hierarchical policies to multi-agent systems. As such, the combination of these approaches has not been fully explored. To fill this void, we propose a novel and effective methodology for learning multi-agent hierarchies of message-passing policies. We adopt the feudal HRL framework and rely on a hierarchical graph structure for planning and coordination among agents. Agents at lower levels in the hierarchy receive goals from the upper levels and exchange messages with neighboring agents at the same level. To learn hierarchical multi-agent policies, we design a novel reward-assignment method based on training the lower-level policies to maximize the advantage function associated with the upper levels. Results on relevant benchmarks show that our method performs favorably compared to the state of the art.
☆ EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed chemical signals into base patterns (components) and their concentrations, playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified component count, usually unknown in real data. As dataset size or component count increases, the scalability and reliability of MF-based MCR face significant challenges. This study reformulates MCR as a generative process (gMCR), and introduces an energy-based deep learning solver, EB-gMCR, that automatically discovers the smallest component set able to reconstruct the data faithfully. EB-gMCR starts from a large candidate pool (e.g., 1024 spectra) and employs a differentiable gating network to retain only active components while estimating their concentrations. On noisy synthetic datasets containing up to 256 latent sources, EB-gMCR maintained R^2 >= 0.98 and recovered the component count within 5% of the ground truth; at lower noise it achieved R^2 >= 0.99 with near exact component estimation. Additional chemical priors, such as non-negativity or nonlinear mixing, enter as simple plug-in functions, enabling adaptation to other instruments or domains without altering the core learning process. By uniting high-capacity generative modeling and hard component selection, EB-gMCR offers a practical route to large-scale signal unmixing analysis, including chemical library-driven scenarios. The source code is available at https://github.com/b05611038/ebgmcr_solver.
GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning
Graph Retrieval-Augmented Generation (GraphRAG) has shown great effectiveness in enhancing the reasoning abilities of LLMs by leveraging graph structures for knowledge representation and modeling complex real-world relationships. However, existing GraphRAG methods still face significant bottlenecks when handling complex problems that require multi-hop reasoning, as their query and retrieval phases are largely based on pre-defined heuristics and do not fully utilize the reasoning potentials of LLMs. To address this problem, we propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL) to enhance the multi-hop reasoning ability. Our method can decompose complex problems, autonomously invoke retrieval tools to acquire necessary information, and perform effective reasoning. Specifically, we utilize a modified version of Group Relative Policy Optimization (GRPO) that supports rollout-with-thinking capability. Next, we design two process-constrained reward functions. To handle the shallow retrieval problem, we design a Progressive Retrieval Attenuation (PRA) reward to encourage essential retrievals. Then, to handle the over-thinking problem, we design Cost-Aware F1 (CAF) reward to balance the model performance with computational costs. We further design a phase-dependent training strategy, containing three training stages corresponding to cold start and these two rewards. Lastly, our method adopts a hybrid graph-textual retrieval to improve the reasoning capacity. Extensive experimental results demonstrate that GraphRAG-R1 boosts LLM capabilities in solving complex reasoning problems compared to state-of-the-art GraphRAG methods on both in-domain and out-of-domain datasets. Furthermore, our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.
☆ Optimised Feature Subset Selection via Simulated Annealing
We introduce SA-FDR, a novel algorithm for $\ell_0$-norm feature selection that considers this task as a combinatorial optimisation problem and solves it by using simulated annealing to perform a global search over the space of feature subsets. The optimisation is guided by the Fisher discriminant ratio, which we use as a computationally efficient proxy for model quality in classification tasks. Our experiments, conducted on datasets with up to hundreds of thousands of samples and hundreds of features, demonstrate that SA-FDR consistently selects more compact feature subsets while achieving a high predictive accuracy. This ability to recover informative yet minimal sets of features stems from its capacity to capture inter-feature dependencies often missed by greedy optimisation approaches. As a result, SA-FDR provides a flexible and effective solution for designing interpretable models in high-dimensional settings, particularly when model sparsity, interpretability, and performance are crucial.
comment: 12 pages, 2 figures
☆ Hardware-Aware Fine-Tuning of Spiking Q-Networks on the SpiNNaker2 Neuromorphic Platform
Spiking Neural Networks (SNNs) promise orders-of-magnitude lower power consumption and low-latency inference on neuromorphic hardware for a wide range of robotic tasks. In this work, we present an energy-efficient implementation of a reinforcement learning (RL) algorithm using quantized SNNs to solve two classical control tasks. The network is trained using the Q-learning algorithm, then fine-tuned and quantized to low-bit (8-bit) precision for embedded deployment on the SpiNNaker2 neuromorphic chip. To evaluate the comparative advantage of SpiNNaker2 over conventional computing platforms, we analyze inference latency, dynamic power consumption, and energy cost per inference for our SNN models, comparing performance against a GTX 1650 GPU baseline. Our results demonstrate SpiNNaker2's strong potential for scalable, low-energy neuromorphic computing, achieving up to 32x reduction in energy consumption. Inference latency remains on par with GPU-based execution, with improvements observed in certain task settings, reinforcing SpiNNaker2's viability for real-time neuromorphic control and making the neuromorphic approach a compelling direction for efficient deep Q-learning.
comment: 8 pages, 5 figures, 3 tables
☆ Improved Algorithms for Kernel Matrix-Vector Multiplication Under Sparsity Assumptions ICLR 2025
Motivated by the problem of fast processing of attention matrices, we study fast algorithms for computing matrix-vector products for asymmetric Gaussian Kernel matrices $K\in \mathbb{R}^{n\times n}$. $K$'s columns are indexed by a set of $n$ keys $k_1,k_2\ldots, k_n\in \mathbb{R}^d$, rows by a set of $n$ queries $q_1,q_2,\ldots,q_n\in \mathbb{R}^d $, and its $i,j$ entry is $K_{ij} = e^{-\|q_i-k_j\|_2^2/2\sigma^2}$ for some bandwidth parameter $\sigma>0$. Given a vector $x\in \mathbb{R}^n$ and error parameter $\epsilon>0$, our task is to output a $y\in \mathbb{R}^n$ such that $\|Kx-y\|_2\leq \epsilon \|x\|_2$ in time subquadratic in $n$ and linear in $d$. Our algorithms rely on the following modelling assumption about the matrices $K$: the sum of the entries of $K$ scales linearly in $n$, as opposed to worst case quadratic growth. We validate this assumption experimentally, for Gaussian kernel matrices encountered in various settings such as fast attention computation in LLMs. We obtain the first subquadratic-time algorithm that works under this assumption, for unrestricted vectors.
comment: Published in ICLR 2025
☆ From LLMs to Edge: Parameter-Efficient Fine-Tuning on Edge Devices
Parameter-efficient fine-tuning (PEFT) methods reduce the computational costs of updating deep learning models by minimizing the number of additional parameters used to adapt a model to a down- stream task. While extensively researched in large language models (LLMs), their application to smaller models used on edge devices, such as convolutional neural networks, remains underexplored. This paper benchmarks and analyzes popular PEFT methods on convolutional architectures typically deployed in resource-constrained edge environments. We evaluate LoRA, DoRA, and GaLore for updating standard and depthwise convolutional architectures to handle distribution shifts and accommodate unseen classes. We utilize recently proposed PyTorch profilers to compare the updated model performance and computational costs of these PEFT methods with traditional fine-tuning approaches. With resource efficiency in mind, we investigate their update behavior across different rank dimensions. We find that the evaluated PEFT methods are only half as memory-efficient when applied to depthwise-separable convolution architectures, compared to their efficiency with LLMs. Conversely, when targeting convolu- tional architectures optimized for edge deployment, adapter-based PEFT methods can reduce floating point operations (FLOPs) during model updates by up to 95%. These insights offer valuable guidance for selecting PEFT methods based on hardware constraints, performance requirements, and application needs. Our code is online.
☆ Transparent AI: The Case for Interpretability and Explainability
As artificial intelligence systems increasingly inform high-stakes decisions across sectors, transparency has become foundational to responsible and trustworthy AI implementation. Leveraging our role as a leading institute in advancing AI research and enabling industry adoption, we present key insights and lessons learned from practical interpretability applications across diverse domains. This paper offers actionable strategies and implementation guidance tailored to organizations at varying stages of AI maturity, emphasizing the integration of interpretability as a core design principle rather than a retrospective add-on.
☆ Continual Learning with Synthetic Boundary Experience Blending
Continual learning (CL) aims to address catastrophic forgetting in models trained sequentially on multiple tasks. While experience replay has shown promise, its effectiveness is often limited by the sparse distribution of stored key samples, leading to overly simplified decision boundaries. We hypothesize that introducing synthetic data near the decision boundary (Synthetic Boundary Data, or SBD) during training serves as an implicit regularizer, improving boundary stability and mitigating forgetting. To validate this hypothesis, we propose a novel training framework, {\bf Experience Blending}, which integrates knowledge from both stored key samples and synthetic, boundary-adjacent data. Experience blending consists of two core components: (1) a multivariate Differential Privacy (DP) noise mechanism that injects batch-wise noise into low-dimensional feature representations, generating SBD; and (2) an end-to-end training strategy that jointly leverages both stored key samples and SBD. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet demonstrate that our method outperforms nine CL baselines, achieving accuracy improvements of 10%, 6%, and 13%, respectively.
☆ H-RDT: Human Manipulation Enhanced Bimanual Robotic Manipulation
Imitation learning for robotic manipulation faces a fundamental challenge: the scarcity of large-scale, high-quality robot demonstration data. Recent robotic foundation models often pre-train on cross-embodiment robot datasets to increase data scale, while they face significant limitations as the diverse morphologies and action spaces across different robot embodiments make unified training challenging. In this paper, we present H-RDT (Human to Robotics Diffusion Transformer), a novel approach that leverages human manipulation data to enhance robot manipulation capabilities. Our key insight is that large-scale egocentric human manipulation videos with paired 3D hand pose annotations provide rich behavioral priors that capture natural manipulation strategies and can benefit robotic policy learning. We introduce a two-stage training paradigm: (1) pre-training on large-scale egocentric human manipulation data, and (2) cross-embodiment fine-tuning on robot-specific data with modular action encoders and decoders. Built on a diffusion transformer architecture with 2B parameters, H-RDT uses flow matching to model complex action distributions. Extensive evaluations encompassing both simulation and real-world experiments, single-task and multitask scenarios, as well as few-shot learning and robustness assessments, demonstrate that H-RDT outperforms training from scratch and existing state-of-the-art methods, including Pi0 and RDT, achieving significant improvements of 13.9% and 40.5% over training from scratch in simulation and real-world experiments, respectively. The results validate our core hypothesis that human manipulation data can serve as a powerful foundation for learning bimanual robotic manipulation policies.
☆ Differentially Private Clipped-SGD: High-Probability Convergence with Arbitrary Clipping Level
Gradient clipping is a fundamental tool in Deep Learning, improving the high-probability convergence of stochastic first-order methods like SGD, AdaGrad, and Adam under heavy-tailed noise, which is common in training large language models. It is also a crucial component of Differential Privacy (DP) mechanisms. However, existing high-probability convergence analyses typically require the clipping threshold to increase with the number of optimization steps, which is incompatible with standard DP mechanisms like the Gaussian mechanism. In this work, we close this gap by providing the first high-probability convergence analysis for DP-Clipped-SGD with a fixed clipping level, applicable to both convex and non-convex smooth optimization under heavy-tailed noise, characterized by a bounded central $\alpha$-th moment assumption, $\alpha \in (1,2]$. Our results show that, with a fixed clipping level, the method converges to a neighborhood of the optimal solution with a faster rate than the existing ones. The neighborhood can be balanced against the noise introduced by DP, providing a refined trade-off between convergence speed and privacy guarantees.
comment: 60 pages
☆ A Verifier Hierarchy
We investigate the trade-off between certificate length and verifier runtime. We prove a Verifier Trade-off Theorem showing that reducing the inherent verification time of a language from \(f(n)\) to \(g(n)\), where \(f(n) \ge g(n)\), requires certificates of length at least \(\Omega(\log(f(n) / g(n)))\). This theorem induces a natural hierarchy based on certificate complexity. We demonstrate its applicability to analyzing conjectured separations between complexity classes (e.g., \(\np\) and \(\exptime\)) and to studying natural problems such as string periodicity and rotation detection. Additionally, we provide perspectives on the \(\p\) vs. \(\np\) problem by relating it to the existence of sub-linear certificates.
comment: This paper is primarily relevant to cs.CC, but submitted under cs.ML due to lack of endorsement. The paper is under review at "Information and Communication"
☆ Directional Ensemble Aggregation for Actor-Critics
Off-policy reinforcement learning in continuous control tasks depends critically on accurate $Q$-value estimates. Conservative aggregation over ensembles, such as taking the minimum, is commonly used to mitigate overestimation bias. However, these static rules are coarse, discard valuable information from the ensemble, and cannot adapt to task-specific needs or different learning regimes. We propose Directional Ensemble Aggregation (DEA), an aggregation method that adaptively combines $Q$-value estimates in actor-critic frameworks. DEA introduces two fully learnable directional parameters: one that modulates critic-side conservatism and another that guides actor-side policy exploration. Both parameters are learned using ensemble disagreement-weighted Bellman errors, which weight each sample solely by the direction of its Bellman error. This directional learning mechanism allows DEA to adjust conservatism and exploration in a data-driven way, adapting aggregation to both uncertainty levels and the phase of training. We evaluate DEA across continuous control benchmarks and learning regimes - from interactive to sample-efficient - and demonstrate its effectiveness over static ensemble strategies.
☆ Incorporating structural uncertainty in causal decision making
Practitioners making decisions based on causal effects typically ignore structural uncertainty. We analyze when this uncertainty is consequential enough to warrant methodological solutions (Bayesian model averaging over competing causal structures). Focusing on bivariate relationships ($X \rightarrow Y$ vs. $X \leftarrow Y$), we establish that model averaging is beneficial when: (1) structural uncertainty is moderate to high, (2) causal effects differ substantially between structures, and (3) loss functions are sufficiently sensitive to the size of the causal effect. We prove optimality results of our suggested methodological solution under regularity conditions and demonstrate through simulations that modern causal discovery methods can provide, within limits, the necessary quantification. Our framework complements existing robust causal inference approaches by addressing a distinct source of uncertainty typically overlooked in practice.
comment: This work is under review at the Journal of Causal Inference
☆ Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus
Objective. Type 2 diabetes mellitus (T2DM) is a highly prevalent non-communicable chronic disease that substantially reduces life expectancy. Accurate estimation of all-cause mortality risk in T2DM patients is crucial for personalizing and optimizing treatment strategies. Research Design and Methods. This study analyzed a cohort of 554 patients (aged 40-87 years) with diagnosed T2DM over a maximum follow-up period of 16.8 years, during which 202 patients (36%) died. Key survival-associated features were identified, and multiple machine learning (ML) models were trained and validated to predict all-cause mortality risk. To improve model interpretability, Shapley additive explanations (SHAP) was applied to the best-performing model. Results. The extra survival trees (EST) model, incorporating ten key features, demonstrated the best predictive performance. The model achieved a C-statistic of 0.776, with the area under the receiver operating characteristic curve (AUC) values of 0.86, 0.80, 0.841, and 0.826 for 5-, 10-, 15-, and 16.8-year all-cause mortality predictions, respectively. The SHAP approach was employed to interpret the model's individual decision-making processes. Conclusions. The developed model exhibited strong predictive performance for mortality risk assessment. Its clinically interpretable outputs enable potential bedside application, improving the identification of high-risk patients and supporting timely treatment optimization.
☆ Machine learning and machine learned prediction in chest X-ray images
Machine learning and artificial intelligence are fast-growing fields of research in which data is used to train algorithms, learn patterns, and make predictions. This approach helps to solve seemingly intricate problems with significant accuracy without explicit programming by recognizing complex relationships in data. Taking an example of 5824 chest X-ray images, we implement two machine learning algorithms, namely, a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments. Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work. Gradient-weighted class activation mapping shows that DenseNet-121 correctly focuses on essential parts of the input chest X-ray images in its decision-making more than the baseline CNN.
comment: 8 pages, 7 figures
☆ Manifold-regularised Signature Kernel Large-Margin $\ell_p$-SVDD for Multidimensional Time Series Anomaly Detection
We generalise the recently introduced large-margin $\ell_p$-SVDD approach to exploit the geometry of data distribution via manifold regularising and a signature kernel representation for time series anomaly detection. Specifically, we formulate a manifold-regularised variant of the $\ell_p$-SVDD method to encourage label smoothness on the underlying manifold to capture structural information for improved detection performance. Drawing on an existing Representer theorem, we then provide an effective optimisation technique for the proposed method and show that it can benefit from the signature kernel to capture time series complexities for anomaly detection. We theoretically study the proposed approach using Rademacher complexities to analyse its generalisation performance and also provide an experimental assessment of the proposed method across various data sets to compare its performance against other methods.
☆ Adjoint-Based Aerodynamic Shape Optimization with a Manifold Constraint Learned by Diffusion Models
We introduce an adjoint-based aerodynamic shape optimization framework that integrates a diffusion model trained on existing designs to learn a smooth manifold of aerodynamically viable shapes. This manifold is enforced as an equality constraint to the shape optimization problem. Central to our method is the computation of adjoint gradients of the design objectives (e.g., drag and lift) with respect to the manifold space. These gradients are derived by first computing shape derivatives with respect to conventional shape design parameters (e.g., Hicks-Henne parameters) and then backpropagating them through the diffusion model to its latent space via automatic differentiation. Our framework preserves mathematical rigor and can be integrated into existing adjoint-based design workflows with minimal modification. Demonstrated on extensive transonic RANS airfoil design cases using off-the-shelf and general-purpose nonlinear optimizers, our approach eliminates ad hoc parameter tuning and variable scaling, maintains robustness across initialization and optimizer choices, and achieves superior aerodynamic performance compared to conventional approaches. This work establishes how AI generated priors integrates effectively with adjoint methods to enable robust, high-fidelity aerodynamic shape optimization through automatic differentiation.
☆ Coflex: Enhancing HW-NAS with Sparse Gaussian Processes for Efficient and Scalable DNN Accelerator Design
Hardware-Aware Neural Architecture Search (HW-NAS) is an efficient approach to automatically co-optimizing neural network performance and hardware energy efficiency, making it particularly useful for the development of Deep Neural Network accelerators on the edge. However, the extensive search space and high computational cost pose significant challenges to its practical adoption. To address these limitations, we propose Coflex, a novel HW-NAS framework that integrates the Sparse Gaussian Process (SGP) with multi-objective Bayesian optimization. By leveraging sparse inducing points, Coflex reduces the GP kernel complexity from cubic to near-linear with respect to the number of training samples, without compromising optimization performance. This enables scalable approximation of large-scale search space, substantially decreasing computational overhead while preserving high predictive accuracy. We evaluate the efficacy of Coflex across various benchmarks, focusing on accelerator-specific architecture. Our experi- mental results show that Coflex outperforms state-of-the-art methods in terms of network accuracy and Energy-Delay-Product, while achieving a computational speed-up ranging from 1.9x to 9.5x.
comment: Accepted to ICCAD 2025 (camera-ready); 9 pages, 5 figures
☆ Merging Memory and Space: A Spatiotemporal State Space Neural Operator
We propose the Spatiotemporal State Space Neural Operator (ST-SSM), a compact architecture for learning solution operators of time-dependent partial differential equations (PDEs). ST-SSM introduces a novel factorization of the spatial and temporal dimensions, using structured state-space models to independently model temporal evolution and spatial interactions. This design enables parameter efficiency and flexible modeling of long-range spatiotemporal dynamics. A theoretical connection is established between SSMs and neural operators, and a unified universality theorem is proved for the resulting class of architectures. Empirically, we demonstrate that our factorized formulation outperforms alternative schemes such as zigzag scanning and parallel independent processing on several PDE benchmarks, including 1D Burgers' equation, 1D Kuramoto-Sivashinsky equation, and 2D Navier-Stokes equations under varying physical conditions. Our model performs competitively with existing baselines while using significantly fewer parameters. In addition, our results reinforce previous findings on the benefits of temporal memory by showing improved performance under partial observability. Our results highlight the advantages of dimensionally factorized operator learning for efficient and generalizable PDE modeling, and put this approach on a firm theoretical footing.
Detection of Adulteration in Coconut Milk using Infrared Spectroscopy and Machine Learning
In this paper, we propose a system for detecting adulteration in coconut milk, utilizing infrared spectroscopy. The machine learning-based proposed system comprises three phases: preprocessing, feature extraction, and classification. The first phase involves removing irrelevant data from coconut milk spectral signals. In the second phase, we employ the Linear Discriminant Analysis (LDA) algorithm for extracting the most discriminating features. In the third phase, we use the K-Nearest Neighbor (KNN) model to classify coconut milk samples into authentic or adulterated. We evaluate the performance of the proposed system using a public dataset comprising Fourier Transform Infrared (FTIR) spectral information of pure and contaminated coconut milk samples. Findings show that the proposed method successfully detects adulteration with a cross-validation accuracy of 93.33%.
☆ Honey Adulteration Detection using Hyperspectral Imaging and Machine Learning
This paper aims to develop a machine learning-based system for automatically detecting honey adulteration with sugar syrup, based on honey hyperspectral imaging data. First, the floral source of a honey sample is classified by a botanical origin identification subsystem. Then, the sugar syrup adulteration is identified, and its concentration is quantified by an adulteration detection subsystem. Both subsystems consist of two steps. The first step involves extracting relevant features from the honey sample using Linear Discriminant Analysis (LDA). In the second step, we utilize the K-Nearest Neighbors (KNN) model to classify the honey botanical origin in the first subsystem and identify the adulteration level in the second subsystem. We assess the proposed system performance on a public honey hyperspectral image dataset. The result indicates that the proposed system can detect adulteration in honey with an overall cross-validation accuracy of 96.39%, making it an appropriate alternative to the current chemical-based detection methods.
☆ A Machine Learning Approach for Honey Adulteration Detection using Mineral Element Profiles
This paper aims to develop a Machine Learning (ML)-based system for detecting honey adulteration utilizing honey mineral element profiles. The proposed system comprises two phases: preprocessing and classification. The preprocessing phase involves the treatment of missing-value attributes and normalization. In the classifica-tion phase, we use three supervised ML models: logistic regression, decision tree, and random forest, to dis-criminate between authentic and adulterated honey. To evaluate the performance of the ML models, we use a public dataset comprising measurements of mineral element content of authentic honey, sugar syrups, and adul-terated honey. Experimental findings show that mineral element content in honey provides robust discriminative information for detecting honey adulteration. Results also demonstrate that the random forest-based classifier outperforms other classifiers on this dataset, achieving the highest cross-validation accuracy of 98.37%.
☆ AGA: An adaptive group alignment framework for structured medical cross-modal representation learning
Learning medical visual representations from paired images and reports is a promising direction in representation learning. However, current vision-language pretraining methods in the medical domain often simplify clinical reports into single entities or fragmented tokens, ignoring their inherent structure. In addition, contrastive learning frameworks typically depend on large quantities of hard negative samples, which is impractical for small-scale medical datasets. To tackle these challenges, we propose Adaptive Grouped Alignment (AGA), a new framework that captures structured semantics from paired medical images and reports. AGA introduces a bidirectional grouping mechanism based on a sparse similarity matrix. For each image-report pair, we compute fine-grained similarities between text tokens and image patches. Each token selects its top-matching patches to form a visual group, and each patch selects its most related tokens to form a language group. To enable adaptive grouping, we design two threshold gating modules, called Language Grouped Threshold Gate and Vision Grouped Threshold Gate, which learn grouping thresholds dynamically. Group representations are computed as weighted averages based on similarity scores. To align each token with its group representation, we introduce an Instance Aware Group Alignment loss that operates within each image-text pair, removing the need for external negatives. Finally, a Bidirectional Cross-modal Grouped Alignment module is applied to enhance fine-grained alignment between visual and linguistic group representations. Extensive experiments on public and private datasets show that our method achieves strong performance on image-text retrieval and classification tasks under both fine-tuning and zero-shot settings.
☆ Policy Learning from Large Vision-Language Model Feedback without Reward Modeling IROS 2025
Offline reinforcement learning (RL) provides a powerful framework for training robotic agents using pre-collected, suboptimal datasets, eliminating the need for costly, time-consuming, and potentially hazardous online interactions. This is particularly useful in safety-critical real-world applications, where online data collection is expensive and impractical. However, existing offline RL algorithms typically require reward labeled data, which introduces an additional bottleneck: reward function design is itself costly, labor-intensive, and requires significant domain expertise. In this paper, we introduce PLARE, a novel approach that leverages large vision-language models (VLMs) to provide guidance signals for agent training. Instead of relying on manually designed reward functions, PLARE queries a VLM for preference labels on pairs of visual trajectory segments based on a language task description. The policy is then trained directly from these preference labels using a supervised contrastive preference learning objective, bypassing the need to learn explicit reward models. Through extensive experiments on robotic manipulation tasks from the MetaWorld, PLARE achieves performance on par with or surpassing existing state-of-the-art VLM-based reward generation methods. Furthermore, we demonstrate the effectiveness of PLARE in real-world manipulation tasks with a physical robot, further validating its practical applicability.
comment: Accepted to IROS 2025
☆ Causal Explanation of Concept Drift -- A Truly Actionable Approach ECML
In a world that constantly changes, it is crucial to understand how those changes impact different systems, such as industrial manufacturing or critical infrastructure. Explaining critical changes, referred to as concept drift in the field of machine learning, is the first step towards enabling targeted interventions to avoid or correct model failures, as well as malfunctions and errors in the physical world. Therefore, in this work, we extend model-based drift explanations towards causal explanations, which increases the actionability of the provided explanations. We evaluate our explanation strategy on a number of use cases, demonstrating the practical usefulness of our framework, which isolates the causally relevant features impacted by concept drift and, thus, allows for targeted intervention.
comment: This manuscript is accepted to be presented at the TempXAI workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2025)
☆ SWE-Exp: Experience-Driven Software Issue Resolution
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience - enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves state-of-the-art resolution rate (41.6% Pass@1) on SWE-bench-Verified under open-source agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.
comment: Our code and data are available at https://github.com/YerbaPage/SWE-Exp
☆ Optimal Transport Learning: Balancing Value Optimization and Fairness in Individualized Treatment Rules
Individualized treatment rules (ITRs) have gained significant attention due to their wide-ranging applications in fields such as precision medicine, ridesharing, and advertising recommendations. However, when ITRs are influenced by sensitive attributes such as race, gender, or age, they can lead to outcomes where certain groups are unfairly advantaged or disadvantaged. To address this gap, we propose a flexible approach based on the optimal transport theory, which is capable of transforming any optimal ITR into a fair ITR that ensures demographic parity. Recognizing the potential loss of value under fairness constraints, we introduce an ``improved trade-off ITR," designed to balance value optimization and fairness while accommodating varying levels of fairness through parameter adjustment. To maximize the value of the improved trade-off ITR under specific fairness levels, we propose a smoothed fairness constraint for estimating the adjustable parameter. Additionally, we establish a theoretical upper bound on the value loss for the improved trade-off ITR. We demonstrate performance of the proposed method through extensive simulation studies and application to the Next 36 entrepreneurial program dataset.
☆ SWE-Debate: Competitive Multi-Agent Debate for Software Issue Resolution
Issue resolution has made remarkable progress thanks to the advanced reasoning capabilities of large language models (LLMs). Recently, agent-based frameworks such as SWE-agent have further advanced this progress by enabling autonomous, tool-using agents to tackle complex software engineering tasks. While existing agent-based issue resolution approaches are primarily based on agents' independent explorations, they often get stuck in local solutions and fail to identify issue patterns that span across different parts of the codebase. To address this limitation, we propose SWE-Debate, a competitive multi-agent debate framework that encourages diverse reasoning paths and achieves more consolidated issue localization. SWE-Debate first creates multiple fault propagation traces as localization proposals by traversing a code dependency graph. Then, it organizes a three-round debate among specialized agents, each embodying distinct reasoning perspectives along the fault propagation trace. This structured competition enables agents to collaboratively converge on a consolidated fix plan. Finally, this consolidated fix plan is integrated into an MCTS-based code modification agent for patch generation. Experiments on the SWE-bench benchmark show that SWE-Debate achieves new state-of-the-art results in open-source agent frameworks and outperforms baselines by a large margin.
comment: Our code and data are available at https://github.com/YerbaPage/SWE-Debate
☆ Designing Dynamic Pricing for Bike-sharing Systems via Differentiable Agent-based Simulation
Bike-sharing systems are emerging in various cities as a new ecofriendly transportation system. In these systems, spatiotemporally varying user demands lead to imbalanced inventory at bicycle stations, resulting in additional relocation costs. Therefore, it is essential to manage user demand through optimal dynamic pricing for the system. However, optimal pricing design for such a system is challenging because the system involves users with diverse backgrounds and their probabilistic choices. To address this problem, we develop a differentiable agent-based simulation to rapidly design dynamic pricing in bike-sharing systems, achieving balanced bicycle inventory despite spatiotemporally heterogeneous trips and probabilistic user decisions. We first validate our approach against conventional methods through numerical experiments involving 25 bicycle stations and five time slots, yielding 100 parameters. Compared to the conventional methods, our approach obtains a more accurate solution with a 73% to 78% reduction in loss while achieving more than a 100-fold increase in convergence speed. We further validate our approach on a large-scale urban bike-sharing system scenario involving 289 bicycle stations, resulting in a total of 1156 parameters. Through simulations using the obtained pricing policies, we confirm that these policies can naturally induce balanced inventory without any manual relocation. Additionally, we find that the cost of discounts to induce the balanced inventory can be minimized by setting appropriate initial conditions.
☆ Scalable and Precise Patch Robustness Certification for Deep Learning Models with Top-k Predictions
Patch robustness certification is an emerging verification approach for defending against adversarial patch attacks with provable guarantees for deep learning systems. Certified recovery techniques guarantee the prediction of the sole true label of a certified sample. However, existing techniques, if applicable to top-k predictions, commonly conduct pairwise comparisons on those votes between labels, failing to certify the sole true label within the top k prediction labels precisely due to the inflation on the number of votes controlled by the attacker (i.e., attack budget); yet enumerating all combinations of vote allocation suffers from the combinatorial explosion problem. We propose CostCert, a novel, scalable, and precise voting-based certified recovery defender. CostCert verifies the true label of a sample within the top k predictions without pairwise comparisons and combinatorial explosion through a novel design: whether the attack budget on the sample is infeasible to cover the smallest total additional votes on top of the votes uncontrollable by the attacker to exclude the true labels from the top k prediction labels. Experiments show that CostCert significantly outperforms the current state-of-the-art defender PatchGuard, such as retaining up to 57.3% in certified accuracy when the patch size is 96, whereas PatchGuard has already dropped to zero.
comment: accepted by QRS 2025
☆ MUST-RAG: MUSical Text Question Answering with Retrieval Augmented Generation
Recent advancements in Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains. While they exhibit strong zero-shot performance on various tasks, LLMs' effectiveness in music-related applications remains limited due to the relatively small proportion of music-specific knowledge in their training data. To address this limitation, we propose MusT-RAG, a comprehensive framework based on Retrieval Augmented Generation (RAG) to adapt general-purpose LLMs for text-only music question answering (MQA) tasks. RAG is a technique that provides external knowledge to LLMs by retrieving relevant context information when generating answers to questions. To optimize RAG for the music domain, we (1) propose MusWikiDB, a music-specialized vector database for the retrieval stage, and (2) utilizes context information during both inference and fine-tuning processes to effectively transform general-purpose LLMs into music-specific models. Our experiment demonstrates that MusT-RAG significantly outperforms traditional fine-tuning approaches in enhancing LLMs' music domain adaptation capabilities, showing consistent improvements across both in-domain and out-of-domain MQA benchmarks. Additionally, our MusWikiDB proves substantially more effective than general Wikipedia corpora, delivering superior performance and computational efficiency.
comment: 8 pages, 2 figures
Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner
Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL). But conventional approaches rely on outcome-only rewards that provide sparse feedback, resulting in inefficient optimization process. In this work, we investigate the function of process reward models (PRMs) to accelerate the RL training for LRMs. We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training. Specifically, instead of requiring PRMs to know how to solve problems, our method uses intrinsic signals in solutions to judge stepwise correctness and aggregate contiguous correct/incorrect steps into coherent 'thought' units. This structured, thought-level rewards enable more reliable credit assignment by reducing ambiguity in step segmentation and alleviating reward hacking. We further introduce a capability-adaptive reward mechanism that dynamically balances exploration and exploitation based on the LRM's current proficiency, guiding learning without stifling creative trial-and-error. These innovations are integrated into a new off-policy RL algorithm, TP-GRPO, which extends grouped proximal optimization with process-based rewards and improves training efficiency. Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines. The results validate that well-structured process rewards can substantially accelerate LRM optimization in math reasoning tasks. Code is available at https://github.com/cs-holder/tp_grpo.
comment: 33 pages, 3 figures, 19 tables
☆ Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.
comment: 13 pages, 4 figures, 4 tables. Includes ablation study and evaluation on 7 lightweight deep learning models. Code and logs available at https://github.com/VineetKumarRakesh/lcnn-opt
☆ An Interpretable Data-Driven Unsupervised Approach for the Prevention of Forgotten Items
Accurately identifying items forgotten during a supermarket visit and providing clear, interpretable explanations for recommending them remains an underexplored problem within the Next Basket Prediction (NBP) domain. Existing NBP approaches typically only focus on forecasting future purchases, without explicitly addressing the detection of unintentionally omitted items. This gap is partly due to the scarcity of real-world datasets that allow for the reliable estimation of forgotten items. Furthermore, most current NBP methods rely on black-box models, which lack transparency and limit the ability to justify recommendations to end users. In this paper, we formally introduce the forgotten item prediction task and propose two novel interpretable-by-design algorithms. These methods are tailored to identify forgotten items while offering intuitive, human-understandable explanations. Experiments on a real-world retail dataset show our algorithms outperform state-of-the-art NBP baselines by 10-15% across multiple evaluation metrics.
☆ Simulation-based inference for Precision Neutrino Physics through Neural Monte Carlo tuning
Precise modeling of detector energy response is crucial for next-generation neutrino experiments which present computational challenges due to lack of analytical likelihoods. We propose a solution using neural likelihood estimation within the simulation-based inference framework. We develop two complementary neural density estimators that model likelihoods of calibration data: conditional normalizing flows and a transformer-based regressor. We adopt JUNO - a large neutrino experiment - as a case study. The energy response of JUNO depends on several parameters, all of which should be tuned, given their non-linear behavior and strong correlations in the calibration data. To this end, we integrate the modeled likelihoods with Bayesian nested sampling for parameter inference, achieving uncertainties limited only by statistics with near-zero systematic biases. The normalizing flows model enables unbinned likelihood analysis, while the transformer provides an efficient binned alternative. By providing both options, our framework offers flexibility to choose the most appropriate method for specific needs. Finally, our approach establishes a template for similar applications across experimental neutrino and broader particle physics.
☆ SequenceLayers: Sequence Processing and Streaming Neural Networks Made Easy
We introduce a neural network layer API and library for sequence modeling, designed for easy creation of sequence models that can be executed both layer-by-layer (e.g., teacher-forced training) and step-by-step (e.g., autoregressive sampling). To achieve this, layers define an explicit representation of their state over time (e.g., a Transformer KV cache, a convolution buffer, an RNN hidden state), and a step method that evolves that state, tested to give identical results to a stateless layer-wise invocation. This and other aspects of the SequenceLayers contract enables complex models to be immediately streamable, mitigates a wide range of common bugs arising in both streaming and parallel sequence processing, and can be implemented in any deep learning library. A composable and declarative API, along with a comprehensive suite of layers and combinators, streamlines the construction of production-scale models from simple streamable components while preserving strong correctness guarantees. Our current implementations of SequenceLayers (JAX, TensorFlow 2) are available at https://github.com/google/sequence-layers.
☆ Evaluating the Dynamics of Membership Privacy in Deep Learning
Membership inference attacks (MIAs) pose a critical threat to the privacy of training data in deep learning. Despite significant progress in attack methodologies, our understanding of when and how models encode membership information during training remains limited. This paper presents a dynamic analytical framework for dissecting and quantifying privacy leakage dynamics at the individual sample level. By tracking per-sample vulnerabilities on an FPR-TPR plane throughout training, our framework systematically measures how factors such as dataset complexity, model architecture, and optimizer choice influence the rate and severity at which samples become vulnerable. Crucially, we discover a robust correlation between a sample's intrinsic learning difficulty, and find that the privacy risk of samples highly vulnerable in the final trained model is largely determined early during training. Our results thus provide a deeper understanding of how privacy risks dynamically emerge during training, laying the groundwork for proactive, privacy-aware model training strategies.
☆ DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System
Current multi-agent systems (MAS) frameworks often rely on manually designed and static collaboration graph structures, limiting adaptability and performance. To address these limitations, we propose DynaSwarm, a dynamic framework that enhances LLM-based MAS through two key innovations: (1) an actor-critic reinforcement learning (A2C) mechanism to optimize graph structures with improved stability over prior RL methods, and (2) a dynamic graph selector that adaptively chooses the optimal graph structure for each input sample via parameter-efficient LLM fine-tuning. DynaSwarm eliminates the need for rigid, one-fits-all graph architectures, instead leveraging sample-specific idiosyncrasies to dynamically route queries through specialized agent networks. (c) We propose to fine-tune the demonstration retriever to fully exploit the power of in-context learning (ICL). Extensive experiments on question answering, mathematical reasoning, and coding tasks demonstrate that DynaSwarm consistently outperforms state-of-the-art single-agent and MAS baselines across multiple LLM backbones. Our findings highlight the importance of sample-aware structural flexibility in LLM MAS designs.
☆ Efficient Machine Unlearning via Influence Approximation
Due to growing privacy concerns, machine unlearning, which aims at enabling machine learning models to ``forget" specific training data, has received increasing attention. Among existing methods, influence-based unlearning has emerged as a prominent approach due to its ability to estimate the impact of individual training samples on model parameters without retraining. However, this approach suffers from prohibitive computational overhead arising from the necessity to compute the Hessian matrix and its inverse across all training samples and parameters, rendering it impractical for large-scale models and scenarios involving frequent data deletion requests. This highlights the difficulty of forgetting. Inspired by cognitive science, which suggests that memorizing is easier than forgetting, this paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning). This connection allows machine unlearning to be addressed from the perspective of incremental learning. Unlike the time-consuming Hessian computations in unlearning (forgetting), incremental learning (memorizing) typically relies on more efficient gradient optimization, which supports the aforementioned cognitive theory. Based on this connection, we introduce the Influence Approximation Unlearning (IAU) algorithm for efficient machine unlearning from the incremental perspective. Extensive empirical evaluations demonstrate that IAU achieves a superior balance among removal guarantee, unlearning efficiency, and comparable model utility, while outperforming state-of-the-art methods across diverse datasets and model architectures. Our code is available at https://github.com/Lolo1222/IAU.
comment: 12 pages, 4 figures
☆ Evaluating LLMs' Multilingual Capabilities for Bengali: Benchmark Creation and Performance Analysis
Bengali is an underrepresented language in NLP research. However, it remains a challenge due to its unique linguistic structure and computational constraints. In this work, we systematically investigate the challenges that hinder Bengali NLP performance by focusing on the absence of standardized evaluation benchmarks. We then evaluated 10 recent open source Large Language Models (LLMs) in 8 of the translated datasets and performed a comprehensive error analysis to pinpoint their primary failure modes. Our findings reveal consistent performance gaps for Bengali compared to English, particularly for smaller models and specific model families like Mistral. We also identified promising robustness in certain architectures, such as DeepSeek, that maintain more stable performance across languages. Our analysis reveals an inverse relationship between tokenization efficiency and LLM accuracy where models tend to perform worse when inputs are excessively tokenized, whereas more efficient \& concise tokenization results in improved performance. These findings highlight critical areas where current models fall short and underscore the need for improved dataset quality and evaluation methodologies tailored to multilingual contexts. This work will catalyze further research on NLP for underrepresented languages, helping to democratize access to advanced language technologies worldwide. The code and dataset used in this research is publicly available at https://github.com/BengaliAI/bn-llm-benchmark.
☆ Generalized Reinforcement Learning for Retriever-Specific Query Rewriter with Unstructured Real-World Documents
Retrieval-Augmented Generation (RAG) systems rely heavily on effective query formulation to unlock external knowledge, yet optimizing queries for diverse, unstructured real-world documents remains a challenge. We introduce \textbf{RL-QR}, a reinforcement learning framework for retriever-specific query rewriting that eliminates the need for human-annotated datasets and extends applicability to both text-only and multi-modal databases. By synthesizing scenario-question pairs and leveraging Generalized Reward Policy Optimization (GRPO), RL-QR trains query rewriters tailored to specific retrievers, enhancing retrieval performance across varied domains. Experiments on industrial in-house data demonstrate significant improvements, with $\text{RL-QR}_{\text{multi-modal}}$ achieving an 11\% relative gain in NDCG@3 for multi-modal RAG and $\text{RL-QR}_{\text{lexical}}$ yielding a 9\% gain for lexical retrievers. However, challenges persist with semantic and hybrid retrievers, where rewriters failed to improve performance, likely due to training misalignments. Our findings highlight RL-QR's potential to revolutionize query optimization for RAG systems, offering a scalable, annotation-free solution for real-world retrieval tasks, while identifying avenues for further refinement in semantic retrieval contexts.
☆ Enabling Few-Shot Alzheimer's Disease Diagnosis on Tabular Biomarker Data with LLMs
Early and accurate diagnosis of Alzheimer's disease (AD), a complex neurodegenerative disorder, requires analysis of heterogeneous biomarkers (e.g., neuroimaging, genetic risk factors, cognitive tests, and cerebrospinal fluid proteins) typically represented in a tabular format. With flexible few-shot reasoning, multimodal integration, and natural-language-based interpretability, large language models (LLMs) offer unprecedented opportunities for prediction with structured biomedical data. We propose a novel framework called TAP-GPT, Tabular Alzheimer's Prediction GPT, that adapts TableGPT2, a multimodal tabular-specialized LLM originally developed for business intelligence tasks, for AD diagnosis using structured biomarker data with small sample sizes. Our approach constructs few-shot tabular prompts using in-context learning examples from structured biomedical data and finetunes TableGPT2 using the parameter-efficient qLoRA adaption for a clinical binary classification task of AD or cognitively normal (CN). The TAP-GPT framework harnesses the powerful tabular understanding ability of TableGPT2 and the encoded prior knowledge of LLMs to outperform more advanced general-purpose LLMs and a tabular foundation model (TFM) developed for prediction tasks. To our knowledge, this is the first application of LLMs to the prediction task using tabular biomarker data, paving the way for future LLM-driven multi-agent frameworks in biomedical informatics.
☆ A Single Direction of Truth: An Observer Model's Linear Residual Probe Exposes and Steers Contextual Hallucinations
Contextual hallucinations -- statements unsupported by given context -- remain a significant challenge in AI. We demonstrate a practical interpretability insight: a generator-agnostic observer model detects hallucinations via a single forward pass and a linear probe on its residual stream. This probe isolates a single, transferable linear direction separating hallucinated from faithful text, outperforming baselines by 5-27 points and showing robust mid-layer performance across Gemma-2 models (2B to 27B). Gradient-times-activation localises this signal to sparse, late-layer MLP activity. Critically, manipulating this direction causally steers generator hallucination rates, proving its actionability. Our results offer novel evidence of internal, low-dimensional hallucination tracking linked to specific MLP sub-circuits, exploitable for detection and mitigation. We release the 2000-example ContraTales benchmark for realistic assessment of such solutions.
☆ Model Directions, Not Words: Mechanistic Topic Models Using Sparse Autoencoders
Traditional topic models are effective at uncovering latent themes in large text collections. However, due to their reliance on bag-of-words representations, they struggle to capture semantically abstract features. While some neural variants use richer representations, they are similarly constrained by expressing topics as word lists, which limits their ability to articulate complex topics. We introduce Mechanistic Topic Models (MTMs), a class of topic models that operate on interpretable features learned by sparse autoencoders (SAEs). By defining topics over this semantically rich space, MTMs can reveal deeper conceptual themes with expressive feature descriptions. Moreover, uniquely among topic models, MTMs enable controllable text generation using topic-based steering vectors. To properly evaluate MTM topics against word-list-based approaches, we propose \textit{topic judge}, an LLM-based pairwise comparison evaluation framework. Across five datasets, MTMs match or exceed traditional and neural baselines on coherence metrics, are consistently preferred by topic judge, and enable effective steering of LLM outputs.
☆ Zero-Shot Document Understanding using Pseudo Table of Contents-Guided Retrieval-Augmented Generation
Understanding complex multimodal documents remains challenging due to their structural inconsistencies and limited training data availability. We introduce \textit{DocsRay}, a training-free document understanding system that integrates pseudo Table of Contents (TOC) generation with hierarchical Retrieval-Augmented Generation (RAG). Our approach leverages multimodal Large Language Models' (LLMs) native capabilities to seamlessly process documents containing diverse elements such as text, images, charts, and tables without requiring specialized models or additional training. DocsRay's framework synergistically combines three key techniques: (1) a semantic structuring module using prompt-based LLM interactions to generate a hierarchical pseudo-TOC, (2) zero-shot multimodal analysis that converts diverse document elements into unified, text-centric representations using the inherent capabilities of multimodal LLMs, and (3) an efficient two-stage hierarchical retrieval system that reduces retrieval complexity from $O(N)$ to $O(S + k_1 \cdot N_s)$. Evaluated on documents averaging 49.4 pages and 20,971 textual tokens, DocsRay reduced query latency from 3.89 to 2.12 seconds, achieving a 45% efficiency improvement. On the MMLongBench-Doc benchmark, DocsRay-Pro attains an accuracy of 64.7%, substantially surpassing previous state-of-the-art results.
☆ Not Just What, But When: Integrating Irregular Intervals to LLM for Sequential Recommendation RecSys 2025
Time intervals between purchasing items are a crucial factor in sequential recommendation tasks, whereas existing approaches focus on item sequences and often overlook by assuming the intervals between items are static. However, dynamic intervals serve as a dimension that describes user profiling on not only the history within a user but also different users with the same item history. In this work, we propose IntervalLLM, a novel framework that integrates interval information into LLM and incorporates the novel interval-infused attention to jointly consider information of items and intervals. Furthermore, unlike prior studies that address the cold-start scenario only from the perspectives of users and items, we introduce a new viewpoint: the interval perspective to serve as an additional metric for evaluating recommendation methods on the warm and cold scenarios. Extensive experiments on 3 benchmarks with both traditional- and LLM-based baselines demonstrate that our IntervalLLM achieves not only 4.4% improvements in average but also the best-performing warm and cold scenarios across all users, items, and the proposed interval perspectives. In addition, we observe that the cold scenario from the interval perspective experiences the most significant performance drop among all recommendation methods. This finding underscores the necessity of further research on interval-based cold challenges and our integration of interval information in the realm of sequential recommendation tasks. Our code is available here: https://github.com/sony/ds-research-code/tree/master/recsys25-IntervalLLM.
comment: Accepted by RecSys 2025 short paper track
☆ Are Recommenders Self-Aware? Label-Free Recommendation Performance Estimation via Model Uncertainty
Can a recommendation model be self-aware? This paper investigates the recommender's self-awareness by quantifying its uncertainty, which provides a label-free estimation of its performance. Such self-assessment can enable more informed understanding and decision-making before the recommender engages with any users. To this end, we propose an intuitive and effective method, probability-based List Distribution uncertainty (LiDu). LiDu measures uncertainty by determining the probability that a recommender will generate a certain ranking list based on the prediction distributions of individual items. We validate LiDu's ability to represent model self-awareness in two settings: (1) with a matrix factorization model on a synthetic dataset, and (2) with popular recommendation algorithms on real-world datasets. Experimental results show that LiDu is more correlated with recommendation performance than a series of label-free performance estimators. Additionally, LiDu provides valuable insights into the dynamic inner states of models throughout training and inference. This work establishes an empirical connection between recommendation uncertainty and performance, framing it as a step towards more transparent and self-evaluating recommender systems.
☆ Geak: Introducing Triton Kernel AI Agent & Evaluation Benchmarks
The demand for AI-generated GPU kernels is rapidly growing, influenced by the need for scalable, hardware-optimized solutions in both industry and academia. As deep learning workloads grow in complexity and diversity, it is imperative to automate low-level kernel development to meet performance and productivity demands. Major cloud providers, semiconductor companies, and research institutions are now investing heavily in AI-driven code generation for GPUs, aiming to reduce manual optimization efforts while achieving near-expert performance on hardware like AMD MI300X. The Triton language, a Python-based DSL for GPU programming, has emerged as a popular target for such AI-generated kernels due to its balance of performance and ease-of-coding. In this work, we present an evaluation suite for Triton-based GPU kernels and GEAK (Generating Efficient AI-centric GPU Kernels)-a framework that leverages cutting-edge LLMs to generate performant Triton code specifically for AMD GPUs, including the AMD MI300X and MI250. GEAK leverages inference-time compute scaling to produce Triton-based GPU kernels using a reasoning loop adapted from Reflexion-style feedback mechanisms. On two evaluation benchmarks, GEAK significantly outperformed the baselines of directly prompting frontier LLMs as well as Reflexion-based generation pipelines by achieving correctness up to $63$% and execution speed up of up to $2.59$X. These results highlight the promise of GEAK-like agentic code generation for accelerating the adoption of diverse hardware platforms and democratizing access to expert-level kernel performance.
☆ NaN-Propagation: A Novel Method for Sparsity Detection in Black-Box Computational Functions
Sparsity detection in black-box functions enables significant computational speedups in gradient-based optimization through Jacobian compression, but existing finite-difference methods suffer from false negatives due to coincidental zero gradients. These false negatives can silently corrupt gradient calculations, leading to difficult-to-diagnose errors. We introduce NaN-propagation, which exploits the universal contamination property of IEEE 754 Not-a-Number floating-point values to trace input-output dependencies through floating-point numerical computations. By systematically contaminating inputs with NaN and observing which outputs become NaN, the method reconstructs conservative sparsity patterns that eliminate false negatives. We demonstrate the approach on an aerospace wing weight model, achieving a 1.52x speedup while detecting dozens of dependencies missed by conventional methods -- a significant improvement since gradient computation is the bottleneck in many optimization workflows. The technique leverages IEEE 754 compliance to work across programming languages and math libraries without modifying existing black-box codes. Advanced strategies including NaN payload encoding enable faster-than-linear time complexity, improving upon existing black-box sparsity detection methods. Practical algorithms are also proposed to mitigate challenges from branching code execution common in engineering applications.
☆ CNN-based solution for mango classification in agricultural environments
This article exemplifies the design of a fruit detection and classification system using Convolutional Neural Networks (CNN). The goal is to develop a system that automatically assesses fruit quality for farm inventory management. Specifically, a method for mango fruit classification was developed using image processing, ensuring both accuracy and efficiency. Resnet-18 was selected as the preliminary architecture for classification, while a cascade detector was used for detection, balancing execution speed and computational resource consumption. Detection and classification results were displayed through a graphical interface developed in MatLab App Designer, streamlining system interaction. The integration of convolutional neural networks and cascade detectors proffers a reliable solution for fruit classification and detection, with potential applications in agricultural quality control.
☆ BAR Conjecture: the Feasibility of Inference Budget-Constrained LLM Services with Authenticity and Reasoning
When designing LLM services, practitioners care about three key properties: inference-time budget, factual authenticity, and reasoning capacity. However, our analysis shows that no model can simultaneously optimize for all three. We formally prove this trade-off and propose a principled framework named The BAR Theorem for LLM-application design.
☆ LENS: Learning Ensemble Confidence from Neural States for Multi-LLM Answer Integration
Large Language Models (LLMs) have demonstrated impressive performance across various tasks, with different models excelling in distinct domains and specific abilities. Effectively combining the predictions of multiple LLMs is crucial for enhancing system robustness and performance. However, existing ensemble methods often rely on simple techniques like voting or logits ensembling, which overlook the varying confidence and reliability of models in different contexts. In this work, we propose LENS (Learning ENsemble confidence from Neural States), a novel approach that learns to estimate model confidence by analyzing internal representations. For each LLM, we train a lightweight linear confidence predictor that leverages layer-wise hidden states and normalized probabilities as inputs. This allows for more nuanced weighting of model predictions based on their context-dependent reliability. Our method does not require modifying the model parameters and requires negligible additional computation. Experimental results on multiple-choice and boolean question-answering tasks demonstrate that LENS outperforms traditional ensemble methods by a substantial margin. Our findings suggest that internal representations provide valuable signals for determining model confidence and can be effectively leveraged for ensemble learning.
♻ ☆ Neutral Residues: Revisiting Adapters for Model Extension ICML 2025
We address the problem of extending a pretrained large language model to a new domain that was not seen during training. Standard techniques, such as finetuning or low-rank adaptation (LoRA) are successful at domain adaptation, but do not formally add capacity to the model. This often leads to a trade-off, between performing well on the new domain vs. degrading performance on the original domain. Here, we revisit and improve adapters to extend LLMs from three angles: data, architecture and training procedure, which are advantageously considered jointly. The resulting method, called neutral residues, modifies adapters in a way that leads each new residual block to output near-zeros on the original domain. This solution leads to strong results when adapting a state-of-the-art model originally trained on English to a new language. Neutral residues significantly outperform competing approaches such as finetuning, LoRA or vanilla adapters in terms of the trade-off between learning the new language and not forgetting English.
comment: Accepted at ICML 2025
♻ ☆ G-Core: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has become an increasingly popular paradigm for training large language models (LLMs) and diffusion models. While existing RLHF training systems have enabled significant progress, they often face challenges in scaling to multi-modal and diffusion workflows and adapting to dynamic workloads. In particular, current approaches may encounter limitations in controller scalability, flexible resource placement, and efficient orchestration when handling complex RLHF pipelines, especially in scenarios involving dynamic sampling or generative reward modeling. In this paper, we present \textbf{G-Core}, a simple, scalable, and balanced RLHF training framework designed to address these challenges. G-Core introduces a parallel controller programming model, enabling flexible and efficient orchestration of complex RLHF workflows without the bottlenecks of a single centralized controller. Furthermore, we propose a dynamic placement schema that adaptively partitions resources and schedules workloads, significantly reducing hardware idle time and improving utilization, even under highly variable training conditions. G-Core has successfully trained models that support WeChat product features serving a large-scale user base, demonstrating its effectiveness and robustness in real-world scenarios. Our results show that G-Core advances the state of the art in RLHF training, providing a solid foundation for future research and deployment of large-scale, human-aligned models.
comment: I haven't received company approval yet, and I uploaded it by mistake
♻ ☆ Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies
This paper introduces Team-Attention-Actor-Critic (TAAC), a reinforcement learning algorithm designed to enhance multi-agent collaboration in cooperative environments. TAAC employs a Centralized Training/Centralized Execution scheme incorporating multi-headed attention mechanisms in both the actor and critic. This design facilitates dynamic, inter-agent communication, allowing agents to explicitly query teammates, thereby efficiently managing the exponential growth of joint-action spaces while ensuring a high degree of collaboration. We further introduce a penalized loss function which promotes diverse yet complementary roles among agents. We evaluate TAAC in a simulated soccer environment against benchmark algorithms representing other multi-agent paradigms, including Proximal Policy Optimization and Multi-Agent Actor-Attention-Critic. We find that TAAC exhibits superior performance and enhanced collaborative behaviors across a variety of metrics (win rates, goal differentials, Elo ratings, inter-agent connectivity, balanced spatial distributions, and frequent tactical interactions such as ball possession swaps).
comment: 8 pages
♻ ☆ H2Tune: Federated Foundation Model Fine-Tuning with Hybrid Heterogeneity
Different from existing federated fine-tuning (FFT) methods for foundation models, hybrid heterogeneous federated fine-tuning (HHFFT) is an under-explored scenario where clients exhibit double heterogeneity in model architectures and downstream tasks. This hybrid heterogeneity introduces two significant challenges: 1) heterogeneous matrix aggregation, where clients adopt different large-scale foundation models based on their task requirements and resource limitations, leading to dimensional mismatches during LoRA parameter aggregation; and 2) multi-task knowledge interference, where local shared parameters, trained with both task-shared and task-specific knowledge, cannot ensure only task-shared knowledge is transferred between clients. To address these challenges, we propose H2Tune, a federated foundation model fine-tuning with hybrid heterogeneity. Our framework H2Tune consists of three key components: (i) sparsified triple matrix decomposition to align hidden dimensions across clients through constructing rank-consistent middle matrices, with adaptive sparsification based on client resources; (ii) relation-guided matrix layer alignment to handle heterogeneous layer structures and representation capabilities; and (iii) alternating task-knowledge disentanglement mechanism to decouple shared and specific knowledge of local model parameters through alternating optimization. Theoretical analysis proves a convergence rate of O(1/\sqrt{T}). Extensive experiments show our method achieves up to 15.4% accuracy improvement compared to state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/H2Tune-1407.
♻ ☆ Unveiling the Influence of Amplifying Language-Specific Neurons
Language-specific neurons in LLMs that strongly correlate with individual languages have been shown to influence model behavior by deactivating them. However, their role in amplification remains underexplored. This work investigates the effect of amplifying language-specific neurons through interventions across 18 languages, including low-resource ones, using three models primarily trained in different languages. We compare amplification factors by their effectiveness in steering to the target language using a proposed Language Steering Shift (LSS) evaluation score, then evaluate it on downstream tasks: commonsense reasoning (XCOPA, XWinograd), knowledge (Include), and translation (FLORES). The optimal amplification factors effectively steer output toward nearly all tested languages. Intervention using this factor on downstream tasks improves self-language performance in some cases but generally degrades cross-language results. These findings highlight the effect of language-specific neurons in multilingual behavior, where amplification can be beneficial especially for low-resource languages, but provides limited advantage for cross-lingual transfer.
comment: Our code and dataset are made available at https://github.com/tauimbz/lang-task-neuron
♻ ☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
comment: arXiv admin note: text overlap with arXiv:2507.21881, arXiv:2507.21875
♻ ☆ GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
comment: 51 pages (13 pages for the main text, 9 pages for references, and 29 pages for the appendix)
♻ ☆ Spatial-Temporal Reinforcement Learning for Network Routing with Non-Markovian Traffic
Reinforcement Learning (RL) has been widely used for packet routing in communication networks, but traditional RL methods rely on the Markov assumption that the current state contains all necessary information for decision-making. In reality, internet traffic is non-Markovian, and past states do influence routing performance. Moreover, common deep RL approaches use function approximators, such as neural networks, that do not model the spatial structure in network topologies. To address these shortcomings, we design a network environment with non-Markovian traffic and introduce a spatial-temporal RL (STRL) framework for packet routing. Our approach outperforms traditional baselines by more than 19% during training and 7% for inference despite a change in network topology.
♻ ☆ A Theoretical Framework for Explaining Reinforcement Learning with Shapley Values
Reinforcement learning agents can achieve super-human performance in complex decision-making tasks, but their behaviour is often difficult to understand and explain. This lack of explanation limits deployment, especially in safety-critical settings where understanding and trust are essential. We identify three core explanatory targets that together provide a comprehensive view of reinforcement learning agents: behaviour, outcomes, and predictions. We develop a unified theoretical framework for explaining these three elements of reinforcement learning agents through the influence of individual features that the agent observes in its environment. We derive feature influences by using Shapley values, which collectively and uniquely satisfy a set of well-motivated axioms for fair and consistent credit assignment. The proposed approach, Shapley Values for Explaining Reinforcement Learning (SVERL), provides a single theoretical framework to comprehensively and meaningfully explain reinforcement learning agents. It yields explanations with precise semantics that are not only interpretable but also mathematically justified, enabling us to identify and correct conceptual issues in prior explanations. Through illustrative examples, we show how SVERL produces useful, intuitive explanations of agent behaviour, outcomes, and predictions, which are not apparent from observing agent behaviour alone.
♻ ☆ Intersectional Divergence: Measuring Fairness in Regression
Fairness in machine learning research is commonly framed in the context of classification tasks, leaving critical gaps in regression. In this paper, we propose a novel approach to measure intersectional fairness in regression tasks, going beyond the focus on single protected attributes from existing work to consider combinations of all protected attributes. Furthermore, we contend that it is insufficient to measure the average error of groups without regard for imbalanced domain preferences. Accordingly, we propose Intersectional Divergence (ID) as the first fairness measure for regression tasks that 1) describes fair model behavior across multiple protected attributes and 2) differentiates the impact of predictions in target ranges most relevant to users. We extend our proposal demonstrating how ID can be adapted into a loss function, IDLoss, that satisfies convergence guarantees and has piecewise smooth properties that enable practical optimization. Through an extensive experimental evaluation, we demonstrate how ID allows unique insights into model behavior and fairness, and how incorporating IDLoss into optimization can considerably improve single-attribute and intersectional model fairness while maintaining a competitive balance in predictive performance.
♻ ☆ Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
We implement a hybrid quantum-classical model for image classification that compresses MNIST digit images into a low-dimensional feature space and then maps these features onto a 5-qubit quantum state. First, an autoencoder compresses each $28\times28$ image (784 pixels) into a 64-dimensional latent vector, preserving salient features of the digit with minimal reconstruction error. We further reduce the latent representation to 5 principal components using Principal Component Analysis (PCA), to match the 5 available qubits. These 5 features are encoded as rotation angles in a quantum circuit with 5 qubits. The quantum feature map applies single-qubit rotations ($R_y$ gates) proportional to the feature values, followed by a Hadamard gate and a cascade of entangling CNOT gates to produce a non-product entangled state. Measuring the 5-qubit state yields a 32-dimensional probability distribution over basis outcomes, which serves as a quantum-enhanced feature vector for classification. A classical neural network with a softmax output is then trained on these 32-dimensional quantum feature vectors to predict the digit class. We evaluate the hybrid model on the MNIST dataset and compare it to a purely classical baseline that uses the 64-dimensional autoencoder latent features for classification. The results show that the hybrid model can successfully classify digits, demonstrating the feasibility of integrating quantum computing in the classification pipeline, although its accuracy (about 75\% on test data) currently falls below the classical baseline (about 98\% on the same compressed data).
♻ ☆ GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network
Attributed graph clustering holds significant importance in modern data analysis. However, due to the complexity of graph data and the heterogeneity of node attributes, leveraging graph information for clustering remains challenging. To address this, we propose a novel deep graph clustering model, GCL-GCN, specifically designed to address the limitations of existing models in capturing local dependencies and complex structures when dealing with sparse and heterogeneous graph data. GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships, effectively capturing both global and local information between nodes, thereby enhancing the quality of node representations. Additionally, we propose a novel contrastive learning module that significantly enhances the discriminative power of feature representations. In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix, ensuring more identifiable initial representations for subsequent graph convolution and clustering tasks. Extensive experimental results on six datasets demonstrate that GCL-GCN outperforms 14 advanced methods in terms of clustering quality and robustness. Specifically, on the Cora dataset, it improves ACC, NMI, and ARI by 4.94%, 13.01%, and 10.97%, respectively, compared to the primary comparison method MBN.
comment: The source code for this study is available at https://github.com/YF-W/GCL-GCN
♻ ☆ Disparate Conditional Prediction in Multiclass Classifiers ICML 2025
We propose methods for auditing multiclass classifiers for fairness under multiclass equalized odds,by estimating the deviation from equalized odds when the classifier is not completely fair. We generalize to multiclass classifiers the measure of Disparate Conditional Prediction (DCP), originally suggested by Sabato & Yom-Tov (2020) for binary classifiers. DCP is defined as the fraction of the population for which the classifier predicts with conditional prediction probabilities that differ from the closest common baseline. We provide new local-optimization methods for estimating the multiclass DCPunder two different regimes,one in which the conditional confusion matrices for each protected sub-population are known, and one in which these cannot be estimated, for instance, because the classifier is inaccessible or because good-quality individual-level data is not available. These methods can be used to detect classifiers that likely treat a significant fraction of the population unfairly. Experiments demonstrate the accuracy of the methods. Code is provided at https://github.com/sivansabato/ DCPmulticlass.
comment: Published at ICML 2025
♻ ☆ Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks
Advancements in artificial intelligence (AI) and low-earth orbit (LEO) satellites have promoted the application of large remote sensing foundation models for various downstream tasks. However, direct downloading of these models for fine-tuning on the ground is impeded by privacy concerns and limited bandwidth. Satellite federated learning (FL) offers a solution by enabling model fine-tuning directly on-board satellites and aggregating model updates without data downloading. Nevertheless, for large foundation models, the computational capacity of satellites is insufficient to support effective on-board fine-tuning in traditional satellite FL frameworks. To address these challenges, we propose a satellite-ground collaborative federated fine-tuning framework. The key of the framework lies in how to reasonably decompose and allocate model components to alleviate insufficient on-board computation capabilities. During fine-tuning, satellites exchange intermediate results with ground stations or other satellites for forward propagation and back propagation, which brings communication challenges due to the special communication topology of space transmission networks, such as intermittent satellite-ground communication, short duration of satellite-ground communication windows, and unstable inter-orbit inter-satellite links (ISLs). To reduce transmission delays, we further introduce tailored communication strategies that integrate both communication and computing resources. Specifically, we propose a parallel intra-orbit communication strategy, a topology-aware satellite-ground communication strategy, and a latency-minimalization inter-orbit communication strategy to reduce space communication costs. Simulation results demonstrate significant reductions in training time with improvements of approximately 33%.
♻ ☆ A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms
Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (\texttt{DANSur}) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around $10^{-4}$. Implemented in the \textsc{bilby} framework, we show they can be used for parameter estimation tasks.
♻ ☆ Parallel Split Learning with Global Sampling
Distributed deep learning in resource-constrained environments faces scalability and generalization challenges due to large effective batch sizes and non-identically distributed client data. We introduce a server-driven sampling strategy that maintains a fixed global batch size by dynamically adjusting client-side batch sizes. This decouples the effective batch size from the number of participating devices and ensures that global batches better reflect the overall data distribution. Using standard concentration bounds, we establish tighter deviation guarantees compared to existing approaches. Empirical results on a benchmark dataset confirm that the proposed method improves model accuracy, training efficiency, and convergence stability, offering a scalable solution for learning at the network edge.
♻ ☆ How Can I Publish My LLM Benchmark Without Giving the True Answers Away? ICML 2025
Publishing a large language model (LLM) benchmark on the Internet risks contaminating future LLMs: the benchmark may be unintentionally (or intentionally) used to train or select a model. A common mitigation is to keep the benchmark private and let participants submit their models or predictions to the organizers. However, this strategy will require trust in a single organization and still permits test-set overfitting through repeated queries. To overcome this issue, we propose a way to publish benchmarks without completely disclosing the ground-truth answers to the questions, while still maintaining the ability to openly evaluate LLMs. Our main idea is to inject randomness to the answers by preparing several logically correct answers, and only include one of them as the solution in the benchmark. This reduces the best possible accuracy, i.e., Bayes accuracy, of the benchmark. Not only is this helpful to keep us from disclosing the ground truth, but this approach also offers a test for detecting data contamination. In principle, even fully capable models should not surpass the Bayes accuracy. If a model surpasses this ceiling despite this expectation, this is a strong signal of data contamination. We present experimental evidence that our method can detect data contamination accurately on a wide range of benchmarks, models, and training methodologies.
comment: Extended version of the paper presented as an Oral at the ICML 2025 Workshop on the Impact of Memorization on Trustworthy Foundation Models
♻ ☆ Kandinsky Conformal Prediction: Beyond Class- and Covariate-Conditional Coverage
Conformal prediction is a powerful distribution-free framework for constructing prediction sets with coverage guarantees. Classical methods, such as split conformal prediction, provide marginal coverage, ensuring that the prediction set contains the label of a random test point with a target probability. However, these guarantees may not hold uniformly across different subpopulations, leading to disparities in coverage. Prior work has explored coverage guarantees conditioned on events related to the covariates and label of the test point. We present Kandinsky conformal prediction, a framework that significantly expands the scope of conditional coverage guarantees. In contrast to Mondrian conformal prediction, which restricts its coverage guarantees to disjoint groups -- reminiscent of the rigid, structured grids of Piet Mondrian's art -- our framework flexibly handles overlapping and fractional group memberships defined jointly on covariates and labels, reflecting the layered, intersecting forms in Wassily Kandinsky's compositions. Our algorithm unifies and extends existing methods, encompassing covariate-based group conditional, class conditional, and Mondrian conformal prediction as special cases, while achieving a minimax-optimal high-probability conditional coverage bound. Finally, we demonstrate the practicality of our approach through empirical evaluation on real-world datasets.
♻ ☆ CS-SHRED: Enhancing SHRED for Robust Recovery of Spatiotemporal Dynamics
We present CS-SHRED, a novel deep learning architecture that integrates Compressed Sensing (CS) into a Shallow Recurrent Decoder (SHRED) to reconstruct spatiotemporal dynamics from incomplete, compressed, or corrupted data. Our approach introduces two key innovations. First, by incorporating CS techniques into the SHRED architecture, our method leverages a batch-based forward framework with $\ell_1$ regularization to robustly recover signals even in scenarios with sparse sensor placements, noisy measurements, and incomplete sensor acquisitions. Second, an adaptive loss function dynamically combines Mean Squared Error (MSE) and Mean Absolute Error (MAE) terms with a piecewise Signal-to-Noise Ratio (SNR) regularization, which suppresses noise and outliers in low-SNR regions while preserving fine-scale features in high-SNR regions. We validate CS-SHRED on challenging problems including viscoelastic fluid flows, maximum specific humidity fields, sea surface temperature distributions, and rotating turbulent flows. Compared to the traditional SHRED approach, CS-SHRED achieves significantly higher reconstruction fidelity -- as demonstrated by improved SSIM and PSNR values, lower normalized errors, and enhanced LPIPS scores-thereby providing superior preservation of small-scale structures and increased robustness against noise and outliers. Our results underscore the advantages of the jointly trained CS and SHRED design architecture which includes an LSTM sequence model for characterizing the temporal evolution with a shallow decoder network (SDN) for modeling the high-dimensional state space. The SNR-guided adaptive loss function for the spatiotemporal data recovery establishes CS-SHRED as a promising tool for a wide range of applications in environmental, climatic, and scientific data analyses.
comment: 30 pages, 7 figures, 13 tables. Code: https://github.com/romulobrito/cs-shred
♻ ☆ MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
♻ ☆ Divided Attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots
We investigate the emergence of objects in visual perception in the absence of any semantic annotation. The resulting model has received no supervision, does not use any pre-trained features, and yet it can segment the domain of an image into multiple independently moving regions. The resulting motion segmentation method can handle an unknown and varying number of objects in real-time. The core multi-modal conditional encoder-decoder architecture has one modality (optical flow) feed the encoder to produce a collection of latent codes (slots), and the other modality (color image) conditions the decoder to generate the first modality (flow) from the slots. The training criterion is designed to foster 'information separation' among the slots, while the architecture explicitly allocates activations to individual slots, leading to a method we call Divided Attention (DivA). At test time, DivA handles a different number of objects and different image resolution than seen at training, and is invariant to permutations of the slots. DivA achieves state-of-the-art performance while tripling the runtime speed of comparable methods, up to 104 FPS, and reduces the performance gap from supervised methods to 12% or less. Objects bootstrapped by DivA can then be used to prime static classifiers via contrastive learning. On fewer than 5,000 video clips, training DINO on DivA's object proposals narrows the performance gap to ImageNet-based training by up to 30.2% compared to training directly on the video frames.
♻ ☆ SinBasis Networks: Matrix-Equivalent Feature Extraction for Wave-Like Optical Spectrograms
Wave-like images-from attosecond streaking spectrograms to optical spectra, audio mel-spectrograms and periodic video frames-encode critical harmonic structures that elude conventional feature extractors. We propose a unified, matrix-equivalent framework that reinterprets convolution and attention as linear transforms on flattened inputs, revealing filter weights as basis vectors spanning latent feature subspaces. To infuse spectral priors we apply elementwise $\sin(\cdot)$ mappings to each weight matrix. Embedding these transforms into CNN, ViT and Capsule architectures yields Sin-Basis Networks with heightened sensitivity to periodic motifs and built-in invariance to spatial shifts. Experiments on a diverse collection of wave-like image datasets-including 80,000 synthetic attosecond streaking spectrograms, thousands of Raman, photoluminescence and FTIR spectra, mel-spectrograms from AudioSet and cycle-pattern frames from Kinetics-demonstrate substantial gains in reconstruction accuracy, translational robustness and zero-shot cross-domain transfer. Theoretical analysis via matrix isomorphism and Mercer-kernel truncation quantifies how sinusoidal reparametrization enriches expressivity while preserving stability in data-scarce regimes. Sin-Basis Networks thus offer a lightweight, physics-informed approach to deep learning across all wave-form imaging modalities.
Where Paths Collide: A Comprehensive Survey of Classic and Learning-Based Multi-Agent Pathfinding
Multi-Agent Path Finding (MAPF) is a fundamental problem in artificial intelligence and robotics, requiring the computation of collision-free paths for multiple agents navigating from their start locations to designated goals. As autonomous systems become increasingly prevalent in warehouses, urban transportation, and other complex environments, MAPF has evolved from a theoretical challenge to a critical enabler of real-world multi-robot coordination. This comprehensive survey bridges the long-standing divide between classical algorithmic approaches and emerging learning-based methods in MAPF research. We present a unified framework that encompasses search-based methods (including Conflict-Based Search, Priority-Based Search, and Large Neighborhood Search), compilation-based approaches (SAT, SMT, CSP, ASP, and MIP formulations), and data-driven techniques (reinforcement learning, supervised learning, and hybrid strategies). Through systematic analysis of experimental practices across 200+ papers, we uncover significant disparities in evaluation methodologies, with classical methods typically tested on larger-scale instances (up to 200 by 200 grids with 1000+ agents) compared to learning-based approaches (predominantly 10-100 agents). We provide a comprehensive taxonomy of evaluation metrics, environment types, and baseline selections, highlighting the need for standardized benchmarking protocols. Finally, we outline promising future directions including mixed-motive MAPF with game-theoretic considerations, language-grounded planning with large language models, and neural solver architectures that combine the rigor of classical methods with the flexibility of deep learning. This survey serves as both a comprehensive reference for researchers and a practical guide for deploying MAPF solutions in increasingly complex real-world applications.
comment: 112 pages, 21 figures, 20 tables. The project website is: https://wangsh1yue.github.io/Where-Paths-Collide
♻ ☆ Momentum-based gradient descent methods for Lie groups
Polyak's Heavy Ball (PHB; Polyak, 1964), a.k.a. Classical Momentum, and Nesterov's Accelerated Gradient (NAG; Nesterov, 1983) are well-established momentum-descent methods for optimization. Although the latter generally outperforms the former, primarily, generalizations of PHB-like methods to nonlinear spaces have not been sufficiently explored in the literature. In this paper, we propose a generalization of NAG-like methods for Lie group optimization. This generalization is based on the variational one-to-one correspondence between classical and accelerated momentum methods (Campos et al., 2023). We provide numerical experiments for chosen retractions on the group of rotations based on the Frobenius norm and the Rosenbrock function to demonstrate the effectiveness of our proposed methods, and that align with results of the Euclidean case, that is, a faster convergence rate for NAG.
comment: 22 pages, 2 algorithms, 6 figures
♻ ☆ Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from $L^2$ by an element of a given $m$-dimensional space $V_m$, associated with some feature map $\boldsymbol{\varphi}$, using evaluations of the function at random points $x_1, \dots,x_n$. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features $\boldsymbol{\varphi}(x_i)$. We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples $n = O(m\log(m))$, that means that the expected $L^2$ error is bounded by a constant times the best approximation error in $L^2$. Also, further assuming that the function is in some normed vector space $H$ continuously embedded in $L^2$, we further prove that the approximation error in $L^2$ is almost surely bounded by the best approximation error measured in the $H$-norm. This includes the cases of functions from $L^\infty$ or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
comment: Compared with the first version, conjectures (13) on DPP and (16) on volume sampling have been modified, including a convexity requirement. Proofs of propositions 5.4 and 5.13 have been modified accordingly. Remarks 5.5 and 5.6 have been added to discuss alternatives to conjecture (13) on DPP
♻ ☆ Optimal and Near-Optimal Adaptive Vector Quantization
Quantization is a fundamental optimization for many machine-learning use cases, including compressing gradients, model weights and activations, and datasets. The most accurate form of quantization is \emph{adaptive}, where the error is minimized with respect to a given input, rather than optimizing for the worst case. However, optimal adaptive quantization methods are considered infeasible in terms of both their runtime and memory requirements. We revisit the Adaptive Vector Quantization (AVQ) problem and present algorithms that find optimal solutions with asymptotically improved time and space complexity. We also present an even faster near-optimal algorithm for large inputs. Our experiments show our algorithms may open the door to using AVQ more extensively in a variety of machine learning applications.
♻ ☆ Physics-informed Gaussian Processes as Linear Model Predictive Controller
We introduce a novel algorithm for controlling linear time invariant systems in a tracking problem. The controller is based on a Gaussian Process (GP) whose realizations satisfy a system of linear ordinary differential equations with constant coefficients. Control inputs for tracking are determined by conditioning the prior GP on the setpoints, i.e. control as inference. The resulting Model Predictive Control scheme incorporates pointwise soft constraints by introducing virtual setpoints to the posterior Gaussian process. We show theoretically that our controller satisfies open-loop stability for the optimal control problem by leveraging general results from Bayesian inference and demonstrate this result in a numerical example.
comment: Accepted at L4DC 2025
♻ ☆ Molecule Graph Networks with Many-body Equivariant Interactions
Message passing neural networks have demonstrated significant efficacy in predicting molecular interactions. Introducing equivariant vectorial representations augments expressivity by capturing geometric data symmetries, thereby improving model accuracy. However, two-body bond vectors in opposition may cancel each other out during message passing, leading to the loss of directional information on their shared node. In this study, we develop Equivariant N-body Interaction Networks (ENINet) that explicitly integrates l = 1 equivariant many-body interactions to enhance directional symmetric information in the message passing scheme. We provided a mathematical analysis demonstrating the necessity of incorporating many-body equivariant interactions and generalized the formulation to $N$-body interactions. Experiments indicate that integrating many-body equivariant representations enhances prediction accuracy across diverse scalar and tensorial quantum chemical properties.
♻ ☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Our code will be made public after the conference at https://github.com/Ellimac0/Snake-NeRF
♻ ☆ PurpCode: Reasoning for Safer Code Generation
We introduce PurpCode, the first post-training recipe for training safe code reasoning models towards generating secure code and defending against malicious cyberactivities. PurpCode trains a reasoning model in two stages: (i) Rule Learning, which explicitly teaches the model to reference cybersafety rules to generate vulnerability-free code and to avoid facilitating malicious cyberactivities; and (ii) Reinforcement Learning, which optimizes model safety and preserves model utility through diverse, multi-objective reward mechanisms. To empower the training pipelines with comprehensive cybersafety data, we conduct internal red-teaming to synthesize comprehensive and high-coverage prompts based on real-world tasks for inducing unsafe cyberactivities in the model. Based on PurpCode, we develop a reasoning-based coding model, namely PurpCode-32B, which demonstrates state-of-the-art cybersafety, outperforming various frontier models. Meanwhile, our alignment method decreases the model overrefusal rates in both general and cybersafety-specific scenarios, while preserving model utility in both code generation and common security knowledge.
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ TPP-SD: Accelerating Transformer Point Process Sampling with Speculative Decoding
We propose TPP-SD, a novel approach that accelerates Transformer temporal point process (TPP) sampling by adapting speculative decoding (SD) techniques from language models. By identifying the structural similarities between thinning algorithms for TPPs and speculative decoding for language models, we develop an efficient sampling framework that leverages a smaller draft model to generate multiple candidate events, which are then verified by the larger target model in parallel. TPP-SD maintains the same output distribution as autoregressive sampling while achieving significant acceleration. Experiments on both synthetic and real datasets demonstrate that our approach produces samples from identical distributions as standard methods, but with 2-6$\times$ speedup. Our ablation studies analyze the impact of hyperparameters such as draft length and draft model size on sampling efficiency. TPP-SD bridges the gap between powerful Transformer TPP models and the practical need for rapid sequence sampling.
♻ ☆ Neural-ANOVA: Analytical Model Decomposition using Automatic Integration SP 2025
The analysis of variance (ANOVA) decomposition offers a systematic method to understand the interaction effects that contribute to a specific decision output. In this paper we introduce Neural-ANOVA, an approach to decompose neural networks into the sum of lower-order models using the functional ANOVA decomposition. Our approach formulates a learning problem, which enables fast analytical evaluation of integrals over subspaces that appear in the calculation of the ANOVA decomposition. Finally, we conduct numerical experiments to provide insights into the approximation properties compared to other regression approaches from the literature.
comment: 6 pages, 3 figures, 3 tables, accepted for publication at MLSP 2025
♻ ☆ On the Approximation of Stationary Processes using the ARMA Model
We look at a problem related to Autoregressive Moving Average (ARMA) models, on quantifying the approximation error between a true stationary process $X_t$ and an ARMA model $Y_t$. We take the transfer function representation $x(L)$ of a stationary process $X_t$ and show that the $L^{\infty}$ norm of $x$ acts as a valid norm on $X_t$ that controls the $\ell^2$ norm of its Wold coefficients. We then show that a certain subspace of stationary processes, which includes ARMA models, forms a Banach algebra under the $L^{\infty}$ norm that respects the multiplicative structure of $H^{\infty}$ transfer functions and thus improves on the structural properties of the cepstral norm for ARMA models. The natural definition of invertibility in this algebra is consistent with the original definition of ARMA invertibility, and generalizes better to non-ARMA processes than Wiener's $\ell^1$ condition. Finally, we calculate some explicit approximation bounds in the simpler context of continuous transfer functions, and critique some heuristic ideas on Pad\'e approximations and parsimonious models.
comment: 11 pages, 1 figure
♻ ☆ A ZeNN architecture to avoid the Gaussian trap
We propose a new simple architecture, Zeta Neural Networks (ZeNNs), in order to overcome several shortcomings of standard multi-layer perceptrons (MLPs). Namely, in the large width limit, MLPs are non-parametric, they do not have a well-defined pointwise limit, they lose non-Gaussian attributes and become unable to perform feature learning; moreover, finite width MLPs perform poorly in learning high frequencies. The new ZeNN architecture is inspired by three simple principles from harmonic analysis: i) Enumerate the perceptons and introduce a non-learnable weight to enforce convergence; ii) Introduce a scaling (or frequency) factor; iii) Choose activation functions that lead to near orthogonal systems. We will show that these ideas allow us to fix the referred shortcomings of MLPs. In fact, in the infinite width limit, ZeNNs converge pointwise, they exhibit a rich asymptotic structure beyond Gaussianity, and perform feature learning. Moreover, when appropriate activation functions are chosen, (finite width) ZeNNs excel at learning high-frequency features of functions with low dimensional domains.
comment: New experiments involving PiNNs for solving Schr\"odinger and Bessel-type equations
♻ ☆ Identifying Super Spreaders in Multilayer Networks
Identifying super-spreaders can be framed as a subtask of the influence maximisation problem. It seeks to pinpoint agents within a network that, if selected as single diffusion seeds, disseminate information most effectively. Multilayer networks, a specific class of heterogeneous graphs, can capture diverse types of interactions (e.g., physical-virtual or professional-social), and thus offer a more accurate representation of complex relational structures. In this work, we introduce a novel approach to identifying super-spreaders in such networks by leveraging graph neural networks. To this end, we construct a dataset by simulating information diffusion across hundreds of networks - to the best of our knowledge, the first of its kind tailored specifically to multilayer networks. We further formulate the task as a variation of the ranking prediction problem based on a four-dimensional vector that quantifies each agent's spreading potential: (i) the number of activations; (ii) the duration of the diffusion process; (iii) the peak number of activations; and (iv) the simulation step at which this peak occurs. Our model, TopSpreadersNetwork, comprises a relationship-agnostic encoder and a custom aggregation layer. This design enables generalisation to previously unseen data and adapts to varying graph sizes. In an extensive evaluation, we compare our model against classic centrality-based heuristics and competitive deep learning methods. The results, obtained across a broad spectrum of real-world and synthetic multilayer networks, demonstrate that TopSpreadersNetwork achieves superior performance in identifying high-impact nodes, while also offering improved interpretability through its structured output.
♻ ☆ Artificial Inductive Bias for Synthetic Tabular Data Generation in Data-Scarce Scenarios
While synthetic tabular data generation using Deep Generative Models (DGMs) offers a compelling solution to data scarcity and privacy concerns, their effectiveness relies on the availability of substantial training data, often lacking in real-world scenarios. To overcome this limitation, we propose a novel methodology that explicitly integrates artificial inductive biases into the generative process to improve data quality in low-data regimes. Our framework leverages transfer learning and meta-learning techniques to construct and inject informative inductive biases into DGMs. We evaluate four approaches (pre-training, model averaging, Model-Agnostic Meta-Learning (MAML), and Domain Randomized Search (DRS)) and analyze their impact on the quality of the generated text. Experimental results show that incorporating inductive bias substantially improves performance, with transfer learning methods outperforming meta-learning, achieving up to 60\% gains in Jensen-Shannon divergence. The methodology is model-agnostic and especially relevant in domains such as healthcare and finance, where high-quality synthetic data are essential, and data availability is often limited.
comment: 19 pages, 6 Figures
♻ ☆ Some Theoretical Results on Layerwise Effective Dimension Oscillations in Finite Width ReLU Networks
We analyze the layerwise effective dimension (rank of the feature matrix) in fully-connected ReLU networks of finite width. Specifically, for a fixed batch of $m$ inputs and random Gaussian weights, we derive closed-form expressions for the expected rank of the \$m\times n\$ hidden activation matrices. Our main result shows that $\mathbb{E}[EDim(\ell)]=m[1-(1-2/\pi)^\ell]+O(e^{-c m})$ so that the rank deficit decays geometrically with ratio $1-2 / \pi \approx 0.3634$. We also prove a sub-Gaussian concentration bound, and identify the "revival" depths at which the expected rank attains local maxima. In particular, these peaks occur at depths $\ell_k^*\approx(k+1/2)\pi/\log(1/\rho)$ with height $\approx (1-e^{-\pi/2}) m \approx 0.79m$. We further show that this oscillatory rank behavior is a finite-width phenomenon: under orthogonal weight initialization or strong negative-slope leaky-ReLU, the rank remains (nearly) full. These results provide a precise characterization of how random ReLU layers alternately collapse and partially revive the subspace of input variations, adding nuance to prior work on expressivity of deep networks.
comment: Incomplete citations
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach. The code and model checkpoints are available at: https://github.com/continental/EP-Diffuser.
♻ ☆ Robust and Fine-Grained Detection of AI Generated Texts
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
comment: 18 pages, 6 figures
♻ ☆ Electricity Price Prediction Using Multi-Kernel Gaussian Process Regression Combined with Kernel-Based Support Vector Regression
This paper presents a new hybrid model for predicting German electricity prices. The algorithm is based on a combination of Gaussian Process Regression (GPR) and Support Vector Regression (SVR). Although GPR is a competent model for learning stochastic patterns within data and for interpolation, its performance for out-of-sample data is not very promising. By choosing a suitable data-dependent covariance function, we can enhance the performance of GPR for the German hourly power prices being tested. However, since the out-of-sample prediction is dependent on the training data, the prediction is vulnerable to noise and outliers. To overcome this issue, a separate prediction is calculated using SVR, which applies margin-based optimization. This method is advantageous when dealing with non-linear processes and outliers, since only certain necessary points (support vectors) in the training data are responsible for regression. The individual predictions are then linearly combined using uniform weights. When tested on historic German power prices, this approach outperforms the publicly available benchmarks, namely the LASSO estimated autoregressive regression model, deep neural network provided in the recent research by [1].
♻ ☆ FovEx: Human-Inspired Explanations for Vision Transformers and Convolutional Neural Networks
Explainability in artificial intelligence (XAI) remains a crucial aspect for fostering trust and understanding in machine learning models. Current visual explanation techniques, such as gradient-based or class-activation-based methods, often exhibit a strong dependence on specific model architectures. Conversely, perturbation-based methods, despite being model-agnostic, are computationally expensive as they require evaluating models on a large number of forward passes. In this work, we introduce Foveation-based Explanations (FovEx), a novel XAI method inspired by human vision. FovEx seamlessly integrates biologically inspired perturbations by iteratively creating foveated renderings of the image and combines them with gradient-based visual explorations to determine locations of interest efficiently. These locations are selected to maximize the performance of the model to be explained with respect to the downstream task and then combined to generate an attribution map. We provide a thorough evaluation with qualitative and quantitative assessments on established benchmarks. Our method achieves state-of-the-art performance on both transformers (on 4 out of 5 metrics) and convolutional models (on 3 out of 5 metrics), demonstrating its versatility among various architectures. Furthermore, we show the alignment between the explanation map produced by FovEx and human gaze patterns (+14\% in NSS compared to RISE, +203\% in NSS compared to GradCAM). This comparison enhances our confidence in FovEx's ability to close the interpretation gap between humans and machines.
comment: Accepted in the International Journal of Computer Vision (Springer Nature)
♻ ☆ EaqVLA: Encoding-aligned Quantization for Vision-Language-Action Models
With the development of Embodied Artificial intelligence, the end-to-end control policy such as Vision-Language-Action (VLA) model has become the mainstream. Existing VLA models faces expensive computing/storage cost, which need to be optimized. Quantization is considered as the most effective method which can not only reduce the memory cost but also achieve computation acceleration. However, we find the token alignment of VLA models hinders the application of existing quantization methods. To address this, we proposed an optimized framework called EaqVLA, which apply encoding-aligned quantization to VLA models. Specifically, we propose an complete analysis method to find the misalignment in various granularity. Based on the analysis results, we propose a mixed precision quantization with the awareness of encoding alignment. Experiments shows that the porposed EaqVLA achieves better quantization performance (with the minimal quantization loss for end-to-end action control and xxx times acceleration) than existing quantization methods.
comment: There is an error in this paper, and as the author, I request retraction
♻ ☆ Transformed Low-rank Adaptation via Tensor Decomposition and Its Applications to Text-to-image Models ICCV 2025
Parameter-Efficient Fine-Tuning (PEFT) of text-to-image models has become an increasingly popular technique with many applications. Among the various PEFT methods, Low-Rank Adaptation (LoRA) and its variants have gained significant attention due to their effectiveness, enabling users to fine-tune models with limited computational resources. However, the approximation gap between the low-rank assumption and desired fine-tuning weights prevents the simultaneous acquisition of ultra-parameter-efficiency and better performance. To reduce this gap and further improve the power of LoRA, we propose a new PEFT method that combines two classes of adaptations, namely, transform and residual adaptations. In specific, we first apply a full-rank and dense transform to the pre-trained weight. This learnable transform is expected to align the pre-trained weight as closely as possible to the desired weight, thereby reducing the rank of the residual weight. Then, the residual part can be effectively approximated by more compact and parameter-efficient structures, with a smaller approximation error. To achieve ultra-parameter-efficiency in practice, we design highly flexible and effective tensor decompositions for both the transform and residual adaptations. Additionally, popular PEFT methods such as DoRA can be summarized under this transform plus residual adaptation scheme. Experiments are conducted on fine-tuning Stable Diffusion models in subject-driven and controllable generation. The results manifest that our method can achieve better performances and parameter efficiency compared to LoRA and several baselines.
comment: ICCV 2025
♻ ☆ MVCNet: Multi-View Contrastive Network for Motor Imagery Classification
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) enable neural interaction by decoding brain activity for external communication. Motor imagery (MI) decoding has received significant attention due to its intuitive mechanism. However, most existing models rely on single-stream architectures and overlook the multi-view nature of EEG signals, leading to limited performance and generalization. We propose a multi-view contrastive network (MVCNet), a dual-branch architecture that parallelly integrates CNN and Transformer blocks to capture both local spatial-temporal features and global temporal dependencies. To enhance the informativeness of training data, MVCNet incorporates a unified augmentation pipeline across time, frequency, and spatial domains. Two contrastive modules are further introduced: a cross-view contrastive module that enforces consistency of original and augmented views, and a cross-model contrastive module that aligns features extracted from both branches. Final representations are fused and jointly optimized by contrastive and classification losses. Experiments on five public MI datasets across three scenarios demonstrate that MVCNet consistently outperforms nine state-of-the-art MI decoding networks, highlighting its effectiveness and generalization ability. MVCNet provides a robust solution for MI decoding by integrating multi-view information and dual-branch modeling, contributing to the development of more reliable BCI systems.
comment: 12 pages, 9 figures
♻ ☆ HER2 Expression Prediction with Flexible Multi-Modal Inputs via Dynamic Bidirectional Reconstruction ACM MM 2025
In breast cancer HER2 assessment, clinical evaluation relies on combined H&E and IHC images, yet acquiring both modalities is often hindered by clinical constraints and cost. We propose an adaptive bimodal prediction framework that flexibly supports single- or dual-modality inputs through two core innovations: a dynamic branch selector activating modality completion or joint inference based on input availability, and a cross-modal GAN (CM-GAN) enabling feature-space reconstruction of missing modalities. This design dramatically improves H&E-only accuracy from 71.44% to 94.25%, achieves 95.09% with full dual-modality inputs, and maintains 90.28% reliability under single-modality conditions. The "dual-modality preferred, single-modality compatible" architecture delivers near-dual-modality accuracy without mandatory synchronized acquisition, offering a cost-effective solution for resource-limited regions and significantly improving HER2 assessment accessibility.
comment: 8 pages,6 figures,3 tables,accepted by the 33rd ACM International Conference on Multimedia(ACM MM 2025)
♻ ☆ MemShare: Memory Efficient Inference for Large Reasoning Models through KV Cache Reuse
Large Reasoning Models (LRMs) have achieved significant advances in mathematical reasoning and formal logic tasks. However, their tendency to generate lengthy chain-of-thought sequences leads to substantial memory overhead during inference. We observe that LRMs frequently produce highly similar intermediate reasoning steps, which correspond to similar KV cache states across layers. Motivated by this observation, we propose MemShare, a novel KV cache management approach that effectively reduces memory overhead. MemShare employs a collaborative filtering algorithm to efficiently identify reusable KV cache blocks and enables zero copy cache reuse to significantly reduce memory overhead, improve throughput while maintaining accuracy. Experimental results demonstrate that MemShare delivers up to 84.79\% improvement in throughput while maintaining better accuracy compared to existing KV cache management methods.
comment: 11 pages, 7 figures
♻ ☆ Tailored Forecasting from Short Time Series via Meta-learning
Machine learning models can effectively forecast dynamical systems from time-series data, but they typically require large amounts of past data, making forecasting particularly challenging for systems with limited history. To overcome this, we introduce Meta-learning for Tailored Forecasting using Related Time Series (METAFORS), which generalizes knowledge across systems to enable forecasting in data-limited scenarios. By learning from a library of models trained on longer time series from potentially related systems, METAFORS builds and initializes a model tailored to short time-series data from the system of interest. Using a reservoir computing implementation and testing on simulated chaotic systems, we demonstrate that METAFORS can reliably predict both short-term dynamics and long-term statistics without requiring contextual labels. We see this even when test and related systems exhibit substantially different behaviors, highlighting METAFORS' strengths in data-limited scenarios.
comment: 23 pages, 12 figures
♻ ☆ Insights into Closed-form IPM-GAN Discriminator Guidance for Diffusion Modeling
Diffusion models are a state-of-the-art generative modeling framework that transform noise to images via Langevin sampling, guided by the score, which is the gradient of the logarithm of the data distribution. Recent works have shown empirically that the generation quality can be improved when guided by classifier network, which is typically the discriminator trained in a generative adversarial network (GAN) setting. In this paper, we propose a theoretical framework to analyze the effect of the GAN discriminator on Langevin-based sampling, and show that the IPM-GAN optimization can be seen as one of smoothed score-matching, wherein the scores of the data and the generator distributions are convolved with the kernel function associated with the IPM. The proposed approach serves to unify score-based training and optimization of IPM-GANs. Based on these insights, we demonstrate that closed-form kernel-based discriminator guidance, results in improvements (in terms of CLIP-FID and KID metrics) when applied atop baseline diffusion models. We demonstrate these results on the denoising diffusion implicit model (DDIM) and latent diffusion model (LDM) settings on various standard datasets. We also show that the proposed approach can be combined with existing accelerated-diffusion techniques to improve latent-space image generation.
♻ ☆ CEE: An Inference-Time Jailbreak Defense for Embodied Intelligence via Subspace Concept Rotation
Large Language Models (LLMs) are increasingly becoming the cognitive core of Embodied Intelligence (EI) systems, such as robots and autonomous vehicles. However, this integration also exposes them to serious jailbreak risks, where malicious instructions can be transformed into dangerous physical actions. Existing defense mechanisms suffer from notable drawbacks--including high training costs, significant inference delays, and complex hyperparameter tuning--which limit their practical applicability. To address these challenges, we propose a novel and efficient inference-time defense framework: Concept Enhancement Engineering (CEE). CEE enhances the model's inherent safety mechanisms by directly manipulating its internal representations, requiring neither additional training nor external modules, thereby improving defense efficiency. Furthermore, CEE introduces a rotation-based control mechanism that enables stable and linearly tunable behavioral control of the model. This design eliminates the need for tedious manual tuning and avoids the output degradation issues commonly observed in other representation engineering methods. Extensive experiments across multiple EI safety benchmarks and diverse attack scenarios demonstrate that CEE significantly improves the defense success rates of various multimodal LLMs. It effectively mitigates safety risks while preserving high-quality generation and inference efficiency, offering a promising solution for deploying safer embodied intelligence systems.
♻ ☆ SmartPNT-MSF: A Multi-Sensor Fusion Dataset for Positioning and Navigation Research
High-precision navigation and positioning systems are critical for applications in autonomous vehicles and mobile mapping, where robust and continuous localization is essential. To test and enhance the performance of algorithms, some research institutions and companies have successively constructed and publicly released datasets. However, existing datasets still suffer from limitations in sensor diversity and environmental coverage. To address these shortcomings and advance development in related fields, the SmartPNT Multisource Integrated Navigation, Positioning, and Attitude Dataset has been developed. This dataset integrates data from multiple sensors, including Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU), optical cameras, and LiDAR, to provide a rich and versatile resource for research in multi-sensor fusion and high-precision navigation. The dataset construction process is thoroughly documented, encompassing sensor configurations, coordinate system definitions, and calibration procedures for both cameras and LiDAR. A standardized framework for data collection and processing ensures consistency and scalability, enabling large-scale analysis. Validation using state-of-the-art Simultaneous Localization and Mapping (SLAM) algorithms, such as VINS-Mono and LIO-SAM, demonstrates the dataset's applicability for advanced navigation research. Covering a wide range of real-world scenarios, including urban areas, campuses, tunnels, and suburban environments, the dataset offers a valuable tool for advancing navigation technologies and addressing challenges in complex environments. By providing a publicly accessible, high-quality dataset, this work aims to bridge gaps in sensor diversity, data accessibility, and environmental representation, fostering further innovation in the field.
♻ ☆ AI Should Sense Better, Not Just Scale Bigger: Adaptive Sensing as a Paradigm Shift
Current AI advances largely rely on scaling neural models and expanding training datasets to achieve generalization and robustness. Despite notable successes, this paradigm incurs significant environmental, economic, and ethical costs, limiting sustainability and equitable access. Inspired by biological sensory systems, where adaptation occurs dynamically at the input (e.g., adjusting pupil size, refocusing vision)--we advocate for adaptive sensing as a necessary and foundational shift. Adaptive sensing proactively modulates sensor parameters (e.g., exposure, sensitivity, multimodal configurations) at the input level, significantly mitigating covariate shifts and improving efficiency. Empirical evidence from recent studies demonstrates that adaptive sensing enables small models (e.g., EfficientNet-B0) to surpass substantially larger models (e.g., OpenCLIP-H) trained with significantly more data and compute. We (i) outline a roadmap for broadly integrating adaptive sensing into real-world applications spanning humanoid, healthcare, autonomous systems, agriculture, and environmental monitoring, (ii) critically assess technical and ethical integration challenges, and (iii) propose targeted research directions, such as standardized benchmarks, real-time adaptive algorithms, multimodal integration, and privacy-preserving methods. Collectively, these efforts aim to transition the AI community toward sustainable, robust, and equitable artificial intelligence systems.
♻ ☆ ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning
Reinforcement learning (RL) is ubiquitous in the development of modern AI systems. However, state-of-the-art RL agents require extensive, and potentially unsafe, interactions with their environments to learn effectively. These limitations confine RL agents to simulated environments, hindering their ability to learn directly in real-world settings. In this work, we present ActSafe, a novel model-based RL algorithm for safe and efficient exploration. ActSafe learns a well-calibrated probabilistic model of the system and plans optimistically w.r.t. the epistemic uncertainty about the unknown dynamics, while enforcing pessimism w.r.t. the safety constraints. Under regularity assumptions on the constraints and dynamics, we show that ActSafe guarantees safety during learning while also obtaining a near-optimal policy in finite time. In addition, we propose a practical variant of ActSafe that builds on latest model-based RL advancements and enables safe exploration even in high-dimensional settings such as visual control. We empirically show that ActSafe obtains state-of-the-art performance in difficult exploration tasks on standard safe deep RL benchmarks while ensuring safety during learning.
♻ ☆ GrokAlign: Geometric Characterisation and Acceleration of Grokking
A key challenge for the machine learning community is to understand and accelerate the training dynamics of deep networks that lead to delayed generalisation and emergent robustness to input perturbations, also known as grokking. Prior work has associated phenomena like delayed generalisation with the transition of a deep network from a linear to a feature learning regime, and emergent robustness with changes to the network's functional geometry, in particular the arrangement of the so-called linear regions in deep networks employing continuous piecewise affine nonlinearities. Here, we explain how grokking is realised in the Jacobian of a deep network and demonstrate that aligning a network's Jacobians with the training data (in the sense of cosine similarity) ensures grokking under a low-rank Jacobian assumption. Our results provide a strong theoretical motivation for the use of Jacobian regularisation in optimizing deep networks -- a method we introduce as GrokAlign -- which we show empirically to induce grokking much sooner than more conventional regularizers like weight decay. Moreover, we introduce centroid alignment as a tractable and interpretable simplification of Jacobian alignment that effectively identifies and tracks the stages of deep network training dynamics. Accompanying webpage (https://thomaswalker1.github.io/blog/grokalign.html) and code (https://github.com/ThomasWalker1/grokalign).
comment: 23 pages, 11 figures, 3 tables
♻ ☆ Accumulator-Aware Post-Training Quantization for Large Language Models
When quantizing weights and activations to increasingly narrower representations, the cost of additions begins to dominate that of multiplications in multiply-accumulate (MAC) units. Recent studies show that reducing addition costs via low-precision accumulation improves throughput, power, and area across inference platforms, albeit with an increased risk of overflow. Accumulator-aware quantization research has so far only considered the quantization-aware training (QAT) paradigm, in which models are fine-tuned or trained from scratch with quantization in the loop. As models and datasets continue to grow in size, QAT techniques become increasingly more expensive, which has motivated the recent surge in post-training quantization (PTQ) research. To bridge this gap, we introduce AXE, the first accumulator-aware quantization framework explicitly designed to endow overflow avoidance guarantees to PTQ algorithms. We present theoretical motivation for AXE and demonstrate its flexibility by implementing it on top of two existing algorithms: GPFQ and OPTQ. We design AXE to support multi-stage accumulation, opening the door to full datapath optimization for the first time. We evaluate AXE using recent language generation models; when quantizing Llama3 8B for a 16-bit multi-stage accumulation datapath, AXE maintains up to 98% of the FP16 perplexity, surpassing naive bit width manipulation by up to 15%.
♻ ☆ Achieving Deep Continual Learning via Evolution
Deep neural networks, despite their remarkable success, remain fundamentally limited in their ability to perform Continual Learning (CL). While most current methods aim to enhance the capabilities of a single model, Inspired by the collective learning mechanisms of human populations, we introduce Evolving Continual Learning (ECL), a framework that maintains and evolves a diverse population of neural network models. ECL continually searches for an optimal architecture for each introduced incremental task. This tailored model is trained on the corresponding task and archived as a specialized expert, contributing to a growing collection of skills. This approach inherently resolves the core CL challenges: stability is achieved through the isolation of expert models, while plasticity is greatly enhanced by evolving unique, task-specific architectures. Experimental results demonstrate that ECL significantly outperforms state-of-the-art individual-level CL methods. By shifting the focus from individual adaptation to collective evolution, ECL presents a novel path toward AI systems capable of CL.
♻ ☆ Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles
Generative artificial intelligence, particularly through large language models (LLMs), is poised to transform energy optimization and demand side management (DSM) within microgrids. This paper explores the integration of LLMs into energy management, emphasizing their roles in automating the optimization of DSM strategies with Internet of electric vehicles. We investigate challenges and solutions associated with DSM and explore the new opportunities presented by leveraging LLMs. Then, we propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization. We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles, highlighting our solution's significant advancements in energy efficiency and user adaptability. This work underscores the potential of LLMs for energy optimization and fosters a new era of intelligent DSM solutions.
comment: 11 Pages
♻ ☆ Adapt before Continual Learning
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). Although pre-trained models (PTMs) have provided a strong foundation for CL, existing approaches face a fundamental challenge in balancing these two competing objectives. Current methods typically address stability by freezing the PTM backbone, which severely limits the model's plasticity, particularly when incoming data distribution diverges largely from the pre-training data. Alternatively, sequentially fine-tuning the entire PTM can adapt to new knowledge but often leads to catastrophic forgetting, highlighting the critical stability-plasticity trade-off in PTM-based CL. To address this limitation, we propose Adapting PTMs before the core CL} process (ACL), a novel framework that introduces a plug-and-play adaptation phase prior to learning each new task. During this phase, ACL refines the PTM backbone by aligning embeddings with their original class prototypes while distancing them from irrelevant classes. This mechanism theoretically and empirically demonstrates desirable balance between stability and plasticity, significantly improving CL performance across benchmarks and integrated methods. Code is available at https://github.com/byyx666/ACL_code.
♻ ☆ InfAlign: Inference-aware language model alignment
Language model alignment is a critical step in training modern generative language models. Alignment targets to improve win rate of a sample from the aligned model against the base model. Today, we are increasingly using inference-time algorithms (e.g., Best-of-N, controlled decoding, tree search) to decode from language models rather than standard sampling. We show that this train/test mismatch makes standard RLHF framework sub-optimal in view of such inference-time methods. To this end, we propose a framework for inference-aware alignment (InfAlign), which aims to optimize inference-time win rate of the aligned policy against the base model. We prove that for any inference-time decoding procedure, the optimal aligned policy is the solution to the standard RLHF problem with a transformation of the reward. This motivates us to provide the calibrate-and-transform RL (InfAlign-CTRL) algorithm to solve this problem, which involves a reward calibration step and a KL-regularized reward maximization step with a transformation of the calibrated reward. For best-of-N sampling and best-of-N jailbreaking, we propose specific transformations offering up to 3-8% improvement on inference-time win rates. Finally, we also show that our proposed reward calibration method is a strong baseline for optimizing standard win rate.
♻ ☆ Learning 3D Scene Analogies with Neural Contextual Scene Maps ICCV 2025
Understanding scene contexts is crucial for machines to perform tasks and adapt prior knowledge in unseen or noisy 3D environments. As data-driven learning is intractable to comprehensively encapsulate diverse ranges of layouts and open spaces, we propose teaching machines to identify relational commonalities in 3D spaces. Instead of focusing on point-wise or object-wise representations, we introduce 3D scene analogies, which are smooth maps between 3D scene regions that align spatial relationships. Unlike well-studied single instance-level maps, these scene-level maps smoothly link large scene regions, potentially enabling unique applications in trajectory transfer in AR/VR, long demonstration transfer for imitation learning, and context-aware object rearrangement. To find 3D scene analogies, we propose neural contextual scene maps, which extract descriptor fields summarizing semantic and geometric contexts, and holistically align them in a coarse-to-fine manner for map estimation. This approach reduces reliance on individual feature points, making it robust to input noise or shape variations. Experiments demonstrate the effectiveness of our approach in identifying scene analogies and transferring trajectories or object placements in diverse indoor scenes, indicating its potential for robotics and AR/VR applications. Project page including the code is available through this link: https://82magnolia.github.io/3d_scene_analogies/.
comment: Accepted to ICCV 2025
♻ ☆ MolPIF: A Parameter Interpolation Flow Model for Molecule Generation
Advances in deep learning for molecular generation show promise in accelerating drug discovery. Bayesian Flow Networks (BFNs) have recently shown impressive performance across diverse chemical tasks, with their success often ascribed to the paradigm of modeling in a low-variance parameter space. However, the Bayesian inference-based strategy imposes limitations on designing more flexible distribution transformation pathways, making it challenging to adapt to diverse data distributions and varied task requirements. Furthermore, the potential for simpler, more efficient parameter-space-based models is unexplored. To address this, we propose a novel Parameter Interpolation Flow model (named PIF) with detailed theoretical foundation, training, and inference procedures. We then develop MolPIF for structure-based drug design, demonstrating its superior performance across diverse metrics compared to baselines. This work validates the effectiveness of parameter-space-based generative modeling paradigm for molecules and offers new perspectives for model design.
♻ ☆ Entanglement-induced provable and robust quantum learning advantages
Quantum computing holds unparalleled potentials to enhance machine learning. However, a demonstration of quantum learning advantage has not been achieved so far. We make a step forward by rigorously establishing a noise-robust, unconditional quantum learning advantage in expressivity, inference speed, and training efficiency, compared to commonly-used classical models. Our proof is information-theoretic and pinpoints the origin of this advantage: entanglement can be used to reduce the communication required by non-local tasks. In particular, we design a task that can be solved with certainty by quantum models with a constant number of parameters using entanglement, whereas commonly-used classical models must scale linearly to achieve a larger-than-exponentially-small accuracy. We show that the quantum model is trainable with constant resources and robust against constant noise. Through numerical and trapped-ion experiments on IonQ Aria, we demonstrate the desired advantage. Our results provide valuable guidance for demonstrating quantum learning advantages with current noisy intermediate-scale devices.
comment: 7 pages, 2 figures + 13-page supplementary materials
♻ ☆ A Comprehensive Review of Diffusion Models in Smart Agriculture: Progress, Applications, and Challenges
With the global population growing and arable land resources becoming increasingly scarce,smart agriculture and precision agriculture have emerged as key directions for the future ofagricultural development.Artificial intelligence (AI) technologies, particularly deep learning models, have found widespread applications in areas such as crop monitoring and pest detection. As an emerging generative model, diffusion models have shown significant promise in tasks like agricultural image processing, data augmentation, and remote sensing. Compared to traditional generative adversarial networks (GANs), diffusion models offer superior training stability and generation quality, effectively addressing challenges such as limited agricultural data and imbalanced image samples. This paper reviews the latest advancements in the application of diffusion models in agriculture, focusing on their potential in crop pest and disease detection, remote sensing image enhancement, crop growth prediction, and agricultural resource management. Experimental results demonstrate that diffusion models significantly improve model accuracy and robustness in data augmentation, image generation, and denoising, especially in complex environments. Despite challenges related to computational efficiency and generalization capabilities, diffusion models are expected to play an increasingly important role in smart and precision agriculture as technology advances, providing substantial support for the sustainable development of global agriculture.
♻ ☆ Tensor Product Neural Networks for Functional ANOVA Model
Interpretability for machine learning models is becoming more and more important as machine learning models become more complex. The functional ANOVA model, which decomposes a high-dimensional function into a sum of lower dimensional functions (commonly referred to as components), is one of the most popular tools for interpretable AI, and recently, various neural networks have been developed for estimating each component in the functional ANOVA model. However, such neural networks are highly unstable when estimating each component since the components themselves are not uniquely defined. That is, there are multiple functional ANOVA decompositions for a given function. In this paper, we propose a novel neural network which guarantees a unique functional ANOVA decomposition and thus is able to estimate each component stably and accurately. We call our proposed neural network ANOVA Tensor Product Neural Network (ANOVA-TPNN) since it is motivated by the tensor product basis expansion. Theoretically, we prove that ANOVA-TPNN can approximate any smooth function well. Empirically, we show that ANOVA-TPNN provide much more stable estimation of each component and thus much more stable interpretation when training data and initial values of the model parameters vary than existing neural networks do.
comment: 45 pages
♻ ☆ Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
comment: The project has been open sourced at Github (https://github.com/fanglioc/Compositional_Function_Networks)
Graphics 5
☆ XSpecMesh: Quality-Preserving Auto-Regressive Mesh Generation Acceleration via Multi-Head Speculative Decoding
Current auto-regressive models can generate high-quality, topologically precise meshes; however, they necessitate thousands-or even tens of thousands-of next-token predictions during inference, resulting in substantial latency. We introduce XSpecMesh, a quality-preserving acceleration method for auto-regressive mesh generation models. XSpecMesh employs a lightweight, multi-head speculative decoding scheme to predict multiple tokens in parallel within a single forward pass, thereby accelerating inference. We further propose a verification and resampling strategy: the backbone model verifies each predicted token and resamples any tokens that do not meet the quality criteria. In addition, we propose a distillation strategy that trains the lightweight decoding heads by distilling from the backbone model, encouraging their prediction distributions to align and improving the success rate of speculative predictions. Extensive experiments demonstrate that our method achieves a 1.7x speedup without sacrificing generation quality. Our code will be released.
☆ Rational complex Bezier curves
In this paper we develop the formalism of rational complex Bezier curves. This framework is a simple extension of the CAD paradigm, since it describes arc of curves in terms of control polygons and weights, which are extended to complex values. One of the major advantages of this extension is that we may make use of two different groups of projective transformations. Besides the group of projective transformations of the real plane, we have the group of complex projective transformations. This allows us to apply useful transformations like the geometric inversion to curves in design. In addition to this, the use of the complex formulation allows to lower the degree of the curves in some cases. This can be checked using the resultant of two polynomials and provides a simple formula for determining whether a rational cubic curve is a conic or not. Examples of application of the formalism to classical curves are included.
comment: 9 pages, 6 figures
☆ Breaking the mould of Social Mixed Reality -- State-of-the-Art and Glossary
This article explores a critical gap in Mixed Reality (MR) technology: while advances have been made, MR still struggles to authentically replicate human embodiment and socio-motor interaction. For MR to enable truly meaningful social experiences, it needs to incorporate multi-modal data streams and multi-agent interaction capabilities. To address this challenge, we present a comprehensive glossary covering key topics such as Virtual Characters and Autonomisation, Responsible AI, Ethics by Design, and the Scientific Challenges of Social MR within Neuroscience, Embodiment, and Technology. Our aim is to drive the transformative evolution of MR technologies that prioritize human-centric innovation, fostering richer digital connections. We advocate for MR systems that enhance social interaction and collaboration between humans and virtual autonomous agents, ensuring inclusivity, ethical design and psychological safety in the process.
comment: pre-print
♻ ☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Our code will be made public after the conference at https://github.com/Ellimac0/Snake-NeRF
♻ ☆ Winding Clearness for Differentiable Point Cloud Optimization SP
We propose to explore the properties of raw point clouds through the \emph{winding clearness}, a concept we first introduce for measuring the clarity of the interior/exterior relationships represented by the winding number field of the point cloud. In geometric modeling, the winding number is a powerful tool for distinguishing the interior and exterior of a given surface $\partial \Omega$, and it has been previously used for point normal orientation and surface reconstruction. In this work, we introduce a novel approach to evaluate and optimize the quality of point clouds based on the winding clearness. We observe that point clouds with less noise generally exhibit better winding clearness. Accordingly, we propose an objective function that quantifies the error in winding clearness, solely utilizing the coordinates of the point clouds. Moreover, we demonstrate that the winding clearness error is differentiable and can serve as a loss function in point cloud processing. We present this observation from two aspects: 1) We update the coordinates of the points by back-propagating the loss function for individual point clouds, resulting in an overall improvement without involving a neural network. 2) We incorporate winding clearness as a geometric constraint in the diffusion-based 3D generative model and update the network parameters to generate point clouds with less noise. Experimental results demonstrate the effectiveness of optimizing the winding clearness in enhancing the point cloud quality. Notably, our method exhibits superior performance in handling noisy point clouds with thin structures, highlighting the benefits of the global perspective enabled by the winding number.
comment: Accepted by Computer-Aided Design through SPM 2025
Robotics 48
☆ Viser: Imperative, Web-based 3D Visualization in Python
We present Viser, a 3D visualization library for computer vision and robotics. Viser aims to bring easy and extensible 3D visualization to Python: we provide a comprehensive set of 3D scene and 2D GUI primitives, which can be used independently with minimal setup or composed to build specialized interfaces. This technical report describes Viser's features, interface, and implementation. Key design choices include an imperative-style API and a web-based viewer, which improve compatibility with modern programming patterns and workflows.
comment: Code and docs: https://viser.studio
☆ Bayesian Optimization applied for accelerated Virtual Validation of the Autonomous Driving Function
Rigorous Verification and Validation (V&V) of Autonomous Driving Functions (ADFs) is paramount for ensuring the safety and public acceptance of Autonomous Vehicles (AVs). Current validation relies heavily on simulation to achieve sufficient test coverage within the Operational Design Domain (ODD) of a vehicle, but exhaustively exploring the vast parameter space of possible scenarios is computationally expensive and time-consuming. This work introduces a framework based on Bayesian Optimization (BO) to accelerate the discovery of critical scenarios. We demonstrate the effectiveness of the framework on an Model Predictive Controller (MPC)-based motion planner, showing that it identifies hazardous situations, such as off-road events, using orders of magnitude fewer simulations than brute-force Design of Experiments (DoE) methods. Furthermore, this study investigates the scalability of the framework in higher-dimensional parameter spaces and its ability to identify multiple, distinct critical regions within the ODD of the motion planner used as the case study .
☆ Explainable Deep Anomaly Detection with Sequential Hypothesis Testing for Robotic Sewer Inspection
Sewer pipe faults, such as leaks and blockages, can lead to severe consequences including groundwater contamination, property damage, and service disruption. Traditional inspection methods rely heavily on the manual review of CCTV footage collected by mobile robots, which is inefficient and susceptible to human error. To automate this process, we propose a novel system incorporating explainable deep learning anomaly detection combined with sequential probability ratio testing (SPRT). The anomaly detector processes single image frames, providing interpretable spatial localisation of anomalies, whilst the SPRT introduces temporal evidence aggregation, enhancing robustness against noise over sequences of image frames. Experimental results demonstrate improved anomaly detection performance, highlighting the benefits of the combined spatiotemporal analysis system for reliable and robust sewer inspection.
☆ Recognizing Actions from Robotic View for Natural Human-Robot Interaction ICCV2025
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.
comment: 8 pages, 4 figures, Accepted to ICCV2025
☆ A Two-Stage Lightweight Framework for Efficient Land-Air Bimodal Robot Autonomous Navigation IROS2025
Land-air bimodal robots (LABR) are gaining attention for autonomous navigation, combining high mobility from aerial vehicles with long endurance from ground vehicles. However, existing LABR navigation methods are limited by suboptimal trajectories from mapping-based approaches and the excessive computational demands of learning-based methods. To address this, we propose a two-stage lightweight framework that integrates global key points prediction with local trajectory refinement to generate efficient and reachable trajectories. In the first stage, the Global Key points Prediction Network (GKPN) was used to generate a hybrid land-air keypoint path. The GKPN includes a Sobel Perception Network (SPN) for improved obstacle detection and a Lightweight Attention Planning Network (LAPN) to improves predictive ability by capturing contextual information. In the second stage, the global path is segmented based on predicted key points and refined using a mapping-based planner to create smooth, collision-free trajectories. Experiments conducted on our LABR platform show that our framework reduces network parameters by 14\% and energy consumption during land-air transitions by 35\% compared to existing approaches. The framework achieves real-time navigation without GPU acceleration and enables zero-shot transfer from simulation to reality during
comment: IROS2025
☆ Operationalization of Scenario-Based Safety Assessment of Automated Driving Systems
Before introducing an Automated Driving System (ADS) on the road at scale, the manufacturer must conduct some sort of safety assurance. To structure and harmonize the safety assurance process, the UNECE WP.29 Working Party on Automated/Autonomous and Connected Vehicles (GRVA) is developing the New Assessment/Test Method (NATM) that indicates what steps need to be taken for safety assessment of an ADS. In this paper, we will show how to practically conduct safety assessment making use of a scenario database, and what additional steps must be taken to fully operationalize the NATM. In addition, we will elaborate on how the use of scenario databases fits with methods developed in the Horizon Europe projects that focus on safety assessment following the NATM approach.
comment: Accepted for publication in proceedings of the 2025 IEEE International Automated Vehicle Validation Conference
☆ Comparing Normalizing Flows with Kernel Density Estimation in Estimating Risk of Automated Driving Systems
The development of safety validation methods is essential for the safe deployment and operation of Automated Driving Systems (ADSs). One of the goals of safety validation is to prospectively evaluate the risk of an ADS dealing with real-world traffic. Scenario-based assessment is a widely-used approach, where test cases are derived from real-world driving data. To allow for a quantitative analysis of the system performance, the exposure of the scenarios must be accurately estimated. The exposure of scenarios at parameter level is expressed using a Probability Density Function (PDF). However, assumptions about the PDF, such as parameter independence, can introduce errors, while avoiding assumptions often leads to oversimplified models with limited parameters to mitigate the curse of dimensionality. This paper considers the use of Normalizing Flows (NF) for estimating the PDF of the parameters. NF are a class of generative models that transform a simple base distribution into a complex one using a sequence of invertible and differentiable mappings, enabling flexible, high-dimensional density estimation without restrictive assumptions on the PDF's shape. We demonstrate the effectiveness of NF in quantifying risk and risk uncertainty of an ADS, comparing its performance with Kernel Density Estimation (KDE), a traditional method for non-parametric PDF estimation. While NF require more computational resources compared to KDE, NF is less sensitive to the curse of dimensionality. As a result, NF can improve risk uncertainty estimation, offering a more precise assessment of an ADS's safety. This work illustrates the potential of NF in scenario-based safety. Future work involves experimenting more with using NF for scenario generation and optimizing the NF architecture, transformation types, and training hyperparameters to further enhance their applicability.
comment: Accepted for publication in proceedings of the 2025 IEEE International Automated Vehicle Validation Conference
☆ Safety Evaluation of Motion Plans Using Trajectory Predictors as Forward Reachable Set Estimators
The advent of end-to-end autonomy stacks - often lacking interpretable intermediate modules - has placed an increased burden on ensuring that the final output, i.e., the motion plan, is safe in order to validate the safety of the entire stack. This requires a safety monitor that is both complete (able to detect all unsafe plans) and sound (does not flag safe plans). In this work, we propose a principled safety monitor that leverages modern multi-modal trajectory predictors to approximate forward reachable sets (FRS) of surrounding agents. By formulating a convex program, we efficiently extract these data-driven FRSs directly from the predicted state distributions, conditioned on scene context such as lane topology and agent history. To ensure completeness, we leverage conformal prediction to calibrate the FRS and guarantee coverage of ground-truth trajectories with high probability. To preserve soundness in out-of-distribution (OOD) scenarios or under predictor failure, we introduce a Bayesian filter that dynamically adjusts the FRS conservativeness based on the predictor's observed performance. We then assess the safety of the ego vehicle's motion plan by checking for intersections with these calibrated FRSs, ensuring the plan remains collision-free under plausible future behaviors of others. Extensive experiments on the nuScenes dataset show our approach significantly improves soundness while maintaining completeness, offering a practical and reliable safety monitor for learned autonomy stacks.
☆ Improving Generalization Ability of Robotic Imitation Learning by Resolving Causal Confusion in Observations
Recent developments in imitation learning have considerably advanced robotic manipulation. However, current techniques in imitation learning can suffer from poor generalization, limiting performance even under relatively minor domain shifts. In this work, we aim to enhance the generalization capabilities of complex imitation learning algorithms to handle unpredictable changes from the training environments to deployment environments. To avoid confusion caused by observations that are not relevant to the target task, we propose to explicitly learn the causal relationship between observation components and expert actions, employing a framework similar to [6], where a causal structural function is learned by intervention on the imitation learning policy. Disentangling the feature representation from image input as in [6] is hard to satisfy in complex imitation learning process in robotic manipulation, we theoretically clarify that this requirement is not necessary in causal relationship learning. Therefore, we propose a simple causal structure learning framework that can be easily embedded in recent imitation learning architectures, such as the Action Chunking Transformer [31]. We demonstrate our approach using a simulation of the ALOHA [31] bimanual robot arms in Mujoco, and show that the method can considerably mitigate the generalization problem of existing complex imitation learning algorithms.
comment: 13 pages
☆ In-Situ Soil-Property Estimation and Bayesian Mapping with a Simulated Compact Track Loader
Existing earthmoving autonomy is largely confined to highly controlled and well-characterized environments due to the complexity of vehicle-terrain interaction dynamics and the partial observability of the terrain resulting from unknown and spatially varying soil conditions. In this chapter, a a soil-property mapping system is proposed to extend the environmental state, in order to overcome these restrictions and facilitate development of more robust autonomous earthmoving. A GPU accelerated elevation mapping system is extended to incorporate a blind mapping component which traces the movement of the blade through the terrain to displace and erode intersected soil, enabling separately tracking undisturbed and disturbed soil. Each interaction is approximated as a flat blade moving through a locally homogeneous soil, enabling modeling of cutting forces using the fundamental equation of earthmoving (FEE). Building upon our prior work on in situ soil-property estimation, a method is devised to extract approximate geometric parameters of the model given the uneven terrain, and an improved physics infused neural network (PINN) model is developed to predict soil properties and uncertainties of these estimates. A simulation of a compact track loader (CTL) with a blade attachment is used to collect data to train the PINN model. Post-training, the model is leveraged online by the mapping system to track soil property estimates spatially as separate layers in the map, with updates being performed in a Bayesian manner. Initial experiments show that the system accurately highlights regions requiring higher relative interaction forces, indicating the promise of this approach in enabling soil-aware planning for autonomous terrain shaping.
comment: 29 pages, 12 figures, 5 algorithms, ISTVS 2025
☆ FLORES: A Reconfigured Wheel-Legged Robot for Enhanced Steering and Adaptability
Wheel-legged robots integrate the agility of legs for navigating rough terrains while harnessing the efficiency of wheels for smooth surfaces. However, most existing designs do not fully capitalize on the benefits of both legged and wheeled structures, which limits overall system flexibility and efficiency. We present FLORES (reconfigured wheel-legged robot for enhanced steering and adaptability), a novel wheel-legged robot design featuring a distinctive front-leg configuration that sets it beyond standard design approaches. Specifically, FLORES replaces the conventional hip-roll degree of freedom (DoF) of the front leg with hip-yaw DoFs, and this allows for efficient movement on flat surfaces while ensuring adaptability when navigating complex terrains. This innovative design facilitates seamless transitions between different locomotion modes (i.e., legged locomotion and wheeled locomotion) and optimizes the performance across varied environments. To fully exploit FLORES's mechanical capabilities, we develop a tailored reinforcement learning (RL) controller that adapts the Hybrid Internal Model (HIM) with a customized reward structure optimized for our unique mechanical configuration. This framework enables the generation of adaptive, multi-modal locomotion strategies that facilitate smooth transitions between wheeled and legged movements. Furthermore, our distinctive joint design enables the robot to exhibit novel and highly efficient locomotion gaits that capitalize on the synergistic advantages of both locomotion modes. Through comprehensive experiments, we demonstrate FLORES's enhanced steering capabilities, improved navigation efficiency, and versatile locomotion across various terrains. The open-source project can be found at https://github.com/ZhichengSong6/FLORES-A-Reconfigured-Wheel-Legged-Robot-for-Enhanced-Steering-and-Adaptability.git.
☆ Beyond Rigid AI: Towards Natural Human-Machine Symbiosis for Interoperative Surgical Assistance
Emerging surgical data science and robotics solutions, especially those designed to provide assistance in situ, require natural human-machine interfaces to fully unlock their potential in providing adaptive and intuitive aid. Contemporary AI-driven solutions remain inherently rigid, offering limited flexibility and restricting natural human-machine interaction in dynamic surgical environments. These solutions rely heavily on extensive task-specific pre-training, fixed object categories, and explicit manual-prompting. This work introduces a novel Perception Agent that leverages speech-integrated prompt-engineered large language models (LLMs), segment anything model (SAM), and any-point tracking foundation models to enable a more natural human-machine interaction in real-time intraoperative surgical assistance. Incorporating a memory repository and two novel mechanisms for segmenting unseen elements, Perception Agent offers the flexibility to segment both known and unseen elements in the surgical scene through intuitive interaction. Incorporating the ability to memorize novel elements for use in future surgeries, this work takes a marked step towards human-machine symbiosis in surgical procedures. Through quantitative analysis on a public dataset, we show that the performance of our agent is on par with considerably more labor-intensive manual-prompting strategies. Qualitatively, we show the flexibility of our agent in segmenting novel elements (instruments, phantom grafts, and gauze) in a custom-curated dataset. By offering natural human-machine interaction and overcoming rigidity, our Perception Agent potentially brings AI-based real-time assistance in dynamic surgical environments closer to reality.
☆ Experimentally-Driven Analysis of Stability in Connected Vehicle Platooning: Insights and Control Strategies
This paper presents the development of a tangible platform for demonstrating the practical implementation of cooperative adaptive cruise control (CACC) systems, an enhancement to the standard adaptive cruise control (ACC) concept by means of Vehicle-to-Everything (V2X) communication. It involves a detailed examination of existing longitudinal controllers and their performance in homogeneous vehicle platoons. Moreover, extensive tests are conducted using multiple autonomous experimental vehicle platform topologies to verify the effectiveness of the controller. The outcomes from both simulations and field tests affirm the substantial benefits of the proposed CACC platooning approach in longitudinal vehicle platooning scenarios. This research is crucial due to a notable gap in the existing literature; while numerous studies focus on simulated vehicle platooning systems, there is lack of research demonstrating these controllers on physical vehicle systems or robot platforms. This paper seeks to fill this gap by providing a practical demonstration of CACC systems in action, showcasing their potential for real-world application in intelligent transportation systems.
☆ Vision-Language Fusion for Real-Time Autonomous Driving: Goal-Centered Cross-Attention of Camera, HD-Map, & Waypoints
Autonomous cars need geometric accuracy and semantic understanding to navigate complex environments, yet most stacks handle them separately. We present XYZ-Drive, a single vision-language model that reads a front-camera frame, a 25m $\times$ 25m overhead map, and the next waypoint, then outputs steering and speed. A lightweight goal-centered cross-attention layer lets waypoint tokens highlight relevant image and map patches, supporting both action and textual explanations, before the fused tokens enter a partially fine-tuned LLaMA-3.2 11B model. On the MD-NEX Outdoor-Driving benchmark XYZ-Drive attains 95% success and 0.80 Success weighted by Path Length (SPL), surpassing PhysNav-DG by 15%. and halving collisions, all while significantly improving efficiency by using only a single branch. Sixteen ablations explain the gains. Removing any modality (vision, waypoint, map) drops success by up to 11%, confirming their complementary roles and rich connections. Replacing goal-centered attention with simple concatenation cuts 3% in performance, showing query-based fusion injects map knowledge more effectively. Keeping the transformer frozen loses 5%, showing the importance of fine-tuning when applying VLMs for specific tasks such as autonomous driving. Coarsening map resolution from 10 cm to 40 cm blurs lane edges and raises crash rate. Overall, these results demonstrate that early, token-level fusion of intent and map layout enables accurate, transparent, real-time driving.
comment: 5 pages
☆ In-between Motion Generation Based Multi-Style Quadruped Robot Locomotion
Quadruped robots face persistent challenges in achieving versatile locomotion due to limitations in reference motion data diversity. To address these challenges, this approach introduces an in-between motion generation based multi-style quadruped robot locomotion framework, integrating synergistic advances in motion generation and imitation learning. Our approach establishes a unified pipeline addressing two fundamental aspects: First, we propose a CVAE based motion generator, synthesizing multi-style dynamically feasible locomotion sequences between arbitrary start and end states. By embedding physical constraints and leveraging joint poses based phase manifold continuity, this component produces physically plausible motions spanning multiple gait modalities while ensuring kinematic compatibility with robotic morphologies. Second, we adopt the adversarial motion priors algorithm. We validate the effectiveness of generated motion data in enhancing controller stability and improving velocity tracking performance. The proposed framework demonstrates significant improvements in velocity tracking and deployment stability. We successfully deploy the framework on a real-world quadruped robot, and the experimental validation confirms the framework's capability to generate and execute complex motion profiles, including gallop, tripod, trotting and pacing.
☆ A Certifably Correct Algorithm for Generalized Robot-World and Hand-Eye Calibration
Automatic extrinsic sensor calibration is a fundamental problem for multi-sensor platforms. Reliable and general-purpose solutions should be computationally efficient, require few assumptions about the structure of the sensing environment, and demand little effort from human operators. Since the engineering effort required to obtain accurate calibration parameters increases with the number of sensors deployed, robotics researchers have pursued methods requiring few assumptions about the sensing environment and minimal effort from human operators. In this work, we introduce a fast and certifiably globally optimal algorithm for solving a generalized formulation of the $\textit{robot-world and hand-eye calibration}$ (RWHEC) problem. The formulation of RWHEC presented is "generalized" in that it supports the simultaneous estimation of multiple sensor and target poses, and permits the use of monocular cameras that, alone, are unable to measure the scale of their environments. In addition to demonstrating our method's superior performance over existing solutions, we derive novel identifiability criteria and establish $\textit{a priori}$ guarantees of global optimality for problem instances with bounded measurement errors. We also introduce a complementary Lie-algebraic local solver for RWHEC and compare its performance with our global method and prior art. Finally, we provide a free and open-source implementation of our algorithms and experiments.
comment: 25 pages, 10 figures, submitted to the International Journal of Robotics Research
☆ Early Goal-Guided Multi-Scale Fusion for Real-Time Vision-Language Driving
Autonomous vehicles must react in milliseconds while reasoning about road geometry and traffic intent to navigate complex situations. We introduce NovaDrive, a single-branch vision-language architecture that processes front-camera images, HD-map tiles, LiDAR depth, and textual waypoints in a single branch. A lightweight, two-stage cross-attention block first aligns waypoint tokens with the HD map, then refines attention over fine-grained image and depth patches. Coupled with a novel smoothness loss that discourages abrupt steering and speed changes, this design eliminates the need for recurrent memory. We fine-tune the top 15 layers of an 11B LLaMA-3.2 vision-language backbone, enabling real-time inference. On the nuScenes / Waymo subset of the MD-NEX Outdoor benchmark, NovaDrive raises success rate to 84% (+4%), boosts path-efficiency (SPL) to 0.66 (+0.11), and reduces collision frequency from 2.6% to 1.2% (-1.4%) relative to the previous state-of-the-art. Our ablations confirm that waypoint tokens, partial VLM fine-tuning, and the cross-attention fusion each contribute the most to these gains. Beyond safety, NovaDrive's shorter routes (resulting from the novel smoothness loss) translate to lower fuel or battery usage, pointing toward leaner, more easily updated driving stacks. NovaDrive can be extended to other embodied-AI domains as well.
comment: 6 pages
☆ Learning to Prune Branches in Modern Tree-Fruit Orchards
Dormant tree pruning is labor-intensive but essential to maintaining modern highly-productive fruit orchards. In this work we present a closed-loop visuomotor controller for robotic pruning. The controller guides the cutter through a cluttered tree environment to reach a specified cut point and ensures the cutters are perpendicular to the branch. We train the controller using a novel orchard simulation that captures the geometric distribution of branches in a target apple orchard configuration. Unlike traditional methods requiring full 3D reconstruction, our controller uses just optical flow images from a wrist-mounted camera. We deploy our learned policy in simulation and the real-world for an example V-Trellis envy tree with zero-shot transfer, achieving a 30% success rate -- approximately half the performance of an oracle planner.
♻ ☆ Multi-robot LiDAR SLAM: a practical case study in underground tunnel environments
Multi-robot SLAM aims at localizing and building a map with multiple robots, interacting with each other. In the work described in this article, we analyze the pipeline of a decentralized LiDAR SLAM system to study the current limitations of the state of the art, and we discover a significant source of failures, i.e., that the loop detection is the source of too many false positives. We therefore develop and propose a new heuristic to overcome these limitations. The environment taken as reference in this work is the highly challenging case of underground tunnels. We also highlight potential new research areas still under-explored.
comment: 14 pages, 14 figures
♻ ☆ Decision Transformer-Based Drone Trajectory Planning with Dynamic Safety-Efficiency Trade-Offs IROS
A drone trajectory planner should be able to dynamically adjust the safety-efficiency trade-off according to varying mission requirements in unknown environments. Although traditional polynomial-based planners offer computational efficiency and smooth trajectory generation, they require expert knowledge to tune multiple parameters to adjust this trade-off. Moreover, even with careful tuning, the resulting adjustment may fail to achieve the desired trade-off. Similarly, although reinforcement learning-based planners are adaptable in unknown environments, they do not explicitly address the safety-efficiency trade-off. To overcome this limitation, we introduce a Decision Transformer-based trajectory planner that leverages a single parameter, Return-to-Go (RTG), as a \emph{temperature parameter} to dynamically adjust the safety-efficiency trade-off. In our framework, since RTG intuitively measures the safety and efficiency of a trajectory, RTG tuning does not require expert knowledge. We validate our approach using Gazebo simulations in both structured grid and unstructured random environments. The experimental results demonstrate that our planner can dynamically adjust the safety-efficiency trade-off by simply tuning the RTG parameter. Furthermore, our planner outperforms existing baseline methods across various RTG settings, generating safer trajectories when tuned for safety and more efficient trajectories when tuned for efficiency. Real-world experiments further confirm the reliability and practicality of our proposed planner.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ Spatial Language Likelihood Grounding Network for Bayesian Fusion of Human-Robot Observations
Fusing information from human observations can help robots overcome sensing limitations in collaborative tasks. However, an uncertainty-aware fusion framework requires a grounded likelihood representing the uncertainty of human inputs. This paper presents a Feature Pyramid Likelihood Grounding Network (FP-LGN) that grounds spatial language by learning relevant map image features and their relationships with spatial relation semantics. The model is trained as a probability estimator to capture aleatoric uncertainty in human language using three-stage curriculum learning. Results showed that FP-LGN matched expert-designed rules in mean Negative Log-Likelihood (NLL) and demonstrated greater robustness with lower standard deviation. Collaborative sensing results demonstrated that the grounded likelihood successfully enabled uncertainty-aware fusion of heterogeneous human language observations and robot sensor measurements, achieving significant improvements in human-robot collaborative task performance.
comment: Accepted to the 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Supplementary video: https://cu-asl.github.io/fp-lgn/
♻ ☆ $S^2M^2$: Scalable Stereo Matching Model for Reliable Depth Estimation ICCV
The pursuit of a generalizable stereo matching model, capable of performing well across varying resolutions and disparity ranges without dataset-specific fine-tuning, has revealed a fundamental trade-off. Iterative local search methods achieve high scores on constrained benchmarks, but their core mechanism inherently limits the global consistency required for true generalization. However, global matching architectures, while theoretically more robust, have historically been rendered infeasible by prohibitive computational and memory costs. We resolve this dilemma with $S^2M^2$: a global matching architecture that achieves state-of-the-art accuracy and high efficiency without relying on cost volume filtering or deep refinement stacks. Our design integrates a multi-resolution transformer for robust long-range correspondence, trained with a novel loss function that concentrates probability on feasible matches. This approach enables a more robust joint estimation of disparity, occlusion, and confidence. $S^2M^2$ establishes a new state of the art on Middlebury v3 and ETH3D benchmarks, significantly outperforming prior methods in most metrics while reconstructing high-quality details with competitive efficiency.
comment: 8 pages, 5 figures, ICCV accepted paper
♻ ☆ Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving
Vision-language models (VLMs) have become a promising approach to enhancing perception and decision-making in autonomous driving. The gap remains in applying VLMs to understand complex scenarios interacting with pedestrians and efficient vehicle deployment. In this paper, we propose a knowledge distillation method that transfers knowledge from large-scale vision-language foundation models to efficient vision networks, and we apply it to pedestrian behavior prediction and scene understanding tasks, achieving promising results in generating more diverse and comprehensive semantic attributes. We also utilize multiple pre-trained models and ensemble techniques to boost the model's performance. We further examined the effectiveness of the model after knowledge distillation; the results show significant metric improvements in open-vocabulary perception and trajectory prediction tasks, which can potentially enhance the end-to-end performance of autonomous driving.
♻ ☆ Distance and Collision Probability Estimation from Gaussian Surface Models IROS 2025
This paper describes continuous-space methodologies to estimate the collision probability, Euclidean distance and gradient between an ellipsoidal robot model and an environment surface modeled as a set of Gaussian distributions. Continuous-space collision probability estimation is critical for uncertainty-aware motion planning. Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations and enable navigation in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds, which is computationally expensive for large workspaces. Recent advances in Gaussian surface modeling (e.g. mixture models, splatting) enable compressed and high-fidelity surface representations. Few methods exist to estimate continuous-space occupancy from such models. They require Gaussians to model free space and are unable to estimate the collision probability, Euclidean distance and gradient for an ellipsoidal robot. The proposed methods bridge this gap by extending prior work in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to Gaussian surface models. A geometric blending approach is also proposed to improve collision probability estimation. The approaches are evaluated with numerical 2D and 3D experiments using real-world point cloud data. Methods for efficient calculation of these quantities are demonstrated to execute within a few microseconds per ellipsoid pair using a single-thread on low-power CPUs of modern embedded computers
comment: Accepted at IROS 2025
UAV See, UGV Do: Aerial Imagery and Virtual Teach Enabling Zero-Shot Ground Vehicle Repeat IROS 2025
This paper presents Virtual Teach and Repeat (VirT&R): an extension of the Teach and Repeat (T&R) framework that enables GPS-denied, zero-shot autonomous ground vehicle navigation in untraversed environments. VirT&R leverages aerial imagery captured for a target environment to train a Neural Radiance Field (NeRF) model so that dense point clouds and photo-textured meshes can be extracted. The NeRF mesh is used to create a high-fidelity simulation of the environment for piloting an unmanned ground vehicle (UGV) to virtually define a desired path. The mission can then be executed in the actual target environment by using NeRF-generated point cloud submaps associated along the path and an existing LiDAR Teach and Repeat (LT&R) framework. We benchmark the repeatability of VirT&R on over 12 km of autonomous driving data using physical markings that allow a sim-to-real lateral path-tracking error to be obtained and compared with LT&R. VirT&R achieved measured root mean squared errors (RMSE) of 19.5 cm and 18.4 cm in two different environments, which are slightly less than one tire width (24 cm) on the robot used for testing, and respective maximum errors were 39.4 cm and 47.6 cm. This was done using only the NeRF-derived teach map, demonstrating that VirT&R has similar closed-loop path-tracking performance to LT&R but does not require a human to manually teach the path to the UGV in the actual environment.
comment: 8 pages, 8 figures, accepted to IROS 2025
♻ ☆ Resilient Multi-Robot Target Tracking with Sensing and Communication Danger Zones
Multi-robot collaboration for target tracking in adversarial environments poses significant challenges, including system failures, dynamic priority shifts, and other unpredictable factors. These challenges become even more pronounced when the environment is unknown. In this paper, we propose a resilient coordination framework for multi-robot, multi-target tracking in environments with unknown sensing and communication danger zones. We consider scenarios where failures caused by these danger zones are probabilistic and temporary, allowing robots to escape from danger zones to minimize the risk of future failures. We formulate this problem as a nonlinear optimization with soft chance constraints, enabling real-time adjustments to robot behaviors based on varying types of dangers and failures. This approach dynamically balances target tracking performance and resilience, adapting to evolving sensing and communication conditions in real-time. To validate the effectiveness of the proposed method, we assess its performance across various tracking scenarios, benchmark it against methods without resilient adaptation and collaboration, and conduct several real-world experiments.
♻ ☆ Free-Gate: Planning, Control And Policy Composition via Free Energy Gating
We consider the problem of optimally composing a set of primitives to tackle planning and control tasks. To address this problem, we introduce a free energy computational model for planning and control via policy composition: Free-Gate. Within Free-Gate, control primitives are combined via a gating mechanism that minimizes variational free energy. This composition problem is formulated as a finite-horizon optimal control problem, which we prove remains convex even when the cost is not convex in states/actions and the environment is nonlinear, stochastic and non-stationary. We develop an algorithm that computes the optimal primitives composition and demonstrate its effectiveness via in-silico and hardware experiments on an application involving robot navigation in an environment with obstacles. The experiments highlight that Free-Gate enables the robot to navigate to the destination despite only having available simple motor primitives that, individually, could not fulfill the task.
comment: 15 pages, 2 figures
Perception-aware Planning for Quadrotor Flight in Unknown and Feature-limited Environments IROS
Various studies on perception-aware planning have been proposed to enhance the state estimation accuracy of quadrotors in visually degraded environments. However, many existing methods heavily rely on prior environmental knowledge and face significant limitations in previously unknown environments with sparse localization features, which greatly limits their practical application. In this paper, we present a perception-aware planning method for quadrotor flight in unknown and feature-limited environments that properly allocates perception resources among environmental information during navigation. We introduce a viewpoint transition graph that allows for the adaptive selection of local target viewpoints, which guide the quadrotor to efficiently navigate to the goal while maintaining sufficient localizability and without being trapped in feature-limited regions. During the local planning, a novel yaw trajectory generation method that simultaneously considers exploration capability and localizability is presented. It constructs a localizable corridor via feature co-visibility evaluation to ensure localization robustness in a computationally efficient way. Through validations conducted in both simulation and real-world experiments, we demonstrate the feasibility and real-time performance of the proposed method. The source code will be released to benefit the community.
comment: Accepted by IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ EmojiVoice: Towards long-term controllable expressivity in robot speech
Humans vary their expressivity when speaking for extended periods to maintain engagement with their listener. Although social robots tend to be deployed with ``expressive'' joyful voices, they lack this long-term variation found in human speech. Foundation model text-to-speech systems are beginning to mimic the expressivity in human speech, but they are difficult to deploy offline on robots. We present EmojiVoice, a free, customizable text-to-speech (TTS) toolkit that allows social roboticists to build temporally variable, expressive speech on social robots. We introduce emoji-prompting to allow fine-grained control of expressivity on a phase level and use the lightweight Matcha-TTS backbone to generate speech in real-time. We explore three case studies: (1) a scripted conversation with a robot assistant, (2) a storytelling robot, and (3) an autonomous speech-to-speech interactive agent. We found that using varied emoji prompting improved the perception and expressivity of speech over a long period in a storytelling task, but expressive voice was not preferred in the assistant use case.
comment: Accepted to RO-MAN 2025, Demo at HRI 2025 : https://dl.acm.org/doi/10.5555/3721488.3721774 Project webpage here: https://rosielab.github.io/emojivoice/ Toolbox here: https://github.com/rosielab/emojivoice
♻ ☆ TartanGround: A Large-Scale Dataset for Ground Robot Perception and Navigation IROS 2025
We present TartanGround, a large-scale, multi-modal dataset to advance the perception and autonomy of ground robots operating in diverse environments. This dataset, collected in various photorealistic simulation environments includes multiple RGB stereo cameras for 360-degree coverage, along with depth, optical flow, stereo disparity, LiDAR point clouds, ground truth poses, semantic segmented images, and occupancy maps with semantic labels. Data is collected using an integrated automatic pipeline, which generates trajectories mimicking the motion patterns of various ground robot platforms, including wheeled and legged robots. We collect 910 trajectories across 70 environments, resulting in 1.5 million samples. Evaluations on occupancy prediction and SLAM tasks reveal that state-of-the-art methods trained on existing datasets struggle to generalize across diverse scenes. TartanGround can serve as a testbed for training and evaluation of a broad range of learning-based tasks, including occupancy prediction, SLAM, neural scene representation, perception-based navigation, and more, enabling advancements in robotic perception and autonomy towards achieving robust models generalizable to more diverse scenarios. The dataset and codebase are available on the webpage: https://tartanair.org/tartanground
comment: Accepted for publication to IEEE/RSJ IROS 2025
♻ ☆ Swing Leg Motion Strategy for Heavy-load Legged Robot Based on Force Sensing
The heavy-load legged robot has strong load carrying capacity and can adapt to various unstructured terrains. But the large weight results in higher requirements for motion stability and environmental perception ability. In order to utilize force sensing information to improve its motion performance, in this paper, we propose a finite state machine model for the swing leg in the static gait by imitating the movement of the elephant. Based on the presence or absence of additional terrain information, different trajectory planning strategies are provided for the swing leg to enhance the success rate of stepping and save energy. The experimental results on a novel quadruped robot show that our method has strong robustness and can enable heavy-load legged robots to pass through various complex terrains autonomously and smoothly.
comment: The manuscript is withdrawn due to ongoing major revisions and improvements to the methodology and experimental validation
♻ ☆ AffordDexGrasp: Open-set Language-guided Dexterous Grasp with Generalizable-Instructive Affordance ICCV 2025
Language-guided robot dexterous generation enables robots to grasp and manipulate objects based on human commands. However, previous data-driven methods are hard to understand intention and execute grasping with unseen categories in the open set. In this work, we explore a new task, Open-set Language-guided Dexterous Grasp, and find that the main challenge is the huge gap between high-level human language semantics and low-level robot actions. To solve this problem, we propose an Affordance Dexterous Grasp (AffordDexGrasp) framework, with the insight of bridging the gap with a new generalizable-instructive affordance representation. This affordance can generalize to unseen categories by leveraging the object's local structure and category-agnostic semantic attributes, thereby effectively guiding dexterous grasp generation. Built upon the affordance, our framework introduces Affordance Flow Matching (AFM) for affordance generation with language as input, and Grasp Flow Matching (GFM) for generating dexterous grasp with affordance as input. To evaluate our framework, we build an open-set table-top language-guided dexterous grasp dataset. Extensive experiments in the simulation and real worlds show that our framework surpasses all previous methods in open-set generalization.
comment: Accepted by ICCV 2025.Project page: https://isee-laboratory.github.io/AffordDexGrasp/
♻ ☆ Trajectory First: A Curriculum for Discovering Diverse Policies
Being able to solve a task in diverse ways makes agents more robust to task variations and less prone to local optima. In this context, constrained diversity optimization has emerged as a powerful reinforcement learning (RL) framework to train a diverse set of agents in parallel. However, existing constrained-diversity RL methods often under-explore in complex tasks such as robotic manipulation, leading to a lack in policy diversity. To improve diversity optimization in RL, we therefore propose a curriculum that first explores at the trajectory level before learning step-based policies. In our empirical evaluation, we provide novel insights into the shortcoming of skill-based diversity optimization, and demonstrate empirically that our curriculum improves the diversity of the learned skills.
comment: Accepted into the Inductive Biases in Reinforcement Learning Workshop at RLC 2025
♻ ☆ SPADE: Towards Scalable Path Planning Architecture on Actionable Multi-Domain 3D Scene Graphs IROS 2025
In this work, we introduce SPADE, a path planning framework designed for autonomous navigation in dynamic environments using 3D scene graphs. SPADE combines hierarchical path planning with local geometric awareness to enable collision-free movement in dynamic scenes. The framework bifurcates the planning problem into two: (a) solving the sparse abstract global layer plan and (b) iterative path refinement across denser lower local layers in step with local geometric scene navigation. To ensure efficient extraction of a feasible route in a dense multi-task domain scene graphs, the framework enforces informed sampling of traversable edges prior to path-planning. This removes extraneous information not relevant to path-planning and reduces the overall planning complexity over a graph. Existing approaches address the problem of path planning over scene graphs by decoupling hierarchical and geometric path evaluation processes. Specifically, this results in an inefficient replanning over the entire scene graph when encountering path obstructions blocking the original route. In contrast, SPADE prioritizes local layer planning coupled with local geometric scene navigation, enabling navigation through dynamic scenes while maintaining efficiency in computing a traversable route. We validate SPADE through extensive simulation experiments and real-world deployment on a quadrupedal robot, demonstrating its efficacy in handling complex and dynamic scenarios.
comment: Accepted to IROS 2025
♻ ☆ I Know You're Listening: Adaptive Voice for HRI IROS 2023
While the use of social robots for language teaching has been explored, there remains limited work on a task-specific synthesized voices for language teaching robots. Given that language is a verbal task, this gap may have severe consequences for the effectiveness of robots for language teaching tasks. We address this lack of L2 teaching robot voices through three contributions: 1. We address the need for a lightweight and expressive robot voice. Using a fine-tuned version of Matcha-TTS, we use emoji prompting to create an expressive voice that shows a range of expressivity over time. The voice can run in real time with limited compute resources. Through case studies, we found this voice more expressive, socially appropriate, and suitable for long periods of expressive speech, such as storytelling. 2. We explore how to adapt a robot's voice to physical and social ambient environments to deploy our voices in various locations. We found that increasing pitch and pitch rate in noisy and high-energy environments makes the robot's voice appear more appropriate and makes it seem more aware of its current environment. 3. We create an English TTS system with improved clarity for L2 listeners using known linguistic properties of vowels that are difficult for these listeners. We used a data-driven, perception-based approach to understand how L2 speakers use duration cues to interpret challenging words with minimal tense (long) and lax (short) vowels in English. We found that the duration of vowels strongly influences the perception for L2 listeners and created an "L2 clarity mode" for Matcha-TTS that applies a lengthening to tense vowels while leaving lax vowels unchanged. Our clarity mode was found to be more respectful, intelligible, and encouraging than base Matcha-TTS while reducing transcription errors in these challenging tense/lax minimal pairs.
comment: PhD Thesis Simon Fraser University https://summit.sfu.ca/item/39353 Read the Room: IROS 2023, Mmm whatcha say?: INTERSPEECH 2024, Emojivoice: RO-MAN 2025, You sound a little tense: SSW 2025. Thesis presentation here: https://www.youtube.com/watch?v=9BcEwqYOMYI
♻ ☆ An Actionable Hierarchical Scene Representation Enhancing Autonomous Inspection Missions in Unknown Environments IROS 2025
In this article, we present the Layered Semantic Graphs (LSG), a novel actionable hierarchical scene graph, fully integrated with a multi-modal mission planner, the FLIE: A First-Look based Inspection and Exploration planner. The novelty of this work stems from aiming to address the task of maintaining an intuitive and multi-resolution scene representation, while simultaneously offering a tractable foundation for planning and scene understanding during an ongoing inspection mission of apriori unknown targets-of-interest in an unknown environment. The proposed LSG scheme is composed of locally nested hierarchical graphs, at multiple layers of abstraction, with the abstract concepts grounded on the functionality of the integrated FLIE planner. Furthermore, LSG encapsulates real-time semantic segmentation models that offer extraction and localization of desired semantic elements within the hierarchical representation. This extends the capability of the inspection planner, which can then leverage LSG to make an informed decision to inspect a particular semantic of interest. We also emphasize the hierarchical and semantic path-planning capabilities of LSG, which could extend inspection missions by improving situational awareness for human operators in an unknown environment. The validity of the proposed scheme is proven through extensive evaluations of the proposed architecture in simulations, as well as experimental field deployments on a Boston Dynamics Spot quadruped robot in urban outdoor environment settings.
comment: Accepted to IROS 2025
♻ ☆ Coverage Metrics for a Scenario Database for the Scenario-Based Assessment of Automated Driving Systems
Automated Driving Systems (ADSs) have the potential to make mobility services available and safe for all. A multi-pillar Safety Assessment Framework (SAF) has been proposed for the type-approval process of ADSs. The SAF requires that the test scenarios for the ADS adequately covers the Operational Design Domain (ODD) of the ADS. A common method for generating test scenarios involves basing them on scenarios identified and characterized from driving data. This work addresses two questions when collecting scenarios from driving data. First, do the collected scenarios cover all relevant aspects of the ADS' ODD? Second, do the collected scenarios cover all relevant aspects that are in the driving data, such that no potentially important situations are missed? This work proposes coverage metrics that provide a quantitative answer to these questions. The proposed coverage metrics are illustrated by means of an experiment in which over 200000 scenarios from 10 different scenario categories are collected from the HighD data set. The experiment demonstrates that a coverage of 100 % can be achieved under certain conditions, and it also identifies which data and scenarios could be added to enhance the coverage outcomes in case a 100 % coverage has not been achieved. Whereas this work presents metrics for the quantification of the coverage of driving data and the identified scenarios, this paper concludes with future research directions, including the quantification of the completeness of driving data and the identified scenarios.
comment: Accepted for the 2024 IEEE International Automated Vehicle Validation (IAVVC 2024) Conference
♻ ☆ Design, Dynamic Modeling and Control of a 2-DOF Robotic Wrist Actuated by Twisted and Coiled Actuators
Artificial muscle-driven modular soft robots exhibit significant potential for executing complex tasks. However, their broader applicability remains constrained by the lack of dynamic model-based control strategies tailored for multi-degree-of-freedom (DOF) configurations. This paper presents a novel design of a 2-DOF robotic wrist, envisioned as a fundamental building block for such advanced robotic systems. The wrist module is actuated by twisted and coiled actuators (TCAs) and utilizes a compact 3RRRR parallel mechanism to achieve a lightweight structure with enhanced motion capability. A comprehensive Lagrangian dynamic model is developed to capture the module's complex nonlinear behavior. Leveraging this model, a nonlinear model predictive controller (NMPC) is designed to ensure accurate trajectory tracking. A physical prototype of the robotic wrist is fabricated, and extensive experiments are performed to validate its motion performance and the fidelity of the proposed dynamic model. Subsequently, comparative evaluations between the NMPC and a conventional PID controller are conducted under various operating conditions. Experimental results demonstrate the effectiveness and robustness of the dynamic model-based control approach in managing the motion of TCA-driven robotic wrists. Finally, to illustrate its practical utility and integrability, the wrist module is incorporated into a multi-segment soft robotic arm, where it successfully executes a trajectory tracking task.
♻ ☆ NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic IoT
Inertial tracking is vital for robotic IoT and has gained popularity thanks to the ubiquity of low-cost inertial measurement units and deep learning-powered tracking algorithms. Existing works, however, have not fully utilized IMU measurements, particularly magnetometers, nor have they maximized the potential of deep learning to achieve the desired accuracy. To address these limitations, we introduce NeurIT, which elevates tracking accuracy to a new level. NeurIT employs a Time-Frequency Block-recurrent Transformer (TF-BRT) at its core, combining both RNN and Transformer to learn representative features in both time and frequency domains. To fully utilize IMU information, we strategically employ body-frame differentiation of magnetometers, considerably reducing the tracking error. We implement NeurIT on a customized robotic platform and conduct evaluation in various indoor environments. Experimental results demonstrate that NeurIT achieves a mere 1-meter tracking error over a 300-meter distance. Notably, it significantly outperforms state-of-the-art baselines by 48.21% on unseen data. Moreover, NeurIT demonstrates robustness in large urban complexes and performs comparably to the visual-inertial approach (Tango Phone) in vision-favored conditions while surpassing it in feature-sparse settings. We believe NeurIT takes an important step forward toward practical neural inertial tracking for ubiquitous and scalable tracking of robotic things. NeurIT is open-sourced here: https://github.com/aiot-lab/NeurIT.
♻ ☆ Aerial Grasping via Maximizing Delta-Arm Workspace Utilization
The workspace limits the operational capabilities and range of motion for the systems with robotic arms. Maximizing workspace utilization has the potential to provide more optimal solutions for aerial manipulation tasks, increasing the system's flexibility and operational efficiency. In this paper, we introduce a novel planning framework for aerial grasping that maximizes workspace utilization. We formulate an optimization problem to optimize the aerial manipulator's trajectory, incorporating task constraints to achieve efficient manipulation. To address the challenge of incorporating the delta arm's non-convex workspace into optimization constraints, we leverage a Multilayer Perceptron (MLP) to map position points to feasibility probabilities.Furthermore, we employ Reversible Residual Networks (RevNet) to approximate the complex forward kinematics of the delta arm, utilizing efficient model gradients to eliminate workspace constraints. We validate our methods in simulations and real-world experiments to demonstrate their effectiveness.
comment: 8 pages, 7 figures
♻ ☆ FOCI: Trajectory Optimization on Gaussian Splats
3D Gaussian Splatting (3DGS) has recently gained popularity as a faster alternative to Neural Radiance Fields (NeRFs) in 3D reconstruction and view synthesis methods. Leveraging the spatial information encoded in 3DGS, this work proposes FOCI (Field Overlap Collision Integral), an algorithm that is able to optimize trajectories directly on the Gaussians themselves. FOCI leverages a novel and interpretable collision formulation for 3DGS using the notion of the overlap integral between Gaussians. Contrary to other approaches, which represent the robot with conservative bounding boxes that underestimate the traversability of the environment, we propose to represent the environment and the robot as Gaussian Splats. This not only has desirable computational properties, but also allows for orientation-aware planning, allowing the robot to pass through very tight and narrow spaces. We extensively test our algorithm in both synthetic and real Gaussian Splats, showcasing that collision-free trajectories for the ANYmal legged robot that can be computed in a few seconds, even with hundreds of thousands of Gaussians making up the environment. The project page and code are available at https://rffr.leggedrobotics.com/works/foci/
comment: 8 pages, 8 figures, Mario Gomez Andreu and Maximum Wilder-Smith contributed equally
♻ ☆ FloPE: Flower Pose Estimation for Precision Pollination IROS 2025
This study presents Flower Pose Estimation (FloPE), a real-time flower pose estimation framework for computationally constrained robotic pollination systems. Robotic pollination has been proposed to supplement natural pollination to ensure global food security due to the decreased population of natural pollinators. However, flower pose estimation for pollination is challenging due to natural variability, flower clusters, and high accuracy demands due to the flowers' fragility when pollinating. This method leverages 3D Gaussian Splatting to generate photorealistic synthetic datasets with precise pose annotations, enabling effective knowledge distillation from a high-capacity teacher model to a lightweight student model for efficient inference. The approach was evaluated on both single and multi-arm robotic platforms, achieving a mean pose estimation error of 0.6 cm and 19.14 degrees within a low computational cost. Our experiments validate the effectiveness of FloPE, achieving up to 78.75% pollination success rate and outperforming prior robotic pollination techniques.
comment: Accepted to IROS 2025. Project page: https://wvu-irl.github.io/flope-irl/
♻ ☆ GRaD-Nav: Efficiently Learning Visual Drone Navigation with Gaussian Radiance Fields and Differentiable Dynamics
Autonomous visual navigation is an essential element in robot autonomy. Reinforcement learning (RL) offers a promising policy training paradigm. However existing RL methods suffer from high sample complexity, poor sim-to-real transfer, and limited runtime adaptability to navigation scenarios not seen during training. These problems are particularly challenging for drones, with complex nonlinear and unstable dynamics, and strong dynamic coupling between control and perception. In this paper, we propose a novel framework that integrates 3D Gaussian Splatting (3DGS) with differentiable deep reinforcement learning (DDRL) to train vision-based drone navigation policies. By leveraging high-fidelity 3D scene representations and differentiable simulation, our method improves sample efficiency and sim-to-real transfer. Additionally, we incorporate a Context-aided Estimator Network (CENet) to adapt to environmental variations at runtime. Moreover, by curriculum training in a mixture of different surrounding environments, we achieve in-task generalization, the ability to solve new instances of a task not seen during training. Drone hardware experiments demonstrate our method's high training efficiency compared to state-of-the-art RL methods, zero shot sim-to-real transfer for real robot deployment without fine tuning, and ability to adapt to new instances within the same task class (e.g. to fly through a gate at different locations with different distractors in the environment). Our simulator and training framework are open-sourced at: https://github.com/Qianzhong-Chen/grad_nav.
♻ ☆ SKiD-SLAM: Robust, Lightweight, and Distributed Multi-Robot LiDAR SLAM in Resource-Constrained Field Environments
Distributed LiDAR SLAM is crucial for achieving efficient robot autonomy and improving the scalability of mapping. However, two issues need to be considered when applying it in field environments: one is resource limitation, and the other is inter/intra-robot association. The resource limitation issue arises when the data size exceeds the processing capacity of the network or memory, especially when utilizing communication systems or onboard computers in the field. The inter/intra-robot association issue occurs due to the narrow convergence region of ICP under large viewpoint differences, triggering many false positive loops and ultimately resulting in an inconsistent global map for multi-robot systems. To tackle these problems, we propose a distributed LiDAR SLAM framework designed for versatile field applications, called SKiD-SLAM. Extending our previous work that solely focused on lightweight place recognition and fast and robust global registration, we present a multi-robot mapping framework that focuses on robust and lightweight inter-robot loop closure in distributed LiDAR SLAM. Through various environmental experiments, we demonstrate that our method is more robust and lightweight compared to other state-of-the-art distributed SLAM approaches, overcoming resource limitation and inter/intra-robot association issues. Also, we validated the field applicability of our approach through mapping experiments in real-world planetary emulation terrain and cave environments, which are in-house datasets. Our code will be available at https://sparolab.github.io/research/skid_slam/.
comment: 8 pages, 10 figures
♻ ☆ Learning Object Compliance via Young's Modulus from Single Grasps using Camera-Based Tactile Sensors
Compliance is a useful parametrization of tactile information that humans often utilize in manipulation tasks. It can be used to inform low-level contact-rich actions or characterize objects at a high-level. In robotic manipulation, existing approaches to estimate compliance have struggled to generalize across both object shape and material. Using camera-based tactile sensors, proprioception, and force measurements, we present a novel approach to estimate object compliance as Young's modulus (E) from parallel grasps. We evaluate our method over a novel dataset of 285 common objects, including a wide array of shapes and materials with Young's moduli ranging from 5.0 kPa to 250 GPa. Combining analytical and data-driven approaches, we develop a hybrid system using a multi-tower neural network to analyze a sequence of tactile images from grasping. This system is shown to estimate the Young's modulus of unseen objects within an order of magnitude at 74.2% accuracy across our dataset. This is an improvement over purely analytical and data-driven baselines which exhibit 28.9% and 65.0% accuracy respectively. Importantly, this estimation system performs irrespective of object geometry and demonstrates increased robustness across material types. Code is available on GitHub and collected data is available on HuggingFace.
♻ ☆ Grasp EveryThing (GET): 1-DoF, 3-Fingered Gripper with Tactile Sensing for Robust Grasping
We introduce the Grasp EveryThing (GET) gripper, a novel 1-DoF, 3-finger design for securely grasping objects of many shapes and sizes. Mounted on a standard parallel jaw actuator, the design features three narrow, tapered fingers arranged in a two-against-one configuration, where the two fingers converge into a V-shape. The GET gripper is more capable of conforming to object geometries and forming secure grasps than traditional designs with two flat fingers. Inspired by the principle of self-similarity, these V-shaped fingers enable secure grasping across a wide range of object sizes. Further to this end, fingers are parametrically designed for convenient resizing and interchangeability across robotic embodiments with a parallel jaw gripper. Additionally, we incorporate a rigid fingernail for ease in manipulating small objects. Tactile sensing can be integrated into the standalone finger via an externally-mounted camera. A neural network was trained to estimate normal force from tactile images with an average validation error of 1.3 N across a diverse set of geometries. In grasping 15 objects and performing 3 tasks via teleoperation, the GET fingers consistently outperformed standard flat fingers. All finger designs, compatible with multiple robotic embodiments, both incorporating and lacking tactile sensing, are available on GitHub.
♻ ☆ Optimizing Start Locations in Ergodic Search for Disaster Response
In disaster response scenarios, deploying robotic teams effectively is crucial for improving situational awareness and enhancing search and rescue operations. The use of robots in search and rescue has been studied but the question of where to start robot deployments has not been addressed. This work addresses the problem of optimally selecting starting locations for robots with heterogeneous capabilities by formulating a joint optimization problem. To determine start locations, this work adds a constraint to the ergodic optimization framework whose minimum assigns robots to start locations. This becomes a little more challenging when the robots are heterogeneous (equipped with different sensing and motion modalities) because not all robots start at the same location, and a more complex adaptation of the aforementioned constraint is applied. Our method assumes access to potential starting locations, which can be obtained from expert knowledge or aerial imagery. We experimentally evaluate the efficacy of our joint optimization approach by comparing it to baseline methods that use fixed starting locations for all robots. Our experimental results show significant gains in coverage performance, with average improvements of 35.98% on synthetic data and 31.91% on real-world data for homogeneous and heterogeneous teams, in terms of the ergodic metric.
♻ ☆ Controlling diverse robots by inferring Jacobian fields with deep networks
Mirroring the complex structures and diverse functions of natural organisms is a long-standing challenge in robotics. Modern fabrication techniques have greatly expanded the feasible hardware, but using these systems requires control software to translate the desired motions into actuator commands. Conventional robots can easily be modeled as rigid links connected by joints, but it remains an open challenge to model and control biologically inspired robots that are often soft or made of several materials, lack sensing capabilities, and may change their material properties with use. Here, we introduce a method that uses deep neural networks to map a video stream of a robot to its visuomotor Jacobian field (the sensitivity of all 3D points to the robot's actuators). Our method enables the control of robots from only a single camera, makes no assumptions about the robots' materials, actuation, or sensing, and is trained without expert intervention by observing the execution of random commands. We demonstrate our method on a diverse set of robot manipulators that vary in actuation, materials, fabrication, and cost. Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot. Because it enables robot control using a generic camera as the only sensor, we anticipate that our work will broaden the design space of robotic systems and serve as a starting point for lowering the barrier to robotic automation.
comment: Project Page: https://sizhe-li.github.io/publication/neural_jacobian_field
Computer Vision and Pattern Recognition 127
☆ Viser: Imperative, Web-based 3D Visualization in Python
We present Viser, a 3D visualization library for computer vision and robotics. Viser aims to bring easy and extensible 3D visualization to Python: we provide a comprehensive set of 3D scene and 2D GUI primitives, which can be used independently with minimal setup or composed to build specialized interfaces. This technical report describes Viser's features, interface, and implementation. Key design choices include an imperative-style API and a web-based viewer, which improve compatibility with modern programming patterns and workflows.
comment: Code and docs: https://viser.studio
☆ LCS: An AI-based Low-Complexity Scaler for Power-Efficient Super-Resolution of Game Content
The increasing complexity of content rendering in modern games has led to a problematic growth in the workload of the GPU. In this paper, we propose an AI-based low-complexity scaler (LCS) inspired by state-of-the-art efficient super-resolution (ESR) models which could offload the workload on the GPU to a low-power device such as a neural processing unit (NPU). The LCS is trained on GameIR image pairs natively rendered at low and high resolution. We utilize adversarial training to encourage reconstruction of perceptually important details, and apply reparameterization and quantization techniques to reduce model complexity and size. In our comparative analysis we evaluate the LCS alongside the publicly available AMD hardware-based Edge Adaptive Scaling Function (EASF) and AMD FidelityFX Super Resolution 1 (FSR1) on five different metrics, and find that the LCS achieves better perceptual quality, demonstrating the potential of ESR models for upscaling on resource-constrained devices.
comment: 8 pages, 3 figures
☆ TR-PTS: Task-Relevant Parameter and Token Selection for Efficient Tuning ICCV 2025
Large pre-trained models achieve remarkable performance in vision tasks but are impractical for fine-tuning due to high computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) methods mitigate this issue by updating only a subset of parameters; however, most existing approaches are task-agnostic, failing to fully exploit task-specific adaptations, which leads to suboptimal efficiency and performance. To address this limitation, we propose Task-Relevant Parameter and Token Selection (TR-PTS), a task-driven framework that enhances both computational efficiency and accuracy. Specifically, we introduce Task-Relevant Parameter Selection, which utilizes the Fisher Information Matrix (FIM) to identify and fine-tune only the most informative parameters in a layer-wise manner, while keeping the remaining parameters frozen. Simultaneously, Task-Relevant Token Selection dynamically preserves the most informative tokens and merges redundant ones, reducing computational overhead. By jointly optimizing parameters and tokens, TR-PTS enables the model to concentrate on task-discriminative information. We evaluate TR-PTS on benchmark, including FGVC and VTAB-1k, where it achieves state-of-the-art performance, surpassing full fine-tuning by 3.40% and 10.35%, respectively. The code are available at https://github.com/synbol/TR-PTS.
comment: Accepted by ICCV 2025
☆ Mesh based segmentation for automated margin line generation on incisors receiving crown treatment
Dental crowns are essential dental treatments for restoring damaged or missing teeth of patients. Recent design approaches of dental crowns are carried out using commercial dental design software. Once a scan of a preparation is uploaded to the software, a dental technician needs to manually define a precise margin line on the preparation surface, which constitutes a non-repeatable and inconsistent procedure. This work proposes a new framework to determine margin lines automatically and accurately using deep learning. A dataset of incisor teeth was provided by a collaborating dental laboratory to train a deep learning segmentation model. A mesh-based neural network was modified by changing its input channels and used to segment the prepared tooth into two regions such that the margin line is contained within the boundary faces separating the two regions. Next, k-fold cross-validation was used to train 5 models, and a voting classifier technique was used to combine their results to enhance the segmentation. After that, boundary smoothing and optimization using the graph cut method were applied to refine the segmentation results. Then, boundary faces separating the two regions were selected to represent the margin line faces. A spline was approximated to best fit the centers of the boundary faces to predict the margin line. Our results show that an ensemble model combined with maximum probability predicted the highest number of successful test cases (7 out of 13) based on a maximum distance threshold of 200 m (representing human error) between the predicted and ground truth point clouds. It was also demonstrated that the better the quality of the preparation, the smaller the divergence between the predicted and ground truth margin lines (Spearman's rank correlation coefficient of -0.683). We provide the train and test datasets for the community.
☆ Tapping into the Black Box: Uncovering Aligned Representations in Pretrained Neural Networks
In this paper we argue that ReLU networks learn an implicit linear model we can actually tap into. We describe that alleged model formally and show that we can approximately pull its decision boundary back to the input space with certain simple modification to the backward pass. The resulting gradients (called excitation pullbacks) reveal high-resolution input- and target-specific features of remarkable perceptual alignment on a number of popular ImageNet-pretrained deep architectures. This strongly suggests that neural networks do, in fact, rely on learned interpretable patterns that can be recovered after training. Thus, our findings may have profound implications for knowledge discovery and the development of dependable artificial systems.
comment: 15 pages, 4 figures, preprint
☆ CapRecover: A Cross-Modality Feature Inversion Attack Framework on Vision Language Models
As Vision-Language Models (VLMs) are increasingly deployed in split-DNN configurations--with visual encoders (e.g., ResNet, ViT) operating on user devices and sending intermediate features to the cloud--there is a growing privacy risk from semantic information leakage. Existing approaches to reconstructing images from these intermediate features often result in blurry, semantically ambiguous images. To directly address semantic leakage, we propose CapRecover, a cross-modality inversion framework that recovers high-level semantic content, such as labels or captions, directly from intermediate features without image reconstruction. We evaluate CapRecover on multiple datasets and victim models, demonstrating strong performance in semantic recovery. Specifically, CapRecover achieves up to 92.71% Top-1 label accuracy on CIFAR-10 and generates fluent captions from ResNet50 features on COCO2017 with ROUGE-L scores up to 0.52. Our analysis further reveals that deeper convolutional layers encode significantly more semantic information compared to shallow layers. To mitigate semantic leakage, we introduce a simple yet effective protection method: adding random noise to intermediate features at each layer and removing the noise in the next layer. Experimental results show that this approach prevents semantic leakage without additional training costs.
comment: 9 pages, accepted by the 2025 ACM Multimedia Conference
☆ ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents
Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While recent large language models (LLMs) have demonstrated progress in text-to-code generation, many existing approaches rely solely on natural language prompts, limiting their effectiveness in capturing spatial layout and visual design intent. In contrast, UI development in practice is inherently multimodal, often starting from visual sketches or mockups. To address this gap, we introduce a modular multi-agent framework that performs UI-to-code generation in three interpretable stages: grounding, planning, and generation. The grounding agent uses a vision-language model to detect and label UI components, the planning agent constructs a hierarchical layout using front-end engineering priors, and the generation agent produces HTML/CSS code via adaptive prompt-based synthesis. This design improves robustness, interpretability, and fidelity over end-to-end black-box methods. Furthermore, we extend the framework into a scalable data engine that automatically produces large-scale image-code pairs. Using these synthetic examples, we fine-tune and reinforce an open-source VLM, yielding notable gains in UI understanding and code quality. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.
☆ DepR: Depth Guided Single-view Scene Reconstruction with Instance-level Diffusion ICCV 2025
We propose DepR, a depth-guided single-view scene reconstruction framework that integrates instance-level diffusion within a compositional paradigm. Instead of reconstructing the entire scene holistically, DepR generates individual objects and subsequently composes them into a coherent 3D layout. Unlike previous methods that use depth solely for object layout estimation during inference and therefore fail to fully exploit its rich geometric information, DepR leverages depth throughout both training and inference. Specifically, we introduce depth-guided conditioning to effectively encode shape priors into diffusion models. During inference, depth further guides DDIM sampling and layout optimization, enhancing alignment between the reconstruction and the input image. Despite being trained on limited synthetic data, DepR achieves state-of-the-art performance and demonstrates strong generalization in single-view scene reconstruction, as shown through evaluations on both synthetic and real-world datasets.
comment: ICCV 2025
☆ Bi-Level Optimization for Self-Supervised AI-Generated Face Detection
AI-generated face detectors trained via supervised learning typically rely on synthesized images from specific generators, limiting their generalization to emerging generative techniques. To overcome this limitation, we introduce a self-supervised method based on bi-level optimization. In the inner loop, we pretrain a vision encoder only on photographic face images using a set of linearly weighted pretext tasks: classification of categorical exchangeable image file format (EXIF) tags, ranking of ordinal EXIF tags, and detection of artificial face manipulations. The outer loop then optimizes the relative weights of these pretext tasks to enhance the coarse-grained detection of manipulated faces, serving as a proxy task for identifying AI-generated faces. In doing so, it aligns self-supervised learning more closely with the ultimate goal of AI-generated face detection. Once pretrained, the encoder remains fixed, and AI-generated faces are detected either as anomalies under a Gaussian mixture model fitted to photographic face features or by a lightweight two-layer perceptron serving as a binary classifier. Extensive experiments demonstrate that our detectors significantly outperform existing approaches in both one-class and binary classification settings, exhibiting strong generalization to unseen generators.
☆ Wall Shear Stress Estimation in Abdominal Aortic Aneurysms: Towards Generalisable Neural Surrogate Models
Abdominal aortic aneurysms (AAAs) are pathologic dilatations of the abdominal aorta posing a high fatality risk upon rupture. Studying AAA progression and rupture risk often involves in-silico blood flow modelling with computational fluid dynamics (CFD) and extraction of hemodynamic factors like time-averaged wall shear stress (TAWSS) or oscillatory shear index (OSI). However, CFD simulations are known to be computationally demanding. Hence, in recent years, geometric deep learning methods, operating directly on 3D shapes, have been proposed as compelling surrogates, estimating hemodynamic parameters in just a few seconds. In this work, we propose a geometric deep learning approach to estimating hemodynamics in AAA patients, and study its generalisability to common factors of real-world variation. We propose an E(3)-equivariant deep learning model utilising novel robust geometrical descriptors and projective geometric algebra. Our model is trained to estimate transient WSS using a dataset of CT scans of 100 AAA patients, from which lumen geometries are extracted and reference CFD simulations with varying boundary conditions are obtained. Results show that the model generalizes well within the distribution, as well as to the external test set. Moreover, the model can accurately estimate hemodynamics across geometry remodelling and changes in boundary conditions. Furthermore, we find that a trained model can be applied to different artery tree topologies, where new and unseen branches are added during inference. Finally, we find that the model is to a large extent agnostic to mesh resolution. These results show the accuracy and generalisation of the proposed model, and highlight its potential to contribute to hemodynamic parameter estimation in clinical practice.
☆ DISTIL: Data-Free Inversion of Suspicious Trojan Inputs via Latent Diffusion ICCV 2025
Deep neural networks have demonstrated remarkable success across numerous tasks, yet they remain vulnerable to Trojan (backdoor) attacks, raising serious concerns about their safety in real-world mission-critical applications. A common countermeasure is trigger inversion -- reconstructing malicious "shortcut" patterns (triggers) inserted by an adversary during training. Current trigger-inversion methods typically search the full pixel space under specific assumptions but offer no assurances that the estimated trigger is more than an adversarial perturbation that flips the model output. Here, we propose a data-free, zero-shot trigger-inversion strategy that restricts the search space while avoiding strong assumptions on trigger appearance. Specifically, we incorporate a diffusion-based generator guided by the target classifier; through iterative generation, we produce candidate triggers that align with the internal representations the model relies on for malicious behavior. Empirical evaluations, both quantitative and qualitative, show that our approach reconstructs triggers that effectively distinguish clean versus Trojaned models. DISTIL surpasses alternative methods by high margins, achieving up to 7.1% higher accuracy on the BackdoorBench dataset and a 9.4% improvement on trojaned object detection model scanning, offering a promising new direction for reliable backdoor defense without reliance on extensive data or strong prior assumptions about triggers. The code is available at https://github.com/AdaptiveMotorControlLab/DISTIL.
comment: ICCV 2025
☆ MoCHA: Advanced Vision-Language Reasoning with MoE Connector and Hierarchical Group Attention
Vision large language models (VLLMs) are focusing primarily on handling complex and fine-grained visual information by incorporating advanced vision encoders and scaling up visual models. However, these approaches face high training and inference costs, as well as challenges in extracting visual details, effectively bridging across modalities. In this work, we propose a novel visual framework, MoCHA, to address these issues. Our framework integrates four vision backbones (i.e., CLIP, SigLIP, DINOv2 and ConvNeXt) to extract complementary visual features and is equipped with a sparse Mixture of Experts Connectors (MoECs) module to dynamically select experts tailored to different visual dimensions. To mitigate redundant or insufficient use of the visual information encoded by the MoECs module, we further design a Hierarchical Group Attention (HGA) with intra- and inter-group operations and an adaptive gating strategy for encoded visual features. We train MoCHA on two mainstream LLMs (e.g., Phi2-2.7B and Vicuna-7B) and evaluate their performance across various benchmarks. Notably, MoCHA outperforms state-of-the-art open-weight models on various tasks. For example, compared to CuMo (Mistral-7B), our MoCHA (Phi2-2.7B) presents outstanding abilities to mitigate hallucination by showing improvements of 3.25% in POPE and to follow visual instructions by raising 153 points on MME. Finally, ablation studies further confirm the effectiveness and robustness of the proposed MoECs and HGA in improving the overall performance of MoCHA.
☆ Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings MICCAI 2025
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.
comment: Accepted to the MICCAI 2025 MIRASOL Workshop
☆ Segment Anything for Video: A Comprehensive Review of Video Object Segmentation and Tracking from Past to Future
Video Object Segmentation and Tracking (VOST) presents a complex yet critical challenge in computer vision, requiring robust integration of segmentation and tracking across temporally dynamic frames. Traditional methods have struggled with domain generalization, temporal consistency, and computational efficiency. The emergence of foundation models like the Segment Anything Model (SAM) and its successor, SAM2, has introduced a paradigm shift, enabling prompt-driven segmentation with strong generalization capabilities. Building upon these advances, this survey provides a comprehensive review of SAM/SAM2-based methods for VOST, structured along three temporal dimensions: past, present, and future. We examine strategies for retaining and updating historical information (past), approaches for extracting and optimizing discriminative features from the current frame (present), and motion prediction and trajectory estimation mechanisms for anticipating object dynamics in subsequent frames (future). In doing so, we highlight the evolution from early memory-based architectures to the streaming memory and real-time segmentation capabilities of SAM2. We also discuss recent innovations such as motion-aware memory selection and trajectory-guided prompting, which aim to enhance both accuracy and efficiency. Finally, we identify remaining challenges including memory redundancy, error accumulation, and prompt inefficiency, and suggest promising directions for future research. This survey offers a timely and structured overview of the field, aiming to guide researchers and practitioners in advancing the state of VOST through the lens of foundation models.
comment: 45 pages, 21 figures
☆ Modality-Aware Feature Matching: A Comprehensive Review of Single- and Cross-Modality Techniques
Feature matching is a cornerstone task in computer vision, essential for applications such as image retrieval, stereo matching, 3D reconstruction, and SLAM. This survey comprehensively reviews modality-based feature matching, exploring traditional handcrafted methods and emphasizing contemporary deep learning approaches across various modalities, including RGB images, depth images, 3D point clouds, LiDAR scans, medical images, and vision-language interactions. Traditional methods, leveraging detectors like Harris corners and descriptors such as SIFT and ORB, demonstrate robustness under moderate intra-modality variations but struggle with significant modality gaps. Contemporary deep learning-based methods, exemplified by detector-free strategies like CNN-based SuperPoint and transformer-based LoFTR, substantially improve robustness and adaptability across modalities. We highlight modality-aware advancements, such as geometric and depth-specific descriptors for depth images, sparse and dense learning methods for 3D point clouds, attention-enhanced neural networks for LiDAR scans, and specialized solutions like the MIND descriptor for complex medical image matching. Cross-modal applications, particularly in medical image registration and vision-language tasks, underscore the evolution of feature matching to handle increasingly diverse data interactions.
☆ HOLA: Enhancing Audio-visual Deepfake Detection via Hierarchical Contextual Aggregations and Efficient Pre-training
Advances in Generative AI have made video-level deepfake detection increasingly challenging, exposing the limitations of current detection techniques. In this paper, we present HOLA, our solution to the Video-Level Deepfake Detection track of 2025 1M-Deepfakes Detection Challenge. Inspired by the success of large-scale pre-training in the general domain, we first scale audio-visual self-supervised pre-training in the multimodal video-level deepfake detection, which leverages our self-built dataset of 1.81M samples, thereby leading to a unified two-stage framework. To be specific, HOLA features an iterative-aware cross-modal learning module for selective audio-visual interactions, hierarchical contextual modeling with gated aggregations under the local-global perspective, and a pyramid-like refiner for scale-aware cross-grained semantic enhancements. Moreover, we propose the pseudo supervised singal injection strategy to further boost model performance. Extensive experiments across expert models and MLLMs impressivly demonstrate the effectiveness of our proposed HOLA. We also conduct a series of ablation studies to explore the crucial design factors of our introduced components. Remarkably, our HOLA ranks 1st, outperforming the second by 0.0476 AUC on the TestA set.
☆ Social-Pose: Enhancing Trajectory Prediction with Human Body Pose
Accurate human trajectory prediction is one of the most crucial tasks for autonomous driving, ensuring its safety. Yet, existing models often fail to fully leverage the visual cues that humans subconsciously communicate when navigating the space. In this work, we study the benefits of predicting human trajectories using human body poses instead of solely their Cartesian space locations in time. We propose `Social-pose', an attention-based pose encoder that effectively captures the poses of all humans in a scene and their social relations. Our method can be integrated into various trajectory prediction architectures. We have conducted extensive experiments on state-of-the-art models (based on LSTM, GAN, MLP, and Transformer), and showed improvements over all of them on synthetic (Joint Track Auto) and real (Human3.6M, Pedestrians and Cyclists in Road Traffic, and JRDB) datasets. We also explored the advantages of using 2D versus 3D poses, as well as the effect of noisy poses and the application of our pose-based predictor in robot navigation scenarios.
comment: Accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS)
☆ A Linear N-Point Solver for Structure and Motion from Asynchronous Tracks
Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision that has been powered by well-known algorithms such as the familiar 5-point or 8-point algorithm. However, despite their acclaim, these algorithms are limited to processing point correspondences originating from a pair of views each one representing an instantaneous capture of the scene. Yet, in the case of rolling shutter cameras, or more recently, event cameras, this synchronization breaks down. In this work, we present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps, from an arbitrary set of views. By formulating the problem in terms of first-order dynamics and leveraging a constant velocity motion model, we derive a novel, linear point incidence relation allowing for the efficient recovery of both linear velocity and 3D points with predictable degeneracies and solution multiplicities. Owing to its general formulation, it can handle correspondences from a wide range of sensing modalities such as global shutter, rolling shutter, and event cameras, and can even combine correspondences from different collocated sensors. We validate the effectiveness of our solver on both simulated and real-world data, where we show consistent improvement across all modalities when compared to recent approaches. We believe our work opens the door to efficient structure and motion estimation from asynchronous data. Code can be found at https://github.com/suhang99/AsyncTrack-Motion-Solver.
☆ Image-Guided Shape-from-Template Using Mesh Inextensibility Constraints ICCV 2025
Shape-from-Template (SfT) refers to the class of methods that reconstruct the 3D shape of a deforming object from images/videos using a 3D template. Traditional SfT methods require point correspondences between images and the texture of the 3D template in order to reconstruct 3D shapes from images/videos in real time. Their performance severely degrades when encountered with severe occlusions in the images because of the unavailability of correspondences. In contrast, modern SfT methods use a correspondence-free approach by incorporating deep neural networks to reconstruct 3D objects, thus requiring huge amounts of data for supervision. Recent advances use a fully unsupervised or self-supervised approach by combining differentiable physics and graphics to deform 3D template to match input images. In this paper, we propose an unsupervised SfT which uses only image observations: color features, gradients and silhouettes along with a mesh inextensibility constraint to reconstruct at a $400\times$ faster pace than (best-performing) unsupervised SfT. Moreover, when it comes to generating finer details and severe occlusions, our method outperforms the existing methodologies by a large margin. Code is available at https://github.com/dvttran/nsft.
comment: Accepted to ICCV 2025. Total 13 pages, 9 figures, 9 tables
☆ Zero-Shot Image Anomaly Detection Using Generative Foundation Models ICCV 2025
Detecting out-of-distribution (OOD) inputs is pivotal for deploying safe vision systems in open-world environments. We revisit diffusion models, not as generators, but as universal perceptual templates for OOD detection. This research explores the use of score-based generative models as foundational tools for semantic anomaly detection across unseen datasets. Specifically, we leverage the denoising trajectories of Denoising Diffusion Models (DDMs) as a rich source of texture and semantic information. By analyzing Stein score errors, amplified through the Structural Similarity Index Metric (SSIM), we introduce a novel method for identifying anomalous samples without requiring re-training on each target dataset. Our approach improves over state-of-the-art and relies on training a single model on one dataset -- CelebA -- which we find to be an effective base distribution, even outperforming more commonly used datasets like ImageNet in several settings. Experimental results show near-perfect performance on some benchmarks, with notable headroom on others, highlighting both the strength and future potential of generative foundation models in anomaly detection.
comment: Accepted at the workshop of Anomaly Detection with Foundation Models, ICCV 2025
☆ A Dual-Feature Extractor Framework for Accurate Back Depth and Spine Morphology Estimation from Monocular RGB Images
Scoliosis is a prevalent condition that impacts both physical health and appearance, with adolescent idiopathic scoliosis (AIS) being the most common form. Currently, the main AIS assessment tool, X-rays, poses significant limitations, including radiation exposure and limited accessibility in poor and remote areas. To address this problem, the current solutions are using RGB images to analyze spine morphology. However, RGB images are highly susceptible to environmental factors, such as lighting conditions, compromising model stability and generalizability. Therefore, in this study, we propose a novel pipeline to accurately estimate the depth information of the unclothed back, compensating for the limitations of 2D information, and then estimate spine morphology by integrating both depth and surface information. To capture the subtle depth variations of the back surface with precision, we design an adaptive multiscale feature learning network named Grid-Aware Multiscale Adaptive Network (GAMA-Net). This model uses dual encoders to extract both patch-level and global features, which are then interacted by the Patch-Based Hybrid Attention (PBHA) module. The Adaptive Multiscale Feature Fusion (AMFF) module is used to dynamically fuse information in the decoder. As a result, our depth estimation model achieves remarkable accuracy across three different evaluation metrics, with scores of nearly 78.2%, 93.6%, and 97.5%, respectively. To further validate the effectiveness of the predicted depth, we integrate both surface and depth information for spine morphology estimation. This integrated approach enhances the accuracy of spine curve generation, achieving an impressive performance of up to 97%.
☆ Hydra-Bench: A Benchmark for Multi-Modal Leaf Wetness Sensing
Leaf wetness detection is a crucial task in agricultural monitoring, as it directly impacts the prediction and protection of plant diseases. However, existing sensing systems suffer from limitations in robustness, accuracy, and environmental resilience when applied to natural leaves under dynamic real-world conditions. To address these challenges, we introduce a new multi-modal dataset specifically designed for evaluating and advancing machine learning algorithms in leaf wetness detection. Our dataset comprises synchronized mmWave raw data, Synthetic Aperture Radar (SAR) images, and RGB images collected over six months from five diverse plant species in both controlled and outdoor field environments. We provide detailed benchmarks using the Hydra model, including comparisons against single modality baselines and multiple fusion strategies, as well as performance under varying scan distances. Additionally, our dataset can serve as a benchmark for future SAR imaging algorithm optimization, enabling a systematic evaluation of detection accuracy under diverse conditions.
☆ MergeSAM: Unsupervised change detection of remote sensing images based on the Segment Anything Model
Recently, large foundation models trained on vast datasets have demonstrated exceptional capabilities in feature extraction and general feature representation. The ongoing advancements in deep learning-driven large models have shown great promise in accelerating unsupervised change detection methods, thereby enhancing the practical applicability of change detection technologies. Building on this progress, this paper introduces MergeSAM, an innovative unsupervised change detection method for high-resolution remote sensing imagery, based on the Segment Anything Model (SAM). Two novel strategies, MaskMatching and MaskSplitting, are designed to address real-world complexities such as object splitting, merging, and other intricate changes. The proposed method fully leverages SAM's object segmentation capabilities to construct multitemporal masks that capture complex changes, embedding the spatial structure of land cover into the change detection process.
comment: 4 pages
Graph-Guided Dual-Level Augmentation for 3D Scene Segmentation
3D point cloud segmentation aims to assign semantic labels to individual points in a scene for fine-grained spatial understanding. Existing methods typically adopt data augmentation to alleviate the burden of large-scale annotation. However, most augmentation strategies only focus on local transformations or semantic recomposition, lacking the consideration of global structural dependencies within scenes. To address this limitation, we propose a graph-guided data augmentation framework with dual-level constraints for realistic 3D scene synthesis. Our method learns object relationship statistics from real-world data to construct guiding graphs for scene generation. Local-level constraints enforce geometric plausibility and semantic consistency between objects, while global-level constraints maintain the topological structure of the scene by aligning the generated layout with the guiding graph. Extensive experiments on indoor and outdoor datasets demonstrate that our framework generates diverse and high-quality augmented scenes, leading to consistent improvements in point cloud segmentation performance across various models.
comment: 15 pages, 11 figures, to be published in ACMMM 2025 Conference
☆ SpectraSentinel: LightWeight Dual-Stream Real-Time Drone Detection, Tracking and Payload Identification
The proliferation of drones in civilian airspace has raised urgent security concerns, necessitating robust real-time surveillance systems. In response to the 2025 VIP Cup challenge tasks - drone detection, tracking, and payload identification - we propose a dual-stream drone monitoring framework. Our approach deploys independent You Only Look Once v11-nano (YOLOv11n) object detectors on parallel infrared (thermal) and visible (RGB) data streams, deliberately avoiding early fusion. This separation allows each model to be specifically optimized for the distinct characteristics of its input modality, addressing the unique challenges posed by small aerial objects in diverse environmental conditions. We customize data preprocessing and augmentation strategies per domain - such as limiting color jitter for IR imagery - and fine-tune training hyperparameters to enhance detection performance under conditions of heavy noise, low light, and motion blur. The resulting lightweight YOLOv11n models demonstrate high accuracy in distinguishing drones from birds and in classifying payload types, all while maintaining real-time performance. This report details the rationale for a dual-modality design, the specialized training pipelines, and the architectural optimizations that collectively enable efficient and accurate drone surveillance across RGB and IR channels.
☆ trAIce3D: A Prompt-Driven Transformer Based U-Net for Semantic Segmentation of Microglial Cells from Large-Scale 3D Microscopy Images
The shape of a cell contains essential information about its function within the biological system. Segmenting these structures from large-scale 3D microscopy images is challenging, limiting clinical insights especially for microglia, immune-associated cells involved in neurodegenerative diseases. Existing segmentation methods mainly focus on cell bodies, struggle with overlapping structures, perform poorly on noisy images, require hyperparameter tuning for each new dataset, or rely on tedious semi-automated approaches. We introduce trAIce3D, a deep-learning architecture designed for precise microglia segmentation, capturing both somas and branches. It employs a two-stage approach: first, a 3D U-Net with vision transformers in the encoder detects somas using a sliding-window technique to cover the entire image. Then, the same architecture, enhanced with cross-attention blocks in skip connections, refines each soma and its branches by using soma coordinates as a prompt and a 3D window around the target cell as input. Training occurs in two phases: self-supervised Soma Segmentation, followed by prompt-based Branch Segmentation, leveraging pre-trained weights from the first phase. Trained and evaluated on a dataset of 41,230 microglial cells, trAIce3D significantly improves segmentation accuracy and generalization, enabling scalable analysis of complex cellular morphologies. While optimized for microglia, its architecture can extend to other intricate cell types, such as neurons and astrocytes, broadening its impact on neurobiological research.
comment: 10 pages, 2 figures
☆ LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing ICCV25
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.
comment: Accepted at ICCV25 (Oral). Project page: https://intelligolabs.github.io/lots/
☆ Bridging the Gap in Missing Modalities: Leveraging Knowledge Distillation and Style Matching for Brain Tumor Segmentation
Accurate and reliable brain tumor segmentation, particularly when dealing with missing modalities, remains a critical challenge in medical image analysis. Previous studies have not fully resolved the challenges of tumor boundary segmentation insensitivity and feature transfer in the absence of key imaging modalities. In this study, we introduce MST-KDNet, aimed at addressing these critical issues. Our model features Multi-Scale Transformer Knowledge Distillation to effectively capture attention weights at various resolutions, Dual-Mode Logit Distillation to improve the transfer of knowledge, and a Global Style Matching Module that integrates feature matching with adversarial learning. Comprehensive experiments conducted on the BraTS and FeTS 2024 datasets demonstrate that MST-KDNet surpasses current leading methods in both Dice and HD95 scores, particularly in conditions with substantial modality loss. Our approach shows exceptional robustness and generalization potential, making it a promising candidate for real-world clinical applications. Our source code is available at https://github.com/Quanato607/MST-KDNet.
comment: 11 pages, 2 figures
☆ Hate in Plain Sight: On the Risks of Moderating AI-Generated Hateful Illusions ICCV 2025
Recent advances in text-to-image diffusion models have enabled the creation of a new form of digital art: optical illusions--visual tricks that create different perceptions of reality. However, adversaries may misuse such techniques to generate hateful illusions, which embed specific hate messages into harmless scenes and disseminate them across web communities. In this work, we take the first step toward investigating the risks of scalable hateful illusion generation and the potential for bypassing current content moderation models. Specifically, we generate 1,860 optical illusions using Stable Diffusion and ControlNet, conditioned on 62 hate messages. Of these, 1,571 are hateful illusions that successfully embed hate messages, either overtly or subtly, forming the Hateful Illusion dataset. Using this dataset, we evaluate the performance of six moderation classifiers and nine vision language models (VLMs) in identifying hateful illusions. Experimental results reveal significant vulnerabilities in existing moderation models: the detection accuracy falls below 0.245 for moderation classifiers and below 0.102 for VLMs. We further identify a critical limitation in their vision encoders, which mainly focus on surface-level image details while overlooking the secondary layer of information, i.e., hidden messages. To address this risk, we explore preliminary mitigation measures and identify the most effective approaches from the perspectives of image transformations and training-level strategies.
comment: Accepted at ICCV 2025
☆ Generative Active Learning for Long-tail Trajectory Prediction via Controllable Diffusion Model ICCV 2025
While data-driven trajectory prediction has enhanced the reliability of autonomous driving systems, it still struggles with rarely observed long-tail scenarios. Prior works addressed this by modifying model architectures, such as using hypernetworks. In contrast, we propose refining the training process to unlock each model's potential without altering its structure. We introduce Generative Active Learning for Trajectory prediction (GALTraj), the first method to successfully deploy generative active learning into trajectory prediction. It actively identifies rare tail samples where the model fails and augments these samples with a controllable diffusion model during training. In our framework, generating scenarios that are diverse, realistic, and preserve tail-case characteristics is paramount. Accordingly, we design a tail-aware generation method that applies tailored diffusion guidance to generate trajectories that both capture rare behaviors and respect traffic rules. Unlike prior simulation methods focused solely on scenario diversity, GALTraj is the first to show how simulator-driven augmentation benefits long-tail learning in trajectory prediction. Experiments on multiple trajectory datasets (WOMD, Argoverse2) with popular backbones (QCNet, MTR) confirm that our method significantly boosts performance on tail samples and also enhances accuracy on head samples.
comment: Accepted at ICCV 2025
☆ ShortFT: Diffusion Model Alignment via Shortcut-based Fine-Tuning ICCV 2025
Backpropagation-based approaches aim to align diffusion models with reward functions through end-to-end backpropagation of the reward gradient within the denoising chain, offering a promising perspective. However, due to the computational costs and the risk of gradient explosion associated with the lengthy denoising chain, existing approaches struggle to achieve complete gradient backpropagation, leading to suboptimal results. In this paper, we introduce Shortcut-based Fine-Tuning (ShortFT), an efficient fine-tuning strategy that utilizes the shorter denoising chain. More specifically, we employ the recently researched trajectory-preserving few-step diffusion model, which enables a shortcut over the original denoising chain, and construct a shortcut-based denoising chain of shorter length. The optimization on this chain notably enhances the efficiency and effectiveness of fine-tuning the foundational model. Our method has been rigorously tested and can be effectively applied to various reward functions, significantly improving alignment performance and surpassing state-of-the-art alternatives.
comment: Accepted by ICCV 2025
☆ Robust Deepfake Detection for Electronic Know Your Customer Systems Using Registered Images
In this paper, we present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems. To ensure the reliability of eKYC systems against deepfake attacks, it is essential to develop a robust deepfake detector capable of identifying both face swapping and face reenactment, while also being robust to image degradation. We address these challenges through three key contributions: (1)~Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models, leading to comprehensive detection of both face swapping and face reenactment. (2)~In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies between the input video and the registered image, significantly improving detection accuracy. (3)~We find that employing a face feature extractor trained on a larger dataset enhances both detection performance and robustness against image degradation. Our experimental results show that our proposed method accurately detects both face swapping and face reenactment comprehensively and is robust against various forms of unseen image degradation. Our source code is publicly available https://github.com/TaikiMiyagawa/DeepfakeDetection4eKYC.
comment: Accepted to 19th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2025)
☆ COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP ICCV
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD
comment: accepted at ICCVW'25 - Systematic Trust in AI Models: Ensuring Fairness, Reliability, Explainability, and Accountability in Machine Learning Frameworks
☆ Subtyping Breast Lesions via Generative Augmentation based Long-tailed Recognition in Ultrasound MICCAI2025
Accurate identification of breast lesion subtypes can facilitate personalized treatment and interventions. Ultrasound (US), as a safe and accessible imaging modality, is extensively employed in breast abnormality screening and diagnosis. However, the incidence of different subtypes exhibits a skewed long-tailed distribution, posing significant challenges for automated recognition. Generative augmentation provides a promising solution to rectify data distribution. Inspired by this, we propose a dual-phase framework for long-tailed classification that mitigates distributional bias through high-fidelity data synthesis while avoiding overuse that corrupts holistic performance. The framework incorporates a reinforcement learning-driven adaptive sampler, dynamically calibrating synthetic-real data ratios by training a strategic multi-agent to compensate for scarcities of real data while ensuring stable discriminative capability. Furthermore, our class-controllable synthetic network integrates a sketch-grounded perception branch that harnesses anatomical priors to maintain distinctive class features while enabling annotation-free inference. Extensive experiments on an in-house long-tailed and a public imbalanced breast US datasets demonstrate that our method achieves promising performance compared to state-of-the-art approaches. More synthetic images can be found at https://github.com/Stinalalala/Breast-LT-GenAug.
comment: MICCAI2025 Early Accept. 11 pages, 3 figures, 2 tables
☆ Exploration of Low-Cost but Accurate Radar-Based Human Motion Direction Determination
This work is completed on a whim after discussions with my junior colleague. The motion direction angle affects the micro-Doppler spectrum width, thus determining the human motion direction can provide important prior information for downstream tasks such as gait recognition. However, Doppler-Time map (DTM)-based methods still have room for improvement in achieving feature augmentation and motion determination simultaneously. In response, a low-cost but accurate radar-based human motion direction determination (HMDD) method is explored in this paper. In detail, the radar-based human gait DTMs are first generated, and then the feature augmentation is achieved using feature linking model. Subsequently, the HMDD is implemented through a lightweight and fast Vision Transformer-Convolutional Neural Network hybrid model structure. The effectiveness of the proposed method is verified through open-source dataset. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Low-Cost-Accurate-Radar-Based-Human-Motion-Direction-Determination.
comment: 5 pages, 5 figures, 2 tables
☆ RainbowPrompt: Diversity-Enhanced Prompt-Evolving for Continual Learning ICCV 2025
Prompt-based continual learning provides a rehearsal-free solution by tuning small sets of parameters while keeping pre-trained models frozen. To meet the complex demands of sequential tasks, it is crucial to integrate task-specific knowledge within prompts effectively. However, existing works rely on either fixed learned prompts (i.e., prompts whose representations remain unchanged during new task learning) or on prompts generated from an entangled task-shared space, limiting the representational diversity of the integrated prompt. To address this issue, we propose a novel prompt-evolving mechanism to adaptively aggregate base prompts (i.e., task-specific prompts) into a unified prompt while ensuring diversity. By transforming and aligning base prompts, both previously learned and newly introduced, our approach continuously evolves accumulated knowledge to facilitate learning new tasks. We further introduce a learnable probabilistic gate that adaptively determines which layers to activate during the evolution process. We validate our method on image classification and video action recognition tasks in class-incremental learning, achieving average gains of 9.07% and 7.40% over existing methods across all scenarios.
comment: Accepted by the 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
☆ FGFP: A Fractional Gaussian Filter and Pruning for Deep Neural Networks Compression ICML 2025
Network compression techniques have become increasingly important in recent years because the loads of Deep Neural Networks (DNNs) are heavy for edge devices in real-world applications. While many methods compress neural network parameters, deploying these models on edge devices remains challenging. To address this, we propose the fractional Gaussian filter and pruning (FGFP) framework, which integrates fractional-order differential calculus and Gaussian function to construct fractional Gaussian filters (FGFs). To reduce the computational complexity of fractional-order differential operations, we introduce Gr\"unwald-Letnikov fractional derivatives to approximate the fractional-order differential equation. The number of parameters for each kernel in FGF is minimized to only seven. Beyond the architecture of Fractional Gaussian Filters, our FGFP framework also incorporates Adaptive Unstructured Pruning (AUP) to achieve higher compression ratios. Experiments on various architectures and benchmarks show that our FGFP framework outperforms recent methods in accuracy and compression. On CIFAR-10, ResNet-20 achieves only a 1.52% drop in accuracy while reducing the model size by 85.2%. On ImageNet2012, ResNet-50 achieves only a 1.63% drop in accuracy while reducing the model size by 69.1%.
comment: 8 pages, 2 figures, 4 tables, Accepted by ICML 2025 Workshop (TTODLer-FM)
☆ Learned Off-aperture Encoding for Wide Field-of-view RGBD Imaging
End-to-end (E2E) designed imaging systems integrate coded optical designs with decoding algorithms to enhance imaging fidelity for diverse visual tasks. However, existing E2E designs encounter significant challenges in maintaining high image fidelity at wide fields of view, due to high computational complexity, as well as difficulties in modeling off-axis wave propagation while accounting for off-axis aberrations. In particular, the common approach of placing the encoding element into the aperture or pupil plane results in only a global control of the wavefront. To overcome these limitations, this work explores an additional design choice by positioning a DOE off-aperture, enabling a spatial unmixing of the degrees of freedom and providing local control over the wavefront over the image plane. Our approach further leverages hybrid refractive-diffractive optical systems by linking differentiable ray and wave optics modeling, thereby optimizing depth imaging quality and demonstrating system versatility. Experimental results reveal that the off-aperture DOE enhances the imaging quality by over 5 dB in PSNR at a FoV of approximately $45^\circ$ when paired with a simple thin lens, outperforming traditional on-aperture systems. Furthermore, we successfully recover color and depth information at nearly $28^\circ$ FoV using off-aperture DOE configurations with compound optics. Physical prototypes for both applications validate the effectiveness and versatility of the proposed method.
comment: To be published in IEEE Transactions on Pattern Analysis and Machine Intelligence
☆ Recognizing Actions from Robotic View for Natural Human-Robot Interaction ICCV2025
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.
comment: 8 pages, 4 figures, Accepted to ICCV2025
☆ AlphaDent: A dataset for automated tooth pathology detection
In this article, we present a new unique dataset for dental research - AlphaDent. This dataset is based on the DSLR camera photographs of the teeth of 295 patients and contains over 1200 images. The dataset is labeled for solving the instance segmentation problem and is divided into 9 classes. The article provides a detailed description of the dataset and the labeling format. The article also provides the details of the experiment on neural network training for the Instance Segmentation problem using this dataset. The results obtained show high quality of predictions. The dataset is published under an open license; and the training/inference code and model weights are also available under open licenses.
☆ DACA-Net: A Degradation-Aware Conditional Diffusion Network for Underwater Image Enhancement ACM MM 2025
Underwater images typically suffer from severe colour distortions, low visibility, and reduced structural clarity due to complex optical effects such as scattering and absorption, which greatly degrade their visual quality and limit the performance of downstream visual perception tasks. Existing enhancement methods often struggle to adaptively handle diverse degradation conditions and fail to leverage underwater-specific physical priors effectively. In this paper, we propose a degradation-aware conditional diffusion model to enhance underwater images adaptively and robustly. Given a degraded underwater image as input, we first predict its degradation level using a lightweight dual-stream convolutional network, generating a continuous degradation score as semantic guidance. Based on this score, we introduce a novel conditional diffusion-based restoration network with a Swin UNet backbone, enabling adaptive noise scheduling and hierarchical feature refinement. To incorporate underwater-specific physical priors, we further propose a degradation-guided adaptive feature fusion module and a hybrid loss function that combines perceptual consistency, histogram matching, and feature-level contrast. Comprehensive experiments on benchmark datasets demonstrate that our method effectively restores underwater images with superior colour fidelity, perceptual quality, and structural details. Compared with SOTA approaches, our framework achieves significant improvements in both quantitative metrics and qualitative visual assessments.
comment: accepted by ACM MM 2025
☆ Towards Blind Bitstream-corrupted Video Recovery via a Visual Foundation Model-driven Framework
Video signals are vulnerable in multimedia communication and storage systems, as even slight bitstream-domain corruption can lead to significant pixel-domain degradation. To recover faithful spatio-temporal content from corrupted inputs, bitstream-corrupted video recovery has recently emerged as a challenging and understudied task. However, existing methods require time-consuming and labor-intensive annotation of corrupted regions for each corrupted video frame, resulting in a large workload in practice. In addition, high-quality recovery remains difficult as part of the local residual information in corrupted frames may mislead feature completion and successive content recovery. In this paper, we propose the first blind bitstream-corrupted video recovery framework that integrates visual foundation models with a recovery model, which is adapted to different types of corruption and bitstream-level prompts. Within the framework, the proposed Detect Any Corruption (DAC) model leverages the rich priors of the visual foundation model while incorporating bitstream and corruption knowledge to enhance corruption localization and blind recovery. Additionally, we introduce a novel Corruption-aware Feature Completion (CFC) module, which adaptively processes residual contributions based on high-level corruption understanding. With VFM-guided hierarchical feature augmentation and high-level coordination in a mixture-of-residual-experts (MoRE) structure, our method suppresses artifacts and enhances informative residuals. Comprehensive evaluations show that the proposed method achieves outstanding performance in bitstream-corrupted video recovery without requiring a manually labeled mask sequence. The demonstrated effectiveness will help to realize improved user experience, wider application scenarios, and more reliable multimedia communication and storage systems.
comment: 10 pages, 5 figures, accepted by ACMMM 2025
☆ Estimating 2D Camera Motion with Hybrid Motion Basis ICCV 2025
Estimating 2D camera motion is a fundamental computer vision task that models the projection of 3D camera movements onto the 2D image plane. Current methods rely on either homography-based approaches, limited to planar scenes, or meshflow techniques that use grid-based local homographies but struggle with complex non-linear transformations. A key insight of our work is that combining flow fields from different homographies creates motion patterns that cannot be represented by any single homography. We introduce CamFlow, a novel framework that represents camera motion using hybrid motion bases: physical bases derived from camera geometry and stochastic bases for complex scenarios. Our approach includes a hybrid probabilistic loss function based on the Laplace distribution that enhances training robustness. For evaluation, we create a new benchmark by masking dynamic objects in existing optical flow datasets to isolate pure camera motion. Experiments show CamFlow outperforms state-of-the-art methods across diverse scenarios, demonstrating superior robustness and generalization in zero-shot settings. Code and datasets are available at our project page: https://lhaippp.github.io/CamFlow/.
comment: ICCV 2025
☆ Visual Language Models as Zero-Shot Deepfake Detectors ICML 2025
The contemporary phenomenon of deepfakes, utilizing GAN or diffusion models for face swapping, presents a substantial and evolving threat in digital media, identity verification, and a multitude of other systems. The majority of existing methods for detecting deepfakes rely on training specialized classifiers to distinguish between genuine and manipulated images, focusing only on the image domain without incorporating any auxiliary tasks that could enhance robustness. In this paper, inspired by the zero-shot capabilities of Vision Language Models, we propose a novel VLM-based approach to image classification and then evaluate it for deepfake detection. Specifically, we utilize a new high-quality deepfake dataset comprising 60,000 images, on which our zero-shot models demonstrate superior performance to almost all existing methods. Subsequently, we compare the performance of the best-performing architecture, InstructBLIP, on the popular deepfake dataset DFDC-P against traditional methods in two scenarios: zero-shot and in-domain fine-tuning. Our results demonstrate the superiority of VLMs over traditional classifiers.
comment: Accepted to the ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ Shallow Features Matter: Hierarchical Memory with Heterogeneous Interaction for Unsupervised Video Object Segmentation ACM MM'25
Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .
comment: Accepted to ACM MM'25: The 33rd ACM International Conference on Multimedia Proceedings
☆ Exploiting Diffusion Prior for Task-driven Image Restoration ICCV 2025
Task-driven image restoration (TDIR) has recently emerged to address performance drops in high-level vision tasks caused by low-quality (LQ) inputs. Previous TDIR methods struggle to handle practical scenarios in which images are degraded by multiple complex factors, leaving minimal clues for restoration. This motivates us to leverage the diffusion prior, one of the most powerful natural image priors. However, while the diffusion prior can help generate visually plausible results, using it to restore task-relevant details remains challenging, even when combined with recent TDIR methods. To address this, we propose EDTR, which effectively harnesses the power of diffusion prior to restore task-relevant details. Specifically, we propose directly leveraging useful clues from LQ images in the diffusion process by generating from pixel-error-based pre-restored LQ images with mild noise added. Moreover, we employ a small number of denoising steps to prevent the generation of redundant details that dilute crucial task-related information. We demonstrate that our method effectively utilizes diffusion prior for TDIR, significantly enhancing task performance and visual quality across diverse tasks with multiple complex degradations.
comment: Accepted to ICCV 2025
TopoLiDM: Topology-Aware LiDAR Diffusion Models for Interpretable and Realistic LiDAR Point Cloud Generation IROS 2025
LiDAR scene generation is critical for mitigating real-world LiDAR data collection costs and enhancing the robustness of downstream perception tasks in autonomous driving. However, existing methods commonly struggle to capture geometric realism and global topological consistency. Recent LiDAR Diffusion Models (LiDMs) predominantly embed LiDAR points into the latent space for improved generation efficiency, which limits their interpretable ability to model detailed geometric structures and preserve global topological consistency. To address these challenges, we propose TopoLiDM, a novel framework that integrates graph neural networks (GNNs) with diffusion models under topological regularization for high-fidelity LiDAR generation. Our approach first trains a topological-preserving VAE to extract latent graph representations by graph construction and multiple graph convolutional layers. Then we freeze the VAE and generate novel latent topological graphs through the latent diffusion models. We also introduce 0-dimensional persistent homology (PH) constraints, ensuring the generated LiDAR scenes adhere to real-world global topological structures. Extensive experiments on the KITTI-360 dataset demonstrate TopoLiDM's superiority over state-of-the-art methods, achieving improvements of 22.6% lower Frechet Range Image Distance (FRID) and 9.2% lower Minimum Matching Distance (MMD). Notably, our model also enables fast generation speed with an average inference time of 1.68 samples/s, showcasing its scalability for real-world applications. We will release the related codes at https://github.com/IRMVLab/TopoLiDM.
comment: Accepted by IROS 2025. Code:https://github.com/IRMVLab/TopoLiDM
☆ RCR-AF: Enhancing Model Generalization via Rademacher Complexity Reduction Activation Function
Despite their widespread success, deep neural networks remain critically vulnerable to adversarial attacks, posing significant risks in safety-sensitive applications. This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness. We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience. RCR-AF uniquely combines the advantages of GELU (including smoothness, gradient stability, and negative information retention) with ReLU's desirable monotonicity, while simultaneously controlling both model sparsity and capacity through built-in clipping mechanisms governed by two hyperparameters, $\alpha$ and $\gamma$. Our theoretical analysis, grounded in Rademacher complexity, demonstrates that these parameters directly modulate the model's Rademacher complexity, offering a principled approach to enhance robustness. Comprehensive empirical evaluations show that RCR-AF consistently outperforms widely-used alternatives (ReLU, GELU, and Swish) in both clean accuracy under standard training and in adversarial robustness within adversarial training paradigms.
☆ From Sharp to Blur: Unsupervised Domain Adaptation for 2D Human Pose Estimation Under Extreme Motion Blur Using Event Cameras
Human pose estimation is critical for applications such as rehabilitation, sports analytics, and AR/VR systems. However, rapid motion and low-light conditions often introduce motion blur, significantly degrading pose estimation due to the domain gap between sharp and blurred images. Most datasets assume stable conditions, making models trained on sharp images struggle in blurred environments. To address this, we introduce a novel domain adaptation approach that leverages event cameras, which capture high temporal resolution motion data and are inherently robust to motion blur. Using event-based augmentation, we generate motion-aware blurred images, effectively bridging the domain gap between sharp and blurred domains without requiring paired annotations. Additionally, we develop a student-teacher framework that iteratively refines pseudo-labels, leveraging mutual uncertainty masking to eliminate incorrect labels and enable more effective learning. Experimental results demonstrate that our approach outperforms conventional domain-adaptive human pose estimation methods, achieving robust pose estimation under motion blur without requiring annotations in the target domain. Our findings highlight the potential of event cameras as a scalable and effective solution for domain adaptation in real-world motion blur environments. Our project codes are available at https://github.com/kmax2001/EvSharp2Blur.
☆ HQ-CLIP: Leveraging Large Vision-Language Models to Create High-Quality Image-Text Datasets and CLIP Models
Large-scale but noisy image-text pair data have paved the way for the success of Contrastive Language-Image Pretraining (CLIP). As the foundation vision encoder, CLIP in turn serves as the cornerstone for most large vision-language models (LVLMs). This interdependence naturally raises an interesting question: Can we reciprocally leverage LVLMs to enhance the quality of image-text pair data, thereby opening the possibility of a self-reinforcing cycle for continuous improvement? In this work, we take a significant step toward this vision by introducing an LVLM-driven data refinement pipeline. Our framework leverages LVLMs to process images and their raw alt-text, generating four complementary textual formulas: long positive descriptions, long negative descriptions, short positive tags, and short negative tags. Applying this pipeline to the curated DFN-Large dataset yields VLM-150M, a refined dataset enriched with multi-grained annotations. Based on this dataset, we further propose a training paradigm that extends conventional contrastive learning by incorporating negative descriptions and short tags as additional supervised signals. The resulting model, namely HQ-CLIP, demonstrates remarkable improvements across diverse benchmarks. Within a comparable training data scale, our approach achieves state-of-the-art performance in zero-shot classification, cross-modal retrieval, and fine-grained visual understanding tasks. In retrieval benchmarks, HQ-CLIP even surpasses standard CLIP models trained on the DFN-2B dataset, which contains 10$\times$ more training data than ours. All code, data, and models are available at https://zxwei.site/hqclip.
☆ Theoretical Analysis of Relative Errors in Gradient Computations for Adversarial Attacks with CE Loss
Gradient-based adversarial attacks using the Cross-Entropy (CE) loss often suffer from overestimation due to relative errors in gradient computation induced by floating-point arithmetic. This paper provides a rigorous theoretical analysis of these errors, conducting the first comprehensive study of floating-point computation errors in gradient-based attacks across four distinct scenarios: (i) unsuccessful untargeted attacks, (ii) successful untargeted attacks, (iii) unsuccessful targeted attacks, and (iv) successful targeted attacks. We establish theoretical foundations characterizing the behavior of relative numerical errors under different attack conditions, revealing previously unknown patterns in gradient computation instability, and identify floating-point underflow and rounding as key contributors. Building on this insight, we propose the Theoretical MIFPE (T-MIFPE) loss function, which incorporates an optimal scaling factor $T = t^*$ to minimize the impact of floating-point errors, thereby enhancing the accuracy of gradient computation in adversarial attacks. Extensive experiments on the MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate that T-MIFPE outperforms existing loss functions, including CE, C\&W, DLR, and MIFPE, in terms of attack potency and robustness evaluation accuracy.
☆ Neural Multi-View Self-Calibrated Photometric Stereo without Photometric Stereo Cues ICCV 2025
We propose a neural inverse rendering approach that jointly reconstructs geometry, spatially varying reflectance, and lighting conditions from multi-view images captured under varying directional lighting. Unlike prior multi-view photometric stereo methods that require light calibration or intermediate cues such as per-view normal maps, our method jointly optimizes all scene parameters from raw images in a single stage. We represent both geometry and reflectance as neural implicit fields and apply shadow-aware volume rendering. A spatial network first predicts the signed distance and a reflectance latent code for each scene point. A reflectance network then estimates reflectance values conditioned on the latent code and angularly encoded surface normal, view, and light directions. The proposed method outperforms state-of-the-art normal-guided approaches in shape and lighting estimation accuracy, generalizes to view-unaligned multi-light images, and handles objects with challenging geometry and reflectance.
comment: Accepted to ICCV 2025
☆ FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations
Urban heatwaves, droughts, and land degradation are pressing and growing challenges in the context of climate change. A valuable approach to studying them requires accurate spatio-temporal information on land surface conditions. One of the most important variables for assessing and understanding these phenomena is Land Surface Temperature (LST), which is derived from satellites and provides essential information about the thermal state of the Earth's surface. However, satellite platforms inherently face a trade-off between spatial and temporal resolutions. To bridge this gap, we propose FuseTen, a novel generative framework that produces daily LST observations at a fine 10 m spatial resolution by fusing spatio-temporal observations derived from Sentinel-2, Landsat 8, and Terra MODIS. FuseTen employs a generative architecture trained using an averaging-based supervision strategy grounded in physical principles. It incorporates attention and normalization modules within the fusion process and uses a PatchGAN discriminator to enforce realism. Experiments across multiple dates show that FuseTen outperforms linear baselines, with an average 32.06% improvement in quantitative metrics and 31.42% in visual fidelity. To the best of our knowledge, this is the first non-linear method to generate daily LST estimates at such fine spatial resolution.
comment: Accepted in the 2025 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS)
☆ Towards High-Resolution Alignment and Super-Resolution of Multi-Sensor Satellite Imagery
High-resolution satellite imagery is essential for geospatial analysis, yet differences in spatial resolution across satellite sensors present challenges for data fusion and downstream applications. Super-resolution techniques can help bridge this gap, but existing methods rely on artificially downscaled images rather than real sensor data and are not well suited for heterogeneous satellite sensors with differing spectral, temporal characteristics. In this work, we develop a preliminary framework to align and Harmonized Landsat Sentinel 30m(HLS 30) imagery using Harmonized Landsat Sentinel 10m(HLS10) as a reference from the HLS dataset. Our approach aims to bridge the resolution gap between these sensors and improve the quality of super-resolved Landsat imagery. Quantitative and qualitative evaluations demonstrate the effectiveness of our method, showing its potential for enhancing satellite-based sensing applications. This study provides insights into the feasibility of heterogeneous satellite image super-resolution and highlights key considerations for future advancements in the field.
☆ X-NeMo: Expressive Neural Motion Reenactment via Disentangled Latent Attention ICLR 2025
We propose X-NeMo, a novel zero-shot diffusion-based portrait animation pipeline that animates a static portrait using facial movements from a driving video of a different individual. Our work first identifies the root causes of the key issues in prior approaches, such as identity leakage and difficulty in capturing subtle and extreme expressions. To address these challenges, we introduce a fully end-to-end training framework that distills a 1D identity-agnostic latent motion descriptor from driving image, effectively controlling motion through cross-attention during image generation. Our implicit motion descriptor captures expressive facial motion in fine detail, learned end-to-end from a diverse video dataset without reliance on pretrained motion detectors. We further enhance expressiveness and disentangle motion latents from identity cues by supervising their learning with a dual GAN decoder, alongside spatial and color augmentations. By embedding the driving motion into a 1D latent vector and controlling motion via cross-attention rather than additive spatial guidance, our design eliminates the transmission of spatial-aligned structural clues from the driving condition to the diffusion backbone, substantially mitigating identity leakage. Extensive experiments demonstrate that X-NeMo surpasses state-of-the-art baselines, producing highly expressive animations with superior identity resemblance. Our code and models are available for research.
comment: ICLR 2025, code is available at https://github.com/bytedance/x-nemo-inference
☆ Details Matter for Indoor Open-vocabulary 3D Instance Segmentation ICCV 2025
Unlike closed-vocabulary 3D instance segmentation that is often trained end-to-end, open-vocabulary 3D instance segmentation (OV-3DIS) often leverages vision-language models (VLMs) to generate 3D instance proposals and classify them. While various concepts have been proposed from existing research, we observe that these individual concepts are not mutually exclusive but complementary. In this paper, we propose a new state-of-the-art solution for OV-3DIS by carefully designing a recipe to combine the concepts together and refining them to address key challenges. Our solution follows the two-stage scheme: 3D proposal generation and instance classification. We employ robust 3D tracking-based proposal aggregation to generate 3D proposals and remove overlapped or partial proposals by iterative merging/removal. For the classification stage, we replace the standard CLIP model with Alpha-CLIP, which incorporates object masks as an alpha channel to reduce background noise and obtain object-centric representation. Additionally, we introduce the standardized maximum similarity (SMS) score to normalize text-to-proposal similarity, effectively filtering out false positives and boosting precision. Our framework achieves state-of-the-art performance on ScanNet200 and S3DIS across all AP and AR metrics, even surpassing an end-to-end closed-vocabulary method.
comment: ICCV 2025
☆ MRpro - open PyTorch-based MR reconstruction and processing package
We introduce MRpro, an open-source image reconstruction package built upon PyTorch and open data formats. The framework comprises three main areas. First, it provides unified data structures for the consistent manipulation of MR datasets and their associated metadata (e.g., k-space trajectories). Second, it offers a library of composable operators, proximable functionals, and optimization algorithms, including a unified Fourier operator for all common trajectories and an extended phase graph simulation for quantitative MR. These components are used to create ready-to-use implementations of key reconstruction algorithms. Third, for deep learning, MRpro includes essential building blocks such as data consistency layers, differentiable optimization layers, and state-of-the-art backbone networks and integrates public datasets to facilitate reproducibility. MRpro is developed as a collaborative project supported by automated quality control. We demonstrate the versatility of MRpro across multiple applications, including Cartesian, radial, and spiral acquisitions; motion-corrected reconstruction; cardiac MR fingerprinting; learned spatially adaptive regularization weights; model-based learned image reconstruction and quantitative parameter estimation. MRpro offers an extensible framework for MR image reconstruction. With reproducibility and maintainability at its core, it facilitates collaborative development and provides a foundation for future MR imaging research.
comment: Submitted to Magnetic Resonance in Medicine
☆ Rethink Domain Generalization in Heterogeneous Sequence MRI Segmentation
Clinical magnetic-resonance (MR) protocols generate many T1 and T2 sequences whose appearance differs more than the acquisition sites that produce them. Existing domain-generalization benchmarks focus almost on cross-center shifts and overlook this dominant source of variability. Pancreas segmentation remains a major challenge in abdominal imaging: the gland is small, irregularly, surrounded by organs and fat, and often suffers from low T1 contrast. State-of-the-art deep networks that already achieve >90% Dice on the liver or kidneys still miss 20-30% of the pancreas. The organ is also systematically under-represented in public cross-domain benchmarks, despite its clinical importance in early cancer detection, surgery, and diabetes research. To close this gap, we present PancreasDG, a large-scale multi-center 3D MRI pancreas segmentation dataset for investigating domain generalization in medical imaging. The dataset comprises 563 MRI scans from six institutions, spanning both venous phase and out-of-phase sequences, enabling study of both cross-center and cross-sequence variations with pixel-accurate pancreas masks created by a double-blind, two-pass protocol. Through comprehensive analysis, we reveal three insights: (i) limited sampling introduces significant variance that may be mistaken for distribution shifts, (ii) cross-center performance correlates with source domain performance for identical sequences, and (iii) cross-sequence shifts require specialized solutions. We also propose a semi-supervised approach that leverages anatomical invariances, significantly outperforming state-of-the-art domain generalization techniques with 61.63% Dice score improvements and 87.00% on two test centers for cross-sequence segmentation. PancreasDG sets a new benchmark for domain generalization in medical imaging. Dataset, code, and models will be available at https://pancreasdg.netlify.app.
☆ Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model ICCV 2025
Fine-grained image classification, the task of distinguishing between visually similar subcategories within a broader category (e.g., bird species, car models, flower types), is a challenging computer vision problem. Traditional approaches rely heavily on fixed vocabularies and closed-set classification paradigms, limiting their scalability and adaptability in real-world settings where novel classes frequently emerge. Recent research has demonstrated that combining large language models (LLMs) with vision-language models (VLMs) makes open-set recognition possible without the need for predefined class labels. However, the existing methods are often limited in harnessing the power of LLMs at the classification phase, and also rely heavily on the guessed class names provided by an LLM without thorough analysis and refinement. To address these bottlenecks, we propose our training-free method, Enriched-FineR (or E-FineR for short), which demonstrates state-of-the-art results in fine-grained visual recognition while also offering greater interpretability, highlighting its strong potential in real-world scenarios and new domains where expert annotations are difficult to obtain. Additionally, we demonstrate the application of our proposed approach to zero-shot and few-shot classification, where it demonstrated performance on par with the existing SOTA while being training-free and not requiring human interventions. Overall, our vocabulary-free framework supports the shift in image classification from rigid label prediction to flexible, language-driven understanding, enabling scalable and generalizable systems for real-world applications. Well-documented code is available on https://github.com/demidovd98/e-finer.
comment: Accepted to ICCV 2025
☆ Vision-Language Fusion for Real-Time Autonomous Driving: Goal-Centered Cross-Attention of Camera, HD-Map, & Waypoints
Autonomous cars need geometric accuracy and semantic understanding to navigate complex environments, yet most stacks handle them separately. We present XYZ-Drive, a single vision-language model that reads a front-camera frame, a 25m $\times$ 25m overhead map, and the next waypoint, then outputs steering and speed. A lightweight goal-centered cross-attention layer lets waypoint tokens highlight relevant image and map patches, supporting both action and textual explanations, before the fused tokens enter a partially fine-tuned LLaMA-3.2 11B model. On the MD-NEX Outdoor-Driving benchmark XYZ-Drive attains 95% success and 0.80 Success weighted by Path Length (SPL), surpassing PhysNav-DG by 15%. and halving collisions, all while significantly improving efficiency by using only a single branch. Sixteen ablations explain the gains. Removing any modality (vision, waypoint, map) drops success by up to 11%, confirming their complementary roles and rich connections. Replacing goal-centered attention with simple concatenation cuts 3% in performance, showing query-based fusion injects map knowledge more effectively. Keeping the transformer frozen loses 5%, showing the importance of fine-tuning when applying VLMs for specific tasks such as autonomous driving. Coarsening map resolution from 10 cm to 40 cm blurs lane edges and raises crash rate. Overall, these results demonstrate that early, token-level fusion of intent and map layout enables accurate, transparent, real-time driving.
comment: 5 pages
☆ Reference-Guided Diffusion Inpainting For Multimodal Counterfactual Generation
Safety-critical applications, such as autonomous driving and medical image analysis, require extensive multimodal data for rigorous testing. Synthetic data methods are gaining prominence due to the cost and complexity of gathering real-world data, but they demand a high degree of realism and controllability to be useful. This work introduces two novel methods for synthetic data generation in autonomous driving and medical image analysis, namely MObI and AnydoorMed, respectively. MObI is a first-of-its-kind framework for Multimodal Object Inpainting that leverages a diffusion model to produce realistic and controllable object inpaintings across perceptual modalities, demonstrated simultaneously for camera and lidar. Given a single reference RGB image, MObI enables seamless object insertion into existing multimodal scenes at a specified 3D location, guided by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, this approach uses 3D bounding box conditioning to ensure accurate spatial positioning and realistic scaling. AnydoorMed extends this paradigm to the medical imaging domain, focusing on reference-guided inpainting for mammography scans. It leverages a diffusion-based model to inpaint anomalies with impressive detail preservation, maintaining the reference anomaly's structural integrity while semantically blending it with the surrounding tissue. Together, these methods demonstrate that foundation models for reference-guided inpainting in natural images can be readily adapted to diverse perceptual modalities, paving the way for the next generation of systems capable of constructing highly realistic, controllable and multimodal counterfactual scenarios.
comment: A dissertation submitted to The University of Manchester for the degree of Bachelor of Science in Artificial Intelligence
☆ Early Goal-Guided Multi-Scale Fusion for Real-Time Vision-Language Driving
Autonomous vehicles must react in milliseconds while reasoning about road geometry and traffic intent to navigate complex situations. We introduce NovaDrive, a single-branch vision-language architecture that processes front-camera images, HD-map tiles, LiDAR depth, and textual waypoints in a single branch. A lightweight, two-stage cross-attention block first aligns waypoint tokens with the HD map, then refines attention over fine-grained image and depth patches. Coupled with a novel smoothness loss that discourages abrupt steering and speed changes, this design eliminates the need for recurrent memory. We fine-tune the top 15 layers of an 11B LLaMA-3.2 vision-language backbone, enabling real-time inference. On the nuScenes / Waymo subset of the MD-NEX Outdoor benchmark, NovaDrive raises success rate to 84% (+4%), boosts path-efficiency (SPL) to 0.66 (+0.11), and reduces collision frequency from 2.6% to 1.2% (-1.4%) relative to the previous state-of-the-art. Our ablations confirm that waypoint tokens, partial VLM fine-tuning, and the cross-attention fusion each contribute the most to these gains. Beyond safety, NovaDrive's shorter routes (resulting from the novel smoothness loss) translate to lower fuel or battery usage, pointing toward leaner, more easily updated driving stacks. NovaDrive can be extended to other embodied-AI domains as well.
comment: 6 pages
☆ Adaptive Time-step Training for Enhancing Spike-Based Neural Radiance Fields
Neural Radiance Fields (NeRF)-based models have achieved remarkable success in 3D reconstruction and rendering tasks. However, during both training and inference, these models rely heavily on dense point sampling along rays from multiple viewpoints, resulting in a surge in floating-point operations and severely limiting their use in resource-constrained scenarios like edge computing. Spiking Neural Networks (SNNs), which communicate via binary spikes over discrete time steps, offer a promising alternative due to their energy-efficient nature. Given the inherent variability in scene scale and texture complexity in neural rendering and the prevailing practice of training separate models per scene, we propose a spike-based NeRF framework with a dynamic time step training strategy, termed Pretrain-Adaptive Time-step Adjustment (PATA). This approach automatically explores the trade-off between rendering quality and time step length during training. Consequently, it enables scene-adaptive inference with variable time steps and reduces the additional consumption of computational resources in the inference process. Anchoring to the established Instant-NGP architecture, we evaluate our method across diverse datasets. The experimental results show that PATA can preserve rendering fidelity while reducing inference time steps by 64\% and running power by 61.55\%.
☆ Recovering Diagnostic Value: Super-Resolution-Aided Echocardiographic Classification in Resource-Constrained Imaging MICCAI
Automated cardiac interpretation in resource-constrained settings (RCS) is often hindered by poor-quality echocardiographic imaging, limiting the effectiveness of downstream diagnostic models. While super-resolution (SR) techniques have shown promise in enhancing magnetic resonance imaging (MRI) and computed tomography (CT) scans, their application to echocardiography-a widely accessible but noise-prone modality-remains underexplored. In this work, we investigate the potential of deep learning-based SR to improve classification accuracy on low-quality 2D echocardiograms. Using the publicly available CAMUS dataset, we stratify samples by image quality and evaluate two clinically relevant tasks of varying complexity: a relatively simple Two-Chamber vs. Four-Chamber (2CH vs. 4CH) view classification and a more complex End-Diastole vs. End-Systole (ED vs. ES) phase classification. We apply two widely used SR models-Super-Resolution Generative Adversarial Network (SRGAN) and Super-Resolution Residual Network (SRResNet), to enhance poor-quality images and observe significant gains in performance metric-particularly with SRResNet, which also offers computational efficiency. Our findings demonstrate that SR can effectively recover diagnostic value in degraded echo scans, making it a viable tool for AI-assisted care in RCS, achieving more with less.
comment: Accepted at the MICCAI Workshop on "Medical Image Computing in Resource Constrained Settings & Knowledge Interchange (MIRASOL)" 2025
☆ Modeling Human Gaze Behavior with Diffusion Models for Unified Scanpath Prediction ICCV
Predicting human gaze scanpaths is crucial for understanding visual attention, with applications in human-computer interaction, autonomous systems, and cognitive robotics. While deep learning models have advanced scanpath prediction, most existing approaches generate averaged behaviors, failing to capture the variability of human visual exploration. In this work, we present ScanDiff, a novel architecture that combines diffusion models with Vision Transformers to generate diverse and realistic scanpaths. Our method explicitly models scanpath variability by leveraging the stochastic nature of diffusion models, producing a wide range of plausible gaze trajectories. Additionally, we introduce textual conditioning to enable task-driven scanpath generation, allowing the model to adapt to different visual search objectives. Experiments on benchmark datasets show that ScanDiff surpasses state-of-the-art methods in both free-viewing and task-driven scenarios, producing more diverse and accurate scanpaths. These results highlight its ability to better capture the complexity of human visual behavior, pushing forward gaze prediction research. Source code and models are publicly available at https://aimagelab.github.io/ScanDiff.
comment: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2025
☆ Investigating the Invertibility of Multimodal Latent Spaces: Limitations of Optimization-Based Methods
This paper investigates the inverse capabilities and broader utility of multimodal latent spaces within task-specific AI (Artificial Intelligence) models. While these models excel at their designed forward tasks (e.g., text-to-image generation, audio-to-text transcription), their potential for inverse mappings remains largely unexplored. We propose an optimization-based framework to infer input characteristics from desired outputs, applying it bidirectionally across Text-Image (BLIP, Flux.1-dev) and Text-Audio (Whisper-Large-V3, Chatterbox-TTS) modalities. Our central hypothesis posits that while optimization can guide models towards inverse tasks, their multimodal latent spaces will not consistently support semantically meaningful and perceptually coherent inverse mappings. Experimental results consistently validate this hypothesis. We demonstrate that while optimization can force models to produce outputs that align textually with targets (e.g., a text-to-image model generating an image that an image captioning model describes correctly, or an ASR model transcribing optimized audio accurately), the perceptual quality of these inversions is chaotic and incoherent. Furthermore, when attempting to infer the original semantic input from generative models, the reconstructed latent space embeddings frequently lack semantic interpretability, aligning with nonsensical vocabulary tokens. These findings highlight a critical limitation. multimodal latent spaces, primarily optimized for specific forward tasks, do not inherently possess the structure required for robust and interpretable inverse mappings. Our work underscores the need for further research into developing truly semantically rich and invertible multimodal latent spaces.
☆ Robust and Efficient 3D Gaussian Splatting for Urban Scene Reconstruction
We present a framework that enables fast reconstruction and real-time rendering of urban-scale scenes while maintaining robustness against appearance variations across multi-view captures. Our approach begins with scene partitioning for parallel training, employing a visibility-based image selection strategy to optimize training efficiency. A controllable level-of-detail (LOD) strategy explicitly regulates Gaussian density under a user-defined budget, enabling efficient training and rendering while maintaining high visual fidelity. The appearance transformation module mitigates the negative effects of appearance inconsistencies across images while enabling flexible adjustments. Additionally, we utilize enhancement modules, such as depth regularization, scale regularization, and antialiasing, to improve reconstruction fidelity. Experimental results demonstrate that our method effectively reconstructs urban-scale scenes and outperforms previous approaches in both efficiency and quality. The source code is available at: https://yzslab.github.io/REUrbanGS.
☆ Noise-Coded Illumination for Forensic and Photometric Video Analysis SIGGRAPH 2025
The proliferation of advanced tools for manipulating video has led to an arms race, pitting those who wish to sow disinformation against those who want to detect and expose it. Unfortunately, time favors the ill-intentioned in this race, with fake videos growing increasingly difficult to distinguish from real ones. At the root of this trend is a fundamental advantage held by those manipulating media: equal access to a distribution of what we consider authentic (i.e., "natural") video. In this paper, we show how coding very subtle, noise-like modulations into the illumination of a scene can help combat this advantage by creating an information asymmetry that favors verification. Our approach effectively adds a temporal watermark to any video recorded under coded illumination. However, rather than encoding a specific message, this watermark encodes an image of the unmanipulated scene as it would appear lit only by the coded illumination. We show that even when an adversary knows that our technique is being used, creating a plausible coded fake video amounts to solving a second, more difficult version of the original adversarial content creation problem at an information disadvantage. This is a promising avenue for protecting high-stakes settings like public events and interviews, where the content on display is a likely target for manipulation, and while the illumination can be controlled, the cameras capturing video cannot.
comment: ACM Transactions on Graphics (2025), presented at SIGGRAPH 2025
☆ LesionGen: A Concept-Guided Diffusion Model for Dermatology Image Synthesis MICCAI 2025
Deep learning models for skin disease classification require large, diverse, and well-annotated datasets. However, such resources are often limited due to privacy concerns, high annotation costs, and insufficient demographic representation. While text-to-image diffusion probabilistic models (T2I-DPMs) offer promise for medical data synthesis, their use in dermatology remains underexplored, largely due to the scarcity of rich textual descriptions in existing skin image datasets. In this work, we introduce LesionGen, a clinically informed T2I-DPM framework for dermatology image synthesis. Unlike prior methods that rely on simplistic disease labels, LesionGen is trained on structured, concept-rich dermatological captions derived from expert annotations and pseudo-generated, concept-guided reports. By fine-tuning a pretrained diffusion model on these high-quality image-caption pairs, we enable the generation of realistic and diverse skin lesion images conditioned on meaningful dermatological descriptions. Our results demonstrate that models trained solely on our synthetic dataset achieve classification accuracy comparable to those trained on real images, with notable gains in worst-case subgroup performance. Code and data are available here.
comment: Accepted at the MICCAI 2025 ISIC Workshop
Planning for Cooler Cities: A Multimodal AI Framework for Predicting and Mitigating Urban Heat Stress through Urban Landscape Transformation
As extreme heat events intensify due to climate change and urbanization, cities face increasing challenges in mitigating outdoor heat stress. While traditional physical models such as SOLWEIG and ENVI-met provide detailed assessments of human-perceived heat exposure, their computational demands limit scalability for city-wide planning. In this study, we propose GSM-UTCI, a multimodal deep learning framework designed to predict daytime average Universal Thermal Climate Index (UTCI) at 1-meter hyperlocal resolution. The model fuses surface morphology (nDSM), high-resolution land cover data, and hourly meteorological conditions using a feature-wise linear modulation (FiLM) architecture that dynamically conditions spatial features on atmospheric context. Trained on SOLWEIG-derived UTCI maps, GSM-UTCI achieves near-physical accuracy, with an R2 of 0.9151 and a mean absolute error (MAE) of 0.41{\deg}C, while reducing inference time from hours to under five minutes for an entire city. To demonstrate its planning relevance, we apply GSM-UTCI to simulate systematic landscape transformation scenarios in Philadelphia, replacing bare earth, grass, and impervious surfaces with tree canopy. Results show spatially heterogeneous but consistently strong cooling effects, with impervious-to-tree conversion producing the highest aggregated benefit (-4.18{\deg}C average change in UTCI across 270.7 km2). Tract-level bivariate analysis further reveals strong alignment between thermal reduction potential and land cover proportions. These findings underscore the utility of GSM-UTCI as a scalable, fine-grained decision support tool for urban climate adaptation, enabling scenario-based evaluation of greening strategies across diverse urban environments.
♻ ☆ UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE, a comprehensive framework enhancing GUI agents at both the training and inference stages. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a Continuous Reward function to incentivize high-precision grounding; 2) a "Simple Thinking" reward to balance planning with speed and grounding accuracy; and 3) a Cropping-based Resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present Decomposed Grounding with Selection, a novel method that dramatically improves grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2. For instance, using both our proposed training and inference enhancement methods brings 23% grounding accuracy improvement over the best baseline on ScreenSpot-Pro.
♻ ☆ See Different, Think Better: Visual Variations Mitigating Hallucinations in LVLMs ACM MM25
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in visual understanding and multimodal reasoning. However, LVLMs frequently exhibit hallucination phenomena, manifesting as the generated textual responses that demonstrate inconsistencies with the provided visual content. Existing hallucination mitigation methods are predominantly text-centric, the challenges of visual-semantic alignment significantly limit their effectiveness, especially when confronted with fine-grained visual understanding scenarios. To this end, this paper presents ViHallu, a Vision-Centric Hallucination mitigation framework that enhances visual-semantic alignment through Visual Variation Image Generation and Visual Instruction Construction. ViHallu introduces visual variation images with controllable visual alterations while maintaining the overall image structure. These images, combined with carefully constructed visual instructions, enable LVLMs to better understand fine-grained visual content through fine-tuning, allowing models to more precisely capture the correspondence between visual content and text, thereby enhancing visual-semantic alignment. Extensive experiments on multiple benchmarks show that ViHallu effectively enhances models' fine-grained visual understanding while significantly reducing hallucination tendencies. Furthermore, we release ViHallu-Instruction, a visual instruction dataset specifically designed for hallucination mitigation and visual-semantic alignment. Code is available at https://github.com/oliviadzy/ViHallu.
comment: Accepted by ACM MM25
♻ ☆ When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.
comment: For ongoing updates and to track the latest advances in this promising area, we maintain a public repository: https://github.com/cokeshao/Awesome-Multimodal-Token-Compression
♻ ☆ Predict Patient Self-reported Race from Skin Histological Images MICCAI
Artificial Intelligence (AI) has demonstrated success in computational pathology (CPath) for disease detection, biomarker classification, and prognosis prediction. However, its potential to learn unintended demographic biases, particularly those related to social determinants of health, remains understudied. This study investigates whether deep learning models can predict self-reported race from digitized dermatopathology slides and identifies potential morphological shortcuts. Using a multisite dataset with a racially diverse population, we apply an attention-based mechanism to uncover race-associated morphological features. After evaluating three dataset curation strategies to control for confounding factors, the final experiment showed that White and Black demographic groups retained high prediction performance (AUC: 0.799, 0.762), while overall performance dropped to 0.663. Attention analysis revealed the epidermis as a key predictive feature, with significant performance declines when these regions were removed. These findings highlight the need for careful data curation and bias mitigation to ensure equitable AI deployment in pathology. Code available at: https://github.com/sinai-computational-pathology/CPath_SAIF.
comment: Accepted to the MICCAI Workshop on Fairness of AI in Medical Imaging (FAIMI), 2025
Language Driven Occupancy Prediction ICCV 2025
We introduce LOcc, an effective and generalizable framework for open-vocabulary occupancy (OVO) prediction. Previous approaches typically supervise the networks through coarse voxel-to-text correspondences via image features as intermediates or noisy and sparse correspondences from voxel-based model-view projections. To alleviate the inaccurate supervision, we propose a semantic transitive labeling pipeline to generate dense and fine-grained 3D language occupancy ground truth. Our pipeline presents a feasible way to dig into the valuable semantic information of images, transferring text labels from images to LiDAR point clouds and ultimately to voxels, to establish precise voxel-to-text correspondences. By replacing the original prediction head of supervised occupancy models with a geometry head for binary occupancy states and a language head for language features, LOcc effectively uses the generated language ground truth to guide the learning of 3D language volume. Through extensive experiments, we demonstrate that our transitive semantic labeling pipeline can produce more accurate pseudo-labeled ground truth, diminishing labor-intensive human annotations. Additionally, we validate LOcc across various architectures, where all models consistently outperform state-of-the-art zero-shot occupancy prediction approaches on the Occ3D-nuScenes dataset.
comment: ICCV 2025; Project Page: https://github.com/pkqbajng/LOcc
♻ ☆ Multimodal LLMs as Customized Reward Models for Text-to-Image Generation ICCV 2025
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.
comment: Accepted at ICCV 2025. Code available at https://github.com/sjz5202/LLaVA-Reward
♻ ☆ Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy ICONIP2025
Vision-based bird's-eye-view (BEV) 3D object detection has advanced significantly in autonomous driving by offering cost-effectiveness and rich contextual information. However, existing methods often construct BEV representations by collapsing extracted object features, neglecting intrinsic environmental contexts, such as roads and pavements. This hinders detectors from comprehensively perceiving the characteristics of the physical world. To alleviate this, we introduce a multi-task learning framework, Collaborative Perceiver (CoP), that leverages spatial occupancy as auxiliary information to mine consistent structural and conceptual similarities shared between 3D object detection and occupancy prediction tasks, bridging gaps in spatial representations and feature refinement. To this end, we first propose a pipeline to generate dense occupancy ground truths incorporating local density information (LDO) for reconstructing detailed environmental information. Next, we employ a voxel-height-guided sampling (VHS) strategy to distill fine-grained local features according to distinct object properties. Furthermore, we develop a global-local collaborative feature fusion (CFF) module that seamlessly integrates complementary knowledge between both tasks, thus composing more robust BEV representations. Extensive experiments on the nuScenes benchmark demonstrate that CoP outperforms existing vision-based frameworks, achieving 49.5\% mAP and 59.2\% NDS on the test set. Code and supplementary materials are available at this link https://github.com/jichengyuan/Collaborative-Perceiver.
comment: The manuscript has been accepted by ICONIP2025
♻ ☆ Learning Only with Images: Visual Reinforcement Learning with Reasoning, Rendering, and Visual Feedback
Multimodal Large Language Models (MLLMs) exhibit impressive performance across various visual tasks. Subsequent investigations into enhancing their visual reasoning abilities have significantly expanded their performance envelope. However, a critical bottleneck in the advancement of MLLMs toward deep visual reasoning is their heavy reliance on curated image-text supervision. To solve this problem, we introduce a novel framework termed ``Reasoning-Rendering-Visual-Feedback'' (RRVF), which enables MLLMs to learn complex visual reasoning from only raw images. This framework builds on the ``Asymmetry of Verification'' principle to train MLLMs, i.e., verifying the rendered output against a source image is easier than generating it. We demonstrate that this relative ease provides an ideal reward signal for optimization via Reinforcement Learning (RL) training, reducing reliance on the image-text supervision. Guided by the above principle, RRVF implements a closed-loop iterative process encompassing reasoning, rendering, and visual feedback components, enabling the model to perform self-correction through multi-turn interactions, while this pipeline can be optimized end-to-end by the GRPO algorithm. Extensive evaluations are conducted on image-to-code generation across two diverse domains: data charts and web interfaces. The RRVF-trained model not only outperforms existing open-source MLLMs and supervised fine-tuning baselines but also exhibits superior generalization to unseen datasets. Critically, the model's performance surpasses that of the more advanced MLLM used to provide the feedback signal during training. This work establishes a self-improvement paradigm that offers a viable path to robust, generalizable models without reliance on explicit supervision. Code will be available at https://github.com/L-O-I/RRVF.
♻ ☆ PARTE: Part-Guided Texturing for 3D Human Reconstruction from a Single Image ICCV 2025
The misaligned human texture across different human parts is one of the main limitations of existing 3D human reconstruction methods. Each human part, such as a jacket or pants, should maintain a distinct texture without blending into others. The structural coherence of human parts serves as a crucial cue to infer human textures in the invisible regions of a single image. However, most existing 3D human reconstruction methods do not explicitly exploit such part segmentation priors, leading to misaligned textures in their reconstructions. In this regard, we present PARTE, which utilizes 3D human part information as a key guide to reconstruct 3D human textures. Our framework comprises two core components. First, to infer 3D human part information from a single image, we propose a 3D part segmentation module (PartSegmenter) that initially reconstructs a textureless human surface and predicts human part labels based on the textureless surface. Second, to incorporate part information into texture reconstruction, we introduce a part-guided texturing module (PartTexturer), which acquires prior knowledge from a pre-trained image generation network on texture alignment of human parts. Extensive experiments demonstrate that our framework achieves state-of-the-art quality in 3D human reconstruction. The project page is available at https://hygenie1228.github.io/PARTE/.
comment: Published at ICCV 2025, 22 pages including the supplementary material
♻ ☆ TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound ICCV 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .
comment: Accepted to ICCV 2025 Workshop CVAMD
♻ ☆ Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving
Vision-language models (VLMs) have become a promising approach to enhancing perception and decision-making in autonomous driving. The gap remains in applying VLMs to understand complex scenarios interacting with pedestrians and efficient vehicle deployment. In this paper, we propose a knowledge distillation method that transfers knowledge from large-scale vision-language foundation models to efficient vision networks, and we apply it to pedestrian behavior prediction and scene understanding tasks, achieving promising results in generating more diverse and comprehensive semantic attributes. We also utilize multiple pre-trained models and ensemble techniques to boost the model's performance. We further examined the effectiveness of the model after knowledge distillation; the results show significant metric improvements in open-vocabulary perception and trajectory prediction tasks, which can potentially enhance the end-to-end performance of autonomous driving.
♻ ☆ Distance and Collision Probability Estimation from Gaussian Surface Models IROS 2025
This paper describes continuous-space methodologies to estimate the collision probability, Euclidean distance and gradient between an ellipsoidal robot model and an environment surface modeled as a set of Gaussian distributions. Continuous-space collision probability estimation is critical for uncertainty-aware motion planning. Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations and enable navigation in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds, which is computationally expensive for large workspaces. Recent advances in Gaussian surface modeling (e.g. mixture models, splatting) enable compressed and high-fidelity surface representations. Few methods exist to estimate continuous-space occupancy from such models. They require Gaussians to model free space and are unable to estimate the collision probability, Euclidean distance and gradient for an ellipsoidal robot. The proposed methods bridge this gap by extending prior work in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to Gaussian surface models. A geometric blending approach is also proposed to improve collision probability estimation. The approaches are evaluated with numerical 2D and 3D experiments using real-world point cloud data. Methods for efficient calculation of these quantities are demonstrated to execute within a few microseconds per ellipsoid pair using a single-thread on low-power CPUs of modern embedded computers
comment: Accepted at IROS 2025
♻ ☆ ViM-VQ: Efficient Post-Training Vector Quantization for Visual Mamba
Visual Mamba networks (ViMs) extend the selective state space model (Mamba) to various vision tasks and demonstrate significant potential. As a promising compression technique, vector quantization (VQ) decomposes network weights into codebooks and assignments, significantly reducing memory usage and computational latency, thereby enabling the deployment of ViMs on edge devices. Although existing VQ methods have achieved extremely low-bit quantization (e.g., 3-bit, 2-bit, and 1-bit) in convolutional neural networks and Transformer-based networks, directly applying these methods to ViMs results in unsatisfactory accuracy. We identify several key challenges: 1) The weights of Mamba-based blocks in ViMs contain numerous outliers, significantly amplifying quantization errors. 2) When applied to ViMs, the latest VQ methods suffer from excessive memory consumption, lengthy calibration procedures, and suboptimal performance in the search for optimal codewords. In this paper, we propose ViM-VQ, an efficient post-training vector quantization method tailored for ViMs. ViM-VQ consists of two innovative components: 1) a fast convex combination optimization algorithm that efficiently updates both the convex combinations and the convex hulls to search for optimal codewords, and 2) an incremental vector quantization strategy that incrementally confirms optimal codewords to mitigate truncation errors. Experimental results demonstrate that ViM-VQ achieves state-of-the-art performance in low-bit quantization across various visual tasks.
FOCoOp: Enhancing Out-of-Distribution Robustness in Federated Prompt Learning for Vision-Language Models ICML25
Federated prompt learning (FPL) for vision-language models is a powerful approach to collaboratively adapt models across distributed clients while preserving data privacy. However, existing FPL approaches suffer from a trade-off between performance and robustness, particularly in out-of-distribution (OOD) shifts, limiting their reliability in real-world scenarios. The inherent in-distribution (ID) data heterogeneity among different clients makes it more challenging to maintain this trade-off. To fill this gap, we introduce a Federated OOD-aware Context Optimization (FOCoOp) framework, which captures diverse distributions among clients using ID global prompts, local prompts, and OOD prompts. Specifically, FOCoOp leverages three sets of prompts to create both class-level and distribution-level separations, which adapt to OOD shifts through bi-level distributionally robust optimization. Additionally, FOCoOp improves the discrimination consistency among clients, i.e., calibrating global prompts, seemingly OOD prompts, and OOD prompts by semi-unbalanced optimal transport. The extensive experiments on real-world datasets demonstrate that FOCoOp effectively captures decentralized heterogeneous distributions and enhances robustness of different OOD shifts. The project is available at GitHub.
comment: Accepted by ICML25
♻ ☆ Scaling RL to Long Videos
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).
comment: Code at https://github.com/NVlabs/Long-RL and model at https://huggingface.co/Efficient-Large-Model/LongVILA-R1-7B
♻ ☆ SpatialViz-Bench: Automatically Generated Spatial Visualization Reasoning Tasks for MLLMs
Humans can directly imagine and manipulate visual images in their minds, a capability known as spatial visualization. While multi-modal Large Language Models (MLLMs) support imagination-based reasoning, spatial visualization remains insufficiently evaluated, typically embedded within broader mathematical and logical assessments. Existing evaluations often rely on IQ tests or math competitions that may overlap with training data, compromising assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 automatically generated problems. Our evaluation of 33 state-of-the-art MLLMs not only reveals wide performance variations and demonstrates the benchmark's strong discriminative power, but also uncovers counter-intuitive findings: models show difficulty perception misaligned with human intuition, exhibit dramatic 2Dto-3D performance cliffs, default to formulaic derivation over visualization, and paradoxically suffer performance degradation from Chain-of-Thought prompting in open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs continue to exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
♻ ☆ $S^2M^2$: Scalable Stereo Matching Model for Reliable Depth Estimation ICCV
The pursuit of a generalizable stereo matching model, capable of performing well across varying resolutions and disparity ranges without dataset-specific fine-tuning, has revealed a fundamental trade-off. Iterative local search methods achieve high scores on constrained benchmarks, but their core mechanism inherently limits the global consistency required for true generalization. However, global matching architectures, while theoretically more robust, have historically been rendered infeasible by prohibitive computational and memory costs. We resolve this dilemma with $S^2M^2$: a global matching architecture that achieves state-of-the-art accuracy and high efficiency without relying on cost volume filtering or deep refinement stacks. Our design integrates a multi-resolution transformer for robust long-range correspondence, trained with a novel loss function that concentrates probability on feasible matches. This approach enables a more robust joint estimation of disparity, occlusion, and confidence. $S^2M^2$ establishes a new state of the art on Middlebury v3 and ETH3D benchmarks, significantly outperforming prior methods in most metrics while reconstructing high-quality details with competitive efficiency.
comment: 8 pages, 5 figures, ICCV accepted paper
GS-Occ3D: Scaling Vision-only Occupancy Reconstruction for Autonomous Driving with Gaussian Splatting ICCV 2025
Occupancy is crucial for autonomous driving, providing essential geometric priors for perception and planning. However, existing methods predominantly rely on LiDAR-based occupancy annotations, which limits scalability and prevents leveraging vast amounts of potential crowdsourced data for auto-labeling. To address this, we propose GS-Occ3D, a scalable vision-only framework that directly reconstructs occupancy. Vision-only occupancy reconstruction poses significant challenges due to sparse viewpoints, dynamic scene elements, severe occlusions, and long-horizon motion. Existing vision-based methods primarily rely on mesh representation, which suffer from incomplete geometry and additional post-processing, limiting scalability. To overcome these issues, GS-Occ3D optimizes an explicit occupancy representation using an Octree-based Gaussian Surfel formulation, ensuring efficiency and scalability. Additionally, we decompose scenes into static background, ground, and dynamic objects, enabling tailored modeling strategies: (1) Ground is explicitly reconstructed as a dominant structural element, significantly improving large-area consistency; (2) Dynamic vehicles are separately modeled to better capture motion-related occupancy patterns. Extensive experiments on the Waymo dataset demonstrate that GS-Occ3D achieves state-of-the-art geometry reconstruction results. By curating vision-only binary occupancy labels from diverse urban scenes, we show their effectiveness for downstream occupancy models on Occ3D-Waymo and superior zero-shot generalization on Occ3D-nuScenes. It highlights the potential of large-scale vision-based occupancy reconstruction as a new paradigm for scalable auto-labeling. Project Page: https://gs-occ3d.github.io/
comment: ICCV 2025. Project Page: https://gs-occ3d.github.io/
♻ ☆ AstroLoc: Robust Space to Ground Image Localizer
Astronauts take thousands of photos of Earth per day from the International Space Station, which, once localized on Earth's surface, are used for a multitude of tasks, ranging from climate change research to disaster management. The localization process, which has been performed manually for decades, has recently been approached through image retrieval solutions: given an astronaut photo, find its most similar match among a large database of geo-tagged satellite images, in a task called Astronaut Photography Localization (APL). Yet, existing APL approaches are trained only using satellite images, without taking advantage of the millions open-source astronaut photos. In this work we present the first APL pipeline capable of leveraging astronaut photos for training. We first produce full localization information for 300,000 manually weakly labeled astronaut photos through an automated pipeline, and then use these images to train a model, called AstroLoc. AstroLoc learns a robust representation of Earth's surface features through two losses: astronaut photos paired with their matching satellite counterparts in a pairwise loss, and a second loss on clusters of satellite imagery weighted by their relevance to astronaut photography via unsupervised mining. We find that AstroLoc achieves a staggering 35% average improvement in recall@1 over previous SOTA, pushing the limits of existing datasets with a recall@100 consistently over 99%. Finally, we note that AstroLoc, without any fine-tuning, provides excellent results for related tasks like the lost-in-space satellite problem and historical space imagery localization.
comment: https://astro-loc.github.io/
♻ ☆ ComicsPAP: understanding comic strips by picking the correct panel
Large multimodal models (LMMs) have made impressive strides in image captioning, VQA, and video comprehension, yet they still struggle with the intricate temporal and spatial cues found in comics. To address this gap, we introduce ComicsPAP, a large-scale benchmark designed for comic strip understanding. Comprising over 100k samples and organized into 5 subtasks under a Pick-a-Panel framework, ComicsPAP demands models to identify the missing panel in a sequence. Our evaluations, conducted under both multi-image and single-image protocols, reveal that current state-of-the-art LMMs perform near chance on these tasks, underscoring significant limitations in capturing sequential and contextual dependencies. To close the gap, we adapted LMMs for comic strip understanding, obtaining better results on ComicsPAP than 10x bigger models, demonstrating that ComicsPAP offers a robust resource to drive future research in multimodal comic comprehension.
♻ ☆ Addressing Representation Collapse in Vector Quantized Models with One Linear Layer ICCV2025
Vector Quantization (VQ) is essential for discretizing continuous representations in unsupervised learning but suffers from representation collapse, causing low codebook utilization and limiting scalability. Existing solutions often rely on complex optimizations or reduce latent dimensionality, which compromises model capacity and fails to fully solve the problem. We identify the root cause as disjoint codebook optimization, where only a few code vectors are updated via gradient descent. To fix this, we propose \textbf{Sim}ple\textbf{VQ}, which reparameterizes code vectors through a learnable linear transformation layer over a latent basis, optimizing the \textit{entire linear space} rather than nearest \textit{individual code vectors}. Although the multiplication of two linear matrices is equivalent to applying a single linear layer, this simple approach effectively prevents collapse. Extensive experiments on image and audio tasks demonstrate that SimVQ improves codebook usage, is easy to implement, and generalizes well across modalities and architectures.
comment: Accepted at ICCV2025
♻ ☆ Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution ICCV 2025
Implicit Neural Representations (INR) have been successfully employed for Arbitrary-scale Super-Resolution (ASR). However, INR-based models need to query the multi-layer perceptron module numerous times and render a pixel in each query, resulting in insufficient representation capability and low computational efficiency. Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks, which motivates us to explore whether GS can be employed for the ASR task. However, directly applying GS to ASR is exceptionally challenging because the original GS is an optimization-based method through overfitting each single scene, while in ASR we aim to learn a single model that can generalize to different images and scaling factors. We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Each Gaussian can fit the shape and direction of an area of complex textures, showing powerful representation capability. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted continuous Gaussians. Via end-to-end training, our optimized network, namely GSASR, can perform ASR for any image and unseen scaling factors. Extensive experiments validate the effectiveness of our proposed method. The code and models are available at https://github.com/ChrisDud0257/GSASR.
comment: Accepted by ICCV 2025
♻ ☆ FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation ICCV 2025
In this paper, we challenge the conventional practice in Open-Vocabulary Semantic Segmentation (OVSS) of using averaged class-wise text embeddings, which are typically obtained by encoding each class name with multiple templates (e.g., a photo of , a sketch of a ). We investigate the impact of templates for OVSS, and find that for each class, there exist single-template classifiers--which we refer to as class-experts--that significantly outperform the conventional averaged classifier. First, to identify these class-experts, we introduce a novel approach that estimates them without any labeled data or training. By leveraging the class-wise prediction entropy of single-template classifiers, we select those yielding the lowest entropy as the most reliable class-experts. Second, we combine the outputs of class-experts in a new fusion process. Our plug-and-play method, coined FLOSS, is orthogonal and complementary to existing OVSS methods, offering an improvement without the need for additional labels or training. Extensive experiments show that FLOSS consistently enhances state-of-the-art OVSS models, generalizes well across datasets with different distribution shifts, and delivers substantial improvements in low-data scenarios where only a few unlabeled images are available. Our code is available at https://github.com/yasserben/FLOSS .
comment: ICCV 2025; Project Page: https://yasserben.github.io/FLOSS/
♻ ☆ Gaussian On-the-Fly Splatting: A Progressive Framework for Robust Near Real-Time 3DGS Optimization
3D Gaussian Splatting (3DGS) achieves high-fidelity rendering with fast real-time performance, but existing methods rely on offline training after full Structure-from-Motion (SfM) processing. In contrast, this work introduces Gaussian on-the-fly Splatting (abbreviated as On-the-Fly GS), a progressive framework enabling near real-time 3DGS optimization during image capture. As each image arrives, its pose and sparse points are updated via On-the-Fly SfM, and newly optimized Gaussians are immediately integrated into the 3DGS field. To achieve this, we propose a progressive Local & Semi-Global optimization to prioritize the new image and its neighbors by their corresponding overlapping relationship, allowing the new image and its overlapping images to get more training. To further stabilize training across previous and new images, an adaptive learning rate schedule balances the iterations and the learning rate. Extensive experiments on multiple benchmarks show that our On-the-Fly GS reduces training time significantly, optimizing each new image in seconds with minimal rendering loss, offering one of the first practical steps toward rapid, progressive 3DGS reconstruction.
♻ ☆ UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://microsoft.github.io/FIVE-UI-Evol/ .
♻ ☆ Equivariant Flow Matching for Point Cloud Assembly
The goal of point cloud assembly is to reconstruct a complete 3D shape by aligning multiple point cloud pieces. This work presents a novel equivariant solver for assembly tasks based on flow matching models. We first theoretically show that the key to learning equivariant distributions via flow matching is to learn related vector fields. Based on this result, we propose an assembly model, called equivariant diffusion assembly (Eda), which learns related vector fields conditioned on the input pieces. We further construct an equivariant path for Eda, which guarantees high data efficiency of the training process. Our numerical results show that Eda is highly competitive on practical datasets, and it can even handle the challenging situation where the input pieces are non-overlapped.
♻ ☆ Fine-Tuning Visual Autoregressive Models for Subject-Driven Generation ICCV 2025
Recent advances in text-to-image generative models have enabled numerous practical applications, including subject-driven generation, which fine-tunes pretrained models to capture subject semantics from only a few examples. While diffusion-based models produce high-quality images, their extensive denoising steps result in significant computational overhead, limiting real-world applicability. Visual autoregressive (VAR) models, which predict next-scale tokens rather than spatially adjacent ones, offer significantly faster inference suitable for practical deployment. In this paper, we propose the first VAR-based approach for subject-driven generation. However, naive fine-tuning VAR leads to computational overhead, language drift, and reduced diversity. To address these challenges, we introduce selective layer tuning to reduce complexity and prior distillation to mitigate language drift. Additionally, we found that the early stages have a greater influence on the generation of subject than the latter stages, which merely synthesize minor details. Based on this finding, we propose scale-wise weighted tuning, which prioritizes coarser resolutions for promoting the model to focus on the subject-relevant information instead of local details. Extensive experiments validate that our method significantly outperforms diffusion-based baselines across various metrics and demonstrates its practical usage.
comment: Accepted to ICCV 2025. Project page: https://jiwoogit.github.io/ARBooth/
♻ ☆ R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception ICCV2025
In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users(VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across 150 traffic scenarios, with 7 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset and the code for reproducing our evaluation results are made publicly available.
comment: 11 pages, 8 figures, accepted at ICCV2025
♻ ☆ StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification
Existing large vision-language models (LVLMs) are largely limited to processing short, seconds-long videos and struggle with generating coherent descriptions for extended video spanning minutes or more. Long video description introduces new challenges, such as consistent character identification and plot-level descriptions incorporating both visual and audio information. To address these, we figure out audio-visual character identification, matching character names to each dialogue, as a key factor. We propose StoryTeller, a system for generating dense descriptions of long videos, incorporating both low-level visual concepts and high-level plot information. StoryTeller uses a multimodal large language model that integrates visual, audio, and text modalities to perform audio-visual character identification on minute-long video clips. The results are then fed into a LVLM to enhance consistency of video description. We validate our approach on movie description tasks and introduce MovieStory101, a dataset with dense descriptions for three-minute movie clips. To evaluate long video descriptions, we create StoryQA, a large set of multiple-choice questions for MovieStory101 test set. We assess descriptions by inputting them into GPT-4 to answer these questions, using accuracy as an automatic evaluation metric. Experiments show that StoryTeller outperforms all open and closed-source baselines on StoryQA, achieving 9.5% higher accuracy than the strongest baseline, Gemini-1.5-pro, and demonstrating a +15.56% advantage in human side-by-side evaluations. Additionally, incorporating audio-visual character identification from StoryTeller improves the performance of all video description models, with Gemini-1.5-pro and GPT-4o showing relative improvement of 5.5% and 13.0%, respectively, in accuracy on StoryQA.
♻ ☆ RecConv: Efficient Recursive Convolutions for Multi-Frequency Representations
Recent advances in vision transformers (ViTs) have demonstrated the advantage of global modeling capabilities, prompting widespread integration of large-kernel convolutions for enlarging the effective receptive field (ERF). However, the quadratic scaling of parameter count and computational complexity (FLOPs) with respect to kernel size poses significant efficiency and optimization challenges. This paper introduces RecConv, a recursive decomposition strategy that efficiently constructs multi-frequency representations using small-kernel convolutions. RecConv establishes a linear relationship between parameter growth and decomposing levels which determines the effective receptive field $k\times 2^\ell$ for a base kernel $k$ and $\ell$ levels of decomposition, while maintaining constant FLOPs regardless of the ERF expansion. Specifically, RecConv achieves a parameter expansion of only $\ell+2$ times and a maximum FLOPs increase of $5/3$ times, compared to the exponential growth ($4^\ell$) of standard and depthwise convolutions. RecNeXt-M3 outperforms RepViT-M1.1 by 1.9 $AP^{box}$ on COCO with similar FLOPs. This innovation provides a promising avenue towards designing efficient and compact networks across various modalities. Codes and models can be found at https://github.com/suous/RecNeXt.
comment: Tech report; Added supplementary material; Added more experiments;
♻ ☆ Metric Convolutions: A Unifying Theory to Adaptive Image Convolutions ICCV
Standard convolutions are prevalent in image processing and deep learning, but their fixed kernels limits adaptability. Several deformation strategies of the reference kernel grid have been proposed. Yet, they lack a unified theoretical framework. By returning to a metric perspective for images, now seen as two-dimensional manifolds equipped with notions of local and geodesic distances, either symmetric (Riemannian) or not (Finsler), we provide a unifying principle: the kernel positions are samples of unit balls of implicit metrics. With this new perspective, we also propose metric convolutions, a novel approach that samples unit balls from explicit signal-dependent metrics, providing interpretable operators with geometric regularisation. This framework, compatible with gradient-based optimisation, can directly replace existing convolutions applied to either input images or deep features of neural networks. Metric convolutions typically require fewer parameters and provide better generalisation. Our approach shows competitive performance in standard denoising and classification tasks.
comment: Updated version, Accepted for publication at the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
♻ ☆ CLIP-HandID: Vision-Language Model for Hand-Based Person Identification
This paper introduces a novel approach to person identification using hand images, designed specifically for criminal investigations. The method is particularly valuable in serious crimes such as sexual abuse, where hand images are often the only identifiable evidence available. Our proposed method, CLIP-HandID, leverages a pre-trained foundational vision-language model - CLIP - to efficiently learn discriminative deep feature representations from hand images (input to CLIP's image encoder) using textual prompts as semantic guidance. Since hand images are labeled with indexes rather than text descriptions, we employ a textual inversion network to learn pseudo-tokens that encode specific visual contexts or appearance attributes. These learned pseudo-tokens are then incorporated into textual prompts, which are fed into CLIP's text encoder to leverage its multi-modal reasoning and enhance generalization for identification. Through extensive evaluations on two large, publicly available hand datasets with multi-ethnic representation, we demonstrate that our method significantly outperforms existing approaches.
♻ ☆ Skull-stripping induces shortcut learning in MRI-based Alzheimer's disease classification
Objectives: High classification accuracy of Alzheimer's disease (AD) from structural MRI has been achieved using deep neural networks, yet the specific image features contributing to these decisions remain unclear. In this study, the contributions of T1-weighted (T1w) gray-white matter texture, volumetric information, and preprocessing -- particularly skull-stripping -- were systematically assessed. Methods: A dataset of 990 matched T1w MRIs from AD patients and cognitively normal controls from the ADNI database were used. Preprocessing was varied through skull-stripping and intensity binarization to isolate texture and shape contributions. A 3D convolutional neural network was trained on each configuration, and classification performance was compared using exact McNemar tests with discrete Bonferroni-Holm correction. Feature relevance was analyzed using Layer-wise Relevance Propagation, image similarity metrics, and spectral clustering of relevance maps. Results: Despite substantial differences in image content, classification accuracy, sensitivity, and specificity remained stable across preprocessing conditions. Models trained on binarized images preserved performance, indicating minimal reliance on gray-white matter texture. Instead, volumetric features -- particularly brain contours introduced through skull-stripping -- were consistently used by the models. Conclusions: This behavior reflects a shortcut learning phenomenon, where preprocessing artifacts act as potentially unintended cues. The resulting Clever Hans effect emphasizes the critical importance of interpretability tools to reveal hidden biases and to ensure robust and trustworthy deep learning in medical imaging.
♻ ☆ TartanGround: A Large-Scale Dataset for Ground Robot Perception and Navigation IROS 2025
We present TartanGround, a large-scale, multi-modal dataset to advance the perception and autonomy of ground robots operating in diverse environments. This dataset, collected in various photorealistic simulation environments includes multiple RGB stereo cameras for 360-degree coverage, along with depth, optical flow, stereo disparity, LiDAR point clouds, ground truth poses, semantic segmented images, and occupancy maps with semantic labels. Data is collected using an integrated automatic pipeline, which generates trajectories mimicking the motion patterns of various ground robot platforms, including wheeled and legged robots. We collect 910 trajectories across 70 environments, resulting in 1.5 million samples. Evaluations on occupancy prediction and SLAM tasks reveal that state-of-the-art methods trained on existing datasets struggle to generalize across diverse scenes. TartanGround can serve as a testbed for training and evaluation of a broad range of learning-based tasks, including occupancy prediction, SLAM, neural scene representation, perception-based navigation, and more, enabling advancements in robotic perception and autonomy towards achieving robust models generalizable to more diverse scenarios. The dataset and codebase are available on the webpage: https://tartanair.org/tartanground
comment: Accepted for publication to IEEE/RSJ IROS 2025
♻ ☆ Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions
The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.
comment: One of the first survey on Visual Language Models
♻ ☆ Move to Understand a 3D Scene: Bridging Visual Grounding and Exploration for Efficient and Versatile Embodied Navigation ICCV 2025
Embodied scene understanding requires not only comprehending visual-spatial information that has been observed but also determining where to explore next in the 3D physical world. Existing 3D Vision-Language (3D-VL) models primarily focus on grounding objects in static observations from 3D reconstruction, such as meshes and point clouds, but lack the ability to actively perceive and explore their environment. To address this limitation, we introduce \underline{\textbf{M}}ove \underline{\textbf{t}}o \underline{\textbf{U}}nderstand (\textbf{\model}), a unified framework that integrates active perception with \underline{\textbf{3D}} vision-language learning, enabling embodied agents to effectively explore and understand their environment. This is achieved by three key innovations: 1) Online query-based representation learning, enabling direct spatial memory construction from RGB-D frames, eliminating the need for explicit 3D reconstruction. 2) A unified objective for grounding and exploring, which represents unexplored locations as frontier queries and jointly optimizes object grounding and frontier selection. 3) End-to-end trajectory learning that combines \textbf{V}ision-\textbf{L}anguage-\textbf{E}xploration pre-training over a million diverse trajectories collected from both simulated and real-world RGB-D sequences. Extensive evaluations across various embodied navigation and question-answering benchmarks show that MTU3D outperforms state-of-the-art reinforcement learning and modular navigation approaches by 14\%, 23\%, 9\%, and 2\% in success rate on HM3D-OVON, GOAT-Bench, SG3D, and A-EQA, respectively. \model's versatility enables navigation using diverse input modalities, including categories, language descriptions, and reference images. These findings highlight the importance of bridging visual grounding and exploration for embodied intelligence.
comment: Embodied AI; 3D Vision Language Understanding; ICCV 2025 Highlight; https://mtu3d.github.io; Spatial intelligence
♻ ☆ Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection ACM MM 2025
The success of face recognition (FR) systems has led to serious privacy concerns due to potential unauthorized surveillance and user tracking on social networks. Existing methods for enhancing privacy fail to generate natural face images that can protect facial privacy. In this paper, we propose diffusion-based adversarial identity manipulation (DiffAIM) to generate natural and highly transferable adversarial faces against malicious FR systems. To be specific, we manipulate facial identity within the low-dimensional latent space of a diffusion model. This involves iteratively injecting gradient-based adversarial identity guidance during the reverse diffusion process, progressively steering the generation toward the desired adversarial faces. The guidance is optimized for identity convergence towards a target while promoting semantic divergence from the source, facilitating effective impersonation while maintaining visual naturalness. We further incorporate structure-preserving regularization to preserve facial structure consistency during manipulation. Extensive experiments on both face verification and identification tasks demonstrate that compared with the state-of-the-art, DiffAIM achieves stronger black-box attack transferability while maintaining superior visual quality. We also demonstrate the effectiveness of the proposed approach for commercial FR APIs, including Face++ and Aliyun.
comment: Accepted by ACM MM 2025
♻ ☆ Beyond Image Prior: Embedding Noise Prior into Conditional Denoising Transformer
Existing learning-based denoising methods typically train models to generalize the image prior from large-scale datasets, suffering from the variability in noise distributions encountered in real-world scenarios. In this work, we propose a new perspective on the denoising challenge by highlighting the distinct separation between noise and image priors. This insight forms the basis for our development of conditional optimization framework, designed to overcome the constraints of traditional denoising framework. To this end, we introduce a Locally Noise Prior Estimation (LoNPE) algorithm, which accurately estimates the noise prior directly from a single raw noisy image. This estimation acts as an explicit prior representation of the camera sensor's imaging environment, distinct from the image prior of scenes. Additionally, we design an auxiliary learnable LoNPE network tailored for practical application to sRGB noisy images. Leveraging the estimated noise prior, we present a novel Conditional Denoising Transformer (Condformer), by incorporating the noise prior into a conditional self-attention mechanism. This integration allows the Condformer to segment the optimization process into multiple explicit subspaces, significantly enhancing the model's generalization and flexibility. Extensive experimental evaluations on both synthetic and real-world datasets, demonstrate that the proposed method achieves superior performance over current state-of-the-art methods. The source code is available at https://github.com/YuanfeiHuang/Condformer.
comment: Accepted by International Journal of Computer Vision (IJCV)
♻ ☆ Co-AttenDWG: Co-Attentive Dimension-Wise Gating and Expert Fusion for Multi-Modal Offensive Content Detection
Multi-modal learning has emerged as a crucial research direction, as integrating textual and visual information can substantially enhance performance in tasks such as classification, retrieval, and scene understanding. Despite advances with large pre-trained models, existing approaches often suffer from insufficient cross-modal interactions and rigid fusion strategies, failing to fully harness the complementary strengths of different modalities. To address these limitations, we propose Co-AttenDWG, co-attention with dimension-wise gating, and expert fusion. Our approach first projects textual and visual features into a shared embedding space, where a dedicated co-attention mechanism enables simultaneous, fine-grained interactions between modalities. This is further strengthened by a dimension-wise gating network, which adaptively modulates feature contributions at the channel level to emphasize salient information. In parallel, dual-path encoders independently refine modality-specific representations, while an additional cross-attention layer aligns the modalities further. The resulting features are aggregated via an expert fusion module that integrates learned gating and self-attention, yielding a robust unified representation. Experimental results on the MIMIC and SemEval Memotion 1.0 datasets show that Co-AttenDWG achieves state-of-the-art performance and superior cross-modal alignment, highlighting its effectiveness for diverse multi-modal applications.
♻ ☆ I2VControl: Disentangled and Unified Video Motion Synthesis Control ICCV 2025
Motion controllability is crucial in video synthesis. However, most previous methods are limited to single control types, and combining them often results in logical conflicts. In this paper, we propose a disentangled and unified framework, namely I2VControl, to overcome the logical conflicts. We rethink camera control, object dragging, and motion brush, reformulating all tasks into a consistent representation based on point trajectories, each managed by a dedicated formulation. Accordingly, we propose a spatial partitioning strategy, where each unit is assigned to a concomitant control category, enabling diverse control types to be dynamically orchestrated within a single synthesis pipeline without conflicts. Furthermore, we design an adapter structure that functions as a plug-in for pre-trained models and is agnostic to specific model architectures. We conduct extensive experiments, achieving excellent performance on various control tasks, and our method further facilitates user-driven creative combinations, enhancing innovation and creativity. Project page: https://wanquanf.github.io/I2VControl .
comment: Accepted to ICCV 2025. Project page: https://wanquanf.github.io/I2VControl
♻ ☆ Automated MRI Tumor Segmentation using hybrid U-Net with Transformer and Efficient Attention
Cancer is an abnormal growth with potential to invade locally and metastasize to distant organs. Accurate auto-segmentation of the tumor and surrounding normal tissues is required for radiotherapy treatment plan optimization. Recent AI-based segmentation models are generally trained on large public datasets, which lack the heterogeneity of local patient populations. While these studies advance AI-based medical image segmentation, research on local datasets is necessary to develop and integrate AI tumor segmentation models directly into hospital software for efficient and accurate oncology treatment planning and execution. This study enhances tumor segmentation using computationally efficient hybrid UNet-Transformer models on magnetic resonance imaging (MRI) datasets acquired from a local hospital under strict privacy protection. We developed a robust data pipeline for seamless DICOM extraction and preprocessing, followed by extensive image augmentation to ensure model generalization across diverse clinical settings, resulting in a total dataset of 6080 images for training. Our novel architecture integrates UNet-based convolutional neural networks with a transformer bottleneck and complementary attention modules, including efficient attention, Squeeze-and-Excitation (SE) blocks, Convolutional Block Attention Module (CBAM), and ResNeXt blocks. To accelerate convergence and reduce computational demands, we used a maximum batch size of 8 and initialized the encoder with pretrained ImageNet weights, training the model on dual NVIDIA T4 GPUs via checkpointing to overcome Kaggle's runtime limits. Quantitative evaluation on the local MRI dataset yielded a Dice similarity coefficient of 0.764 and an Intersection over Union (IoU) of 0.736, demonstrating competitive performance despite limited data and underscoring the importance of site-specific model development for clinical deployment.
comment: 16 pages, 5 figures
♻ ☆ VistaDepth: Frequency Modulation with Bias Reweighting for Enhanced Far-range Depth Estimation
Monocular depth estimation predicts per-pixel depth from a single RGB image. While recent methods have shown promise by leveraging diffusion models, they often struggle to accurately reconstruct far-range regions. This difficulty stems from two compounding factors. First, the standard spatially uniform diffusion objective fails to adapt to the varying frequency content across a depth map. Second, the long-tail depth distribution heavily biases models toward near-range regions. To address these limitations, we introduce VistaDepth, a novel framework named for its ability to accurately reconstruct far-range vistas, which integrates adaptive frequency-domain feature processing with an adaptive loss-balancing mechanism into the diffusion pipeline. Central to our approach is the Latent Frequency Modulation module, which dynamically refines spectral responses in the latent feature space, effectively preserving structural detail. Additionally, we introduce BiasMap, a mechanism that applies adaptive weights directly to the diffusion loss in the latent space, focusing supervision on under-represented far-range regions. These innovations collectively achieve superior depth perception performance across near- and far-range depths while preserving fine detail. Experiments show that VistaDepth achieves state-of-the-art performance for diffusion-based MDE, particularly excelling in reconstructing detailed and accurate depth in far-range regions.
♻ ☆ Learning to See in the Extremely Dark ICCV 2025
Learning-based methods have made promising advances in low-light RAW image enhancement, while their capability to extremely dark scenes where the environmental illuminance drops as low as 0.0001 lux remains to be explored due to the lack of corresponding datasets. To this end, we propose a paired-to-paired data synthesis pipeline capable of generating well-calibrated extremely low-light RAW images at three precise illuminance ranges of 0.01-0.1 lux, 0.001-0.01 lux, and 0.0001-0.001 lux, together with high-quality sRGB references to comprise a large-scale paired dataset named See-in-the-Extremely-Dark (SIED) to benchmark low-light RAW image enhancement approaches. Furthermore, we propose a diffusion-based framework that leverages the generative ability and intrinsic denoising property of diffusion models to restore visually pleasing results from extremely low-SNR RAW inputs, in which an Adaptive Illumination Correction Module (AICM) and a color consistency loss are introduced to ensure accurate exposure correction and color restoration. Extensive experiments on the proposed SIED and publicly available benchmarks demonstrate the effectiveness of our method. The code and dataset are available at https://github.com/JianghaiSCU/SIED.
comment: Accepted by ICCV 2025
♻ ☆ Enhancing Multimodal In-Context Learning for Image Classification through Coreset Optimization
In-context learning (ICL) enables Large Vision-Language Models (LVLMs) to adapt to new tasks without parameter updates, using a few demonstrations from a large support set. However, selecting informative demonstrations leads to high computational and memory costs. While some methods explore selecting a small and representative coreset in the text classification, evaluating all support set samples remains costly, and discarded samples lead to unnecessary information loss. These methods may also be less effective for image classification due to differences in feature spaces. Given these limitations, we propose Key-based Coreset Optimization (KeCO), a novel framework that leverages untapped data to construct a compact and informative coreset. We introduce visual features as keys within the coreset, which serve as the anchor for identifying samples to be updated through different selection strategies. By leveraging untapped samples from the support set, we update the keys of selected coreset samples, enabling the randomly initialized coreset to evolve into a more informative coreset under low computational cost. Through extensive experiments on coarse-grained and fine-grained image classification benchmarks, we demonstrate that KeCO effectively enhances ICL performance for image classification task, achieving an average improvement of more than 20\%. Notably, we evaluate KeCO under a simulated online scenario, and the strong performance in this scenario highlights the practical value of our framework for resource-constrained real-world scenarios.
comment: 11 pages, 5 figures
♻ ☆ Exploring Textual Semantics Diversity for Image Transmission in Semantic Communication Systems using Visual Language Model
In recent years, the rapid development of machine learning has brought reforms and challenges to traditional communication systems. Semantic communication has appeared as an effective strategy to effectively extract relevant semantic signals semantic segmentation labels and image features for image transmission. However, the insufficient number of extracted semantic features of images will potentially result in a low reconstruction accuracy, which hinders the practical applications and still remains challenging for solving. In order to fill this gap, this letter proposes a multi-text transmission semantic communication (Multi-SC) system, which uses the visual language model (VLM) to assist in the transmission of image semantic signals. Unlike previous image transmission semantic communication systems, the proposed system divides the image into multiple blocks and extracts multiple text information from the image using a modified large language and visual assistant (LLaVA), and combines semantic segmentation tags with semantic text for image recovery. Simulation results show that the proposed text semantics diversity scheme can significantly improve the reconstruction accuracy compared with related works.
♻ ☆ Anti-Inpainting: A Proactive Defense Approach against Malicious Diffusion-based Inpainters under Unknown Conditions
With the increasing prevalence of diffusion-based malicious image manipulation, existing proactive defense methods struggle to safeguard images against tampering under unknown conditions. To address this, we propose Anti-Inpainting, a proactive defense approach that achieves protection comprising three novel modules. First, we introduce a multi-level deep feature extractor to obtain intricate features from the diffusion denoising process, enhancing protective effectiveness. Second, we design a multi-scale, semantic-preserving data augmentation technique to enhance the transferability of adversarial perturbations across unknown conditions. Finally, we propose a selection-based distribution deviation optimization strategy to bolster protection against manipulations guided by diverse random seeds. Extensive experiments on InpaintGuardBench and CelebA-HQ demonstrate that Anti-Inpainting effectively defends against diffusion-based inpainters under unknown conditions. Additionally, our approach demonstrates robustness against various image purification methods and transferability across different diffusion model versions.
♻ ☆ WeakSupCon: Weakly Supervised Contrastive Learning for Encoder Pre-training MICCAI
Weakly supervised multiple instance learning (MIL) is a challenging task given that only bag-level labels are provided, while each bag typically contains multiple instances. This topic has been extensively studied in histopathological image analysis, where labels are usually available only at the whole slide image (WSI) level, while each WSI could be divided into thousands of small image patches for training. The dominant MIL approaches focus on feature aggregation and take fixed patch features as inputs. However, weakly supervised feature representation learning in MIL settings is always neglected. Those features used to be generated by self-supervised learning methods that do not utilize weak labels, or by foundation encoders pre-trained on other large datasets. In this paper, we propose a novel weakly supervised feature representation learning method called Weakly Supervised Contrastive Learning (WeakSupCon) that utilizes bag-level labels. In our method, we employ multi-task learning and define distinct contrastive losses for samples with different bag labels. Our experiments demonstrate that the features generated using WeakSupCon with limited computing resources significantly enhance MIL classification performance compared to self-supervised approaches across three datasets. Our WeakSupCon code is available at github.com/BzhangURU/Paper_WeakSupCon
comment: Medical Image Computing and Computer Assisted Intervention (MICCAI) 2025 workshop on Efficient Medical AI
♻ ☆ DeepShade: Enable Shade Simulation by Text-conditioned Image Generation
Heatwaves pose a significant threat to public health, especially as global warming intensifies. However, current routing systems (e.g., online maps) fail to incorporate shade information due to the difficulty of estimating shades directly from noisy satellite imagery and the limited availability of training data for generative models. In this paper, we address these challenges through two main contributions. First, we build an extensive dataset covering diverse longitude-latitude regions, varying levels of building density, and different urban layouts. Leveraging Blender-based 3D simulations alongside building outlines, we capture building shadows under various solar zenith angles throughout the year and at different times of day. These simulated shadows are aligned with satellite images, providing a rich resource for learning shade patterns. Second, we propose the DeepShade, a diffusion-based model designed to learn and synthesize shade variations over time. It emphasizes the nuance of edge features by jointly considering RGB with the Canny edge layer, and incorporates contrastive learning to capture the temporal change rules of shade. Then, by conditioning on textual descriptions of known conditions (e.g., time of day, solar angles), our framework provides improved performance in generating shade images. We demonstrate the utility of our approach by using our shade predictions to calculate shade ratios for real-world route planning in Tempe, Arizona. We believe this work will benefit society by providing a reference for urban planning in extreme heat weather and its potential practical applications in the environment.
comment: 7pages, 4 figures
♻ ☆ Human-in-the-Loop Local Corrections of 3D Scene Layouts via Infilling
We present a novel human-in-the-loop approach to estimate 3D scene layout that uses human feedback from an egocentric standpoint. We study this approach through introduction of a novel local correction task, where users identify local errors and prompt a model to automatically correct them. Building on SceneScript, a state-of-the-art framework for 3D scene layout estimation that leverages structured language, we propose a solution that structures this problem as "infilling", a task studied in natural language processing. We train a multi-task version of SceneScript that maintains performance on global predictions while significantly improving its local correction ability. We integrate this into a human-in-the-loop system, enabling a user to iteratively refine scene layout estimates via a low-friction "one-click fix'' workflow. Our system enables the final refined layout to diverge from the training distribution, allowing for more accurate modelling of complex layouts.
comment: Project page: https://www.projectaria.com/scenescript/
♻ ☆ Meta CLIP 2: A Worldwide Scaling Recipe
Contrastive Language-Image Pretraining (CLIP) is a popular foundation model, supporting from zero-shot classification, retrieval to encoders for multimodal large language models (MLLMs). Although CLIP is successfully trained on billion-scale image-text pairs from the English world, scaling CLIP's training further to learning from the worldwide web data is still challenging: (1) no curation method is available to handle data points from non-English world; (2) the English performance from existing multilingual CLIP is worse than its English-only counterpart, i.e., "curse of multilinguality" that is common in LLMs. Here, we present Meta CLIP 2, the first recipe training CLIP from scratch on worldwide web-scale image-text pairs. To generalize our findings, we conduct rigorous ablations with minimal changes that are necessary to address the above challenges and present a recipe enabling mutual benefits from English and non-English world data. In zero-shot ImageNet classification, Meta CLIP 2 ViT-H/14 surpasses its English-only counterpart by 0.8% and mSigLIP by 0.7%, and surprisingly sets new state-of-the-art without system-level confounding factors (e.g., translation, bespoke architecture changes) on multilingual benchmarks, such as CVQA with 57.4%, Babel-ImageNet with 50.2% and XM3600 with 64.3% on image-to-text retrieval.
comment: 10 pages
♻ ☆ ModalTune: Fine-Tuning Slide-Level Foundation Models with Multi-Modal Information for Multi-task Learning in Digital Pathology
Prediction tasks in digital pathology are challenging due to the massive size of whole-slide images (WSIs) and the weak nature of training signals. Advances in computing, data availability, and self-supervised learning (SSL) have paved the way for slide-level foundation models (SLFMs) that can improve prediction tasks in low-data regimes. However, current methods under-utilize shared information between tasks and modalities. To overcome this challenge, we propose ModalTune, a novel fine-tuning framework which introduces the Modal Adapter to integrate new modalities without modifying SLFM weights. Additionally, we use large-language models (LLMs) to encode labels as text, capturing semantic relationships across multiple tasks and cancer types in a single training recipe. ModalTune achieves state-of-the-art (SOTA) results against both uni-modal and multi-modal models across four cancer types, jointly improving survival and cancer subtype prediction while remaining competitive in pan-cancer settings. Additionally, we show ModalTune is generalizable to two out-of-distribution (OOD) datasets. To our knowledge, this is the first unified fine-tuning framework for multi-modal, multi-task, and pan-cancer modeling in digital pathology.
♻ ☆ Controlling diverse robots by inferring Jacobian fields with deep networks
Mirroring the complex structures and diverse functions of natural organisms is a long-standing challenge in robotics. Modern fabrication techniques have greatly expanded the feasible hardware, but using these systems requires control software to translate the desired motions into actuator commands. Conventional robots can easily be modeled as rigid links connected by joints, but it remains an open challenge to model and control biologically inspired robots that are often soft or made of several materials, lack sensing capabilities, and may change their material properties with use. Here, we introduce a method that uses deep neural networks to map a video stream of a robot to its visuomotor Jacobian field (the sensitivity of all 3D points to the robot's actuators). Our method enables the control of robots from only a single camera, makes no assumptions about the robots' materials, actuation, or sensing, and is trained without expert intervention by observing the execution of random commands. We demonstrate our method on a diverse set of robot manipulators that vary in actuation, materials, fabrication, and cost. Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot. Because it enables robot control using a generic camera as the only sensor, we anticipate that our work will broaden the design space of robotic systems and serve as a starting point for lowering the barrier to robotic automation.
comment: Project Page: https://sizhe-li.github.io/publication/neural_jacobian_field
♻ ☆ Exemplar Med-DETR: Toward Generalized and Robust Lesion Detection in Mammogram Images and beyond
Detecting abnormalities in medical images poses unique challenges due to differences in feature representations and the intricate relationship between anatomical structures and abnormalities. This is especially evident in mammography, where dense breast tissue can obscure lesions, complicating radiological interpretation. Despite leveraging anatomical and semantic context, existing detection methods struggle to learn effective class-specific features, limiting their applicability across different tasks and imaging modalities. In this work, we introduce Exemplar Med-DETR, a novel multi-modal contrastive detector that enables feature-based detection. It employs cross-attention with inherently derived, intuitive class-specific exemplar features and is trained with an iterative strategy. We achieve state-of-the-art performance across three distinct imaging modalities from four public datasets. On Vietnamese dense breast mammograms, we attain an mAP of 0.7 for mass detection and 0.55 for calcifications, yielding an absolute improvement of 16 percentage points. Additionally, a radiologist-supported evaluation of 100 mammograms from an out-of-distribution Chinese cohort demonstrates a twofold gain in lesion detection performance. For chest X-rays and angiography, we achieve an mAP of 0.25 for mass and 0.37 for stenosis detection, improving results by 4 and 7 percentage points, respectively. These results highlight the potential of our approach to advance robust and generalizable detection systems for medical imaging.
comment: I am asking for a withdrawal of the paper as I did not have institutional approval to release this paper right now
♻ ☆ Accenture-NVS1: A Novel View Synthesis Dataset
This paper introduces ACC-NVS1, a specialized dataset designed for research on Novel View Synthesis specifically for airborne and ground imagery. Data for ACC-NVS1 was collected in Austin, TX and Pittsburgh, PA in 2023 and 2024. The collection encompasses six diverse real-world scenes captured from both airborne and ground cameras, resulting in a total of 148,000 images. ACC-NVS1 addresses challenges such as varying altitudes and transient objects. This dataset is intended to supplement existing datasets, providing additional resources for comprehensive research, rather than serving as a benchmark.
comment: 6 pages, 7 figures
♻ ☆ Sparse Reconstruction of Optical Doppler Tomography with Alternative State Space Model and Attention MICCAI25
Optical coherence Doppler tomography (ODT) is an emerging blood flow imaging technique. The fundamental unit of ODT is the 1D depth-resolved trace named raw A-scans (or A-line). A 2D ODT image (B-scan) is formed by reconstructing a cross-sectional flow image via Doppler phase-subtraction of raw A-scans along B-line. To obtain a high-fidelity B-scan, densely sampled A-scans are required currently, leading to prolonged scanning time and increased storage demands. Addressing this issue, we propose a novel sparse ODT reconstruction framework with an Alternative State Space Attention Network (ASSAN) that effectively reduces raw A-scans needed. Inspired by the distinct distributions of information along A-line and B-line, ASSAN applies 1D State Space Model (SSM) to each A-line to learn the intra-A-scan representation, while using 1D gated self-attention along B-line to capture the inter-A-scan features. In addition, an effective feedforward network based on sequential 1D convolutions along different axes is employed to enhance the local feature. In validation experiments on real animal data, ASSAN shows clear effectiveness in the reconstruction in comparison with state-of-the-art reconstruction methods.
comment: MICCAI25, 10 pages, 3 figures
♻ ☆ Advancing Vision-based Human Action Recognition: Exploring Vision-Language CLIP Model for Generalisation in Domain-Independent Tasks
Human action recognition plays a critical role in healthcare and medicine, supporting applications such as patient behavior monitoring, fall detection, surgical robot supervision, and procedural skill assessment. While traditional models like CNNs and RNNs have achieved moderate success, they often struggle to generalize across diverse and complex actions. Recent advancements in vision-language models, especially the transformer-based CLIP model, offer promising capabilities for generalizing action recognition from video data. In this work, we evaluate CLIP on the UCF-101 dataset and systematically analyze its performance under three masking strategies: (1) percentage-based and shape-based black masking at 10%, 30%, and 50%, (2) feature-specific masking to suppress bias-inducing elements, and (3) isolation masking that retains only class-specific regions. Our results reveal that CLIP exhibits inconsistent behavior and frequent misclassifications, particularly when essential visual cues are obscured. To overcome these limitations, we propose incorporating class-specific noise, learned via a custom loss function, to reinforce attention to class-defining features. This enhancement improves classification accuracy and model confidence while reducing bias. We conclude with a discussion on the challenges of applying such models in clinical domains and outline directions for future work to improve generalizability across domain-independent healthcare scenarios.
Artificial Intelligence 163
☆ Where to show Demos in Your Prompt: A Positional Bias of In-Context Learning
In-context learning (ICL) is a critical emerging capability of large language models (LLMs), enabling few-shot learning during inference by including a few demonstrations (demos) in the prompt. However, it has been found that ICL's performance can be sensitive to the choices of demos and their order. This paper investigates an unexplored new positional bias of ICL for the first time: we observe that the predictions and accuracy can drift drastically when the positions of demos, the system prompt, and the user message in LLM input are varied. We refer to this bias as DEMOS' POSITION IN PROMPT (DPP) bias. We design a systematic evaluation pipeline to study this type of positional bias across classification, question answering, summarization, and reasoning tasks. We introduce two metrics, ACCURACY-CHANGE and PREDICTION-CHANGE, to quantify net gains and output volatility induced by changes in the demos' position. Extensive experiments on ten LLMs from four open-source model families (QWEN, LLAMA3, MISTRAL, COHERE) verify that the bias significantly affects their accuracy and predictions: placing demos at the start of the prompt yields the most stable and accurate outputs with gains of up to +6 points. In contrast, placing demos at the end of the user message flips over 30\% of predictions without improving correctness on QA tasks. Smaller models are most affected by this sensitivity, though even large models remain marginally affected on complex tasks.
☆ Automatically discovering heuristics in a complex SAT solver with large language models
Satisfiability problem (SAT) is a cornerstone of computational complexity with broad industrial applications, and it remains challenging to optimize modern SAT solvers in real-world settings due to their intricate architectures. While automatic configuration frameworks have been developed, they rely on manually constrained search spaces and yield limited performance gains. This work introduces a novel paradigm which effectively optimizes complex SAT solvers via Large Language Models (LLMs), and a tool called AutoModSAT is developed. Three fundamental challenges are addressed in order to achieve superior performance: (1) LLM-friendly solver: Systematic guidelines are proposed for developing a modularized solver to meet LLMs' compatibility, emphasizing code simplification, information share and bug reduction; (2) Automatic prompt optimization: An unsupervised automatic prompt optimization method is introduced to advance the diversity of LLMs' output; (3) Efficient search strategy: We design a presearch strategy and an EA evolutionary algorithm for the final efficient and effective discovery of heuristics. Extensive experiments across a wide range of datasets demonstrate that AutoModSAT achieves 50% performance improvement over the baseline solver and achieves 30% superiority against the state-of-the-art (SOTA) solvers. Moreover, AutoModSAT attains a 20% speedup on average compared to parameter-tuned alternatives of the SOTA solvers, showcasing the enhanced capability in handling complex problem instances. This work bridges the gap between AI-driven heuristics discovery and mission-critical system optimization, and provides both methodological advancements and empirically validated results for next-generation complex solver development.
☆ A Bit of Freedom Goes a Long Way: Classical and Quantum Algorithms for Reinforcement Learning under a Generative Model
We propose novel classical and quantum online algorithms for learning finite-horizon and infinite-horizon average-reward Markov Decision Processes (MDPs). Our algorithms are based on a hybrid exploration-generative reinforcement learning (RL) model wherein the agent can, from time to time, freely interact with the environment in a generative sampling fashion, i.e., by having access to a "simulator". By employing known classical and new quantum algorithms for approximating optimal policies under a generative model within our learning algorithms, we show that it is possible to avoid several paradigms from RL like "optimism in the face of uncertainty" and "posterior sampling" and instead compute and use optimal policies directly, which yields better regret bounds compared to previous works. For finite-horizon MDPs, our quantum algorithms obtain regret bounds which only depend logarithmically on the number of time steps $T$, thus breaking the $O(\sqrt{T})$ classical barrier. This matches the time dependence of the prior quantum works of Ganguly et al. (arXiv'23) and Zhong et al. (ICML'24), but with improved dependence on other parameters like state space size $S$ and action space size $A$. For infinite-horizon MDPs, our classical and quantum bounds still maintain the $O(\sqrt{T})$ dependence but with better $S$ and $A$ factors. Nonetheless, we propose a novel measure of regret for infinite-horizon MDPs with respect to which our quantum algorithms have $\operatorname{poly}\log{T}$ regret, exponentially better compared to classical algorithms. Finally, we generalise all of our results to compact state spaces.
comment: 57 pages
☆ Repair-R1: Better Test Before Repair
APR (Automated Program Repair) aims to automatically locate program defects, generate patches and validate the repairs. Existing techniques for APR are often combined with LLMs (Large Language Models), which leverages the code-related knowledge of LLMs to improve repair effectiveness. Current LLM-based APR methods typically utilize test cases only during the inference stage, adopting an iterative approach that performs repair first and validates it through test execution afterward. This conventional paradigm neglects two important aspects: the potential contribution of test cases in the training phase, and the possibility of leveraging testing prior to repair. To address this, we propose Repair-R1, which introduces test cases into the model's training phase and shifts test generation to precede repair. The model is required to first generate discriminative test cases that can distinguish defective behaviors, and then perform repair based on these tests. This enables the model to better locate defects and understand the underlying causes of defects, thereby improving repair effectiveness. We implement Repair-R1 with three different backbone models, using RL (reinforcement learning) to co-optimize test generation and bug repair. Experimental results on four widely adopted benchmarks demonstrate the superiority of Repair-R1. Specially, compared to vanilla models, Repair-R1 improves repair success rate by 2.68\% to 48.29\%, test generation success rate by 16.38\% to 53.28\%, and test coverage by 0.78\% to 53.96\%. We publish the code and weights at https://github.com/Tomsawyerhu/APR-RL and https://huggingface.co/tomhu/Qwen3-4B-RL-5000-step.
☆ The Incomplete Bridge: How AI Research (Mis)Engages with Psychology
Social sciences have accumulated a rich body of theories and methodologies for investigating the human mind and behaviors, while offering valuable insights into the design and understanding of Artificial Intelligence (AI) systems. Focusing on psychology as a prominent case, this study explores the interdisciplinary synergy between AI and the field by analyzing 1,006 LLM-related papers published in premier AI venues between 2023 and 2025, along with the 2,544 psychology publications they cite. Through our analysis, we identify key patterns of interdisciplinary integration, locate the psychology domains most frequently referenced, and highlight areas that remain underexplored. We further examine how psychology theories/frameworks are operationalized and interpreted, identify common types of misapplication, and offer guidance for more effective incorporation. Our work provides a comprehensive map of interdisciplinary engagement between AI and psychology, thereby facilitating deeper collaboration and advancing AI systems.
☆ RLVMR: Reinforcement Learning with Verifiable Meta-Reasoning Rewards for Robust Long-Horizon Agents
The development of autonomous agents for complex, long-horizon tasks is a central goal in AI. However, dominant training paradigms face a critical limitation: reinforcement learning (RL) methods that optimize solely for final task success often reinforce flawed or inefficient reasoning paths, a problem we term inefficient exploration. This leads to agents that are brittle and fail to generalize, as they learn to find solutions without learning how to reason coherently. To address this, we introduce RLVMR, a novel framework that integrates dense, process-level supervision into end-to-end RL by rewarding verifiable, meta-reasoning behaviors. RLVMR equips an agent to explicitly tag its cognitive steps, such as planning, exploration, and reflection, and provides programmatic, rule-based rewards for actions that contribute to effective problem-solving. These process-centric rewards are combined with the final outcome signal and optimized using a critic-free policy gradient method. On the challenging ALFWorld and ScienceWorld benchmarks, RLVMR achieves new state-of-the-art results, with our 7B model reaching an 83.6% success rate on the most difficult unseen task split. Our analysis confirms these gains stem from improved reasoning quality, including significant reductions in redundant actions and enhanced error recovery, leading to more robust, efficient, and interpretable agents.
☆ CapRecover: A Cross-Modality Feature Inversion Attack Framework on Vision Language Models
As Vision-Language Models (VLMs) are increasingly deployed in split-DNN configurations--with visual encoders (e.g., ResNet, ViT) operating on user devices and sending intermediate features to the cloud--there is a growing privacy risk from semantic information leakage. Existing approaches to reconstructing images from these intermediate features often result in blurry, semantically ambiguous images. To directly address semantic leakage, we propose CapRecover, a cross-modality inversion framework that recovers high-level semantic content, such as labels or captions, directly from intermediate features without image reconstruction. We evaluate CapRecover on multiple datasets and victim models, demonstrating strong performance in semantic recovery. Specifically, CapRecover achieves up to 92.71% Top-1 label accuracy on CIFAR-10 and generates fluent captions from ResNet50 features on COCO2017 with ROUGE-L scores up to 0.52. Our analysis further reveals that deeper convolutional layers encode significantly more semantic information compared to shallow layers. To mitigate semantic leakage, we introduce a simple yet effective protection method: adding random noise to intermediate features at each layer and removing the noise in the next layer. Experimental results show that this approach prevents semantic leakage without additional training costs.
comment: 9 pages, accepted by the 2025 ACM Multimedia Conference
☆ MoCHA: Advanced Vision-Language Reasoning with MoE Connector and Hierarchical Group Attention
Vision large language models (VLLMs) are focusing primarily on handling complex and fine-grained visual information by incorporating advanced vision encoders and scaling up visual models. However, these approaches face high training and inference costs, as well as challenges in extracting visual details, effectively bridging across modalities. In this work, we propose a novel visual framework, MoCHA, to address these issues. Our framework integrates four vision backbones (i.e., CLIP, SigLIP, DINOv2 and ConvNeXt) to extract complementary visual features and is equipped with a sparse Mixture of Experts Connectors (MoECs) module to dynamically select experts tailored to different visual dimensions. To mitigate redundant or insufficient use of the visual information encoded by the MoECs module, we further design a Hierarchical Group Attention (HGA) with intra- and inter-group operations and an adaptive gating strategy for encoded visual features. We train MoCHA on two mainstream LLMs (e.g., Phi2-2.7B and Vicuna-7B) and evaluate their performance across various benchmarks. Notably, MoCHA outperforms state-of-the-art open-weight models on various tasks. For example, compared to CuMo (Mistral-7B), our MoCHA (Phi2-2.7B) presents outstanding abilities to mitigate hallucination by showing improvements of 3.25% in POPE and to follow visual instructions by raising 153 points on MME. Finally, ablation studies further confirm the effectiveness and robustness of the proposed MoECs and HGA in improving the overall performance of MoCHA.
☆ Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings MICCAI 2025
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.
comment: Accepted to the MICCAI 2025 MIRASOL Workshop
☆ ASP-FZN: A Translation-based Constraint Answer Set Solver
We present the solver asp-fzn for Constraint Answer Set Programming (CASP), which extends ASP with linear constraints. Our approach is based on translating CASP programs into the solver-independent FlatZinc language that supports several Constraint Programming and Integer Programming backend solvers. Our solver supports a rich language of linear constraints, including some common global constraints. As for evaluation, we show that asp-fzn is competitive with state-of-the-art ASP solvers on benchmarks taken from past ASP competitions. Furthermore, we evaluate it on several CASP problems from the literature and compare its performance with clingcon, which is a prominent CASP solver that supports most of the asp-fzn language. The performance of asp-fzn is very promising as it is already competitive on plain ASP and even outperforms clingcon on some CASP benchmarks.
comment: Presented at the 41st International Conference on Logic Programming (ICLP 2025)
☆ Empirical Evaluation of Concept Drift in ML-Based Android Malware Detection
Despite outstanding results, machine learning-based Android malware detection models struggle with concept drift, where rapidly evolving malware characteristics degrade model effectiveness. This study examines the impact of concept drift on Android malware detection, evaluating two datasets and nine machine learning and deep learning algorithms, as well as Large Language Models (LLMs). Various feature types--static, dynamic, hybrid, semantic, and image-based--were considered. The results showed that concept drift is widespread and significantly affects model performance. Factors influencing the drift include feature types, data environments, and detection methods. Balancing algorithms helped with class imbalance but did not fully address concept drift, which primarily stems from the dynamic nature of the malware landscape. No strong link was found between the type of algorithm used and concept drift, the impact was relatively minor compared to other variables since hyperparameters were not fine-tuned, and the default algorithm configurations were used. While LLMs using few-shot learning demonstrated promising detection performance, they did not fully mitigate concept drift, highlighting the need for further investigation.
comment: 18 pages, 12 tables, 14 figures, paper under review
☆ Teaching the Teacher: Improving Neural Network Distillability for Symbolic Regression via Jacobian Regularization
Distilling large neural networks into simple, human-readable symbolic formulas is a promising path toward trustworthy and interpretable AI. However, this process is often brittle, as the complex functions learned by standard networks are poor targets for symbolic discovery, resulting in low-fidelity student models. In this work, we propose a novel training paradigm to address this challenge. Instead of passively distilling a pre-trained network, we introduce a \textbf{Jacobian-based regularizer} that actively encourages the ``teacher'' network to learn functions that are not only accurate but also inherently smoother and more amenable to distillation. We demonstrate through extensive experiments on a suite of real-world regression benchmarks that our method is highly effective. By optimizing the regularization strength for each problem, we improve the $R^2$ score of the final distilled symbolic model by an average of \textbf{120\% (relative)} compared to the standard distillation pipeline, all while maintaining the teacher's predictive accuracy. Our work presents a practical and principled method for significantly improving the fidelity of interpretable models extracted from complex neural networks.
☆ Bayesian Optimization of Process Parameters of a Sensor-Based Sorting System using Gaussian Processes as Surrogate Models
Sensor-based sorting systems enable the physical separation of a material stream into two fractions. The sorting decision is based on the image data evaluation of the sensors used and is carried out using actuators. Various process parameters must be set depending on the properties of the material stream, the dimensioning of the system, and the required sorting accuracy. However, continuous verification and re-adjustment are necessary due to changing requirements and material stream compositions. In this paper, we introduce an approach for optimizing, recurrently monitoring and adjusting the process parameters of a sensor-based sorting system. Based on Bayesian Optimization, Gaussian process regression models are used as surrogate models to achieve specific requirements for system behavior with the uncertainties contained therein. This method minimizes the number of necessary experiments while simultaneously considering two possible optimization targets based on the requirements for both material output streams. In addition, uncertainties are considered during determining sorting accuracies in the model calculation. We evaluated the method with three example process parameters.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
☆ Of Good Demons and Bad Angels: Guaranteeing Safe Control under Finite Precision
As neural networks (NNs) become increasingly prevalent in safety-critical neural network-controlled cyber-physical systems (NNCSs), formally guaranteeing their safety becomes crucial. For these systems, safety must be ensured throughout their entire operation, necessitating infinite-time horizon verification. To verify the infinite-time horizon safety of NNCSs, recent approaches leverage Differential Dynamic Logic (dL). However, these dL-based guarantees rely on idealized, real-valued NN semantics and fail to account for roundoff errors introduced by finite-precision implementations. This paper bridges the gap between theoretical guarantees and real-world implementations by incorporating robustness under finite-precision perturbations -- in sensing, actuation, and computation -- into the safety verification. We model the problem as a hybrid game between a good Demon, responsible for control actions, and a bad Angel, introducing perturbations. This formulation enables formal proofs of robustness w.r.t. a given (bounded) perturbation. Leveraging this bound, we employ state-of-the-art mixed-precision fixed-point tuners to synthesize sound and efficient implementations, thus providing a complete end-to-end solution. We evaluate our approach on case studies from the automotive and aeronautics domains, producing efficient NN implementations with rigorous infinite-time horizon safety guarantees.
comment: 15 pages, 3 figures, 1 table; Accepted at FMCAD 2025
☆ Reducing Hallucinations in Summarization via Reinforcement Learning with Entity Hallucination Index
Reducing hallucinations in abstractive summarization remains a critical challenge for deploying language models (LMs) in real-world settings. In this work, we introduce a rewarddriven fine-tuning framework that explicitly optimizes for Entity Hallucination Index (EHI), a metric designed to quantify the presence, correctness, and grounding of named entities in generated summaries. Given a corpus of meeting transcripts, we first generate baseline summaries using a pre-trained LM and compute EHI scores via automatic entity extraction and matching. We then apply reinforcement learning to fine-tune the model parameters, using EHI as a reward signal to bias generation toward entity-faithful outputs. Our approach does not rely on human-written factuality annotations, enabling scalable fine-tuning. Experiments demonstrate consistent improvements in EHI across datasets, with qualitative analysis revealing a significant reduction in entity-level hallucinations without degradation in fluency or informativeness. We release a reproducible Colab pipeline, facilitating further research on hallucination-aware model fine-tuning using lightweight, hallucintion metrics like EHI.
comment: 8
☆ OFCnetLLM: Large Language Model for Network Monitoring and Alertness
The rapid evolution of network infrastructure is bringing new challenges and opportunities for efficient network management, optimization, and security. With very large monitoring databases becoming expensive to explore, the use of AI and Generative AI can help reduce costs of managing these datasets. This paper explores the use of Large Language Models (LLMs) to revolutionize network monitoring management by addressing the limitations of query finding and pattern analysis. We leverage LLMs to enhance anomaly detection, automate root-cause analysis, and automate incident analysis to build a well-monitored network management team using AI. Through a real-world example of developing our own OFCNetLLM, based on the open-source LLM model, we demonstrate practical applications of OFCnetLLM in the OFC conference network. Our model is developed as a multi-agent approach and is still evolving, and we present early results here.
☆ Bifröst: Spatial Networking with Bigraphs
Modern networked environments increasingly rely on spatial reasoning, but lack a coherent representation for coordinating physical space. Consequently, tasks such as enforcing spatial access policies remain fragile and manual. We first propose a unifying representation based on bigraphs, capturing spatial, social, and communication relationships within a single formalism, with user-facing tools to generate bigraphs from physical environments. Second, we present a hierarchical agent architecture for distributed spatial reasoning, with runtimes for agentic processes to interact the spatial representation, and a context-aware execution model that scopes reasoning to the smallest viable subspace. Together, these enable private, reliable, and low-latency spatial networking that can safely interact with agentic workflows.
comment: Submitted to HotNets 2025
☆ Hydra-Bench: A Benchmark for Multi-Modal Leaf Wetness Sensing
Leaf wetness detection is a crucial task in agricultural monitoring, as it directly impacts the prediction and protection of plant diseases. However, existing sensing systems suffer from limitations in robustness, accuracy, and environmental resilience when applied to natural leaves under dynamic real-world conditions. To address these challenges, we introduce a new multi-modal dataset specifically designed for evaluating and advancing machine learning algorithms in leaf wetness detection. Our dataset comprises synchronized mmWave raw data, Synthetic Aperture Radar (SAR) images, and RGB images collected over six months from five diverse plant species in both controlled and outdoor field environments. We provide detailed benchmarks using the Hydra model, including comparisons against single modality baselines and multiple fusion strategies, as well as performance under varying scan distances. Additionally, our dataset can serve as a benchmark for future SAR imaging algorithm optimization, enabling a systematic evaluation of detection accuracy under diverse conditions.
☆ Designing for Self-Regulation in Informal Programming Learning: Insights from a Storytelling-Centric Approach
Many people learn programming independently from online resources and often report struggles in achieving their personal learning goals. Learners frequently describe their experiences as isolating and frustrating, challenged by abundant uncertainties, information overload, and distraction, compounded by limited guidance. At the same time, social media serves as a personal space where many engage in diverse self-regulation practices, including help-seeking, using external memory aids (e.g., self-notes), self-reflection, emotion regulation, and self-motivation. For instance, learners often mark achievements and set milestones through their posts. In response, we developed a system consisting of a web platform and browser extensions to support self-regulation online. The design aims to add learner-defined structure to otherwise unstructured experiences and bring meaning to curation and reflection activities by translating them into learning stories with AI-generated feedback. We position storytelling as an integrative approach to design that connects resource curation, reflective and sensemaking practice, and narrative practices learners already use across social platforms. We recruited 15 informal programming learners who are regular social media users to engage with the system in a self-paced manner; participation concluded upon submitting a learning story and survey. We used three quantitative scales and a qualitative survey to examine users' characteristics and perceptions of the system's support for their self-regulation. User feedback suggests the system's viability as a self-regulation aid. Learners particularly valued in-situ reflection, automated story feedback, and video annotation, while other features received mixed views. We highlight perceived benefits, friction points, and design opportunities for future AI-augmented self-regulation tools.
comment: 10 pages, 9 figures
☆ RobEthiChor: Automated Context-aware Ethics-based Negotiation for Autonomous Robots
The presence of autonomous systems is growing at a fast pace and it is impacting many aspects of our lives. Designed to learn and act independently, these systems operate and perform decision-making without human intervention. However, they lack the ability to incorporate users' ethical preferences, which are unique for each individual in society and are required to personalize the decision-making processes. This reduces user trust and prevents autonomous systems from behaving according to the moral beliefs of their end-users. When multiple systems interact with differing ethical preferences, they must negotiate to reach an agreement that satisfies the ethical beliefs of all the parties involved and adjust their behavior consequently. To address this challenge, this paper proposes RobEthiChor, an approach that enables autonomous systems to incorporate user ethical preferences and contextual factors into their decision-making through ethics-based negotiation. RobEthiChor features a domain-agnostic reference architecture for designing autonomous systems capable of ethic-based negotiating. The paper also presents RobEthiChor-Ros, an implementation of RobEthiChor within the Robot Operating System (ROS), which can be deployed on robots to provide them with ethics-based negotiation capabilities. To evaluate our approach, we deployed RobEthiChor-Ros on real robots and ran scenarios where a pair of robots negotiate upon resource contention. Experimental results demonstrate the feasibility and effectiveness of the system in realizing ethics-based negotiation. RobEthiChor allowed robots to reach an agreement in more than 73\% of the scenarios with an acceptable negotiation time (0.67s on average). Experiments also demonstrate that the negotiation approach implemented in RobEthiChor is scalable.
☆ A Systematic Literature Review on Detecting Software Vulnerabilities with Large Language Models
The increasing adoption of Large Language Models (LLMs) in software engineering has sparked interest in their use for software vulnerability detection. However, the rapid development of this field has resulted in a fragmented research landscape, with diverse studies that are difficult to compare due to differences in, e.g., system designs and dataset usage. This fragmentation makes it difficult to obtain a clear overview of the state-of-the-art or compare and categorize studies meaningfully. In this work, we present a comprehensive systematic literature review (SLR) of LLM-based software vulnerability detection. We analyze 227 studies published between January 2020 and June 2025, categorizing them by task formulation, input representation, system architecture, and adaptation techniques. Further, we analyze the datasets used, including their characteristics, vulnerability coverage, and diversity. We present a fine-grained taxonomy of vulnerability detection approaches, identify key limitations, and outline actionable future research opportunities. By providing a structured overview of the field, this review improves transparency and serves as a practical guide for researchers and practitioners aiming to conduct more comparable and reproducible research. We publicly release all artifacts and maintain a living repository of LLM-based software vulnerability detection studies.
comment: 36 pages + 17 pages references, 6 tables, 10 figures
☆ Safe Deployment of Offline Reinforcement Learning via Input Convex Action Correction
Offline reinforcement learning (offline RL) offers a promising framework for developing control strategies in chemical process systems using historical data, without the risks or costs of online experimentation. This work investigates the application of offline RL to the safe and efficient control of an exothermic polymerisation continuous stirred-tank reactor. We introduce a Gymnasium-compatible simulation environment that captures the reactor's nonlinear dynamics, including reaction kinetics, energy balances, and operational constraints. The environment supports three industrially relevant scenarios: startup, grade change down, and grade change up. It also includes reproducible offline datasets generated from proportional-integral controllers with randomised tunings, providing a benchmark for evaluating offline RL algorithms in realistic process control tasks. We assess behaviour cloning and implicit Q-learning as baseline algorithms, highlighting the challenges offline agents face, including steady-state offsets and degraded performance near setpoints. To address these issues, we propose a novel deployment-time safety layer that performs gradient-based action correction using input convex neural networks (PICNNs) as learned cost models. The PICNN enables real-time, differentiable correction of policy actions by descending a convex, state-conditioned cost surface, without requiring retraining or environment interaction. Experimental results show that offline RL, particularly when combined with convex action correction, can outperform traditional control approaches and maintain stability across all scenarios. These findings demonstrate the feasibility of integrating offline RL with interpretable and safety-aware corrections for high-stakes chemical process control, and lay the groundwork for more reliable data-driven automation in industrial systems.
☆ LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing ICCV25
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.
comment: Accepted at ICCV25 (Oral). Project page: https://intelligolabs.github.io/lots/
☆ Enhancing Manufacturing Knowledge Access with LLMs and Context-aware Prompting
Knowledge graphs (KGs) have transformed data management within the manufacturing industry, offering effective means for integrating disparate data sources through shared and structured conceptual schemas. However, harnessing the power of KGs can be daunting for non-experts, as it often requires formulating complex SPARQL queries to retrieve specific information. With the advent of Large Language Models (LLMs), there is a growing potential to automatically translate natural language queries into the SPARQL format, thus bridging the gap between user-friendly interfaces and the sophisticated architecture of KGs. The challenge remains in adequately informing LLMs about the relevant context and structure of domain-specific KGs, e.g., in manufacturing, to improve the accuracy of generated queries. In this paper, we evaluate multiple strategies that use LLMs as mediators to facilitate information retrieval from KGs. We focus on the manufacturing domain, particularly on the Bosch Line Information System KG and the I40 Core Information Model. In our evaluation, we compare various approaches for feeding relevant context from the KG to the LLM and analyze their proficiency in transforming real-world questions into SPARQL queries. Our findings show that LLMs can significantly improve their performance on generating correct and complete queries when provided only the adequate context of the KG schema. Such context-aware prompting techniques help LLMs to focus on the relevant parts of the ontology and reduce the risk of hallucination. We anticipate that the proposed techniques help LLMs to democratize access to complex data repositories and empower informed decision-making in manufacturing settings.
comment: European Conference on Artificial Intelligence (ECAI) 2024
☆ Adaptive Duration Model for Text Speech Alignment
Speech-to-text alignment is a critical component of neural text to-speech (TTS) models. Autoregressive TTS models typically use an attention mechanism to learn these alignments on-line. However, these alignments tend to be brittle and often fail to generalize to long utterances and out-of-domain text, leading to missing or repeating words. Most non-autoregressive end to-end TTS models rely on durations extracted from external sources, using additional duration models for alignment. In this paper, we propose a novel duration prediction framework that can give compromising phoneme-level duration distribution with given text. In our experiments, the proposed duration model has more precise prediction and condition adaptation ability compared to previous baseline models. Numerically, it has roughly a 11.3 percents immprovement on alignment accuracy, and makes the performance of zero-shot TTS models more robust to the mismatch between prompt audio and input audio.
comment: 4 pages, 3 figures, 2 tables
☆ Metamorphic Testing of Deep Code Models: A Systematic Literature Review
Large language models and deep learning models designed for code intelligence have revolutionized the software engineering field due to their ability to perform various code-related tasks. These models can process source code and software artifacts with high accuracy in tasks such as code completion, defect detection, and code summarization; therefore, they can potentially become an integral part of modern software engineering practices. Despite these capabilities, robustness remains a critical quality attribute for deep-code models as they may produce different results under varied and adversarial conditions (e.g., variable renaming). Metamorphic testing has become a widely used approach to evaluate models' robustness by applying semantic-preserving transformations to input programs and analyzing the stability of model outputs. While prior research has explored testing deep learning models, this systematic literature review focuses specifically on metamorphic testing for deep code models. By studying 45 primary papers, we analyze the transformations, techniques, and evaluation methods used to assess robustness. Our review summarizes the current landscape, identifying frequently evaluated models, programming tasks, datasets, target languages, and evaluation metrics, and highlights key challenges and future directions for advancing the field.
☆ MetaAgent: Automatically Constructing Multi-Agent Systems Based on Finite State Machines ICML 2025
Large Language Models (LLMs) have demonstrated the ability to solve a wide range of practical tasks within multi-agent systems. However, existing human-designed multi-agent frameworks are typically limited to a small set of pre-defined scenarios, while current automated design methods suffer from several limitations, such as the lack of tool integration, dependence on external training data, and rigid communication structures. In this paper, we propose MetaAgent, a finite state machine based framework that can automatically generate a multi-agent system. Given a task description, MetaAgent will design a multi-agent system and polish it through an optimization algorithm. When the multi-agent system is deployed, the finite state machine will control the agent's actions and the state transitions. To evaluate our framework, we conduct experiments on both text-based tasks and practical tasks. The results indicate that the generated multi-agent system surpasses other auto-designed methods and can achieve a comparable performance with the human-designed multi-agent system, which is optimized for those specific tasks.
comment: ICML 2025
☆ BALSAM: A Platform for Benchmarking Arabic Large Language Models
The impressive advancement of Large Language Models (LLMs) in English has not been matched across all languages. In particular, LLM performance in Arabic lags behind, due to data scarcity, linguistic diversity of Arabic and its dialects, morphological complexity, etc. Progress is further hindered by the quality of Arabic benchmarks, which typically rely on static, publicly available data, lack comprehensive task coverage, or do not provide dedicated platforms with blind test sets. This makes it challenging to measure actual progress and to mitigate data contamination. Here, we aim to bridge these gaps. In particular, we introduce BALSAM, a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation. It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation. We envision BALSAM as a unifying platform that sets standards and promotes collaborative research to advance Arabic LLM capabilities.
☆ RePaCA: Leveraging Reasoning Large Language Models for Static Automated Patch Correctness Assessment
Automated Program Repair (APR) seeks to automatically correct software bugs without requiring human intervention. However, existing tools tend to generate patches that satisfy test cases without fixing the underlying bug, those are known as overfitting patches. To address this issue, Automated Patch Correctness Assessment (APCA) attempts to identify overfitting patches generated by APR tools. It can be solved as a static approach, meaning that no additional information is needed beyond the original and fixed code snippets. Current static techniques often struggle with reliability, flexibility and transparency. To address these issues, we introduce RePaCA, a novel static APCA technique that leverages Large Language Models (LLMs) specialized in thinking tasks. Our model is prompted with both buggy and fixed code snippets and guided to generate a Chain of Thought that analyses code differences, reasons about how the patch addresses the root cause, and ultimately provides a binary classification: correct or overfitting. To enhance these reasoning capabilities for the APCA task specifically, the LLM is finetuned using Reinforcement Learning with the Group Relative Policy Optimization algorithm. When evaluated on a standard Defects4J-derived test, our approach achieves state-of-the-art performance, with 83.1% accuracy and an 84.8% F1-score. Furthermore, our model demonstrates superior generalization capabilities when trained on different datasets, outperforming the leading technique. This reasoning capability also provides enhanced explainability for the patch assessment. These findings underscore the considerable promise of finetuned, reasoning LLMs to advance static APCA by enhancing accuracy, generalization, and explainability.
☆ A Mean-Field Theory of $Θ$-Expectations
The canonical theory of sublinear expectations, a foundation of stochastic calculus under ambiguity, is insensitive to the non-convex geometry of primitive uncertainty models. This paper develops a new stochastic calculus for a structured class of such non-convex models. We introduce a class of fully coupled Mean-Field Forward-Backward Stochastic Differential Equations where the BSDE driver is defined by a pointwise maximization over a law-dependent, non-convex set. Mathematical tractability is achieved via a uniform strong concavity assumption on the driver with respect to the control variable, which ensures the optimization admits a unique and stable solution. A central contribution is to establish the Lipschitz stability of this optimizer from primitive geometric and regularity conditions, which underpins the entire well-posedness theory. We prove local and global well-posedness theorems for the FBSDE system. The resulting valuation functional, the $\Theta$-Expectation, is shown to be dynamically consistent and, most critically, to violate the axiom of sub-additivity. This, along with its failure to be translation invariant, demonstrates its fundamental departure from the convex paradigm. This work provides a rigorous foundation for stochastic calculus under a class of non-convex, endogenous ambiguity.
☆ COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP ICCV
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD
comment: accepted at ICCVW'25 - Systematic Trust in AI Models: Ensuring Fairness, Reliability, Explainability, and Accountability in Machine Learning Frameworks
☆ Explaining Deep Network Classification of Matrices: A Case Study on Monotonicity
This work demonstrates a methodology for using deep learning to discover simple, practical criteria for classifying matrices based on abstract algebraic properties. By combining a high-performance neural network with explainable AI (XAI) techniques, we can distill a model's learned strategy into human-interpretable rules. We apply this approach to the challenging case of monotone matrices, defined by the condition that their inverses are entrywise nonnegative. Despite their simple definition, an easy characterization in terms of the matrix elements or the derived parameters is not known. Here, we present, to the best of our knowledge, the first systematic machine-learning approach for deriving a practical criterion that distinguishes monotone from non-monotone matrices. After establishing a labelled dataset by randomly generated monotone and non-monotone matrices uniformly on $(-1,1)$, we employ deep neural network algorithms for classifying the matrices as monotone or non-monotone, using both their entries and a comprehensive set of matrix features. By saliency methods, such as integrated gradients, we identify among all features, two matrix parameters which alone provide sufficient information for the matrix classification, with $95\%$ accuracy, namely the absolute values of the two lowest-order coefficients, $c_0$ and $c_1$ of the matrix's characteristic polynomial. A data-driven study of 18,000 random $7\times7$ matrices shows that the monotone class obeys $\lvert c_{0}/c_{1}\rvert\le0.18$ with probability $>99.98\%$; because $\lvert c_{0}/c_{1}\rvert = 1/\mathrm{tr}(A^{-1})$ for monotone $A$, this is equivalent to the simple bound $\mathrm{tr}(A^{-1})\ge5.7$.
comment: 22 pages, 11 figures. To be submitted to a journal
☆ Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning
The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same ($\epsilon$, $\delta$)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.
☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
☆ aLLoyM: A large language model for alloy phase diagram prediction
Large Language Models (LLMs) are general-purpose tools with wide-ranging applications, including in materials science. In this work, we introduce aLLoyM, a fine-tuned LLM specifically trained on alloy compositions, temperatures, and their corresponding phase information. To develop aLLoyM, we curated question-and-answer (Q&A) pairs for binary and ternary phase diagrams using the open-source Computational Phase Diagram Database (CPDDB) and assessments based on CALPHAD (CALculation of PHAse Diagrams). We fine-tuned Mistral, an open-source pre-trained LLM, for two distinct Q&A formats: multiple-choice and short-answer. Benchmark evaluations demonstrate that fine-tuning substantially enhances performance on multiple-choice phase diagram questions. Moreover, the short-answer model of aLLoyM exhibits the ability to generate novel phase diagrams from its components alone, underscoring its potential to accelerate the discovery of previously unexplored materials systems. To promote further research and adoption, we have publicly released the short-answer fine-tuned version of aLLoyM, along with the complete benchmarking Q&A dataset, on Hugging Face.
comment: 24 pages, 6 figures
☆ RainbowPrompt: Diversity-Enhanced Prompt-Evolving for Continual Learning ICCV 2025
Prompt-based continual learning provides a rehearsal-free solution by tuning small sets of parameters while keeping pre-trained models frozen. To meet the complex demands of sequential tasks, it is crucial to integrate task-specific knowledge within prompts effectively. However, existing works rely on either fixed learned prompts (i.e., prompts whose representations remain unchanged during new task learning) or on prompts generated from an entangled task-shared space, limiting the representational diversity of the integrated prompt. To address this issue, we propose a novel prompt-evolving mechanism to adaptively aggregate base prompts (i.e., task-specific prompts) into a unified prompt while ensuring diversity. By transforming and aligning base prompts, both previously learned and newly introduced, our approach continuously evolves accumulated knowledge to facilitate learning new tasks. We further introduce a learnable probabilistic gate that adaptively determines which layers to activate during the evolution process. We validate our method on image classification and video action recognition tasks in class-incremental learning, achieving average gains of 9.07% and 7.40% over existing methods across all scenarios.
comment: Accepted by the 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
☆ A surrogate model for topology optimisation of elastic structures via parametric autoencoders
A surrogate-based topology optimisation algorithm for linear elastic structures under parametric loads and boundary conditions is proposed. Instead of learning the parametric solution of the state (and adjoint) problems or the optimisation trajectory as a function of the iterations, the proposed approach devises a surrogate version of the entire optimisation pipeline. First, the method predicts a quasi-optimal topology for a given problem configuration as a surrogate model of high-fidelity topologies optimised with the homogenisation method. This is achieved by means of a feed-forward net learning the mapping between the input parameters characterising the system setup and a latent space determined by encoder/decoder blocks reducing the dimensionality of the parametric topology optimisation problem and reconstructing a high-dimensional representation of the topology. Then, the predicted topology is used as an educated initial guess for a computationally efficient algorithm penalising the intermediate values of the design variable, while enforcing the governing equations of the system. This step allows the method to correct potential errors introduced by the surrogate model, eliminate artifacts, and refine the design in order to produce topologies consistent with the underlying physics. Different architectures are proposed and the approximation and generalisation capabilities of the resulting models are numerically evaluated. The quasi-optimal topologies allow to outperform the high-fidelity optimiser by reducing the average number of optimisation iterations by $53\%$ while achieving discrepancies below $4\%$ in the optimal value of the objective functional, even in the challenging scenario of testing the model to extrapolate beyond the training and validation domain.
comment: 39 pages, 13 figures, 7 tables
☆ CliCARE: Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records
Large Language Models (LLMs) hold significant promise for improving clinical decision support and reducing physician burnout by synthesizing complex, longitudinal cancer Electronic Health Records (EHRs). However, their implementation in this critical field faces three primary challenges: the inability to effectively process the extensive length and multilingual nature of patient records for accurate temporal analysis; a heightened risk of clinical hallucination, as conventional grounding techniques such as Retrieval-Augmented Generation (RAG) do not adequately incorporate process-oriented clinical guidelines; and unreliable evaluation metrics that hinder the validation of AI systems in oncology. To address these issues, we propose CliCARE, a framework for Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records. The framework operates by transforming unstructured, longitudinal EHRs into patient-specific Temporal Knowledge Graphs (TKGs) to capture long-range dependencies, and then grounding the decision support process by aligning these real-world patient trajectories with a normative guideline knowledge graph. This approach provides oncologists with evidence-grounded decision support by generating a high-fidelity clinical summary and an actionable recommendation. We validated our framework using large-scale, longitudinal data from a private Chinese cancer dataset and the public English MIMIC-IV dataset. In these diverse settings, CliCARE significantly outperforms strong baselines, including leading long-context LLMs and Knowledge Graph-enhanced RAG methods. The clinical validity of our results is supported by a robust evaluation protocol, which demonstrates a high correlation with assessments made by expert oncologists.
☆ Accident-Driven Congestion Prediction and Simulation: An Explainable Framework Using Advanced Clustering and Bayesian Networks
Traffic congestion due to uncertainties, such as accidents, is a significant issue in urban areas, as the ripple effect of accidents causes longer delays, increased emissions, and safety concerns. To address this issue, we propose a robust framework for predicting the impact of accidents on congestion. We implement Automated Machine Learning (AutoML)-enhanced Deep Embedding Clustering (DEC) to assign congestion labels to accident data and predict congestion probability using a Bayesian Network (BN). The Simulation of Urban Mobility (SUMO) simulation is utilized to evaluate the correctness of BN predictions using evidence-based scenarios. Results demonstrate that the AutoML-enhanced DEC has outperformed traditional clustering approaches. The performance of the proposed BN model achieved an overall accuracy of 95.6%, indicating its ability to understand the complex relationship of accidents causing congestion. Validation in SUMO with evidence-based scenarios demonstrated that the BN model's prediction of congestion states closely matches those of SUMO, indicating the high reliability of the proposed BN model in ensuring smooth urban mobility.
☆ Recognizing Actions from Robotic View for Natural Human-Robot Interaction ICCV2025
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.
comment: 8 pages, 4 figures, Accepted to ICCV2025
Collaborative Medical Triage under Uncertainty: A Multi-Agent Dynamic Matching Approach
The post-pandemic surge in healthcare demand, coupled with critical nursing shortages, has placed unprecedented pressure on emergency department triage systems, necessitating innovative AI-driven solutions. We present a multi-agent interactive intelligent system for medical triage that addresses three fundamental challenges in current AI-based triage systems: insufficient medical specialization leading to hallucination-induced misclassifications, heterogeneous department structures across healthcare institutions, and inefficient detail-oriented questioning that impedes rapid triage decisions. Our system employs three specialized agents - RecipientAgent, InquirerAgent, and DepartmentAgent - that collaborate through structured inquiry mechanisms and department-specific guidance rules to transform unstructured patient symptoms into accurate department recommendations. To ensure robust evaluation, we constructed a comprehensive Chinese medical triage dataset from a medical website, comprising 3,360 real-world cases spanning 9 primary departments and 62 secondary departments. Through systematic data imputation using large language models, we address the prevalent issue of incomplete medical records in real-world data. Experimental results demonstrate that our multi-agent system achieves 89.2% accuracy in primary department classification and 73.9% accuracy in secondary department classification after four rounds of patient interaction. The system's pattern-matching-based guidance mechanisms enable efficient adaptation to diverse hospital configurations while maintaining high triage accuracy. Our work provides a scalable framework for deploying AI-assisted triage systems that can accommodate the organizational heterogeneity of healthcare institutions while ensuring clinically sound decision-making.
comment: 10 pages, 8 figures, 2 table
☆ LoReUn: Data Itself Implicitly Provides Cues to Improve Machine Unlearning
Recent generative models face significant risks of producing harmful content, which has underscored the importance of machine unlearning (MU) as a critical technique for eliminating the influence of undesired data. However, existing MU methods typically assign the same weight to all data to be forgotten, which makes it difficult to effectively forget certain data that is harder to unlearn than others. In this paper, we empirically demonstrate that the loss of data itself can implicitly reflect its varying difficulty. Building on this insight, we introduce Loss-based Reweighting Unlearning (LoReUn), a simple yet effective plug-and-play strategy that dynamically reweights data during the unlearning process with minimal additional computational overhead. Our approach significantly reduces the gap between existing MU methods and exact unlearning in both image classification and generation tasks, effectively enhancing the prevention of harmful content generation in text-to-image diffusion models.
comment: 23 pages
☆ LVM-GP: Uncertainty-Aware PDE Solver via coupling latent variable model and Gaussian process
We propose a novel probabilistic framework, termed LVM-GP, for uncertainty quantification in solving forward and inverse partial differential equations (PDEs) with noisy data. The core idea is to construct a stochastic mapping from the input to a high-dimensional latent representation, enabling uncertainty-aware prediction of the solution. Specifically, the architecture consists of a confidence-aware encoder and a probabilistic decoder. The encoder implements a high-dimensional latent variable model based on a Gaussian process (LVM-GP), where the latent representation is constructed by interpolating between a learnable deterministic feature and a Gaussian process prior, with the interpolation strength adaptively controlled by a confidence function learned from data. The decoder defines a conditional Gaussian distribution over the solution field, where the mean is predicted by a neural operator applied to the latent representation, allowing the model to learn flexible function-to-function mapping. Moreover, physical laws are enforced as soft constraints in the loss function to ensure consistency with the underlying PDE structure. Compared to existing approaches such as Bayesian physics-informed neural networks (B-PINNs) and deep ensembles, the proposed framework can efficiently capture functional dependencies via merging a latent Gaussian process and neural operator, resulting in competitive predictive accuracy and robust uncertainty quantification. Numerical experiments demonstrate the effectiveness and reliability of the method.
☆ Proto-EVFL: Enhanced Vertical Federated Learning via Dual Prototype with Extremely Unaligned Data
In vertical federated learning (VFL), multiple enterprises address aligned sample scarcity by leveraging massive locally unaligned samples to facilitate collaborative learning. However, unaligned samples across different parties in VFL can be extremely class-imbalanced, leading to insufficient feature representation and limited model prediction space. Specifically, class-imbalanced problems consist of intra-party class imbalance and inter-party class imbalance, which can further cause local model bias and feature contribution inconsistency issues, respectively. To address the above challenges, we propose Proto-EVFL, an enhanced VFL framework via dual prototypes. We first introduce class prototypes for each party to learn relationships between classes in the latent space, allowing the active party to predict unseen classes. We further design a probabilistic dual prototype learning scheme to dynamically select unaligned samples by conditional optimal transport cost with class prior probability. Moreover, a mixed prior guided module guides this selection process by combining local and global class prior probabilities. Finally, we adopt an \textit{adaptive gated feature aggregation strategy} to mitigate feature contribution inconsistency by dynamically weighting and aggregating local features across different parties. We proved that Proto-EVFL, as the first bi-level optimization framework in VFL, has a convergence rate of 1/\sqrt T. Extensive experiments on various datasets validate the superiority of our Proto-EVFL. Even in a zero-shot scenario with one unseen class, it outperforms baselines by at least 6.97%
☆ Physics-constrained generative machine learning-based high-resolution downscaling of Greenland's surface mass balance and surface temperature
Accurate, high-resolution projections of the Greenland ice sheet's surface mass balance (SMB) and surface temperature are essential for understanding future sea-level rise, yet current approaches are either computationally demanding or limited to coarse spatial scales. Here, we introduce a novel physics-constrained generative modeling framework based on a consistency model (CM) to downscale low-resolution SMB and surface temperature fields by a factor of up to 32 (from 160 km to 5 km grid spacing) in a few sampling steps. The CM is trained on monthly outputs of the regional climate model MARv3.12 and conditioned on ice-sheet topography and insolation. By enforcing a hard conservation constraint during inference, we ensure approximate preservation of SMB and temperature sums on the coarse spatial scale as well as robust generalization to extreme climate states without retraining. On the test set, our constrained CM achieves a continued ranked probability score of 6.31 mmWE for the SMB and 0.1 K for the surface temperature, outperforming interpolation-based downscaling. Together with spatial power-spectral analysis, we demonstrate that the CM faithfully reproduces variability across spatial scales. We further apply bias-corrected outputs of the NorESM2 Earth System Model as inputs to our CM, to demonstrate the potential of our model to directly downscale ESM fields. Our approach delivers realistic, high-resolution climate forcing for ice-sheet simulations with fast inference and can be readily integrated into Earth-system and ice-sheet model workflows to improve projections of the future contribution to sea-level rise from Greenland and potentially other ice sheets and glaciers too.
☆ Towards Blind Bitstream-corrupted Video Recovery via a Visual Foundation Model-driven Framework
Video signals are vulnerable in multimedia communication and storage systems, as even slight bitstream-domain corruption can lead to significant pixel-domain degradation. To recover faithful spatio-temporal content from corrupted inputs, bitstream-corrupted video recovery has recently emerged as a challenging and understudied task. However, existing methods require time-consuming and labor-intensive annotation of corrupted regions for each corrupted video frame, resulting in a large workload in practice. In addition, high-quality recovery remains difficult as part of the local residual information in corrupted frames may mislead feature completion and successive content recovery. In this paper, we propose the first blind bitstream-corrupted video recovery framework that integrates visual foundation models with a recovery model, which is adapted to different types of corruption and bitstream-level prompts. Within the framework, the proposed Detect Any Corruption (DAC) model leverages the rich priors of the visual foundation model while incorporating bitstream and corruption knowledge to enhance corruption localization and blind recovery. Additionally, we introduce a novel Corruption-aware Feature Completion (CFC) module, which adaptively processes residual contributions based on high-level corruption understanding. With VFM-guided hierarchical feature augmentation and high-level coordination in a mixture-of-residual-experts (MoRE) structure, our method suppresses artifacts and enhances informative residuals. Comprehensive evaluations show that the proposed method achieves outstanding performance in bitstream-corrupted video recovery without requiring a manually labeled mask sequence. The demonstrated effectiveness will help to realize improved user experience, wider application scenarios, and more reliable multimedia communication and storage systems.
comment: 10 pages, 5 figures, accepted by ACMMM 2025
☆ Visual Language Models as Zero-Shot Deepfake Detectors ICML 2025
The contemporary phenomenon of deepfakes, utilizing GAN or diffusion models for face swapping, presents a substantial and evolving threat in digital media, identity verification, and a multitude of other systems. The majority of existing methods for detecting deepfakes rely on training specialized classifiers to distinguish between genuine and manipulated images, focusing only on the image domain without incorporating any auxiliary tasks that could enhance robustness. In this paper, inspired by the zero-shot capabilities of Vision Language Models, we propose a novel VLM-based approach to image classification and then evaluate it for deepfake detection. Specifically, we utilize a new high-quality deepfake dataset comprising 60,000 images, on which our zero-shot models demonstrate superior performance to almost all existing methods. Subsequently, we compare the performance of the best-performing architecture, InstructBLIP, on the popular deepfake dataset DFDC-P against traditional methods in two scenarios: zero-shot and in-domain fine-tuning. Our results demonstrate the superiority of VLMs over traditional classifiers.
comment: Accepted to the ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ Towards Simulating Social Influence Dynamics with LLM-based Multi-agents
Recent advancements in Large Language Models offer promising capabilities to simulate complex human social interactions. We investigate whether LLM-based multi-agent simulations can reproduce core human social dynamics observed in online forums. We evaluate conformity dynamics, group polarization, and fragmentation across different model scales and reasoning capabilities using a structured simulation framework. Our findings indicate that smaller models exhibit higher conformity rates, whereas models optimized for reasoning are more resistant to social influence.
☆ Shallow Features Matter: Hierarchical Memory with Heterogeneous Interaction for Unsupervised Video Object Segmentation ACM MM'25
Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .
comment: Accepted to ACM MM'25: The 33rd ACM International Conference on Multimedia Proceedings
☆ Towards Interpretable Renal Health Decline Forecasting via Multi-LMM Collaborative Reasoning Framework
Accurate and interpretable prediction of estimated glomerular filtration rate (eGFR) is essential for managing chronic kidney disease (CKD) and supporting clinical decisions. Recent advances in Large Multimodal Models (LMMs) have shown strong potential in clinical prediction tasks due to their ability to process visual and textual information. However, challenges related to deployment cost, data privacy, and model reliability hinder their adoption. In this study, we propose a collaborative framework that enhances the performance of open-source LMMs for eGFR forecasting while generating clinically meaningful explanations. The framework incorporates visual knowledge transfer, abductive reasoning, and a short-term memory mechanism to enhance prediction accuracy and interpretability. Experimental results show that the proposed framework achieves predictive performance and interpretability comparable to proprietary models. It also provides plausible clinical reasoning processes behind each prediction. Our method sheds new light on building AI systems for healthcare that combine predictive accuracy with clinically grounded interpretability.
☆ What is an "Abstract Reasoner"? Revisiting Experiments and Arguments about Large Language Models
Recent work has argued that large language models (LLMs) are not "abstract reasoners", citing their poor zero-shot performance on a variety of challenging tasks as evidence. We revisit these experiments in order to add nuance to the claim. First, we show that while LLMs indeed perform poorly in a zero-shot setting, even tuning a small subset of parameters for input encoding can enable near-perfect performance. However, we also show that this finetuning does not necessarily transfer across datasets. We take this collection of empirical results as an invitation to (re-)open the discussion of what it means to be an "abstract reasoner", and why it matters whether LLMs fit the bill.
comment: CONLL 2025. Project webpage: https://abstract-reasoner-llm.github.io/
☆ RCR-AF: Enhancing Model Generalization via Rademacher Complexity Reduction Activation Function
Despite their widespread success, deep neural networks remain critically vulnerable to adversarial attacks, posing significant risks in safety-sensitive applications. This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness. We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience. RCR-AF uniquely combines the advantages of GELU (including smoothness, gradient stability, and negative information retention) with ReLU's desirable monotonicity, while simultaneously controlling both model sparsity and capacity through built-in clipping mechanisms governed by two hyperparameters, $\alpha$ and $\gamma$. Our theoretical analysis, grounded in Rademacher complexity, demonstrates that these parameters directly modulate the model's Rademacher complexity, offering a principled approach to enhance robustness. Comprehensive empirical evaluations show that RCR-AF consistently outperforms widely-used alternatives (ReLU, GELU, and Swish) in both clean accuracy under standard training and in adversarial robustness within adversarial training paradigms.
☆ AI-generated stories favour stability over change: homogeneity and cultural stereotyping in narratives generated by gpt-4o-mini
Can a language model trained largely on Anglo-American texts generate stories that are culturally relevant to other nationalities? To find out, we generated 11,800 stories - 50 for each of 236 countries - by sending the prompt "Write a 1500 word potential {demonym} story" to OpenAI's model gpt-4o-mini. Although the stories do include surface-level national symbols and themes, they overwhelmingly conform to a single narrative plot structure across countries: a protagonist lives in or returns home to a small town and resolves a minor conflict by reconnecting with tradition and organising community events. Real-world conflicts are sanitised, romance is almost absent, and narrative tension is downplayed in favour of nostalgia and reconciliation. The result is a narrative homogenisation: an AI-generated synthetic imaginary that prioritises stability above change and tradition above growth. We argue that the structural homogeneity of AI-generated narratives constitutes a distinct form of AI bias, a narrative standardisation that should be acknowledged alongside the more familiar representational bias. These findings are relevant to literary studies, narratology, critical AI studies, NLP research, and efforts to improve the cultural alignment of generative AI.
comment: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 101142306. The project is also supported by the Center for Digital Narrative, which is funded by the Research Council of Norway through its Centres of Excellence scheme, project number 332643
☆ Nearest-Better Network for Visualizing and Analyzing Combinatorial Optimization Problems: A Unified Tool
The Nearest-Better Network (NBN) is a powerful method to visualize sampled data for continuous optimization problems while preserving multiple landscape features. However, the calculation of NBN is very time-consuming, and the extension of the method to combinatorial optimization problems is challenging but very important for analyzing the algorithm's behavior. This paper provides a straightforward theoretical derivation showing that the NBN network essentially functions as the maximum probability transition network for algorithms. This paper also presents an efficient NBN computation method with logarithmic linear time complexity to address the time-consuming issue. By applying this efficient NBN algorithm to the OneMax problem and the Traveling Salesman Problem (TSP), we have made several remarkable discoveries for the first time: The fitness landscape of OneMax exhibits neutrality, ruggedness, and modality features. The primary challenges of TSP problems are ruggedness, modality, and deception. Two state-of-the-art TSP algorithms (i.e., EAX and LKH) have limitations when addressing challenges related to modality and deception, respectively. LKH, based on local search operators, fails when there are deceptive solutions near global optima. EAX, which is based on a single population, can efficiently maintain diversity. However, when multiple attraction basins exist, EAX retains individuals within multiple basins simultaneously, reducing inter-basin interaction efficiency and leading to algorithm's stagnation.
☆ Cross-Border Legal Adaptation of Autonomous Vehicle Design based on Logic and Non-monotonic Reasoning
This paper focuses on the legal compliance challenges of autonomous vehicles in a transnational context. We choose the perspective of designers and try to provide supporting legal reasoning in the design process. Based on argumentation theory, we introduce a logic to represent the basic properties of argument-based practical (normative) reasoning, combined with partial order sets of natural numbers to express priority. Finally, through case analysis of legal texts, we show how the reasoning system we provide can help designers to adapt their design solutions more flexibly in the cross-border application of autonomous vehicles and to more easily understand the legal implications of their decisions.
comment: Accepted to appear in Proceedings of the 20th International Conference on Artificial Intelligence and Law (ICAIL 2025)
☆ Theoretical Analysis of Relative Errors in Gradient Computations for Adversarial Attacks with CE Loss
Gradient-based adversarial attacks using the Cross-Entropy (CE) loss often suffer from overestimation due to relative errors in gradient computation induced by floating-point arithmetic. This paper provides a rigorous theoretical analysis of these errors, conducting the first comprehensive study of floating-point computation errors in gradient-based attacks across four distinct scenarios: (i) unsuccessful untargeted attacks, (ii) successful untargeted attacks, (iii) unsuccessful targeted attacks, and (iv) successful targeted attacks. We establish theoretical foundations characterizing the behavior of relative numerical errors under different attack conditions, revealing previously unknown patterns in gradient computation instability, and identify floating-point underflow and rounding as key contributors. Building on this insight, we propose the Theoretical MIFPE (T-MIFPE) loss function, which incorporates an optimal scaling factor $T = t^*$ to minimize the impact of floating-point errors, thereby enhancing the accuracy of gradient computation in adversarial attacks. Extensive experiments on the MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate that T-MIFPE outperforms existing loss functions, including CE, C\&W, DLR, and MIFPE, in terms of attack potency and robustness evaluation accuracy.
☆ Spec-VLA: Speculative Decoding for Vision-Language-Action Models with Relaxed Acceptance
Vision-Language-Action (VLA) models have made substantial progress by leveraging the robust capabilities of Visual Language Models (VLMs). However, VLMs' significant parameter size and autoregressive (AR) decoding nature impose considerable computational demands on VLA models. While Speculative Decoding (SD) has shown efficacy in accelerating Large Language Models (LLMs) by incorporating efficient drafting and parallel verification, allowing multiple tokens to be generated in one forward pass, its application to VLA models remains unexplored. This work introduces Spec-VLA, an SD framework designed to accelerate VLA models. Due to the difficulty of the action prediction task and the greedy decoding mechanism of the VLA models, the direct application of the advanced SD framework to the VLA prediction task yields a minor speed improvement. To boost the generation speed, we propose an effective mechanism to relax acceptance utilizing the relative distances represented by the action tokens of the VLA model. Empirical results across diverse test scenarios affirm the effectiveness of the Spec-VLA framework, and further analysis substantiates the impact of our proposed strategies, which enhance the acceptance length by 44%, achieving 1.42 times speedup compared with the OpenVLA baseline, without compromising the success rate. The success of the Spec-VLA framework highlights the potential for broader application of speculative execution in VLA prediction scenarios.
comment: 12 pages, 5 figures, under review
☆ On the Definition of Intelligence
To engineer AGI, we should first capture the essence of intelligence in a species-agnostic form that can be evaluated, while being sufficiently general to encompass diverse paradigms of intelligent behavior, including reinforcement learning, generative models, classification, analogical reasoning, and goal-directed decision-making. We propose a general criterion based on sample fidelity: intelligence is the ability, given sample(s) from a category, to generate sample(s) from the same category. We formalise this intuition as {\epsilon}-category intelligence: it is {\epsilon}-intelligent with respect to a category if no chosen admissible distinguisher can separate generated from original samples beyond tolerance {\epsilon}. We present the formal framework, outline empirical protocols, and discuss implications for evaluation, safety, and generalization.
comment: Accepted at AGI-25
☆ Efficient Spatial-Temporal Modeling for Real-Time Video Analysis: A Unified Framework for Action Recognition and Object Tracking
Real-time video analysis remains a challenging problem in computer vision, requiring efficient processing of both spatial and temporal information while maintaining computational efficiency. Existing approaches often struggle to balance accuracy and speed, particularly in resource-constrained environments. In this work, we present a unified framework that leverages advanced spatial-temporal modeling techniques for simultaneous action recognition and object tracking. Our approach builds upon recent advances in parallel sequence modeling and introduces a novel hierarchical attention mechanism that adaptively focuses on relevant spatial regions across temporal sequences. We demonstrate that our method achieves state-of-the-art performance on standard benchmarks while maintaining real-time inference speeds. Extensive experiments on UCF-101, HMDB-51, and MOT17 datasets show improvements of 3.2% in action recognition accuracy and 2.8% in tracking precision compared to existing methods, with 40% faster inference time.
☆ Systematic Evaluation of Knowledge Graph Repair with Large Language Models
We present a systematic approach for evaluating the quality of knowledge graph repairs with respect to constraint violations defined in shapes constraint language (SHACL). Current evaluation methods rely on \emph{ad hoc} datasets, which limits the rigorous analysis of repair systems in more general settings. Our method addresses this gap by systematically generating violations using a novel mechanism, termed violation-inducing operations (VIOs). We use the proposed evaluation framework to assess a range of repair systems which we build using large language models. We analyze the performance of these systems across different prompting strategies. Results indicate that concise prompts containing both the relevant violated SHACL constraints and key contextual information from the knowledge graph yield the best performance.
☆ Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty
☆ NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, \textbf{NeedleChain}, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain
comment: 13 pages
Question Generation for Assessing Early Literacy Reading Comprehension
Assessment of reading comprehension through content-based interactions plays an important role in the reading acquisition process. In this paper, we propose a novel approach for generating comprehension questions geared to K-2 English learners. Our method ensures complete coverage of the underlying material and adaptation to the learner's specific proficiencies, and can generate a large diversity of question types at various difficulty levels to ensure a thorough evaluation. We evaluate the performance of various language models in this framework using the FairytaleQA dataset as the source material. Eventually, the proposed approach has the potential to become an important part of autonomous AI-driven English instructors.
comment: 2 pages, 1 figure, accepted by SLaTE 2025
☆ MINR: Implicit Neural Representations with Masked Image Modelling ICCV 2023
Self-supervised learning methods like masked autoencoders (MAE) have shown significant promise in learning robust feature representations, particularly in image reconstruction-based pretraining task. However, their performance is often strongly dependent on the masking strategies used during training and can degrade when applied to out-of-distribution data. To address these limitations, we introduce the masked implicit neural representations (MINR) framework that synergizes implicit neural representations with masked image modeling. MINR learns a continuous function to represent images, enabling more robust and generalizable reconstructions irrespective of masking strategies. Our experiments demonstrate that MINR not only outperforms MAE in in-domain scenarios but also in out-of-distribution settings, while reducing model complexity. The versatility of MINR extends to various self-supervised learning applications, confirming its utility as a robust and efficient alternative to existing frameworks.
comment: Accepted to the ICCV 2023 workshop on Out-of-Distribution Generalization in Computer Vision
☆ SAEL: Leveraging Large Language Models with Adaptive Mixture-of-Experts for Smart Contract Vulnerability Detection
With the increasing security issues in blockchain, smart contract vulnerability detection has become a research focus. Existing vulnerability detection methods have their limitations: 1) Static analysis methods struggle with complex scenarios. 2) Methods based on specialized pre-trained models perform well on specific datasets but have limited generalization capabilities. In contrast, general-purpose Large Language Models (LLMs) demonstrate impressive ability in adapting to new vulnerability patterns. However, they often underperform on specific vulnerability types compared to methods based on specialized pre-trained models. We also observe that explanations generated by general-purpose LLMs can provide fine-grained code understanding information, contributing to improved detection performance. Inspired by these observations, we propose SAEL, an LLM-based framework for smart contract vulnerability detection. We first design targeted prompts to guide LLMs in identifying vulnerabilities and generating explanations, which serve as prediction features. Next, we apply prompt-tuning on CodeT5 and T5 to process contract code and explanations, enhancing task-specific performance. To combine the strengths of each approach, we introduce an Adaptive Mixture-of-Experts architecture. This dynamically adjusts feature weights via a Gating Network, which selects relevant features using TopK filtering and Softmax normalization, and incorporates a Multi-Head Self-Attention mechanism to enhance cross-feature relationships. This design enables effective integration of LLM predictions, explanation features, and code features through gradient optimization. The loss function jointly considers both independent feature performance and overall weighted predictions. Experiments show that SAEL outperforms existing methods across various vulnerabilities.
comment: Accepted to ICSME 2025
☆ Exploring the Application of Visual Question Answering (VQA) for Classroom Activity Monitoring
Classroom behavior monitoring is a critical aspect of educational research, with significant implications for student engagement and learning outcomes. Recent advancements in Visual Question Answering (VQA) models offer promising tools for automatically analyzing complex classroom interactions from video recordings. In this paper, we investigate the applicability of several state-of-the-art open-source VQA models, including LLaMA2, LLaMA3, QWEN3, and NVILA, in the context of classroom behavior analysis. To facilitate rigorous evaluation, we introduce our BAV-Classroom-VQA dataset derived from real-world classroom video recordings at the Banking Academy of Vietnam. We present the methodology for data collection, annotation, and benchmark the performance of the selected VQA models on this dataset. Our initial experimental results demonstrate that all four models achieve promising performance levels in answering behavior-related visual questions, showcasing their potential in future classroom analytics and intervention systems.
☆ Beyond Accuracy: How AI Metacognitive Sensitivity improves AI-assisted Decision Making
In settings where human decision-making relies on AI input, both the predictive accuracy of the AI system and the reliability of its confidence estimates influence decision quality. We highlight the role of AI metacognitive sensitivity -- its ability to assign confidence scores that accurately distinguish correct from incorrect predictions -- and introduce a theoretical framework for assessing the joint impact of AI's predictive accuracy and metacognitive sensitivity in hybrid decision-making settings. Our analysis identifies conditions under which an AI with lower predictive accuracy but higher metacognitive sensitivity can enhance the overall accuracy of human decision making. Finally, a behavioral experiment confirms that greater AI metacognitive sensitivity improves human decision performance. Together, these findings underscore the importance of evaluating AI assistance not only by accuracy but also by metacognitive sensitivity, and of optimizing both to achieve superior decision outcomes.
comment: 26 pages, 5 figures, submitted to Decision Analysis
☆ Object Recognition Datasets and Challenges: A Review
Object recognition is among the fundamental tasks in the computer vision applications, paving the path for all other image understanding operations. In every stage of progress in object recognition research, efforts have been made to collect and annotate new datasets to match the capacity of the state-of-the-art algorithms. In recent years, the importance of the size and quality of datasets has been intensified as the utility of the emerging deep network techniques heavily relies on training data. Furthermore, datasets lay a fair benchmarking means for competitions and have proved instrumental to the advancements of object recognition research by providing quantifiable benchmarks for the developed models. Taking a closer look at the characteristics of commonly-used public datasets seems to be an important first step for data-driven and machine learning researchers. In this survey, we provide a detailed analysis of datasets in the highly investigated object recognition areas. More than 160 datasets have been scrutinized through statistics and descriptions. Additionally, we present an overview of the prominent object recognition benchmarks and competitions, along with a description of the metrics widely adopted for evaluation purposes in the computer vision community. All introduced datasets and challenges can be found online at github.com/AbtinDjavadifar/ORDC.
☆ GVD: Guiding Video Diffusion Model for Scalable Video Distillation
To address the larger computation and storage requirements associated with large video datasets, video dataset distillation aims to capture spatial and temporal information in a significantly smaller dataset, such that training on the distilled data has comparable performance to training on all of the data. We propose GVD: Guiding Video Diffusion, the first diffusion-based video distillation method. GVD jointly distills spatial and temporal features, ensuring high-fidelity video generation across diverse actions while capturing essential motion information. Our method's diverse yet representative distillations significantly outperform previous state-of-the-art approaches on the MiniUCF and HMDB51 datasets across 5, 10, and 20 Instances Per Class (IPC). Specifically, our method achieves 78.29 percent of the original dataset's performance using only 1.98 percent of the total number of frames in MiniUCF. Additionally, it reaches 73.83 percent of the performance with just 3.30 percent of the frames in HMDB51. Experimental results across benchmark video datasets demonstrate that GVD not only achieves state-of-the-art performance but can also generate higher resolution videos and higher IPC without significantly increasing computational cost.
☆ Magentic-UI: Towards Human-in-the-loop Agentic Systems
AI agents powered by large language models are increasingly capable of autonomously completing complex, multi-step tasks using external tools. Yet, they still fall short of human-level performance in most domains including computer use, software development, and research. Their growing autonomy and ability to interact with the outside world, also introduces safety and security risks including potentially misaligned actions and adversarial manipulation. We argue that human-in-the-loop agentic systems offer a promising path forward, combining human oversight and control with AI efficiency to unlock productivity from imperfect systems. We introduce Magentic-UI, an open-source web interface for developing and studying human-agent interaction. Built on a flexible multi-agent architecture, Magentic-UI supports web browsing, code execution, and file manipulation, and can be extended with diverse tools via Model Context Protocol (MCP). Moreover, Magentic-UI presents six interaction mechanisms for enabling effective, low-cost human involvement: co-planning, co-tasking, multi-tasking, action guards, and long-term memory. We evaluate Magentic-UI across four dimensions: autonomous task completion on agentic benchmarks, simulated user testing of its interaction capabilities, qualitative studies with real users, and targeted safety assessments. Our findings highlight Magentic-UI's potential to advance safe and efficient human-agent collaboration.
☆ An Explainable Emotion Alignment Framework for LLM-Empowered Agent in Metaverse Service Ecosystem
Metaverse service is a product of the convergence between Metaverse and service systems, designed to address service-related challenges concerning digital avatars, digital twins, and digital natives within Metaverse. With the rise of large language models (LLMs), agents now play a pivotal role in Metaverse service ecosystem, serving dual functions: as digital avatars representing users in the virtual realm and as service assistants (or NPCs) providing personalized support. However, during the modeling of Metaverse service ecosystems, existing LLM-based agents face significant challenges in bridging virtual-world services with real-world services, particularly regarding issues such as character data fusion, character knowledge association, and ethical safety concerns. This paper proposes an explainable emotion alignment framework for LLM-based agents in Metaverse Service Ecosystem. It aims to integrate factual factors into the decision-making loop of LLM-based agents, systematically demonstrating how to achieve more relational fact alignment for these agents. Finally, a simulation experiment in the Offline-to-Offline food delivery scenario is conducted to evaluate the effectiveness of this framework, obtaining more realistic social emergence.
☆ From Articles to Code: On-Demand Generation of Core Algorithms from Scientific Publications
Maintaining software packages imposes significant costs due to dependency management, bug fixes, and versioning. We show that rich method descriptions in scientific publications can serve as standalone specifications for modern large language models (LLMs), enabling on-demand code generation that could supplant human-maintained libraries. We benchmark state-of-the-art models (GPT-o4-mini-high, Gemini Pro 2.5, Claude Sonnet 4) by tasking them with implementing a diverse set of core algorithms drawn from original publications. Our results demonstrate that current LLMs can reliably reproduce package functionality with performance indistinguishable from conventional libraries. These findings foreshadow a paradigm shift toward flexible, on-demand code generation and away from static, human-maintained packages, which will result in reduced maintenance overhead by leveraging published articles as sufficient context for the automated implementation of analytical workflows.
☆ Learning from Heterogeneous Structural MRI via Collaborative Domain Adaptation for Late-Life Depression Assessment
Accurate identification of late-life depression (LLD) using structural brain MRI is essential for monitoring disease progression and facilitating timely intervention. However, existing learning-based approaches for LLD detection are often constrained by limited sample sizes (e.g., tens), which poses significant challenges for reliable model training and generalization. Although incorporating auxiliary datasets can expand the training set, substantial domain heterogeneity, such as differences in imaging protocols, scanner hardware, and population demographics, often undermines cross-domain transferability. To address this issue, we propose a Collaborative Domain Adaptation (CDA) framework for LLD detection using T1-weighted MRIs. The CDA leverages a Vision Transformer (ViT) to capture global anatomical context and a Convolutional Neural Network (CNN) to extract local structural features, with each branch comprising an encoder and a classifier. The CDA framework consists of three stages: (a) supervised training on labeled source data, (b) self-supervised target feature adaptation and (c) collaborative training on unlabeled target data. We first train ViT and CNN on source data, followed by self-supervised target feature adaptation by minimizing the discrepancy between classifier outputs from two branches to make the categorical boundary clearer. The collaborative training stage employs pseudo-labeled and augmented target-domain MRIs, enforcing prediction consistency under strong and weak augmentation to enhance domain robustness and generalization. Extensive experiments conducted on multi-site T1-weighted MRI data demonstrate that the CDA consistently outperforms state-of-the-art unsupervised domain adaptation methods.
☆ AdapSCA-PSO: An Adaptive Localization Algorithm with AI-Based Hybrid SCA-PSO for IoT WSNs
The accurate localization of sensor nodes is a fundamental requirement for the practical application of the Internet of Things (IoT). To enable robust localization across diverse environments, this paper proposes a hybrid meta-heuristic localization algorithm. Specifically, the algorithm integrates the Sine Cosine Algorithm (SCA), which is effective in global search, with Particle Swarm Optimization (PSO), which excels at local search. An adaptive switching module is introduced to dynamically select between the two algorithms. Furthermore, the initialization, fitness evaluation, and parameter settings of the algorithm have been specifically redesigned and optimized to address the characteristics of the node localization problem. Simulation results across varying numbers of sensor nodes demonstrate that, compared to standalone PSO and the unoptimized SCAPSO algorithm, the proposed method significantly reduces the number of required iterations and achieves an average localization error reduction of 84.97%.
☆ Argumentatively Coherent Judgmental Forecasting
Judgmental forecasting employs human opinions to make predictions about future events, rather than exclusively historical data as in quantitative forecasting. When these opinions form an argumentative structure around forecasts, it is useful to study the properties of the forecasts from an argumentative perspective. In this paper, we advocate and formally define a property of argumentative coherence, which, in essence, requires that a forecaster's reasoning is coherent with their forecast. We then conduct three evaluations with our notion of coherence. First, we assess the impact of enforcing coherence on human forecasters as well as on Large Language Model (LLM)-based forecasters, given that they have recently shown to be competitive with human forecasters. In both cases, we show that filtering out incoherent predictions improves forecasting accuracy consistently, supporting the practical value of coherence in both human and LLM-based forecasting. Then, via crowd-sourced user experiments, we show that, despite its apparent intuitiveness and usefulness, users do not generally align with this coherence property. This points to the need to integrate, within argumentation-based judgmental forecasting, mechanisms to filter out incoherent opinions before obtaining group forecasting predictions.
comment: 17 pages, 18 figures, ECAI 2025
☆ FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations
Urban heatwaves, droughts, and land degradation are pressing and growing challenges in the context of climate change. A valuable approach to studying them requires accurate spatio-temporal information on land surface conditions. One of the most important variables for assessing and understanding these phenomena is Land Surface Temperature (LST), which is derived from satellites and provides essential information about the thermal state of the Earth's surface. However, satellite platforms inherently face a trade-off between spatial and temporal resolutions. To bridge this gap, we propose FuseTen, a novel generative framework that produces daily LST observations at a fine 10 m spatial resolution by fusing spatio-temporal observations derived from Sentinel-2, Landsat 8, and Terra MODIS. FuseTen employs a generative architecture trained using an averaging-based supervision strategy grounded in physical principles. It incorporates attention and normalization modules within the fusion process and uses a PatchGAN discriminator to enforce realism. Experiments across multiple dates show that FuseTen outperforms linear baselines, with an average 32.06% improvement in quantitative metrics and 31.42% in visual fidelity. To the best of our knowledge, this is the first non-linear method to generate daily LST estimates at such fine spatial resolution.
comment: Accepted in the 2025 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS)
☆ Uncovering the Fragility of Trustworthy LLMs through Chinese Textual Ambiguity KDD
In this work, we study a critical research problem regarding the trustworthiness of large language models (LLMs): how LLMs behave when encountering ambiguous narrative text, with a particular focus on Chinese textual ambiguity. We created a benchmark dataset by collecting and generating ambiguous sentences with context and their corresponding disambiguated pairs, representing multiple possible interpretations. These annotated examples are systematically categorized into 3 main categories and 9 subcategories. Through experiments, we discovered significant fragility in LLMs when handling ambiguity, revealing behavior that differs substantially from humans. Specifically, LLMs cannot reliably distinguish ambiguous text from unambiguous text, show overconfidence in interpreting ambiguous text as having a single meaning rather than multiple meanings, and exhibit overthinking when attempting to understand the various possible meanings. Our findings highlight a fundamental limitation in current LLMs that has significant implications for their deployment in real-world applications where linguistic ambiguity is common, calling for improved approaches to handle uncertainty in language understanding. The dataset and code are publicly available at this GitHub repository: https://github.com/ictup/LLM-Chinese-Textual-Disambiguation.
comment: Accepted at KDD workshop on Evaluation and Trustworthiness of Agentic and Generative AI Models (Agentic & GenAI Evaluation Workshop KDD '25)
☆ FLOSS: Federated Learning with Opt-Out and Straggler Support
Previous work on data privacy in federated learning systems focuses on privacy-preserving operations for data from users who have agreed to share their data for training. However, modern data privacy agreements also empower users to use the system while opting out of sharing their data as desired. When combined with stragglers that arise from heterogeneous device capabilities, the result is missing data from a variety of sources that introduces bias and degrades model performance. In this paper, we present FLOSS, a system that mitigates the impacts of such missing data on federated learning in the presence of stragglers and user opt-out, and empirically demonstrate its performance in simulations.
comment: 5 pages
☆ RASL: Retrieval Augmented Schema Linking for Massive Database Text-to-SQL
Despite advances in large language model (LLM)-based natural language interfaces for databases, scaling to enterprise-level data catalogs remains an under-explored challenge. Prior works addressing this challenge rely on domain-specific fine-tuning - complicating deployment - and fail to leverage important semantic context contained within database metadata. To address these limitations, we introduce a component-based retrieval architecture that decomposes database schemas and metadata into discrete semantic units, each separately indexed for targeted retrieval. Our approach prioritizes effective table identification while leveraging column-level information, ensuring the total number of retrieved tables remains within a manageable context budget. Experiments demonstrate that our method maintains high recall and accuracy, with our system outperforming baselines over massive databases with varying structure and available metadata. Our solution enables practical text-to-SQL systems deployable across diverse enterprise settings without specialized fine-tuning, addressing a critical scalability gap in natural language database interfaces.
☆ SMART-Editor: A Multi-Agent Framework for Human-Like Design Editing with Structural Integrity
We present SMART-Editor, a framework for compositional layout and content editing across structured (posters, websites) and unstructured (natural images) domains. Unlike prior models that perform local edits, SMART-Editor preserves global coherence through two strategies: Reward-Refine, an inference-time rewardguided refinement method, and RewardDPO, a training-time preference optimization approach using reward-aligned layout pairs. To evaluate model performance, we introduce SMARTEdit-Bench, a benchmark covering multi-domain, cascading edit scenarios. SMART-Editor outperforms strong baselines like InstructPix2Pix and HIVE, with RewardDPO achieving up to 15% gains in structured settings and Reward-Refine showing advantages on natural images. Automatic and human evaluations confirm the value of reward-guided planning in producing semantically consistent and visually aligned edits.
comment: Under Submission
☆ On the Sustainability of AI Inferences in the Edge
The proliferation of the Internet of Things (IoT) and its cutting-edge AI-enabled applications (e.g., autonomous vehicles and smart industries) combine two paradigms: data-driven systems and their deployment on the edge. Usually, edge devices perform inferences to support latency-critical applications. In addition to the performance of these resource-constrained edge devices, their energy usage is a critical factor in adopting and deploying edge applications. Examples of such devices include Raspberry Pi (RPi), Intel Neural Compute Stick (INCS), NVIDIA Jetson nano (NJn), and Google Coral USB (GCU). Despite their adoption in edge deployment for AI inferences, there is no study on their performance and energy usage for informed decision-making on the device and model selection to meet the demands of applications. This study fills the gap by rigorously characterizing the performance of traditional, neural networks, and large language models on the above-edge devices. Specifically, we analyze trade-offs among model F1 score, inference time, inference power, and memory usage. Hardware and framework optimization, along with external parameter tuning of AI models, can balance between model performance and resource usage to realize practical edge AI deployments.
comment: 14 pages, 8 figures, 6 tables, in preparation for journal submission
☆ Moravec's Paradox: Towards an Auditory Turing Test
This research work demonstrates that current AI systems fail catastrophically on auditory tasks that humans perform effortlessly. Drawing inspiration from Moravec's paradox (i.e., tasks simple for humans often prove difficult for machines, and vice versa), we introduce an auditory Turing test comprising 917 challenges across seven categories: overlapping speech, speech in noise, temporal distortion, spatial audio, coffee-shop noise, phone distortion, and perceptual illusions. Our evaluation of state-of-the-art audio models including GPT-4's audio capabilities and OpenAI's Whisper reveals a striking failure rate exceeding 93%, with even the best-performing model achieving only 6.9% accuracy on tasks that humans solved at 7.5 times higher success (52%). These results expose focusing failures in how AI systems process complex auditory scenes, particularly in selective attention, noise robustness, and contextual adaptation. Our benchmark not only quantifies the human-machine auditory gap but also provides insights into why these failures occur, suggesting that current architectures lack fundamental mechanisms for human-like auditory scene analysis. The traditional design of audio CAPTCHAs highlights common filters that humans evolved but machines fail to select in multimodal language models. This work establishes a diagnostic framework for measuring progress toward human-level machine listening and highlights the need for novel approaches integrating selective attention, physics-based audio understanding, and context-aware perception into multimodal AI systems.
☆ Beyond Rigid AI: Towards Natural Human-Machine Symbiosis for Interoperative Surgical Assistance
Emerging surgical data science and robotics solutions, especially those designed to provide assistance in situ, require natural human-machine interfaces to fully unlock their potential in providing adaptive and intuitive aid. Contemporary AI-driven solutions remain inherently rigid, offering limited flexibility and restricting natural human-machine interaction in dynamic surgical environments. These solutions rely heavily on extensive task-specific pre-training, fixed object categories, and explicit manual-prompting. This work introduces a novel Perception Agent that leverages speech-integrated prompt-engineered large language models (LLMs), segment anything model (SAM), and any-point tracking foundation models to enable a more natural human-machine interaction in real-time intraoperative surgical assistance. Incorporating a memory repository and two novel mechanisms for segmenting unseen elements, Perception Agent offers the flexibility to segment both known and unseen elements in the surgical scene through intuitive interaction. Incorporating the ability to memorize novel elements for use in future surgeries, this work takes a marked step towards human-machine symbiosis in surgical procedures. Through quantitative analysis on a public dataset, we show that the performance of our agent is on par with considerably more labor-intensive manual-prompting strategies. Qualitatively, we show the flexibility of our agent in segmenting novel elements (instruments, phantom grafts, and gauze) in a custom-curated dataset. By offering natural human-machine interaction and overcoming rigidity, our Perception Agent potentially brings AI-based real-time assistance in dynamic surgical environments closer to reality.
☆ On LLM-Assisted Generation of Smart Contracts from Business Processes
Large language models (LLMs) have changed the reality of how software is produced. Within the wider software engineering community, among many other purposes, they are explored for code generation use cases from different types of input. In this work, we present an exploratory study to investigate the use of LLMs for generating smart contract code from business process descriptions, an idea that has emerged in recent literature to overcome the limitations of traditional rule-based code generation approaches. However, current LLM-based work evaluates generated code on small samples, relying on manual inspection, or testing whether code compiles but ignoring correct execution. With this work, we introduce an automated evaluation framework and provide empirical data from larger data sets of process models. We test LLMs of different types and sizes in their capabilities of achieving important properties of process execution, including enforcing process flow, resource allocation, and data-based conditions. Our results show that LLM performance falls short of the perfect reliability required for smart contract development. We suggest future work to explore responsible LLM integrations in existing tools for code generation to ensure more reliable output. Our benchmarking framework can serve as a foundation for developing and evaluating such integrations.
comment: Accepted at the Workshop on Distributed Ledger Technologies in Business Process Management, At the International Conference for Business Process Management (BPM), 2025
☆ AutoIndexer: A Reinforcement Learning-Enhanced Index Advisor Towards Scaling Workloads
Efficiently selecting indexes is fundamental to database performance optimization, particularly for systems handling large-scale analytical workloads. While deep reinforcement learning (DRL) has shown promise in automating index selection through its ability to learn from experience, few works address how these RL-based index advisors can adapt to scaling workloads due to exponentially growing action spaces and heavy trial and error. To address these challenges, we introduce AutoIndexer, a framework that combines workload compression, query optimization, and specialized RL models to scale index selection effectively. By operating on compressed workloads, AutoIndexer substantially lowers search complexity without sacrificing much index quality. Extensive evaluations show that it reduces end-to-end query execution time by up to 95% versus non-indexed baselines. On average, it outperforms state-of-the-art RL-based index advisors by approximately 20% in workload cost savings while cutting tuning time by over 50%. These results affirm AutoIndexer's practicality for large and diverse workloads.
comment: 14 pages
☆ FairReason: Balancing Reasoning and Social Bias in MLLMs
Multimodal Large Language Models (MLLMs) already achieve state-of-the-art results across a wide range of tasks and modalities. To push their reasoning ability further, recent studies explore advanced prompting schemes and post-training fine-tuning. Although these techniques improve logical accuracy, they frequently leave the models' outputs burdened with pronounced social biases. Clarifying how reasoning gains interact with bias mitigation-and whether the two objectives inherently trade off-therefore remains an open and pressing research problem. Our study begins by benchmarking three bias-mitigation strategies-supervised fine-uning (SFT), knowledge distillation (KD), and rule-based reinforcement learning (RL)-under identical conditions, establishing their baseline strengths and weaknesses. Building on these results, we vary the proportion of debias-focused and reasoning-centric samples within each paradigm to chart the reasoning-versus-bias trade-off. Our sweeps reveal a consistent sweet spot: a roughly 1:4 mix trained with reinforcement learning cuts stereotype scores by 10% while retaining 88% of the model's original reasoning accuracy, offering concrete guidance for balancing fairness and capability in MLLMs.
☆ Vision-Language Fusion for Real-Time Autonomous Driving: Goal-Centered Cross-Attention of Camera, HD-Map, & Waypoints
Autonomous cars need geometric accuracy and semantic understanding to navigate complex environments, yet most stacks handle them separately. We present XYZ-Drive, a single vision-language model that reads a front-camera frame, a 25m $\times$ 25m overhead map, and the next waypoint, then outputs steering and speed. A lightweight goal-centered cross-attention layer lets waypoint tokens highlight relevant image and map patches, supporting both action and textual explanations, before the fused tokens enter a partially fine-tuned LLaMA-3.2 11B model. On the MD-NEX Outdoor-Driving benchmark XYZ-Drive attains 95% success and 0.80 Success weighted by Path Length (SPL), surpassing PhysNav-DG by 15%. and halving collisions, all while significantly improving efficiency by using only a single branch. Sixteen ablations explain the gains. Removing any modality (vision, waypoint, map) drops success by up to 11%, confirming their complementary roles and rich connections. Replacing goal-centered attention with simple concatenation cuts 3% in performance, showing query-based fusion injects map knowledge more effectively. Keeping the transformer frozen loses 5%, showing the importance of fine-tuning when applying VLMs for specific tasks such as autonomous driving. Coarsening map resolution from 10 cm to 40 cm blurs lane edges and raises crash rate. Overall, these results demonstrate that early, token-level fusion of intent and map layout enables accurate, transparent, real-time driving.
comment: 5 pages
☆ Reference-Guided Diffusion Inpainting For Multimodal Counterfactual Generation
Safety-critical applications, such as autonomous driving and medical image analysis, require extensive multimodal data for rigorous testing. Synthetic data methods are gaining prominence due to the cost and complexity of gathering real-world data, but they demand a high degree of realism and controllability to be useful. This work introduces two novel methods for synthetic data generation in autonomous driving and medical image analysis, namely MObI and AnydoorMed, respectively. MObI is a first-of-its-kind framework for Multimodal Object Inpainting that leverages a diffusion model to produce realistic and controllable object inpaintings across perceptual modalities, demonstrated simultaneously for camera and lidar. Given a single reference RGB image, MObI enables seamless object insertion into existing multimodal scenes at a specified 3D location, guided by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, this approach uses 3D bounding box conditioning to ensure accurate spatial positioning and realistic scaling. AnydoorMed extends this paradigm to the medical imaging domain, focusing on reference-guided inpainting for mammography scans. It leverages a diffusion-based model to inpaint anomalies with impressive detail preservation, maintaining the reference anomaly's structural integrity while semantically blending it with the surrounding tissue. Together, these methods demonstrate that foundation models for reference-guided inpainting in natural images can be readily adapted to diverse perceptual modalities, paving the way for the next generation of systems capable of constructing highly realistic, controllable and multimodal counterfactual scenarios.
comment: A dissertation submitted to The University of Manchester for the degree of Bachelor of Science in Artificial Intelligence
☆ Early Goal-Guided Multi-Scale Fusion for Real-Time Vision-Language Driving
Autonomous vehicles must react in milliseconds while reasoning about road geometry and traffic intent to navigate complex situations. We introduce NovaDrive, a single-branch vision-language architecture that processes front-camera images, HD-map tiles, LiDAR depth, and textual waypoints in a single branch. A lightweight, two-stage cross-attention block first aligns waypoint tokens with the HD map, then refines attention over fine-grained image and depth patches. Coupled with a novel smoothness loss that discourages abrupt steering and speed changes, this design eliminates the need for recurrent memory. We fine-tune the top 15 layers of an 11B LLaMA-3.2 vision-language backbone, enabling real-time inference. On the nuScenes / Waymo subset of the MD-NEX Outdoor benchmark, NovaDrive raises success rate to 84% (+4%), boosts path-efficiency (SPL) to 0.66 (+0.11), and reduces collision frequency from 2.6% to 1.2% (-1.4%) relative to the previous state-of-the-art. Our ablations confirm that waypoint tokens, partial VLM fine-tuning, and the cross-attention fusion each contribute the most to these gains. Beyond safety, NovaDrive's shorter routes (resulting from the novel smoothness loss) translate to lower fuel or battery usage, pointing toward leaner, more easily updated driving stacks. NovaDrive can be extended to other embodied-AI domains as well.
comment: 6 pages
☆ Recovering Diagnostic Value: Super-Resolution-Aided Echocardiographic Classification in Resource-Constrained Imaging MICCAI
Automated cardiac interpretation in resource-constrained settings (RCS) is often hindered by poor-quality echocardiographic imaging, limiting the effectiveness of downstream diagnostic models. While super-resolution (SR) techniques have shown promise in enhancing magnetic resonance imaging (MRI) and computed tomography (CT) scans, their application to echocardiography-a widely accessible but noise-prone modality-remains underexplored. In this work, we investigate the potential of deep learning-based SR to improve classification accuracy on low-quality 2D echocardiograms. Using the publicly available CAMUS dataset, we stratify samples by image quality and evaluate two clinically relevant tasks of varying complexity: a relatively simple Two-Chamber vs. Four-Chamber (2CH vs. 4CH) view classification and a more complex End-Diastole vs. End-Systole (ED vs. ES) phase classification. We apply two widely used SR models-Super-Resolution Generative Adversarial Network (SRGAN) and Super-Resolution Residual Network (SRResNet), to enhance poor-quality images and observe significant gains in performance metric-particularly with SRResNet, which also offers computational efficiency. Our findings demonstrate that SR can effectively recover diagnostic value in degraded echo scans, making it a viable tool for AI-assisted care in RCS, achieving more with less.
comment: Accepted at the MICCAI Workshop on "Medical Image Computing in Resource Constrained Settings & Knowledge Interchange (MIRASOL)" 2025
☆ Modeling Human Gaze Behavior with Diffusion Models for Unified Scanpath Prediction ICCV
Predicting human gaze scanpaths is crucial for understanding visual attention, with applications in human-computer interaction, autonomous systems, and cognitive robotics. While deep learning models have advanced scanpath prediction, most existing approaches generate averaged behaviors, failing to capture the variability of human visual exploration. In this work, we present ScanDiff, a novel architecture that combines diffusion models with Vision Transformers to generate diverse and realistic scanpaths. Our method explicitly models scanpath variability by leveraging the stochastic nature of diffusion models, producing a wide range of plausible gaze trajectories. Additionally, we introduce textual conditioning to enable task-driven scanpath generation, allowing the model to adapt to different visual search objectives. Experiments on benchmark datasets show that ScanDiff surpasses state-of-the-art methods in both free-viewing and task-driven scenarios, producing more diverse and accurate scanpaths. These results highlight its ability to better capture the complexity of human visual behavior, pushing forward gaze prediction research. Source code and models are publicly available at https://aimagelab.github.io/ScanDiff.
comment: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2025
☆ Data Readiness for Scientific AI at Scale
This paper examines how Data Readiness for AI (DRAI) principles apply to leadership-scale scientific datasets used to train foundation models. We analyze archetypal workflows across four representative domains - climate, nuclear fusion, bio/health, and materials - to identify common preprocessing patterns and domain-specific constraints. We introduce a two-dimensional readiness framework composed of Data Readiness Levels (raw to AI-ready) and Data Processing Stages (ingest to shard), both tailored to high performance computing (HPC) environments. This framework outlines key challenges in transforming scientific data for scalable AI training, emphasizing transformer-based generative models. Together, these dimensions form a conceptual maturity matrix that characterizes scientific data readiness and guides infrastructure development toward standardized, cross-domain support for scalable and reproducible AI for science.
comment: 10 pages, 1 figure, 2 tables
☆ Investigating the Invertibility of Multimodal Latent Spaces: Limitations of Optimization-Based Methods
This paper investigates the inverse capabilities and broader utility of multimodal latent spaces within task-specific AI (Artificial Intelligence) models. While these models excel at their designed forward tasks (e.g., text-to-image generation, audio-to-text transcription), their potential for inverse mappings remains largely unexplored. We propose an optimization-based framework to infer input characteristics from desired outputs, applying it bidirectionally across Text-Image (BLIP, Flux.1-dev) and Text-Audio (Whisper-Large-V3, Chatterbox-TTS) modalities. Our central hypothesis posits that while optimization can guide models towards inverse tasks, their multimodal latent spaces will not consistently support semantically meaningful and perceptually coherent inverse mappings. Experimental results consistently validate this hypothesis. We demonstrate that while optimization can force models to produce outputs that align textually with targets (e.g., a text-to-image model generating an image that an image captioning model describes correctly, or an ASR model transcribing optimized audio accurately), the perceptual quality of these inversions is chaotic and incoherent. Furthermore, when attempting to infer the original semantic input from generative models, the reconstructed latent space embeddings frequently lack semantic interpretability, aligning with nonsensical vocabulary tokens. These findings highlight a critical limitation. multimodal latent spaces, primarily optimized for specific forward tasks, do not inherently possess the structure required for robust and interpretable inverse mappings. Our work underscores the need for further research into developing truly semantically rich and invertible multimodal latent spaces.
☆ Stop Evaluating AI with Human Tests, Develop Principled, AI-specific Tests instead
Large Language Models (LLMs) have achieved remarkable results on a range of standardized tests originally designed to assess human cognitive and psychological traits, such as intelligence and personality. While these results are often interpreted as strong evidence of human-like characteristics in LLMs, this paper argues that such interpretations constitute an ontological error. Human psychological and educational tests are theory-driven measurement instruments, calibrated to a specific human population. Applying these tests to non-human subjects without empirical validation, risks mischaracterizing what is being measured. Furthermore, a growing trend frames AI performance on benchmarks as measurements of traits such as ``intelligence'', despite known issues with validity, data contamination, cultural bias and sensitivity to superficial prompt changes. We argue that interpreting benchmark performance as measurements of human-like traits, lacks sufficient theoretical and empirical justification. This leads to our position: Stop Evaluating AI with Human Tests, Develop Principled, AI-specific Tests instead. We call for the development of principled, AI-specific evaluation frameworks tailored to AI systems. Such frameworks might build on existing frameworks for constructing and validating psychometrics tests, or could be created entirely from scratch to fit the unique context of AI.
☆ C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries. Despite their increasing popularity, there exists a gap in research focused on comprehensively understanding their practical effectiveness in comprehending and emulating human conversations. This is especially true compared to text-based Large Language Models (LLMs), which benefit from extensive benchmarking. Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue. Ambiguity poses one challenge, stemming from semantic factors like polysemy, as well as phonological aspects such as heterograph, heteronyms, and stress patterns. Additionally, context-dependency, like omission, coreference, and multi-turn interaction, adds further complexity to human conversational dynamics. To illuminate the current state of SDM development and to address these challenges, we present a benchmark dataset in this paper, which comprises 1,079 instances in English and Chinese. Accompanied by an LLM-based evaluation method that closely aligns with human judgment, this dataset facilitates a comprehensive exploration of the performance of SDMs in tackling these practical challenges.
♻ ☆ UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE, a comprehensive framework enhancing GUI agents at both the training and inference stages. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a Continuous Reward function to incentivize high-precision grounding; 2) a "Simple Thinking" reward to balance planning with speed and grounding accuracy; and 3) a Cropping-based Resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present Decomposed Grounding with Selection, a novel method that dramatically improves grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2. For instance, using both our proposed training and inference enhancement methods brings 23% grounding accuracy improvement over the best baseline on ScreenSpot-Pro.
♻ ☆ ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge
While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R. We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry. Then, we propose a mix-sourced distillation strategy that integrates expert-curated knowledge with general-domain reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the reliability, transparency, and practical utility of the model in real-world human-AI collaboration scenarios.
comment: 13 figures, 4 tables
♻ ☆ Training language models to be warm and empathetic makes them less reliable and more sycophantic
Artificial intelligence (AI) developers are increasingly building language models with warm and empathetic personas that millions of people now use for advice, therapy, and companionship. Here, we show how this creates a significant trade-off: optimizing language models for warmth undermines their reliability, especially when users express vulnerability. We conducted controlled experiments on five language models of varying sizes and architectures, training them to produce warmer, more empathetic responses, then evaluating them on safety-critical tasks. Warm models showed substantially higher error rates (+10 to +30 percentage points) than their original counterparts, promoting conspiracy theories, providing incorrect factual information, and offering problematic medical advice. They were also significantly more likely to validate incorrect user beliefs, particularly when user messages expressed sadness. Importantly, these effects were consistent across different model architectures, and occurred despite preserved performance on standard benchmarks, revealing systematic risks that current evaluation practices may fail to detect. As human-like AI systems are deployed at an unprecedented scale, our findings indicate a need to rethink how we develop and oversee these systems that are reshaping human relationships and social interaction.
♻ ☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
comment: arXiv admin note: text overlap with arXiv:2507.21881, arXiv:2507.21875
♻ ☆ Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image
Pain is a multifaceted phenomenon that affects a substantial portion of the population. Reliable and consistent evaluation benefits those experiencing pain and underpins the development of effective and advanced management strategies. Automatic pain-assessment systems deliver continuous monitoring, inform clinical decision-making, and aim to reduce distress while preventing functional decline. By incorporating physiological signals, these systems provide objective, accurate insights into an individual's condition. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages electrodermal activity signals as input modality. Multiple representations of the signal are created and visualized as waveforms, and they are jointly visualized within a single multi-representation diagram. Extensive experiments incorporating various processing and filtering techniques, along with multiple representation combinations, demonstrate the effectiveness of the proposed approach. It consistently yields comparable, and in several cases superior, results to traditional fusion methods, establishing it as a robust alternative for integrating different signal representations or modalities.
comment: arXiv admin note: text overlap with arXiv:2507.21875
♻ ☆ Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
♻ ☆ MultiEditor: Controllable Multimodal Object Editing for Driving Scenarios Using 3D Gaussian Splatting Priors
Autonomous driving systems rely heavily on multimodal perception data to understand complex environments. However, the long-tailed distribution of real-world data hinders generalization, especially for rare but safety-critical vehicle categories. To address this challenge, we propose MultiEditor, a dual-branch latent diffusion framework designed to edit images and LiDAR point clouds in driving scenarios jointly. At the core of our approach is introducing 3D Gaussian Splatting (3DGS) as a structural and appearance prior for target objects. Leveraging this prior, we design a multi-level appearance control mechanism--comprising pixel-level pasting, semantic-level guidance, and multi-branch refinement--to achieve high-fidelity reconstruction across modalities. We further propose a depth-guided deformable cross-modality condition module that adaptively enables mutual guidance between modalities using 3DGS-rendered depth, significantly enhancing cross-modality consistency. Extensive experiments demonstrate that MultiEditor achieves superior performance in visual and geometric fidelity, editing controllability, and cross-modality consistency. Furthermore, generating rare-category vehicle data with MultiEditor substantially enhances the detection accuracy of perception models on underrepresented classes.
♻ ☆ DualSG: A Dual-Stream Explicit Semantic-Guided Multivariate Time Series Forecasting Framework ACM MM 2025
Multivariate Time Series Forecasting plays a key role in many applications. Recent works have explored using Large Language Models for MTSF to take advantage of their reasoning abilities. However, many methods treat LLMs as end-to-end forecasters, which often leads to a loss of numerical precision and forces LLMs to handle patterns beyond their intended design. Alternatively, methods that attempt to align textual and time series modalities within latent space frequently encounter alignment difficulty. In this paper, we propose to treat LLMs not as standalone forecasters, but as semantic guidance modules within a dual-stream framework. We propose DualSG, a dual-stream framework that provides explicit semantic guidance, where LLMs act as Semantic Guides to refine rather than replace traditional predictions. As part of DualSG, we introduce Time Series Caption, an explicit prompt format that summarizes trend patterns in natural language and provides interpretable context for LLMs, rather than relying on implicit alignment between text and time series in the latent space. We also design a caption-guided fusion module that explicitly models inter-variable relationships while reducing noise and computation. Experiments on real-world datasets from diverse domains show that DualSG consistently outperforms 15 state-of-the-art baselines, demonstrating the value of explicitly combining numerical forecasting with semantic guidance.
comment: This paper has been accepted by ACM Multimedia 2025 (ACM MM 2025)
♻ ☆ Wavelet Meets Adam: Compressing Gradients for Memory-Efficient Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
♻ ☆ ST-GDance: Long-Term and Collision-Free Group Choreography from Music BMVC 2025
Group dance generation from music has broad applications in film, gaming, and animation production. However, it requires synchronizing multiple dancers while maintaining spatial coordination. As the number of dancers and sequence length increase, this task faces higher computational complexity and a greater risk of motion collisions. Existing methods often struggle to model dense spatial-temporal interactions, leading to scalability issues and multi-dancer collisions. To address these challenges, we propose ST-GDance, a novel framework that decouples spatial and temporal dependencies to optimize long-term and collision-free group choreography. We employ lightweight graph convolutions for distance-aware spatial modeling and accelerated sparse attention for efficient temporal modeling. This design significantly reduces computational costs while ensuring smooth and collision-free interactions. Experiments on the AIOZ-GDance dataset demonstrate that ST-GDance outperforms state-of-the-art baselines, particularly in generating long and coherent group dance sequences. Project page: https://yilliajing.github.io/ST-GDance-Website/.
comment: 10 pages, 3 figures. Accepted at BMVC 2025
♻ ☆ Decision Transformer-Based Drone Trajectory Planning with Dynamic Safety-Efficiency Trade-Offs IROS
A drone trajectory planner should be able to dynamically adjust the safety-efficiency trade-off according to varying mission requirements in unknown environments. Although traditional polynomial-based planners offer computational efficiency and smooth trajectory generation, they require expert knowledge to tune multiple parameters to adjust this trade-off. Moreover, even with careful tuning, the resulting adjustment may fail to achieve the desired trade-off. Similarly, although reinforcement learning-based planners are adaptable in unknown environments, they do not explicitly address the safety-efficiency trade-off. To overcome this limitation, we introduce a Decision Transformer-based trajectory planner that leverages a single parameter, Return-to-Go (RTG), as a \emph{temperature parameter} to dynamically adjust the safety-efficiency trade-off. In our framework, since RTG intuitively measures the safety and efficiency of a trajectory, RTG tuning does not require expert knowledge. We validate our approach using Gazebo simulations in both structured grid and unstructured random environments. The experimental results demonstrate that our planner can dynamically adjust the safety-efficiency trade-off by simply tuning the RTG parameter. Furthermore, our planner outperforms existing baseline methods across various RTG settings, generating safer trajectories when tuned for safety and more efficient trajectories when tuned for efficiency. Real-world experiments further confirm the reliability and practicality of our proposed planner.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ Multimodal LLMs as Customized Reward Models for Text-to-Image Generation ICCV 2025
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.
comment: Accepted at ICCV 2025. Code available at https://github.com/sjz5202/LLaVA-Reward
♻ ☆ A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
comment: 51 pages, 9 figures
♻ ☆ SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
♻ ☆ FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.
♻ ☆ TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound ICCV 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .
comment: Accepted to ICCV 2025 Workshop CVAMD
♻ ☆ Past Meets Present: Creating Historical Analogy with Large Language Models ACL 2025
Historical analogies, which compare known past events with contemporary but unfamiliar events, are important abilities that help people make decisions and understand the world. However, research in applied history suggests that people have difficulty finding appropriate analogies. And previous studies in the AI community have also overlooked historical analogies. To fill this gap, in this paper, we focus on the historical analogy acquisition task, which aims to acquire analogous historical events for a given event. We explore retrieval and generation methods for acquiring historical analogies based on different large language models (LLMs). Furthermore, we propose a self-reflection method to mitigate hallucinations and stereotypes when LLMs generate historical analogies. Through human evaluations and our specially designed automatic multi-dimensional assessment, we find that LLMs generally have a good potential for historical analogies. And the performance of the models can be further improved by using our self-reflection method.
comment: Accepted to ACL 2025 (Outstanding Paper Award)
♻ ☆ Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving
Vision-language models (VLMs) have become a promising approach to enhancing perception and decision-making in autonomous driving. The gap remains in applying VLMs to understand complex scenarios interacting with pedestrians and efficient vehicle deployment. In this paper, we propose a knowledge distillation method that transfers knowledge from large-scale vision-language foundation models to efficient vision networks, and we apply it to pedestrian behavior prediction and scene understanding tasks, achieving promising results in generating more diverse and comprehensive semantic attributes. We also utilize multiple pre-trained models and ensemble techniques to boost the model's performance. We further examined the effectiveness of the model after knowledge distillation; the results show significant metric improvements in open-vocabulary perception and trajectory prediction tasks, which can potentially enhance the end-to-end performance of autonomous driving.
♻ ☆ Curvature Dynamic Black-box Attack: revisiting adversarial robustness via dynamic curvature estimation
Adversarial attack reveals the vulnerability of deep learning models. For about a decade, countless attack and defense methods have been proposed, leading to robustified classifiers and better understanding of models. Among these methods, curvature-based approaches have attracted attention because it is assumed that high curvature may give rise to rough decision boundary. However, the most commonly used \textit{curvature} is the curvature of loss function, scores or other parameters from within the model as opposed to decision boundary curvature, since the former can be relatively easily formed using second order derivative. In this paper, we propose a new query-efficient method, dynamic curvature estimation(DCE), to estimate the decision boundary curvature in a black-box setting. Our approach is based on CGBA, a black-box adversarial attack. By performing DCE on a wide range of classifiers, we discovered, statistically, a connection between decision boundary curvature and adversarial robustness. We also propose a new attack method, curvature dynamic black-box attack(CDBA) with improved performance using the dynamically estimated curvature.
comment: This article contains several flaws
♻ ☆ Scaling RL to Long Videos
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).
comment: Code at https://github.com/NVlabs/Long-RL and model at https://huggingface.co/Efficient-Large-Model/LongVILA-R1-7B
♻ ☆ Probing EFX via PMMS: (Non-)Existence Results in Discrete Fair Division
We study the fair division of indivisible items and provide new insights into the EFX problem, which is widely regarded as the central open question in fair division, and the PMMS problem, a strictly stronger variant of EFX. Our first result constructs a three-agent instance with two monotone valuations and one additive valuation in which no PMMS allocation exists. Since EFX allocations are known to exist under these assumptions, this establishes a formal separation between EFX and PMMS. We prove existence of fair allocations for three important special cases. We show that EFX allocations exist for personalized bivalued valuations, where for each agent $i$ there exist values $a_i > b_i$ such that agent $i$ assigns value $v_i(\{g\}) \in \{a_i, b_i\}$ to each good $g$. We establish an analogous existence result for PMMS allocations when $a_i$ is divisible by $b_i$. We also prove that PMMS allocations exist for binary-valued MMS-feasible valuations, where each bundle $S$ has value $v_i(S) \in \{0, 1\}$. Notably, this result holds even without assuming monotonicity of valuations and thus applies to the fair division of chores and mixed manna. Finally, we study a class of valuations called pair-demand valuations, which extend the well-studied unit-demand valuations to the case where each agent derives value from at most two items, and we show that PMMS allocations exist in this setting. Our proofs are constructive, and we provide polynomial-time algorithms for all three existence results.
comment: 27 pages, 4 figures
♻ ☆ $S^2M^2$: Scalable Stereo Matching Model for Reliable Depth Estimation ICCV
The pursuit of a generalizable stereo matching model, capable of performing well across varying resolutions and disparity ranges without dataset-specific fine-tuning, has revealed a fundamental trade-off. Iterative local search methods achieve high scores on constrained benchmarks, but their core mechanism inherently limits the global consistency required for true generalization. However, global matching architectures, while theoretically more robust, have historically been rendered infeasible by prohibitive computational and memory costs. We resolve this dilemma with $S^2M^2$: a global matching architecture that achieves state-of-the-art accuracy and high efficiency without relying on cost volume filtering or deep refinement stacks. Our design integrates a multi-resolution transformer for robust long-range correspondence, trained with a novel loss function that concentrates probability on feasible matches. This approach enables a more robust joint estimation of disparity, occlusion, and confidence. $S^2M^2$ establishes a new state of the art on Middlebury v3 and ETH3D benchmarks, significantly outperforming prior methods in most metrics while reconstructing high-quality details with competitive efficiency.
comment: 8 pages, 5 figures, ICCV accepted paper
♻ ☆ Mitigating loss of variance in ensemble data assimilation: machine learning-based and distance-free localization
We propose two new methods based/inspired by machine learning for tabular data and distance-free localization to enhance the covariance estimations in an ensemble data assimilation. The main goal is to enhance the data assimilation results by mitigating loss of variance due to sampling errors. We also analyze the suitability of several machine learning models and the balance between accuracy and computational cost of the covariance estimations. We introduce two distance-free localization techniques leveraging machine learning methods specifically tailored for tabular data. The methods are integrated into the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) framework. The results show that the proposed localizations improve covariance accuracy and enhance data assimilation and uncertainty quantification results. We observe reduced variance loss for the input variables using the proposed methods. Furthermore, we compare several machine learning models, assessing their suitability for the problem in terms of computational cost, and quality of the covariance estimation and data match. The influence of ensemble size is also investigated, providing insights into balancing accuracy and computational efficiency. Our findings demonstrate that certain machine learning models are more suitable for this problem. This study introduces two novel methods that mitigate variance loss for model parameters in ensemble-based data assimilation, offering practical solutions that are easy to implement and do not require any additional numerical simulation or hyperparameter tuning.
♻ ☆ Towards the Law of Capacity Gap in Distilling Language Models ACL 2025
Language model (LM) distillation aims at distilling the knowledge in a large teacher LM to a small student one. As a critical issue facing LM distillation, a superior student often arises from a teacher of a relatively small scale instead of a larger one, especially in the presence of substantial capacity gap between the teacher and student. This issue, often referred to as the \textit{curse of capacity gap}, suggests that there is likely an optimal teacher yielding the best-performing student along the scaling course of the teacher. Consequently, distillation trials on teachers of a wide range of scales are called for to determine the optimal teacher, which becomes computationally intensive in the context of large LMs (LLMs). This paper addresses this critical bottleneck by providing the \textit{law of capacity gap} inducted from a preliminary study on distilling a broad range of small-scale (<3B) LMs, where the optimal teacher consistently scales linearly with the student scale across different model and data scales. By extending the law to LLM distillation on a larger scale (7B), we succeed in obtaining versatile LLMs that outperform a wide array of competitors.
comment: 32 pages, 10 figures, 15 tables, accepted to ACL 2025. Code and checkpoints are available at https://github.com/GeneZC/MiniMA
♻ ☆ GATEAU: Selecting Influential Samples for Long Context Alignment
Aligning large language models to handle instructions with extremely long contexts has yet to be fully investigated. Previous studies have attempted to scale up the available data volume by synthesizing long instruction-following samples, as constructing such a dataset tends to be challenging for annotators. However, a lack of a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the model's performance. Thus, we propose GATEAU, a novel framework to address the unique challenge of long context alignment by identifying the influential samples enriched with long-range dependency relations. Specifically, GATEAU measures the long-range dependencies from two essential aspects: the difficulty of generating target responses due to the long-range dependencies, and the difficulty of understanding long inputs due to such dependencies. Comprehensive experiments indicate that GATEAU effectively identifies influential samples, and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
♻ ☆ Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning
Synthetic verification techniques such as generating test cases and reward modelling are common ways to enhance the coding capabilities of large language models (LLM) beyond predefined tests. Additionally, code verification has recently found great success as a critical component in improving reasoning capability of LLMs via reinforcement learning. In this paper, we propose an approach which can transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. We also propose multiple metrics to measure different aspects of the synthetic verifiers with the proposed benchmarks. By employing the proposed approach, we release four new benchmarks (HE-R, HE-R+, MBPP-R, and MBPP-R+), and analyzed synthetic verification methods with standard, reasoning-based, and reward-based LLMs. Our experiments show that reasoning can significantly improve test case generation and that scaling the number of test cases enhances the verification accuracy.
comment: COLM 2025
♻ ☆ Towards interactive evaluations for interaction harms in human-AI systems
Current AI evaluation methods, which rely on static, model-only tests, fail to account for harms that emerge through sustained human-AI interaction. As AI systems proliferate and are increasingly integrated into real-world applications, this disconnect between evaluation approaches and actual usage becomes more significant. In this paper, we propose a shift towards evaluation based on \textit{interactional ethics}, which focuses on \textit{interaction harms} - issues like inappropriate parasocial relationships, social manipulation, and cognitive overreliance that develop over time through repeated interaction, rather than through isolated outputs. First, we discuss the limitations of current evaluation methods, which (1) are static, (2) assume a universal user experience, and (3) have limited construct validity. Drawing on research from human-computer interaction, natural language processing, and the social sciences, we present practical principles for designing interactive evaluations. These include ecologically valid interaction scenarios, human impact metrics, and diverse human participation approaches. Finally, we explore implementation challenges and open research questions for researchers, practitioners, and regulators aiming to integrate interactive evaluations into AI governance frameworks. This work lays the groundwork for developing more effective evaluation methods that better capture the complex dynamics between humans and AI systems.
♻ ☆ Unsupervised Learning in Echo State Networks for Input Reconstruction
Echo state networks (ESNs) are a class of recurrent neural networks in which only the readout layer is trainable, while the recurrent and input layers are fixed. This architectural constraint enables computationally efficient processing of time-series data. Traditionally, the readout layer in ESNs is trained using supervised learning with target outputs. In this study, we focus on input reconstruction (IR), where the readout layer is trained to reconstruct the input time series fed into the ESN. We show that IR can be achieved through unsupervised learning (UL), without access to supervised targets, provided that the ESN parameters are known a priori and satisfy invertibility conditions. This formulation allows applications relying on IR, such as dynamical system replication and noise filtering, to be reformulated within the UL framework via straightforward integration with existing algorithms. Our results suggest that prior knowledge of ESN parameters can reduce reliance on supervision, thereby establishing a new principle: not only by fixing part of the network parameters but also by exploiting their specific values. Furthermore, our UL-based algorithms for input reconstruction and related tasks are suitable for autonomous processing, offering insights into how analogous computational mechanisms might operate in the brain in principle. These findings contribute to a deeper understanding of the mathematical foundations of ESNs and their relevance to models in computational neuroscience.
comment: 35 pages, 11 figures. This paper has been accepted for publication in Neural Computation (MIT Press)
♻ ☆ Equivariant Flow Matching for Point Cloud Assembly
The goal of point cloud assembly is to reconstruct a complete 3D shape by aligning multiple point cloud pieces. This work presents a novel equivariant solver for assembly tasks based on flow matching models. We first theoretically show that the key to learning equivariant distributions via flow matching is to learn related vector fields. Based on this result, we propose an assembly model, called equivariant diffusion assembly (Eda), which learns related vector fields conditioned on the input pieces. We further construct an equivariant path for Eda, which guarantees high data efficiency of the training process. Our numerical results show that Eda is highly competitive on practical datasets, and it can even handle the challenging situation where the input pieces are non-overlapped.
♻ ☆ Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging
Mixture of expert (MoE) models are a promising approach to increasing model capacity without increasing inference cost, and are core components of many state-of-the-art language models. However, current MoE models typically use only few experts due to prohibitive training and inference cost. We propose Test-Time Model Merging (TTMM) which scales the MoE paradigm to an order of magnitude more experts and uses model merging to avoid almost any test-time overhead. We show that TTMM is an approximation of test-time training (TTT), which fine-tunes an expert model for each prediction task, i.e., prompt. TTT has recently been shown to significantly improve language models, but is computationally expensive. We find that performance of TTMM improves with more experts and approaches the performance of TTT. Moreover, we find that with a 1B parameter base model, TTMM is more than 100x faster than TTT at test-time by amortizing the cost of TTT at train-time. Thus, TTMM offers a promising cost-effective approach to scale test-time training.
♻ ☆ Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis
As ever-larger clinical datasets become available, they have the potential to unlock unprecedented opportunities for medical research. Foremost among them is Medical Information Mart for Intensive Care (MIMIC-IV), the world's largest open-source EHR database. However, the inherent complexity of these datasets, particularly the need for sophisticated querying skills and the need to understand the underlying clinical settings, often presents a significant barrier to their effective use. M3 lowers the technical barrier to understanding and querying MIMIC-IV data. With a single command it retrieves MIMIC-IV from PhysioNet, launches a local SQLite instance (or hooks into the hosted BigQuery), and-via the Model Context Protocol (MCP)-lets researchers converse with the database in plain English. Ask a clinical question in natural language; M3 uses a language model to translate it into SQL, executes the query against the MIMIC-IV dataset, and returns structured results alongside the underlying query for verifiability and reproducibility. Demonstrations show that minutes of dialogue with M3 yield the kind of nuanced cohort analyses that once demanded hours of handcrafted SQL and relied on understanding the complexities of clinical workflows. By simplifying access, M3 invites the broader research community to mine clinical critical-care data and accelerates the translation of raw records into actionable insight.
comment: 10 pages, 4 figures
♻ ☆ Don't Lag, RAG: Training-Free Adversarial Detection Using RAG ICML 2025
Adversarial patch attacks pose a major threat to vision systems by embedding localized perturbations that mislead deep models. Traditional defense methods often require retraining or fine-tuning, making them impractical for real-world deployment. We propose a training-free Visual Retrieval-Augmented Generation (VRAG) framework that integrates Vision-Language Models (VLMs) for adversarial patch detection. By retrieving visually similar patches and images that resemble stored attacks in a continuously expanding database, VRAG performs generative reasoning to identify diverse attack types, all without additional training or fine-tuning. We extensively evaluate open-source large-scale VLMs, including Qwen-VL-Plus, Qwen2.5-VL-72B, and UI-TARS-72B-DPO, alongside Gemini-2.0, a closed-source model. Notably, the open-source UI-TARS-72B-DPO model achieves up to 95 percent classification accuracy, setting a new state-of-the-art for open-source adversarial patch detection. Gemini-2.0 attains the highest overall accuracy, 98 percent, but remains closed-source. Experimental results demonstrate VRAG's effectiveness in identifying a variety of adversarial patches with minimal human annotation, paving the way for robust, practical defenses against evolving adversarial patch attacks.
comment: Accepted at VecDB @ ICML 2025
♻ ☆ StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification
Existing large vision-language models (LVLMs) are largely limited to processing short, seconds-long videos and struggle with generating coherent descriptions for extended video spanning minutes or more. Long video description introduces new challenges, such as consistent character identification and plot-level descriptions incorporating both visual and audio information. To address these, we figure out audio-visual character identification, matching character names to each dialogue, as a key factor. We propose StoryTeller, a system for generating dense descriptions of long videos, incorporating both low-level visual concepts and high-level plot information. StoryTeller uses a multimodal large language model that integrates visual, audio, and text modalities to perform audio-visual character identification on minute-long video clips. The results are then fed into a LVLM to enhance consistency of video description. We validate our approach on movie description tasks and introduce MovieStory101, a dataset with dense descriptions for three-minute movie clips. To evaluate long video descriptions, we create StoryQA, a large set of multiple-choice questions for MovieStory101 test set. We assess descriptions by inputting them into GPT-4 to answer these questions, using accuracy as an automatic evaluation metric. Experiments show that StoryTeller outperforms all open and closed-source baselines on StoryQA, achieving 9.5% higher accuracy than the strongest baseline, Gemini-1.5-pro, and demonstrating a +15.56% advantage in human side-by-side evaluations. Additionally, incorporating audio-visual character identification from StoryTeller improves the performance of all video description models, with Gemini-1.5-pro and GPT-4o showing relative improvement of 5.5% and 13.0%, respectively, in accuracy on StoryQA.
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
♻ ☆ AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Despite major advances in machine learning, current artificial intelligence systems continue to fall short of human-like general intelligence. While large language and reasoning models can generate fluent and coherent outputs, they lack the deep understanding and adaptive reasoning that characterize truly general intelligence. Existing evaluation frameworks, which are centered on broad language or perception tasks, fail to capture generality at its core and offer no guidance. The artificial general intelligence testbed (AGITB) is a novel and freely available benchmarking suite comprising twelve fully automatable tests designed to evaluate low-level cognitive precursors through binary signal prediction. AGITB requires models to forecast temporal sequences without pretraining, symbolic manipulation, or semantic grounding. The framework isolates core computational invariants - such as determinism, sensitivity, and generalization - that align with principles of biological information processing. Engineered to resist brute-force and memorization-based approaches, AGITB presumes no prior knowledge and demands learning from first principles. While humans pass all tests, no current AI system has met the full AGITB criteria, underscoring its potential as a rigorous, interpretable, and actionable benchmark for guiding and evaluating progress toward artificial general intelligence. A reference implementation of AGITB is available on GitHub.
comment: 15 pages
♻ ☆ Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions
The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.
comment: One of the first survey on Visual Language Models
♻ ☆ Rationale-guided Prompting for Knowledge-based Visual Question Answering
Recently, Large Language Models (LLMs) have been used for knowledge-based Visual Question Answering (VQA). Despite the encouraging results of previous studies, prior methods prompt LLMs to predict answers directly, neglecting intermediate thought processes. We argue that prior methods do not sufficiently activate the capacities of LLMs. We propose a framework called PLRH that Prompts LLMs with Rationale Heuristics for knowledge-based VQA. The PLRH prompts LLMs with Chain of Thought (CoT) to generate rationale heuristics, i.e., intermediate thought processes, and then leverages the rationale heuristics to inspire LLMs to predict answers. Experiments show that our approach outperforms the existing baselines by more than 2.2 and 2.1 on OK-VQA and A-OKVQA, respectively.
♻ ☆ Policy-Driven AI in Dataspaces: Taxonomy, Explainability, and Pathways for Compliant Innovation
As AI-driven dataspaces become integral to data sharing and collaborative analytics, ensuring privacy, performance, and policy compliance presents significant challenges. This paper provides a comprehensive review of privacy-preserving and policy-aware AI techniques, including Federated Learning, Differential Privacy, Trusted Execution Environments, Homomorphic Encryption, and Secure Multi-Party Computation, alongside strategies for aligning AI with regulatory frameworks such as GDPR and the EU AI Act. We propose a novel taxonomy to classify these techniques based on privacy levels, performance impacts, and compliance complexity, offering a clear framework for practitioners and researchers to navigate trade-offs. Key performance metrics -- latency, throughput, cost overhead, model utility, fairness, and explainability -- are analyzed to highlight the multi-dimensional optimization required in dataspaces. The paper identifies critical research gaps, including the lack of standardized privacy-performance KPIs, challenges in explainable AI for federated ecosystems, and semantic policy enforcement amidst regulatory fragmentation. Future directions are outlined, proposing a conceptual framework for policy-driven alignment, automated compliance validation, standardized benchmarking, and integration with European initiatives like GAIA-X, IDS, and Eclipse EDC. By synthesizing technical, ethical, and regulatory perspectives, this work lays the groundwork for developing trustworthy, efficient, and compliant AI systems in dataspaces, fostering innovation in secure and responsible data-driven ecosystems.
♻ ☆ Enhancing Multimodal In-Context Learning for Image Classification through Coreset Optimization
In-context learning (ICL) enables Large Vision-Language Models (LVLMs) to adapt to new tasks without parameter updates, using a few demonstrations from a large support set. However, selecting informative demonstrations leads to high computational and memory costs. While some methods explore selecting a small and representative coreset in the text classification, evaluating all support set samples remains costly, and discarded samples lead to unnecessary information loss. These methods may also be less effective for image classification due to differences in feature spaces. Given these limitations, we propose Key-based Coreset Optimization (KeCO), a novel framework that leverages untapped data to construct a compact and informative coreset. We introduce visual features as keys within the coreset, which serve as the anchor for identifying samples to be updated through different selection strategies. By leveraging untapped samples from the support set, we update the keys of selected coreset samples, enabling the randomly initialized coreset to evolve into a more informative coreset under low computational cost. Through extensive experiments on coarse-grained and fine-grained image classification benchmarks, we demonstrate that KeCO effectively enhances ICL performance for image classification task, achieving an average improvement of more than 20\%. Notably, we evaluate KeCO under a simulated online scenario, and the strong performance in this scenario highlights the practical value of our framework for resource-constrained real-world scenarios.
comment: 11 pages, 5 figures
♻ ☆ The wall confronting large language models
We show that the scaling laws which determine the performance of large language models (LLMs) severely limit their ability to improve the uncertainty of their predictions. As a result, raising their reliability to meet the standards of scientific inquiry is intractable by any reasonable measure. We argue that the very mechanism which fuels much of the learning power of LLMs, namely the ability to generate non-Gaussian output distributions from Gaussian input ones, might well be at the roots of their propensity to produce error pileup, ensuing information catastrophes and degenerative AI behaviour. This tension between learning and accuracy is a likely candidate mechanism underlying the observed low values of the scaling components. It is substantially compounded by the deluge of spurious correlations pointed out by Calude and Longo which rapidly increase in any data set merely as a function of its size, regardless of its nature. The fact that a degenerative AI pathway is a very probable feature of the LLM landscape does not mean that it must inevitably arise in all future AI research. Its avoidance, which we also discuss in this paper, necessitates putting a much higher premium on insight and understanding of the structural characteristics of the problems being investigated.
♻ ☆ Strategic Integration of Artificial Intelligence in the C-Suite: The Role of the Chief AI Officer
The integration of Artificial Intelligence (AI) into corporate strategy has become critical for organizations seeking to maintain a competitive advantage in the digital age. As AI transforms business models, operations, and decision-making, the need for dedicated executive leadership to guide, govern, and orchestrate this transformation becomes increasingly evident. This paper examines emerging future scenarios across three domains: the AI Economy, the AI Organization, and Competition in the Age of AI. These domains reveal environmental, structural, and strategic tensions that existing C-suite roles struggle to resolve. In response, the paper develops a theory-informed framework for the Chief AI Officer (CAIO), outlining the distinct functions and capabilities required to guide and govern AI at scale. Drawing on illustrative cases and emerging practice, this conceptualization clarifies the CAIOs unique role within the executive landscape and presents a forward-looking research agenda. This paper advances the discourse on AI leadership by offering a theory-driven rationale for the strategic integration of AI at the executive level and by positioning the Chief AI Officer as a distinct and necessary role within modern organizations.
♻ ☆ Anti-Inpainting: A Proactive Defense Approach against Malicious Diffusion-based Inpainters under Unknown Conditions
With the increasing prevalence of diffusion-based malicious image manipulation, existing proactive defense methods struggle to safeguard images against tampering under unknown conditions. To address this, we propose Anti-Inpainting, a proactive defense approach that achieves protection comprising three novel modules. First, we introduce a multi-level deep feature extractor to obtain intricate features from the diffusion denoising process, enhancing protective effectiveness. Second, we design a multi-scale, semantic-preserving data augmentation technique to enhance the transferability of adversarial perturbations across unknown conditions. Finally, we propose a selection-based distribution deviation optimization strategy to bolster protection against manipulations guided by diverse random seeds. Extensive experiments on InpaintGuardBench and CelebA-HQ demonstrate that Anti-Inpainting effectively defends against diffusion-based inpainters under unknown conditions. Additionally, our approach demonstrates robustness against various image purification methods and transferability across different diffusion model versions.
♻ ☆ CleanMel: Mel-Spectrogram Enhancement for Improving Both Speech Quality and ASR
In this work, we propose CleanMel, a single-channel Mel-spectrogram denoising and dereverberation network for improving both speech quality and automatic speech recognition (ASR) performance. The proposed network takes as input the noisy and reverberant microphone recording and predicts the corresponding clean Mel-spectrogram. The enhanced Mel-spectrogram can be either transformed to the speech waveform with a neural vocoder or directly used for ASR. The proposed network is composed of interleaved cross-band and narrow-band processing in the Mel-frequency domain, for learning the full-band spectral pattern and the narrow-band properties of signals, respectively. Compared to linear-frequency domain or time-domain speech enhancement, the key advantage of Mel-spectrogram enhancement is that Mel-frequency presents speech in a more compact way and thus is easier to learn, which will benefit both speech quality and ASR. Experimental results on five English and one Chinese datasets demonstrate a significant improvement in both speech quality and ASR performance achieved by the proposed model.Code and audio examples of our model are available online.
comment: Submission to IEEE/ACM Trans. on TASLP
♻ ☆ Bridging Privacy and Robustness for Trustworthy Machine Learning
The widespread adoption of machine learning necessitates robust privacy protection alongside algorithmic resilience. While Local Differential Privacy (LDP) provides foundational guarantees, sophisticated adversaries with prior knowledge demand more nuanced Bayesian privacy notions, such as Maximum Bayesian Privacy (MBP) and Average Bayesian Privacy (ABP), first introduced by \cite{zhang2022no}. Concurrently, machine learning systems require inherent robustness against data perturbations and adversarial manipulations. This paper systematically investigates the intricate theoretical relationships among LDP, MBP, and ABP. Crucially, we bridge these privacy concepts with algorithmic robustness, particularly within the Probably Approximately Correct (PAC) learning framework. Our work demonstrates that privacy-preserving mechanisms inherently confer PAC robustness. We present key theoretical results, including the formalization of the established LDP-MBP relationship, novel bounds between MBP and ABP, and a proof demonstrating PAC robustness from MBP. Furthermore, we establish a novel theoretical relationship quantifying how privacy leakage directly influences an algorithm's input robustness. These results provide a unified theoretical framework for understanding and optimizing the privacy-robustness trade-off, paving the way for the development of more secure, trustworthy, and resilient machine learning systems.
♻ ☆ Federated Distributionally Robust Optimization with Non-Convex Objectives: Algorithm and Analysis
Distributionally Robust Optimization (DRO), which aims to find an optimal decision that minimizes the worst case cost over the ambiguity set of probability distribution, has been widely applied in diverse applications, e.g., network behavior analysis, risk management, etc. However, existing DRO techniques face three key challenges: 1) how to deal with the asynchronous updating in a distributed environment; 2) how to leverage the prior distribution effectively; 3) how to properly adjust the degree of robustness according to different scenarios. To this end, we propose an asynchronous distributed algorithm, named Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active SEt method (EASE) to tackle the federated distributionally robust optimization (FDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm uncertainty set, is developed to effectively leverage the prior distribution and flexibly control the degree of robustness. Finally, our theoretical analysis elucidates that the proposed algorithm is guaranteed to converge and the iteration complexity is also analyzed. Extensive empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, and remain robust against data heterogeneity as well as malicious attacks, but also tradeoff robustness with performance.
comment: arXiv admin note: substantial text overlap with arXiv:2210.07588
♻ ☆ OpenEarthSensing: Large-Scale Fine-Grained Benchmark for Open-World Remote Sensing
The advancement of remote sensing, including satellite systems, facilitates the continuous acquisition of remote sensing imagery globally, introducing novel challenges for achieving open-world tasks. Deployed models need to continuously adjust to a constant influx of new data, which frequently exhibits diverse shifts from the data encountered during the training phase. To effectively handle the new data, models are required to detect semantic shifts, adapt to covariate shifts, and continuously update their parameters without forgetting learned knowledge, as has been considered in works on a variety of open-world tasks. However, existing studies are typically conducted within a single dataset to simulate realistic conditions, with a lack of large-scale benchmarks capable of evaluating multiple open-world tasks. In this paper, we introduce \textbf{OpenEarthSensing (OES)}, a large-scale fine-grained benchmark for open-world remote sensing. OES includes 189 scene and object categories, covering the vast majority of potential semantic shifts that may occur in the real world. Additionally, to provide a more comprehensive testbed for evaluating the generalization performance, OES encompasses five data domains with significant covariate shifts, including two RGB satellite domains, one RGB aerial domain, one multispectral RGB domain, and one infrared domain. We evaluate the baselines and existing methods for diverse tasks on OES, demonstrating that it serves as a meaningful and challenging benchmark for open-world remote sensing. The proposed dataset OES is available at https://haiv-lab.github.io/OES.
comment: Full version with dataset details in Appendix
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks still suffer two practical drawbacks: they must be re-tuned whenever the KG or reasoning task changes, and they depend on a single, high-capacity LLM for reliable (i.e., trustworthy) reasoning. To address this, we introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across five diverse benchmarks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability with reduced inference cost but increased abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning, reducing reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
♻ ☆ RaGS: Unleashing 3D Gaussian Splatting from 4D Radar and Monocular Cues for 3D Object Detection
4D millimeter-wave radar has emerged as a promising sensor for autonomous driving, but effective 3D object detection from both 4D radar and monocular images remains a challenge. Existing fusion approaches typically rely on either instance-based proposals or dense BEV grids, which either lack holistic scene understanding or are limited by rigid grid structures. To address these, we propose RaGS, the first framework to leverage 3D Gaussian Splatting (GS) as representation for fusing 4D radar and monocular cues in 3D object detection. 3D GS naturally suits 3D object detection by modeling the scene as a field of Gaussians, dynamically allocating resources on foreground objects and providing a flexible, resource-efficient solution. RaGS uses a cascaded pipeline to construct and refine the Gaussian field. It starts with the Frustum-based Localization Initiation (FLI), which unprojects foreground pixels to initialize coarse 3D Gaussians positions. Then, the Iterative Multimodal Aggregation (IMA) fuses semantics and geometry, refining the limited Gaussians to the regions of interest. Finally, the Multi-level Gaussian Fusion (MGF) renders the Gaussians into multi-level BEV features for 3D object detection. By dynamically focusing on sparse objects within scenes, RaGS enable object concentrating while offering comprehensive scene perception. Extensive experiments on View-of-Delft, TJ4DRadSet, and OmniHD-Scenes benchmarks demonstrate its state-of-the-art performance. Code will be released.
comment: 9 pages, 6 figures, conference
♻ ☆ A Survey on Large Language Model Acceleration based on KV Cache Management
Large Language Models (LLMs) have revolutionized a wide range of domains such as natural language processing, computer vision, and multi-modal tasks due to their ability to comprehend context and perform logical reasoning. However, the computational and memory demands of LLMs, particularly during inference, pose significant challenges when scaling them to real-world, long-context, and real-time applications. Key-Value (KV) cache management has emerged as a critical optimization technique for accelerating LLM inference by reducing redundant computations and improving memory utilization. This survey provides a comprehensive overview of KV cache management strategies for LLM acceleration, categorizing them into token-level, model-level, and system-level optimizations. Token-level strategies include KV cache selection, budget allocation, merging, quantization, and low-rank decomposition, while model-level optimizations focus on architectural innovations and attention mechanisms to enhance KV reuse. System-level approaches address memory management, scheduling, and hardware-aware designs to improve efficiency across diverse computing environments. Additionally, the survey provides an overview of both text and multimodal datasets and benchmarks used to evaluate these strategies. By presenting detailed taxonomies and comparative analyses, this work aims to offer useful insights for researchers and practitioners to support the development of efficient and scalable KV cache management techniques, contributing to the practical deployment of LLMs in real-world applications. The curated paper list for KV cache management is in: \href{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}{https://github.com/TreeAI-Lab/Awesome-KV-Cache-Management}.
comment: Accepted to TMLR 2025. The revised version incorporates more papers and has been further polished
♻ ☆ Outcome-based Reinforcement Learning to Predict the Future
Reinforcement Learning with Verifiable Rewards (RLVR) has been an effective approach for improving Large Language Models' reasoning in domains such as coding and mathematics. Here, we apply RLVR methods towards forecasting future real-world events - a challenging task for RL due to the very noisy (and delayed) outcomes involved. Using a novel dataset of recent questions from a prediction market, and accompanying relevant news headlines, we show that a compact (14B) reasoning model can be trained to match or surpass the predictive accuracy of frontier models like o1, while greatly improving probabilistic calibration. The model's performance is also practically meaningful: in a Polymarket trading simulation, we estimate that its bets would have yielded a return on investment of over 10% across all questions in the test set. We detail and compare approaches used in training our model, including augmenting our training-data with synthetic prediction questions, guardrails for learning stability, and median prediction sampling at inference-time.
♻ ☆ ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present Chart$\text{M}^3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. Chart$\text{M}^3$ contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, Chart$\text{M}^3$ provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct Chart$\text{M}^3$-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.
♻ ☆ Interpretable Open-Vocabulary Referring Object Detection with Reverse Contrast Attention ICCV
We propose Reverse Contrast Attention (RCA), a plug-in method that enhances object localization in vision-language transformers without retraining. RCA reweights final-layer attention by suppressing extremes and amplifying mid-level activations to let semantically relevant but subdued tokens guide predictions. We evaluate it on Open Vocabulary Referring Object Detection (OV-RefOD), introducing FitAP, a confidence-free average precision metric based on IoU and box area. RCA improves FitAP in 11 out of 15 open-source VLMs, with gains up to $+26.6\%$. Effectiveness aligns with attention sharpness and fusion timing; while late-fusion models benefit consistently, models like $\texttt{DeepSeek-VL2}$ also improve, pointing to capacity and disentanglement as key factors. RCA offers both interpretability and performance gains for multimodal transformers. Codes and dataset are available from https://github.com/earl-juanico/rca
comment: To be published in the ICCVW 2025 Proceedings
♻ ☆ Can GPT-4o mini and Gemini 2.0 Flash Predict Fine-Grained Fashion Product Attributes? A Zero-Shot Analysis
The fashion retail business is centered around the capacity to comprehend products. Product attribution helps in comprehending products depending on the business process. Quality attribution improves the customer experience as they navigate through millions of products offered by a retail website. It leads to well-organized product catalogs. In the end, product attribution directly impacts the 'discovery experience' of the customer. Although large language models (LLMs) have shown remarkable capabilities in understanding multimodal data, their performance on fine-grained fashion attribute recognition remains under-explored. This paper presents a zero-shot evaluation of state-of-the-art LLMs that balance performance with speed and cost efficiency, mainly GPT-4o-mini and Gemini 2.0 Flash. We have used the dataset DeepFashion-MultiModal (https://github.com/yumingj/DeepFashion-MultiModal) to evaluate these models in the attribution tasks of fashion products. Our study evaluates these models across 18 categories of fashion attributes, offering insight into where these models excel. We only use images as the sole input for product information to create a constrained environment. Our analysis shows that Gemini 2.0 Flash demonstrates the strongest overall performance with a macro F1 score of 56.79% across all attributes, while GPT-4o-mini scored a macro F1 score of 43.28%. Through detailed error analysis, our findings provide practical insights for deploying these LLMs in production e-commerce product attribution-related tasks and highlight the need for domain-specific fine-tuning approaches. This work also lays the groundwork for future research in fashion AI and multimodal attribute extraction.
comment: Version 2: Added a missing citation
♻ ☆ Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review
This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection, a critical issue in the financial sector. Using the Kitchenham systematic literature review approach, 57 studies published between 2019 and 2024 were analyzed. The review highlights the effectiveness of various deep learning models such as Convolutional Neural Networks, Long Short-Term Memory, and transformers across domains such as credit card transactions, insurance claims, and financial statement audits. Performance metrics such as precision, recall, F1-score, and AUC-ROC were evaluated. Key themes explored include the impact of data privacy frameworks and advancements in feature engineering and data preprocessing. The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations, alongside opportunities for automation and privacy-preserving techniques such as blockchain integration and Principal Component Analysis. By examining trends over the past five years, this review identifies critical gaps and promising directions for advancing DL applications in financial fraud detection, offering actionable insights for researchers and practitioners.
♻ ☆ Learning Neural Strategy-Proof Matching Mechanism from Examples
Designing two-sided matching mechanisms is challenging when practical demands for matching outcomes are difficult to formalize and the designed mechanism must satisfy theoretical conditions. To address this, prior work has proposed a framework that learns a matching mechanism from examples, using a parameterized family that satisfies properties such as stability. However, despite its usefulness, this framework does not guarantee strategy-proofness (SP), and cannot handle varying numbers of agents or incorporate publicly available contextual information about agents, both of which are crucial in real-world applications. In this paper, we propose a new parametrized family of matching mechanisms that always satisfy strategy-proofness, are applicable for an arbitrary number of agents, and deal with public contextual information of agents, based on the serial dictatorship (SD). This family is represented by NeuralSD, a novel neural network architecture based on SD, where agent rankings in SD are treated as learnable parameters computed from agents' contexts using an attention-based sub-network. To enable learning, we introduce tensor serial dictatorship (TSD), a differentiable relaxation of SD using tensor operations. This allows NeuralSD to be trained end-to-end from example matchings while satisfying SP. We conducted experiments to learn a matching mechanism from matching examples while satisfying SP. We demonstrated that our method outperformed baselines in predicting matchings and on several metrics for goodness of matching outcomes.
♻ ☆ NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic IoT
Inertial tracking is vital for robotic IoT and has gained popularity thanks to the ubiquity of low-cost inertial measurement units and deep learning-powered tracking algorithms. Existing works, however, have not fully utilized IMU measurements, particularly magnetometers, nor have they maximized the potential of deep learning to achieve the desired accuracy. To address these limitations, we introduce NeurIT, which elevates tracking accuracy to a new level. NeurIT employs a Time-Frequency Block-recurrent Transformer (TF-BRT) at its core, combining both RNN and Transformer to learn representative features in both time and frequency domains. To fully utilize IMU information, we strategically employ body-frame differentiation of magnetometers, considerably reducing the tracking error. We implement NeurIT on a customized robotic platform and conduct evaluation in various indoor environments. Experimental results demonstrate that NeurIT achieves a mere 1-meter tracking error over a 300-meter distance. Notably, it significantly outperforms state-of-the-art baselines by 48.21% on unseen data. Moreover, NeurIT demonstrates robustness in large urban complexes and performs comparably to the visual-inertial approach (Tango Phone) in vision-favored conditions while surpassing it in feature-sparse settings. We believe NeurIT takes an important step forward toward practical neural inertial tracking for ubiquitous and scalable tracking of robotic things. NeurIT is open-sourced here: https://github.com/aiot-lab/NeurIT.
♻ ☆ FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
Transformer-based multi-object tracking (MOT) methods have captured the attention of many researchers in recent years. However, these models often suffer from slow inference speeds due to their structure or other issues. To address this problem, we revisited the Joint Detection and Tracking (JDT) method by looking back at past approaches. By integrating the original JDT approach with some advanced theories, this paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr. Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures, ensuring model simplicity. Experimental results indicate that our method has the potential to achieve real-time tracking and exhibits competitive tracking accuracy across multiple datasets.
♻ ☆ A ChatGPT-based approach for questions generation in higher education
Large language models have been widely applied in many aspects of real life, bringing significant efficiency to businesses and offering distinctive user experiences. In this paper, we focus on exploring the application of ChatGPT, a chatbot based on a large language model, to support higher educator in generating quiz questions and assessing learners. Specifically, we explore interactive prompting patterns to design an optimal AI-powered question bank creation process. The generated questions are evaluated through a "Blind test" survey sent to various stakeholders including lecturers and learners. Initial results at the Banking Academy of Vietnam are relatively promising, suggesting a potential direction to streamline the time and effort involved in assessing learners at higher education institutes.
comment: Proceedings of the 1st ACM Workshop on AI-Powered Q&A Systems for Multimedia. 2024
♻ ☆ HypKG: Hypergraph-based Knowledge Graph Contextualization for Precision Healthcare ISWC 2025
Knowledge graphs (KGs) are important products of the semantic web, which are widely used in various application domains. Healthcare is one of such domains where KGs are intensively used, due to the high requirement for knowledge accuracy and interconnected nature of healthcare data. However, KGs storing general factual information often lack the ability to account for important contexts of the knowledge such as the status of specific patients, which are crucial in precision healthcare. Meanwhile, electronic health records (EHRs) provide rich personal data, including various diagnoses and medications, which provide natural contexts for general KGs. In this paper, we propose HypKG, a framework that integrates patient information from EHRs into KGs to generate contextualized knowledge representations for accurate healthcare predictions. Using advanced entity-linking techniques, we connect relevant knowledge from general KGs with patient information from EHRs, and then utilize a hypergraph model to "contextualize" the knowledge with the patient information. Finally, we employ hypergraph transformers guided by downstream prediction tasks to jointly learn proper contextualized representations for both KGs and patients, fully leveraging existing knowledge in KGs and patient contexts in EHRs. In experiments using a large biomedical KG and two real-world EHR datasets, HypKG demonstrates significant improvements in healthcare prediction tasks across multiple evaluation metrics. Additionally, by integrating external contexts, HypKG can learn to adjust the representations of entities and relations in KG, potentially improving the quality and real-world utility of knowledge.
comment: Extended version of paper accepted at the 24th International Semantic Web Conference (ISWC 2025), Main Conference, Research Track, Oral
♻ ☆ Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
Natural Language Processing (NLP) is revolutionising the way both professionals and laypersons operate in the legal field. The considerable potential for NLP in the legal sector, especially in developing computational assistance tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 131 after manual filtering. It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document lengths, complex language, and limited open legal datasets. We provide an overview of NLP tasks specific to legal text, such as Document Summarisation, Named Entity Recognition, Question Answering, Argument Mining, Text Classification, and Judgement Prediction. Furthermore, we analyse both developed legal-oriented language models, and approaches for adapting general-purpose language models to the legal domain. Additionally, we identify sixteen open research challenges, including the detection and mitigation of bias in artificial intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
comment: 35 pages
♻ ☆ The challenge of hidden gifts in multi-agent reinforcement learning
Sometimes we benefit from actions that others have taken even when we are unaware that they took those actions. For example, if your neighbor chooses not to take a parking spot in front of your house when you are not there, you can benefit, even without being aware that they took this action. These "hidden gifts" represent an interesting challenge for multi-agent reinforcement learning (MARL), since assigning credit when the beneficial actions of others are hidden is non-trivial. Here, we study the impact of hidden gifts with a very simple MARL task. In this task, agents in a grid-world environment have individual doors to unlock in order to obtain individual rewards. As well, if all the agents unlock their door the group receives a larger collective reward. However, there is only one key for all of the doors, such that the collective reward can only be obtained when the agents drop the key for others after they use it. Notably, there is nothing to indicate to an agent that the other agents have dropped the key, thus the act of dropping the key for others is a "hidden gift". We show that several different state-of-the-art RL algorithms, including MARL algorithms, fail to learn how to obtain the collective reward in this simple task. Interestingly, we find that independent model-free policy gradient agents can solve the task when we provide them with information about their own action history, but MARL agents still cannot solve the task with action history. Finally, we derive a correction term for these independent agents, inspired by learning aware approaches, which reduces the variance in learning and helps them to converge to collective success more reliably. These results show that credit assignment in multi-agent settings can be particularly challenging in the presence of "hidden gifts", and demonstrate that learning awareness in independent agents can benefit these settings.
♻ ☆ Can one size fit all?: Measuring Failure in Multi-Document Summarization Domain Transfer
Abstractive multi-document summarization (MDS) is the task of automatically summarizing information in multiple documents, from news articles to conversations with multiple speakers. The training approaches for current MDS models can be grouped into four approaches: end-to-end with special pre-training ("direct"), chunk-then-summarize, extract-then-summarize, and inference with GPT-style models. In this work, we evaluate MDS models across training approaches, domains, and dimensions (reference similarity, quality, and factuality), to analyze how and why models trained on one domain can fail to summarize documents from another (News, Science, and Conversation) in the zero-shot domain transfer setting. We define domain-transfer "failure" as a decrease in factuality, higher deviation from the target, and a general decrease in summary quality. In addition to exploring domain transfer for MDS models, we examine potential issues with applying popular summarization metrics out-of-the-box.
♻ ☆ Insights into resource utilization of code small language models serving with runtime engines and execution providers
The rapid growth of language models, particularly in code generation, requires substantial computational resources, raising concerns about energy consumption and environmental impact. Optimizing language models inference resource utilization is crucial, and Small Language Models (SLMs) offer a promising solution to reduce resource demands. Our goal is to analyze the impact of deep learning serving configurations, defined as combinations of runtime engines and execution providers, on resource utilization, in terms of energy consumption, execution time, and computing-resource utilization from the point of view of software engineers conducting inference in the context of code generation SLMs. We conducted a technology-oriented, multi-stage experimental pipeline using twelve code generation SLMs to investigate energy consumption, execution time, and computing-resource utilization across the configurations. Significant differences emerged across configurations. CUDA execution provider configurations outperformed CPU execution provider configurations in both energy consumption and execution time. Among the configurations, TORCH paired with CUDA demonstrated the greatest energy efficiency, achieving energy savings from 37.99% up to 89.16% compared to other serving configurations. Similarly, optimized runtime engines like ONNX with the CPU execution provider achieved from 8.98% up to 72.04% energy savings within CPU-based configurations. Also, TORCH paired with CUDA exhibited efficient computing-resource utilization. Serving configuration choice significantly impacts resource utilization. While further research is needed, we recommend the above configurations best suited to software engineers' requirements for enhancing serving resource utilization efficiency.
comment: Accepted in Journal of Systems and Software (JSS). For its published version refer to the Journal of JSS
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
♻ ☆ Lattice Protein Folding with Variational Annealing
Understanding the principles of protein folding is a cornerstone of computational biology, with implications for drug design, bioengineering, and the understanding of fundamental biological processes. Lattice protein folding models offer a simplified yet powerful framework for studying the complexities of protein folding, enabling the exploration of energetically optimal folds under constrained conditions. However, finding these optimal folds is a computationally challenging combinatorial optimization problem. In this work, we introduce a novel upper-bound training scheme that employs masking to identify the lowest-energy folds in two-dimensional Hydrophobic-Polar (HP) lattice protein folding. By leveraging Dilated Recurrent Neural Networks (RNNs) integrated with an annealing process driven by temperature-like fluctuations, our method accurately predicts optimal folds for benchmark systems of up to 60 beads. Our approach also effectively masks invalid folds from being sampled without compromising the autoregressive sampling properties of RNNs. This scheme is generalizable to three spatial dimensions and can be extended to lattice protein models with larger alphabets. Our findings emphasize the potential of advanced machine learning techniques in tackling complex protein folding problems and a broader class of constrained combinatorial optimization challenges.
♻ ☆ Prompt Engineering Techniques for Mitigating Cultural Bias Against Arabs and Muslims in Large Language Models: A Systematic Review
Large language models have demonstrated remarkable capabilities across various domains, yet concerns about cultural bias - particularly towards Arabs and Muslims - pose significant ethical challenges by perpetuating harmful stereotypes and marginalization. Despite growing recognition of bias in LLMs, prompt engineering strategies specifically addressing Arab and Muslim representation remain understudied. This mixed-methods systematic review examines such techniques, offering evidence-based guidance for researchers and practitioners. Following PRISMA guidelines and Kitchenham's systematic review methodology, we analyzed 8 empirical studies published between 2021-2024 investigating bias mitigation strategies. Our findings reveal five primary prompt engineering approaches: cultural prompting, affective priming, self-debiasing techniques, structured multi-step pipelines, and parameter-optimized continuous prompts. Although all approaches show potential for reducing bias, effectiveness varied substantially across studies and bias types. Evidence suggests that certain bias types may be more resistant to prompt-based mitigation than others. Structured multi-step pipelines demonstrated the highest overall effectiveness, achieving up to 87.7% reduction in bias, though they require greater technical expertise. Cultural prompting offers broader accessibility with substantial effectiveness. These results underscore the accessibility of prompt engineering for mitigating cultural bias without requiring access to model parameters. The limited number of studies identified highlights a significant research gap in this critical area. Future research should focus on developing culturally adaptive prompting techniques, creating Arab and Muslim-specific evaluation resources, and integrating prompt engineering with complementary debiasing methods to address deeper stereotypes while maintaining model utility.
comment: Research is incomplete
♻ ☆ Recursive Learning-Based Virtual Buffering for Analytical Global Placement
Due to the skewed scaling of interconnect versus cell delay in modern technology nodes, placement with buffer porosity (i.e., cell density) awareness is essential for timing closure in physical synthesis flows. However, existing approaches face two key challenges: (i) traditional van Ginneken-Lillis-style buffering approaches are computationally expensive during global placement; and (ii) machine learning-based approaches, such as BufFormer, lack a thorough consideration of Electrical Rule Check (ERC) violations and fail to "close the loop" back into the physical design flow. In this work, we propose MLBuf-RePlAce, the first open-source learning-driven virtual buffering-aware analytical global placement framework, built on top of the OpenROAD infrastructure. MLBuf-RePlAce adopts an efficient recursive learning-based generative buffering approach to predict buffer types and locations, addressing ERC violations during global placement. We compare MLBuf-RePlAce against the default virtual buffering-based timing-driven global placer in OpenROAD, using open-source testcases from the TILOS MacroPlacement and OpenROAD-flow-scripts repositories. Without degradation of post-route power, MLBuf-RePlAce achieves (maximum, average) improvements of (56%, 31%) in total negative slack (TNS) within the open-source OpenROAD flow. When evaluated by completion in a commercial flow, MLBuf-RePlAce achieves (maximum, average) improvements of (53%, 28%) in TNS with an average of 0.2% improvement in post-route power.
♻ ☆ Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
Materials used in real clothing exhibit remarkable complexity and spatial variation due to common processes such as stitching, hemming, dyeing, printing, padding, and bonding. Simulating these materials, for instance using finite element methods, is often computationally demanding and slow. Worse, such methods can suffer from numerical artifacts called ``membrane locking'' that makes cloth appear artificially stiff. Here we propose a general framework, called Mass-Spring Net, for learning a simple yet efficient surrogate model that captures the effects of these complex materials using only motion observations. The cloth is discretized into a mass-spring network with unknown material parameters that are learned directly from the motion data, using a novel force-and-impulse loss function. Our approach demonstrates the ability to accurately model spatially varying material properties from a variety of data sources, and immunity to membrane locking which plagues FEM-based simulations. Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios.
comment: Added middle name of Prof. Pai
Machine Learning 163
☆ Consistency of Feature Attribution in Deep Learning Architectures for Multi-Omics
Machine and deep learning have grown in popularity and use in biological research over the last decade but still present challenges in interpretability of the fitted model. The development and use of metrics to determine features driving predictions and increase model interpretability continues to be an open area of research. We investigate the use of Shapley Additive Explanations (SHAP) on a multi-view deep learning model applied to multi-omics data for the purposes of identifying biomolecules of interest. Rankings of features via these attribution methods are compared across various architectures to evaluate consistency of the method. We perform multiple computational experiments to assess the robustness of SHAP and investigate modeling approaches and diagnostics to increase and measure the reliability of the identification of important features. Accuracy of a random-forest model fit on subsets of features selected as being most influential as well as clustering quality using only these features are used as a measure of effectiveness of the attribution method. Our findings indicate that the rankings of features resulting from SHAP are sensitive to the choice of architecture as well as different random initializations of weights, suggesting caution when using attribution methods on multi-view deep learning models applied to multi-omics data. We present an alternative, simple method to assess the robustness of identification of important biomolecules.
☆ LCS: An AI-based Low-Complexity Scaler for Power-Efficient Super-Resolution of Game Content
The increasing complexity of content rendering in modern games has led to a problematic growth in the workload of the GPU. In this paper, we propose an AI-based low-complexity scaler (LCS) inspired by state-of-the-art efficient super-resolution (ESR) models which could offload the workload on the GPU to a low-power device such as a neural processing unit (NPU). The LCS is trained on GameIR image pairs natively rendered at low and high resolution. We utilize adversarial training to encourage reconstruction of perceptually important details, and apply reparameterization and quantization techniques to reduce model complexity and size. In our comparative analysis we evaluate the LCS alongside the publicly available AMD hardware-based Edge Adaptive Scaling Function (EASF) and AMD FidelityFX Super Resolution 1 (FSR1) on five different metrics, and find that the LCS achieves better perceptual quality, demonstrating the potential of ESR models for upscaling on resource-constrained devices.
comment: 8 pages, 3 figures
☆ Mesh based segmentation for automated margin line generation on incisors receiving crown treatment
Dental crowns are essential dental treatments for restoring damaged or missing teeth of patients. Recent design approaches of dental crowns are carried out using commercial dental design software. Once a scan of a preparation is uploaded to the software, a dental technician needs to manually define a precise margin line on the preparation surface, which constitutes a non-repeatable and inconsistent procedure. This work proposes a new framework to determine margin lines automatically and accurately using deep learning. A dataset of incisor teeth was provided by a collaborating dental laboratory to train a deep learning segmentation model. A mesh-based neural network was modified by changing its input channels and used to segment the prepared tooth into two regions such that the margin line is contained within the boundary faces separating the two regions. Next, k-fold cross-validation was used to train 5 models, and a voting classifier technique was used to combine their results to enhance the segmentation. After that, boundary smoothing and optimization using the graph cut method were applied to refine the segmentation results. Then, boundary faces separating the two regions were selected to represent the margin line faces. A spline was approximated to best fit the centers of the boundary faces to predict the margin line. Our results show that an ensemble model combined with maximum probability predicted the highest number of successful test cases (7 out of 13) based on a maximum distance threshold of 200 m (representing human error) between the predicted and ground truth point clouds. It was also demonstrated that the better the quality of the preparation, the smaller the divergence between the predicted and ground truth margin lines (Spearman's rank correlation coefficient of -0.683). We provide the train and test datasets for the community.
☆ Synchronization of mean-field models on the circle
This paper considers a mean-field model of $n$ interacting particles whose state space is the unit circle, a generalization of the classical Kuramoto model. Global synchronization is said to occur if after starting from almost any initial state, all particles coalesce to a common point on the circle. We propose a general synchronization criterion in terms of $L_1$-norm of the third derivative of the particle interaction function. As an application we resolve a conjecture for the so-called self-attention dynamics (stylized model of transformers), by showing synchronization for all $\beta \ge -0.16$, which significantly extends the previous bound of $0\le \beta \le 1$ from Criscitiello, Rebjock, McRae, and Boumal (2024). We also show that global synchronization does not occur when $\beta < -2/3$.
☆ Federated Learning on Riemannian Manifolds: A Gradient-Free Projection-Based Approach
Federated learning (FL) has emerged as a powerful paradigm for collaborative model training across distributed clients while preserving data privacy. However, existing FL algorithms predominantly focus on unconstrained optimization problems with exact gradient information, limiting its applicability in scenarios where only noisy function evaluations are accessible or where model parameters are constrained. To address these challenges, we propose a novel zeroth-order projection-based algorithm on Riemannian manifolds for FL. By leveraging the projection operator, we introduce a computationally efficient zeroth-order Riemannian gradient estimator. Unlike existing estimators, ours requires only a simple Euclidean random perturbation, eliminating the need to sample random vectors in the tangent space, thus reducing computational cost. Theoretically, we first prove the approximation properties of the estimator and then establish the sublinear convergence of the proposed algorithm, matching the rate of its first-order counterpart. Numerically, we first assess the efficiency of our estimator using kernel principal component analysis. Furthermore, we apply the proposed algorithm to two real-world scenarios: zeroth-order attacks on deep neural networks and low-rank neural network training to validate the theoretical findings.
☆ A Bit of Freedom Goes a Long Way: Classical and Quantum Algorithms for Reinforcement Learning under a Generative Model
We propose novel classical and quantum online algorithms for learning finite-horizon and infinite-horizon average-reward Markov Decision Processes (MDPs). Our algorithms are based on a hybrid exploration-generative reinforcement learning (RL) model wherein the agent can, from time to time, freely interact with the environment in a generative sampling fashion, i.e., by having access to a "simulator". By employing known classical and new quantum algorithms for approximating optimal policies under a generative model within our learning algorithms, we show that it is possible to avoid several paradigms from RL like "optimism in the face of uncertainty" and "posterior sampling" and instead compute and use optimal policies directly, which yields better regret bounds compared to previous works. For finite-horizon MDPs, our quantum algorithms obtain regret bounds which only depend logarithmically on the number of time steps $T$, thus breaking the $O(\sqrt{T})$ classical barrier. This matches the time dependence of the prior quantum works of Ganguly et al. (arXiv'23) and Zhong et al. (ICML'24), but with improved dependence on other parameters like state space size $S$ and action space size $A$. For infinite-horizon MDPs, our classical and quantum bounds still maintain the $O(\sqrt{T})$ dependence but with better $S$ and $A$ factors. Nonetheless, we propose a novel measure of regret for infinite-horizon MDPs with respect to which our quantum algorithms have $\operatorname{poly}\log{T}$ regret, exponentially better compared to classical algorithms. Finally, we generalise all of our results to compact state spaces.
comment: 57 pages
☆ Decentralized Differentially Private Power Method
We propose a novel Decentralized Differentially Private Power Method (D-DP-PM) for performing Principal Component Analysis (PCA) in networked multi-agent settings. Unlike conventional decentralized PCA approaches where each agent accesses the full n-dimensional sample space, we address the challenging scenario where each agent observes only a subset of dimensions through row-wise data partitioning. Our method ensures $(\epsilon,\delta)$-Differential Privacy (DP) while enabling collaborative estimation of global eigenvectors across the network without requiring a central aggregator. We achieve this by having agents share only local embeddings of the current eigenvector iterate, leveraging both the inherent privacy from random initialization and carefully calibrated Gaussian noise additions. We prove that our algorithm satisfies the prescribed $(\epsilon,\delta)$-DP guarantee and establish convergence rates that explicitly characterize the impact of the network topology. Our theoretical analysis, based on linear dynamics and high-dimensional probability theory, provides tight bounds on both privacy and utility. Experiments on real-world datasets demonstrate that D-DP-PM achieves superior privacy-utility tradeoffs compared to naive local DP approaches, with particularly strong performance in moderate privacy regimes ($\epsilon\in[2, 5]$). The method converges rapidly, allowing practitioners to trade iterations for enhanced privacy while maintaining competitive utility.
☆ RLVMR: Reinforcement Learning with Verifiable Meta-Reasoning Rewards for Robust Long-Horizon Agents
The development of autonomous agents for complex, long-horizon tasks is a central goal in AI. However, dominant training paradigms face a critical limitation: reinforcement learning (RL) methods that optimize solely for final task success often reinforce flawed or inefficient reasoning paths, a problem we term inefficient exploration. This leads to agents that are brittle and fail to generalize, as they learn to find solutions without learning how to reason coherently. To address this, we introduce RLVMR, a novel framework that integrates dense, process-level supervision into end-to-end RL by rewarding verifiable, meta-reasoning behaviors. RLVMR equips an agent to explicitly tag its cognitive steps, such as planning, exploration, and reflection, and provides programmatic, rule-based rewards for actions that contribute to effective problem-solving. These process-centric rewards are combined with the final outcome signal and optimized using a critic-free policy gradient method. On the challenging ALFWorld and ScienceWorld benchmarks, RLVMR achieves new state-of-the-art results, with our 7B model reaching an 83.6% success rate on the most difficult unseen task split. Our analysis confirms these gains stem from improved reasoning quality, including significant reductions in redundant actions and enhanced error recovery, leading to more robust, efficient, and interpretable agents.
☆ Subgrid BoostCNN: Efficient Boosting of Convolutional Networks via Gradient-Guided Feature Selection
Convolutional Neural Networks (CNNs) have achieved remarkable success across a wide range of machine learning tasks by leveraging hierarchical feature learning through deep architectures. However, the large number of layers and millions of parameters often make CNNs computationally expensive to train, requiring extensive time and manual tuning to discover optimal architectures. In this paper, we introduce a novel framework for boosting CNN performance that integrates dynamic feature selection with the principles of BoostCNN. Our approach incorporates two key strategies: subgrid selection and importance sampling, to guide training toward informative regions of the feature space. We further develop a family of algorithms that embed boosting weights directly into the network training process using a least squares loss formulation. This integration not only alleviates the burden of manual architecture design but also enhances accuracy and efficiency. Experimental results across several fine-grained classification benchmarks demonstrate that our boosted CNN variants consistently outperform conventional CNNs in both predictive performance and training speed.
comment: 10 pages, 5 figures. Experimental results reported on CIFAR-10, SVHN, and ImageNetSub datasets. arXiv admin note: substantial text overlap with arXiv:2203.00761
☆ PAF-Net: Phase-Aligned Frequency Decoupling Network for Multi-Process Manufacturing Quality Prediction
Accurate quality prediction in multi-process manufacturing is critical for industrial efficiency but hindered by three core challenges: time-lagged process interactions, overlapping operations with mixed periodicity, and inter-process dependencies in shared frequency bands. To address these, we propose PAF-Net, a frequency decoupled time series prediction framework with three key innovations: (1) A phase-correlation alignment method guided by frequency domain energy to synchronize time-lagged quality series, resolving temporal misalignment. (2) A frequency independent patch attention mechanism paired with Discrete Cosine Transform (DCT) decomposition to capture heterogeneous operational features within individual series. (3) A frequency decoupled cross attention module that suppresses noise from irrelevant frequencies, focusing exclusively on meaningful dependencies within shared bands. Experiments on 4 real-world datasets demonstrate PAF-Net's superiority. It outperforms 10 well-acknowledged baselines by 7.06% lower MSE and 3.88% lower MAE. Our code is available at https://github.com/StevenLuan904/PAF-Net-Official.
comment: 7 pages, 5 figures
☆ Tapping into the Black Box: Uncovering Aligned Representations in Pretrained Neural Networks
In this paper we argue that ReLU networks learn an implicit linear model we can actually tap into. We describe that alleged model formally and show that we can approximately pull its decision boundary back to the input space with certain simple modification to the backward pass. The resulting gradients (called excitation pullbacks) reveal high-resolution input- and target-specific features of remarkable perceptual alignment on a number of popular ImageNet-pretrained deep architectures. This strongly suggests that neural networks do, in fact, rely on learned interpretable patterns that can be recovered after training. Thus, our findings may have profound implications for knowledge discovery and the development of dependable artificial systems.
comment: 15 pages, 4 figures, preprint
☆ Quantifying surprise in clinical care: Detecting highly informative events in electronic health records with foundation models
We present a foundation model-derived method to identify highly informative tokens and events in electronic health records. Our approach considers incoming data in the entire context of a patient's hospitalization and so can flag anomalous events that rule-based approaches would consider within a normal range. We demonstrate that the events our model flags are significant for predicting downstream patient outcomes and that a fraction of events identified as carrying little information can safely be dropped. Additionally, we show how informativeness can help interpret the predictions of prognostic models trained on foundation model-derived representations.
☆ Amorphous Solid Model of Vectorial Hopfield Neural Networks
We present a vectorial extension of the Hopfield associative memory model inspired by the theory of amorphous solids, where binary neural states are replaced by unit vectors $\mathbf{s}_i \in \mathbb{R}^3$ on the sphere $S^2$. The generalized Hebbian learning rule creates a block-structured weight matrix through outer products of stored pattern vectors, analogous to the Hessian matrix structure in amorphous solids. We demonstrate that this model exhibits quantifiable structural properties characteristic of disordered materials: energy landscapes with deep minima for stored patterns versus random configurations (energy gaps $\sim 7$ units), strongly anisotropic correlations encoded in the weight matrix (anisotropy ratios $\sim 10^2$), and order-disorder transitions controlled by the pattern density $\gamma = P/(N \cdot d)$. The enhanced memory capacity ($\gamma_c \approx 0.55$ for a fully-connected network) compared to binary networks ($\gamma_c \approx 0.138$) and the emergence of orientational correlations establish connections between associative memory mechanisms and amorphous solid physics, particularly in systems with continuous orientational degrees of freedom. We also unveil the scaling with the coordination number $Z$ of the memory capacity: $\gamma_c \sim (Z-6)$ from the isostatic point $Z_c =6$ of the 3D elastic network, which closely mirrors the scaling of the shear modulus $G \sim (Z-6)$ in 3D central-force spring networks.
☆ DO-EM: Density Operator Expectation Maximization
Density operators, quantum generalizations of probability distributions, are gaining prominence in machine learning due to their foundational role in quantum computing. Generative modeling based on density operator models (\textbf{DOMs}) is an emerging field, but existing training algorithms -- such as those for the Quantum Boltzmann Machine -- do not scale to real-world data, such as the MNIST dataset. The Expectation-Maximization algorithm has played a fundamental role in enabling scalable training of probabilistic latent variable models on real-world datasets. \textit{In this paper, we develop an Expectation-Maximization framework to learn latent variable models defined through \textbf{DOMs} on classical hardware, with resources comparable to those used for probabilistic models, while scaling to real-world data.} However, designing such an algorithm is nontrivial due to the absence of a well-defined quantum analogue to conditional probability, which complicates the Expectation step. To overcome this, we reformulate the Expectation step as a quantum information projection (QIP) problem and show that the Petz Recovery Map provides a solution under sufficient conditions. Using this formulation, we introduce the Density Operator Expectation Maximization (DO-EM) algorithm -- an iterative Minorant-Maximization procedure that optimizes a quantum evidence lower bound. We show that the \textbf{DO-EM} algorithm ensures non-decreasing log-likelihood across iterations for a broad class of models. Finally, we present Quantum Interleaved Deep Boltzmann Machines (\textbf{QiDBMs}), a \textbf{DOM} that can be trained with the same resources as a DBM. When trained with \textbf{DO-EM} under Contrastive Divergence, a \textbf{QiDBM} outperforms larger classical DBMs in image generation on the MNIST dataset, achieving a 40--60\% reduction in the Fr\'echet Inception Distance.
comment: Main text: 9 pages 1 Figure. Total: 23 pages 3 Figures
☆ Label-free estimation of clinically relevant performance metrics under distribution shifts MICCAI
Performance monitoring is essential for safe clinical deployment of image classification models. However, because ground-truth labels are typically unavailable in the target dataset, direct assessment of real-world model performance is infeasible. State-of-the-art performance estimation methods address this by leveraging confidence scores to estimate the target accuracy. Despite being a promising direction, the established methods mainly estimate the model's accuracy and are rarely evaluated in a clinical domain, where strong class imbalances and dataset shifts are common. Our contributions are twofold: First, we introduce generalisations of existing performance prediction methods that directly estimate the full confusion matrix. Then, we benchmark their performance on chest x-ray data in real-world distribution shifts as well as simulated covariate and prevalence shifts. The proposed confusion matrix estimation methods reliably predicted clinically relevant counting metrics on medical images under distribution shifts. However, our simulated shift scenarios exposed important failure modes of current performance estimation techniques, calling for a better understanding of real-world deployment contexts when implementing these performance monitoring techniques for postmarket surveillance of medical AI models.
comment: Accepted oral at UNSURE 2025 @ MICCAI
☆ Empirical Evaluation of Concept Drift in ML-Based Android Malware Detection
Despite outstanding results, machine learning-based Android malware detection models struggle with concept drift, where rapidly evolving malware characteristics degrade model effectiveness. This study examines the impact of concept drift on Android malware detection, evaluating two datasets and nine machine learning and deep learning algorithms, as well as Large Language Models (LLMs). Various feature types--static, dynamic, hybrid, semantic, and image-based--were considered. The results showed that concept drift is widespread and significantly affects model performance. Factors influencing the drift include feature types, data environments, and detection methods. Balancing algorithms helped with class imbalance but did not fully address concept drift, which primarily stems from the dynamic nature of the malware landscape. No strong link was found between the type of algorithm used and concept drift, the impact was relatively minor compared to other variables since hyperparameters were not fine-tuned, and the default algorithm configurations were used. While LLMs using few-shot learning demonstrated promising detection performance, they did not fully mitigate concept drift, highlighting the need for further investigation.
comment: 18 pages, 12 tables, 14 figures, paper under review
☆ Teaching the Teacher: Improving Neural Network Distillability for Symbolic Regression via Jacobian Regularization
Distilling large neural networks into simple, human-readable symbolic formulas is a promising path toward trustworthy and interpretable AI. However, this process is often brittle, as the complex functions learned by standard networks are poor targets for symbolic discovery, resulting in low-fidelity student models. In this work, we propose a novel training paradigm to address this challenge. Instead of passively distilling a pre-trained network, we introduce a \textbf{Jacobian-based regularizer} that actively encourages the ``teacher'' network to learn functions that are not only accurate but also inherently smoother and more amenable to distillation. We demonstrate through extensive experiments on a suite of real-world regression benchmarks that our method is highly effective. By optimizing the regularization strength for each problem, we improve the $R^2$ score of the final distilled symbolic model by an average of \textbf{120\% (relative)} compared to the standard distillation pipeline, all while maintaining the teacher's predictive accuracy. Our work presents a practical and principled method for significantly improving the fidelity of interpretable models extracted from complex neural networks.
☆ Bayesian Optimization of Process Parameters of a Sensor-Based Sorting System using Gaussian Processes as Surrogate Models
Sensor-based sorting systems enable the physical separation of a material stream into two fractions. The sorting decision is based on the image data evaluation of the sensors used and is carried out using actuators. Various process parameters must be set depending on the properties of the material stream, the dimensioning of the system, and the required sorting accuracy. However, continuous verification and re-adjustment are necessary due to changing requirements and material stream compositions. In this paper, we introduce an approach for optimizing, recurrently monitoring and adjusting the process parameters of a sensor-based sorting system. Based on Bayesian Optimization, Gaussian process regression models are used as surrogate models to achieve specific requirements for system behavior with the uncertainties contained therein. This method minimizes the number of necessary experiments while simultaneously considering two possible optimization targets based on the requirements for both material output streams. In addition, uncertainties are considered during determining sorting accuracies in the model calculation. We evaluated the method with three example process parameters.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
☆ Of Good Demons and Bad Angels: Guaranteeing Safe Control under Finite Precision
As neural networks (NNs) become increasingly prevalent in safety-critical neural network-controlled cyber-physical systems (NNCSs), formally guaranteeing their safety becomes crucial. For these systems, safety must be ensured throughout their entire operation, necessitating infinite-time horizon verification. To verify the infinite-time horizon safety of NNCSs, recent approaches leverage Differential Dynamic Logic (dL). However, these dL-based guarantees rely on idealized, real-valued NN semantics and fail to account for roundoff errors introduced by finite-precision implementations. This paper bridges the gap between theoretical guarantees and real-world implementations by incorporating robustness under finite-precision perturbations -- in sensing, actuation, and computation -- into the safety verification. We model the problem as a hybrid game between a good Demon, responsible for control actions, and a bad Angel, introducing perturbations. This formulation enables formal proofs of robustness w.r.t. a given (bounded) perturbation. Leveraging this bound, we employ state-of-the-art mixed-precision fixed-point tuners to synthesize sound and efficient implementations, thus providing a complete end-to-end solution. We evaluate our approach on case studies from the automotive and aeronautics domains, producing efficient NN implementations with rigorous infinite-time horizon safety guarantees.
comment: 15 pages, 3 figures, 1 table; Accepted at FMCAD 2025
☆ MASCA: LLM based-Multi Agents System for Credit Assessment ACL
Recent advancements in financial problem-solving have leveraged LLMs and agent-based systems, with a primary focus on trading and financial modeling. However, credit assessment remains an underexplored challenge, traditionally dependent on rule-based methods and statistical models. In this paper, we introduce MASCA, an LLM-driven multi-agent system designed to enhance credit evaluation by mirroring real-world decision-making processes. The framework employs a layered architecture where specialized LLM-based agents collaboratively tackle sub-tasks. Additionally, we integrate contrastive learning for risk and reward assessment to optimize decision-making. We further present a signaling game theory perspective on hierarchical multi-agent systems, offering theoretical insights into their structure and interactions. Our paper also includes a detailed bias analysis in credit assessment, addressing fairness concerns. Experimental results demonstrate that MASCA outperforms baseline approaches, highlighting the effectiveness of hierarchical LLM-based multi-agent systems in financial applications, particularly in credit scoring.
comment: Accepted at ACL REALM Workshop. Work in Progress
☆ Enhanced Prediction of CAR T-Cell Cytotoxicity with Quantum-Kernel Methods
Chimeric antigen receptor (CAR) T-cells are T-cells engineered to recognize and kill specific tumor cells. Through their extracellular domains, CAR T-cells bind tumor cell antigens which triggers CAR T activation and proliferation. These processes are regulated by co-stimulatory domains present in the intracellular region of the CAR T-cell. Through integrating novel signaling components into the co-stimulatory domains, it is possible to modify CAR T-cell phenotype. Identifying and experimentally testing new CAR constructs based on libraries of co-stimulatory domains is nontrivial given the vast combinatorial space defined by such libraries. This leads to a highly data constrained, poorly explored combinatorial problem, where the experiments undersample all possible combinations. We propose a quantum approach using a Projected Quantum Kernel (PQK) to address this challenge. PQK operates by embedding classical data into a high dimensional Hilbert space and employs a kernel method to measure sample similarity. Using 61 qubits on a gate-based quantum computer, we demonstrate the largest PQK application to date and an enhancement in the classification performance over purely classical machine learning methods for CAR T cytotoxicity prediction. Importantly, we show improved learning for specific signaling domains and domain positions, particularly where there was lower information highlighting the potential for quantum computing in data-constrained problems.
☆ Cluster-Based Random Forest Visualization and Interpretation
Random forests are a machine learning method used to automatically classify datasets and consist of a multitude of decision trees. While these random forests often have higher performance and generalize better than a single decision tree, they are also harder to interpret. This paper presents a visualization method and system to increase interpretability of random forests. We cluster similar trees which enables users to interpret how the model performs in general without needing to analyze each individual decision tree in detail, or interpret an oversimplified summary of the full forest. To meaningfully cluster the decision trees, we introduce a new distance metric that takes into account both the decision rules as well as the predictions of a pair of decision trees. We also propose two new visualization methods that visualize both clustered and individual decision trees: (1) The Feature Plot, which visualizes the topological position of features in the decision trees, and (2) the Rule Plot, which visualizes the decision rules of the decision trees. We demonstrate the efficacy of our approach through a case study on the "Glass" dataset, which is a relatively complex standard machine learning dataset, as well as a small user study.
☆ Transductive Model Selection under Prior Probability Shift
Transductive learning is a supervised machine learning task in which, unlike in traditional inductive learning, the unlabelled data that require labelling are a finite set and are available at training time. Similarly to inductive learning contexts, transductive learning contexts may be affected by dataset shift, i.e., may be such that the IID assumption does not hold. We here propose a method, tailored to transductive classification contexts, for performing model selection (i.e., hyperparameter optimisation) when the data exhibit prior probability shift, an important type of dataset shift typical of anti-causal learning problems. In our proposed method the hyperparameters can be optimised directly on the unlabelled data to which the trained classifier must be applied; this is unlike traditional model selection methods, that are based on performing cross-validation on the labelled training data. We provide experimental results that show the benefits brought about by our method.
☆ Safe Deployment of Offline Reinforcement Learning via Input Convex Action Correction
Offline reinforcement learning (offline RL) offers a promising framework for developing control strategies in chemical process systems using historical data, without the risks or costs of online experimentation. This work investigates the application of offline RL to the safe and efficient control of an exothermic polymerisation continuous stirred-tank reactor. We introduce a Gymnasium-compatible simulation environment that captures the reactor's nonlinear dynamics, including reaction kinetics, energy balances, and operational constraints. The environment supports three industrially relevant scenarios: startup, grade change down, and grade change up. It also includes reproducible offline datasets generated from proportional-integral controllers with randomised tunings, providing a benchmark for evaluating offline RL algorithms in realistic process control tasks. We assess behaviour cloning and implicit Q-learning as baseline algorithms, highlighting the challenges offline agents face, including steady-state offsets and degraded performance near setpoints. To address these issues, we propose a novel deployment-time safety layer that performs gradient-based action correction using input convex neural networks (PICNNs) as learned cost models. The PICNN enables real-time, differentiable correction of policy actions by descending a convex, state-conditioned cost surface, without requiring retraining or environment interaction. Experimental results show that offline RL, particularly when combined with convex action correction, can outperform traditional control approaches and maintain stability across all scenarios. These findings demonstrate the feasibility of integrating offline RL with interpretable and safety-aware corrections for high-stakes chemical process control, and lay the groundwork for more reliable data-driven automation in industrial systems.
☆ trAIce3D: A Prompt-Driven Transformer Based U-Net for Semantic Segmentation of Microglial Cells from Large-Scale 3D Microscopy Images
The shape of a cell contains essential information about its function within the biological system. Segmenting these structures from large-scale 3D microscopy images is challenging, limiting clinical insights especially for microglia, immune-associated cells involved in neurodegenerative diseases. Existing segmentation methods mainly focus on cell bodies, struggle with overlapping structures, perform poorly on noisy images, require hyperparameter tuning for each new dataset, or rely on tedious semi-automated approaches. We introduce trAIce3D, a deep-learning architecture designed for precise microglia segmentation, capturing both somas and branches. It employs a two-stage approach: first, a 3D U-Net with vision transformers in the encoder detects somas using a sliding-window technique to cover the entire image. Then, the same architecture, enhanced with cross-attention blocks in skip connections, refines each soma and its branches by using soma coordinates as a prompt and a 3D window around the target cell as input. Training occurs in two phases: self-supervised Soma Segmentation, followed by prompt-based Branch Segmentation, leveraging pre-trained weights from the first phase. Trained and evaluated on a dataset of 41,230 microglial cells, trAIce3D significantly improves segmentation accuracy and generalization, enabling scalable analysis of complex cellular morphologies. While optimized for microglia, its architecture can extend to other intricate cell types, such as neurons and astrocytes, broadening its impact on neurobiological research.
comment: 10 pages, 2 figures
☆ A Unified Analysis of Generalization and Sample Complexity for Semi-Supervised Domain Adaptation
Domain adaptation seeks to leverage the abundant label information in a source domain to improve classification performance in a target domain with limited labels. While the field has seen extensive methodological development, its theoretical foundations remain relatively underexplored. Most existing theoretical analyses focus on simplified settings where the source and target domains share the same input space and relate target-domain performance to measures of domain discrepancy. Although insightful, these analyses may not fully capture the behavior of modern approaches that align domains into a shared space via feature transformations. In this paper, we present a comprehensive theoretical study of domain adaptation algorithms based on domain alignment. We consider the joint learning of domain-aligning feature transformations and a shared classifier in a semi-supervised setting. We first derive generalization bounds in a broad setting, in terms of covering numbers of the relevant function classes. We then extend our analysis to characterize the sample complexity of domain-adaptive neural networks employing maximum mean discrepancy (MMD) or adversarial objectives. Our results rely on a rigorous analysis of the covering numbers of these architectures. We show that, for both MMD-based and adversarial models, the sample complexity admits an upper bound that scales quadratically with network depth and width. Furthermore, our analysis suggests that in semi-supervised settings, robustness to limited labeled target data can be achieved by scaling the target loss proportionally to the square root of the number of labeled target samples. Experimental evaluation in both shallow and deep settings lends support to our theoretical findings.
☆ Deep learning of geometrical cell division rules
The positioning of new cellular walls during cell division plays a key role in shaping plant tissue organization. The influence of cell geometry on the positioning of division planes has been previously captured into various geometrical rules. Accordingly, linking cell shape to division orientation has relied on the comparison between observed division patterns and predictions under specific rules. The need to define a priori the tested rules is a fundamental limitation of this hypothesis-driven approach. As an alternative, we introduce a data-based approach to investigate the relation between cell geometry and division plane positioning, exploiting the ability of deep neural network to learn complex relationships across multidimensional spaces. Adopting an image-based cell representation, we show how division patterns can be learned and predicted from mother cell geometry using a UNet architecture modified to operate on cell masks. Using synthetic data and A. thaliana embryo cells, we evaluate the model performances on a wide range of diverse cell shapes and division patterns. We find that the trained model accounted for embryo division patterns that were previously irreconcilable under existing geometrical rules. Our work shows the potential of deep networks to understand cell division patterns and to generate new hypotheses on the control of cell division positioning.
comment: 44 pages, 6 figures, 1 supplementary table, 15 supplementary figures
☆ A Mean-Field Theory of $Θ$-Expectations
The canonical theory of sublinear expectations, a foundation of stochastic calculus under ambiguity, is insensitive to the non-convex geometry of primitive uncertainty models. This paper develops a new stochastic calculus for a structured class of such non-convex models. We introduce a class of fully coupled Mean-Field Forward-Backward Stochastic Differential Equations where the BSDE driver is defined by a pointwise maximization over a law-dependent, non-convex set. Mathematical tractability is achieved via a uniform strong concavity assumption on the driver with respect to the control variable, which ensures the optimization admits a unique and stable solution. A central contribution is to establish the Lipschitz stability of this optimizer from primitive geometric and regularity conditions, which underpins the entire well-posedness theory. We prove local and global well-posedness theorems for the FBSDE system. The resulting valuation functional, the $\Theta$-Expectation, is shown to be dynamically consistent and, most critically, to violate the axiom of sub-additivity. This, along with its failure to be translation invariant, demonstrates its fundamental departure from the convex paradigm. This work provides a rigorous foundation for stochastic calculus under a class of non-convex, endogenous ambiguity.
☆ COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP ICCV
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD
comment: accepted at ICCVW'25 - Systematic Trust in AI Models: Ensuring Fairness, Reliability, Explainability, and Accountability in Machine Learning Frameworks
☆ Explaining Deep Network Classification of Matrices: A Case Study on Monotonicity
This work demonstrates a methodology for using deep learning to discover simple, practical criteria for classifying matrices based on abstract algebraic properties. By combining a high-performance neural network with explainable AI (XAI) techniques, we can distill a model's learned strategy into human-interpretable rules. We apply this approach to the challenging case of monotone matrices, defined by the condition that their inverses are entrywise nonnegative. Despite their simple definition, an easy characterization in terms of the matrix elements or the derived parameters is not known. Here, we present, to the best of our knowledge, the first systematic machine-learning approach for deriving a practical criterion that distinguishes monotone from non-monotone matrices. After establishing a labelled dataset by randomly generated monotone and non-monotone matrices uniformly on $(-1,1)$, we employ deep neural network algorithms for classifying the matrices as monotone or non-monotone, using both their entries and a comprehensive set of matrix features. By saliency methods, such as integrated gradients, we identify among all features, two matrix parameters which alone provide sufficient information for the matrix classification, with $95\%$ accuracy, namely the absolute values of the two lowest-order coefficients, $c_0$ and $c_1$ of the matrix's characteristic polynomial. A data-driven study of 18,000 random $7\times7$ matrices shows that the monotone class obeys $\lvert c_{0}/c_{1}\rvert\le0.18$ with probability $>99.98\%$; because $\lvert c_{0}/c_{1}\rvert = 1/\mathrm{tr}(A^{-1})$ for monotone $A$, this is equivalent to the simple bound $\mathrm{tr}(A^{-1})\ge5.7$.
comment: 22 pages, 11 figures. To be submitted to a journal
☆ Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning
The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same ($\epsilon$, $\delta$)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.
☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
☆ VAR: Visual Analysis for Rashomon Set of Machine Learning Models' Performance
Evaluating the performance of closely matched machine learning(ML) models under specific conditions has long been a focus of researchers in the field of machine learning. The Rashomon set is a collection of closely matched ML models, encompassing a wide range of models with similar accuracies but different structures. Traditionally, the analysis of these sets has focused on vertical structural analysis, which involves comparing the corresponding features at various levels within the ML models. However, there has been a lack of effective visualization methods for horizontally comparing multiple models with specific features. We propose the VAR visualization solution. VAR uses visualization to perform comparisons of ML models within the Rashomon set. This solution combines heatmaps and scatter plots to facilitate the comparison. With the help of VAR, ML model developers can identify the optimal model under specific conditions and better understand the Rashomon set's overall characteristics.
☆ DeepC4: Deep Conditional Census-Constrained Clustering for Large-scale Multitask Spatial Disaggregation of Urban Morphology
To understand our global progress for sustainable development and disaster risk reduction in many developing economies, two recent major initiatives - the Uniform African Exposure Dataset of the Global Earthquake Model (GEM) Foundation and the Modelling Exposure through Earth Observation Routines (METEOR) Project - implemented classical spatial disaggregation techniques to generate large-scale mapping of urban morphology using the information from various satellite imagery and its derivatives, geospatial datasets of the built environment, and subnational census statistics. However, the local discrepancy with well-validated census statistics and the propagated model uncertainties remain a challenge in such coarse-to-fine-grained mapping problems, specifically constrained by weak and conditional label supervision. Therefore, we present Deep Conditional Census-Constrained Clustering (DeepC4), a novel deep learning-based spatial disaggregation approach that incorporates local census statistics as cluster-level constraints while considering multiple conditional label relationships in a joint multitask learning of the patterns of satellite imagery. To demonstrate, compared to GEM and METEOR, we enhanced the quality of Rwandan maps of urban morphology, specifically building exposure and physical vulnerability, at the third-level administrative unit from the 2022 census. As the world approaches the conclusion of our global frameworks in 2030, our work has offered a new deep learning-based mapping technique towards a spatial auditing of our existing coarse-grained derived information at large scales.
comment: Non-peer-reviewed Preprint | Keywords: urban morphology, building exposure, physical vulnerability, spatial disaggregation, deep clustering | Data: https://doi.org/10.5281/zenodo.13119552 | Code: https://github.com/riskaudit/DeepC4
☆ RainbowPrompt: Diversity-Enhanced Prompt-Evolving for Continual Learning ICCV 2025
Prompt-based continual learning provides a rehearsal-free solution by tuning small sets of parameters while keeping pre-trained models frozen. To meet the complex demands of sequential tasks, it is crucial to integrate task-specific knowledge within prompts effectively. However, existing works rely on either fixed learned prompts (i.e., prompts whose representations remain unchanged during new task learning) or on prompts generated from an entangled task-shared space, limiting the representational diversity of the integrated prompt. To address this issue, we propose a novel prompt-evolving mechanism to adaptively aggregate base prompts (i.e., task-specific prompts) into a unified prompt while ensuring diversity. By transforming and aligning base prompts, both previously learned and newly introduced, our approach continuously evolves accumulated knowledge to facilitate learning new tasks. We further introduce a learnable probabilistic gate that adaptively determines which layers to activate during the evolution process. We validate our method on image classification and video action recognition tasks in class-incremental learning, achieving average gains of 9.07% and 7.40% over existing methods across all scenarios.
comment: Accepted by the 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
☆ Thermodynamics-Inspired Computing with Oscillatory Neural Networks for Inverse Matrix Computation
We describe a thermodynamic-inspired computing paradigm based on oscillatory neural networks (ONNs). While ONNs have been widely studied as Ising machines for tackling complex combinatorial optimization problems, this work investigates their feasibility in solving linear algebra problems, specifically the inverse matrix. Grounded in thermodynamic principles, we analytically demonstrate that the linear approximation of the coupled Kuramoto oscillator model leads to the inverse matrix solution. Numerical simulations validate the theoretical framework, and we examine the parameter regimes that computation has the highest accuracy.
comment: 9 pages, 8 figures
☆ Pre-trained Models Perform the Best When Token Distributions Follow Zipf's Law
Tokenization is a fundamental step in natural language processing (NLP) and other sequence modeling domains, where the choice of vocabulary size significantly impacts model performance. Despite its importance, selecting an optimal vocabulary size remains underexplored, typically relying on heuristics or dataset-specific choices. In this work, we propose a principled method for determining the vocabulary size by analyzing token frequency distributions through Zipf's law. We show that downstream task performance correlates with how closely token distributions follow power-law behavior, and that aligning with Zipfian scaling improves both model efficiency and effectiveness. Extensive experiments across NLP, genomics, and chemistry demonstrate that models consistently achieve peak performance when the token distribution closely adheres to Zipf's law, establishing Zipfian alignment as a robust and generalizable criterion for vocabulary size selection.
☆ A surrogate model for topology optimisation of elastic structures via parametric autoencoders
A surrogate-based topology optimisation algorithm for linear elastic structures under parametric loads and boundary conditions is proposed. Instead of learning the parametric solution of the state (and adjoint) problems or the optimisation trajectory as a function of the iterations, the proposed approach devises a surrogate version of the entire optimisation pipeline. First, the method predicts a quasi-optimal topology for a given problem configuration as a surrogate model of high-fidelity topologies optimised with the homogenisation method. This is achieved by means of a feed-forward net learning the mapping between the input parameters characterising the system setup and a latent space determined by encoder/decoder blocks reducing the dimensionality of the parametric topology optimisation problem and reconstructing a high-dimensional representation of the topology. Then, the predicted topology is used as an educated initial guess for a computationally efficient algorithm penalising the intermediate values of the design variable, while enforcing the governing equations of the system. This step allows the method to correct potential errors introduced by the surrogate model, eliminate artifacts, and refine the design in order to produce topologies consistent with the underlying physics. Different architectures are proposed and the approximation and generalisation capabilities of the resulting models are numerically evaluated. The quasi-optimal topologies allow to outperform the high-fidelity optimiser by reducing the average number of optimisation iterations by $53\%$ while achieving discrepancies below $4\%$ in the optimal value of the objective functional, even in the challenging scenario of testing the model to extrapolate beyond the training and validation domain.
comment: 39 pages, 13 figures, 7 tables
☆ Accident-Driven Congestion Prediction and Simulation: An Explainable Framework Using Advanced Clustering and Bayesian Networks
Traffic congestion due to uncertainties, such as accidents, is a significant issue in urban areas, as the ripple effect of accidents causes longer delays, increased emissions, and safety concerns. To address this issue, we propose a robust framework for predicting the impact of accidents on congestion. We implement Automated Machine Learning (AutoML)-enhanced Deep Embedding Clustering (DEC) to assign congestion labels to accident data and predict congestion probability using a Bayesian Network (BN). The Simulation of Urban Mobility (SUMO) simulation is utilized to evaluate the correctness of BN predictions using evidence-based scenarios. Results demonstrate that the AutoML-enhanced DEC has outperformed traditional clustering approaches. The performance of the proposed BN model achieved an overall accuracy of 95.6%, indicating its ability to understand the complex relationship of accidents causing congestion. Validation in SUMO with evidence-based scenarios demonstrated that the BN model's prediction of congestion states closely matches those of SUMO, indicating the high reliability of the proposed BN model in ensuring smooth urban mobility.
☆ FGFP: A Fractional Gaussian Filter and Pruning for Deep Neural Networks Compression ICML 2025
Network compression techniques have become increasingly important in recent years because the loads of Deep Neural Networks (DNNs) are heavy for edge devices in real-world applications. While many methods compress neural network parameters, deploying these models on edge devices remains challenging. To address this, we propose the fractional Gaussian filter and pruning (FGFP) framework, which integrates fractional-order differential calculus and Gaussian function to construct fractional Gaussian filters (FGFs). To reduce the computational complexity of fractional-order differential operations, we introduce Gr\"unwald-Letnikov fractional derivatives to approximate the fractional-order differential equation. The number of parameters for each kernel in FGF is minimized to only seven. Beyond the architecture of Fractional Gaussian Filters, our FGFP framework also incorporates Adaptive Unstructured Pruning (AUP) to achieve higher compression ratios. Experiments on various architectures and benchmarks show that our FGFP framework outperforms recent methods in accuracy and compression. On CIFAR-10, ResNet-20 achieves only a 1.52% drop in accuracy while reducing the model size by 85.2%. On ImageNet2012, ResNet-50 achieves only a 1.63% drop in accuracy while reducing the model size by 69.1%.
comment: 8 pages, 2 figures, 4 tables, Accepted by ICML 2025 Workshop (TTODLer-FM)
☆ HGCN(O): A Self-Tuning GCN HyperModel Toolkit for Outcome Prediction in Event-Sequence Data
We propose HGCN(O), a self-tuning toolkit using Graph Convolutional Network (GCN) models for event sequence prediction. Featuring four GCN architectures (O-GCN, T-GCN, TP-GCN, TE-GCN) across the GCNConv and GraphConv layers, our toolkit integrates multiple graph representations of event sequences with different choices of node- and graph-level attributes and in temporal dependencies via edge weights, optimising prediction accuracy and stability for balanced and unbalanced datasets. Extensive experiments show that GCNConv models excel on unbalanced data, while all models perform consistently on balanced data. Experiments also confirm the superior performance of HGCN(O) over traditional approaches. Applications include Predictive Business Process Monitoring (PBPM), which predicts future events or states of a business process based on event logs.
comment: 15 pages, 2 figures, submitted to Knowledge-Base Systems
☆ SmilesT5: Domain-specific pretraining for molecular language models
Molecular property prediction is an increasingly critical task within drug discovery and development. Typically, neural networks can learn molecular properties using graph-based, language-based or feature-based methods. Recent advances in natural language processing have highlighted the capabilities of neural networks to learn complex human language using masked language modelling. These approaches to training large transformer-based deep learning models have also been used to learn the language of molecules, as represented by simplified molecular-input line-entry system (SMILES) strings. Here, we present novel domain-specific text-to-text pretraining tasks that yield improved performance in six classification-based molecular property prediction benchmarks, relative to both traditional likelihood-based training and previously proposed fine-tuning tasks. Through ablation studies, we show that data and computational efficiency can be improved by using these domain-specific pretraining tasks. Finally, the pretrained embeddings from the model can be used as fixed inputs into a downstream machine learning classifier and yield comparable performance to finetuning but with much lower computational overhead.
☆ AlphaDent: A dataset for automated tooth pathology detection
In this article, we present a new unique dataset for dental research - AlphaDent. This dataset is based on the DSLR camera photographs of the teeth of 295 patients and contains over 1200 images. The dataset is labeled for solving the instance segmentation problem and is divided into 9 classes. The article provides a detailed description of the dataset and the labeling format. The article also provides the details of the experiment on neural network training for the Instance Segmentation problem using this dataset. The results obtained show high quality of predictions. The dataset is published under an open license; and the training/inference code and model weights are also available under open licenses.
☆ Geometry of nonlinear forecast reconciliation
Forecast reconciliation, an ex-post technique applied to forecasts that must satisfy constraints, has been a prominent topic in the forecasting literature over the past two decades. Recently, several efforts have sought to extend reconciliation methods to the probabilistic settings. Nevertheless, formal theorems demonstrating error reduction in nonlinear contexts, analogous to those presented in Panagiotelis et al.(2021), are still lacking. This paper addresses that gap by establishing such theorems for various classes of nonlinear hypersurfaces and vector-valued functions. Specifically, we derive an exact analog of Theorem 3.1 from Panagiotelis et al.(2021) for hypersurfaces with constant-sign curvature. Additionally, we provide probabilistic guarantees for the broader case of hypersurfaces with non-constant-sign curvature and for general vector-valued functions. To support reproducibility and practical adoption, we release a JAX-based Python package, \emph{to be released upon publication}, implementing the presented theorems and reconciliation procedures.
☆ LoReUn: Data Itself Implicitly Provides Cues to Improve Machine Unlearning
Recent generative models face significant risks of producing harmful content, which has underscored the importance of machine unlearning (MU) as a critical technique for eliminating the influence of undesired data. However, existing MU methods typically assign the same weight to all data to be forgotten, which makes it difficult to effectively forget certain data that is harder to unlearn than others. In this paper, we empirically demonstrate that the loss of data itself can implicitly reflect its varying difficulty. Building on this insight, we introduce Loss-based Reweighting Unlearning (LoReUn), a simple yet effective plug-and-play strategy that dynamically reweights data during the unlearning process with minimal additional computational overhead. Our approach significantly reduces the gap between existing MU methods and exact unlearning in both image classification and generation tasks, effectively enhancing the prevention of harmful content generation in text-to-image diffusion models.
comment: 23 pages
☆ LVM-GP: Uncertainty-Aware PDE Solver via coupling latent variable model and Gaussian process
We propose a novel probabilistic framework, termed LVM-GP, for uncertainty quantification in solving forward and inverse partial differential equations (PDEs) with noisy data. The core idea is to construct a stochastic mapping from the input to a high-dimensional latent representation, enabling uncertainty-aware prediction of the solution. Specifically, the architecture consists of a confidence-aware encoder and a probabilistic decoder. The encoder implements a high-dimensional latent variable model based on a Gaussian process (LVM-GP), where the latent representation is constructed by interpolating between a learnable deterministic feature and a Gaussian process prior, with the interpolation strength adaptively controlled by a confidence function learned from data. The decoder defines a conditional Gaussian distribution over the solution field, where the mean is predicted by a neural operator applied to the latent representation, allowing the model to learn flexible function-to-function mapping. Moreover, physical laws are enforced as soft constraints in the loss function to ensure consistency with the underlying PDE structure. Compared to existing approaches such as Bayesian physics-informed neural networks (B-PINNs) and deep ensembles, the proposed framework can efficiently capture functional dependencies via merging a latent Gaussian process and neural operator, resulting in competitive predictive accuracy and robust uncertainty quantification. Numerical experiments demonstrate the effectiveness and reliability of the method.
☆ Proto-EVFL: Enhanced Vertical Federated Learning via Dual Prototype with Extremely Unaligned Data
In vertical federated learning (VFL), multiple enterprises address aligned sample scarcity by leveraging massive locally unaligned samples to facilitate collaborative learning. However, unaligned samples across different parties in VFL can be extremely class-imbalanced, leading to insufficient feature representation and limited model prediction space. Specifically, class-imbalanced problems consist of intra-party class imbalance and inter-party class imbalance, which can further cause local model bias and feature contribution inconsistency issues, respectively. To address the above challenges, we propose Proto-EVFL, an enhanced VFL framework via dual prototypes. We first introduce class prototypes for each party to learn relationships between classes in the latent space, allowing the active party to predict unseen classes. We further design a probabilistic dual prototype learning scheme to dynamically select unaligned samples by conditional optimal transport cost with class prior probability. Moreover, a mixed prior guided module guides this selection process by combining local and global class prior probabilities. Finally, we adopt an \textit{adaptive gated feature aggregation strategy} to mitigate feature contribution inconsistency by dynamically weighting and aggregating local features across different parties. We proved that Proto-EVFL, as the first bi-level optimization framework in VFL, has a convergence rate of 1/\sqrt T. Extensive experiments on various datasets validate the superiority of our Proto-EVFL. Even in a zero-shot scenario with one unseen class, it outperforms baselines by at least 6.97%
☆ Visual Language Models as Zero-Shot Deepfake Detectors ICML 2025
The contemporary phenomenon of deepfakes, utilizing GAN or diffusion models for face swapping, presents a substantial and evolving threat in digital media, identity verification, and a multitude of other systems. The majority of existing methods for detecting deepfakes rely on training specialized classifiers to distinguish between genuine and manipulated images, focusing only on the image domain without incorporating any auxiliary tasks that could enhance robustness. In this paper, inspired by the zero-shot capabilities of Vision Language Models, we propose a novel VLM-based approach to image classification and then evaluate it for deepfake detection. Specifically, we utilize a new high-quality deepfake dataset comprising 60,000 images, on which our zero-shot models demonstrate superior performance to almost all existing methods. Subsequently, we compare the performance of the best-performing architecture, InstructBLIP, on the popular deepfake dataset DFDC-P against traditional methods in two scenarios: zero-shot and in-domain fine-tuning. Our results demonstrate the superiority of VLMs over traditional classifiers.
comment: Accepted to the ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ Towards Interpretable Renal Health Decline Forecasting via Multi-LMM Collaborative Reasoning Framework
Accurate and interpretable prediction of estimated glomerular filtration rate (eGFR) is essential for managing chronic kidney disease (CKD) and supporting clinical decisions. Recent advances in Large Multimodal Models (LMMs) have shown strong potential in clinical prediction tasks due to their ability to process visual and textual information. However, challenges related to deployment cost, data privacy, and model reliability hinder their adoption. In this study, we propose a collaborative framework that enhances the performance of open-source LMMs for eGFR forecasting while generating clinically meaningful explanations. The framework incorporates visual knowledge transfer, abductive reasoning, and a short-term memory mechanism to enhance prediction accuracy and interpretability. Experimental results show that the proposed framework achieves predictive performance and interpretability comparable to proprietary models. It also provides plausible clinical reasoning processes behind each prediction. Our method sheds new light on building AI systems for healthcare that combine predictive accuracy with clinically grounded interpretability.
☆ Breaking Obfuscation: Cluster-Aware Graph with LLM-Aided Recovery for Malicious JavaScript Detection
With the rapid expansion of web-based applications and cloud services, malicious JavaScript code continues to pose significant threats to user privacy, system integrity, and enterprise security. But, detecting such threats remains challenging due to sophisticated code obfuscation techniques and JavaScript's inherent language characteristics, particularly its nested closure structures and syntactic flexibility. In this work, we propose DeCoda, a hybrid defense framework that combines large language model (LLM)-based deobfuscation with code graph learning: (1) We first construct a sophisticated prompt-learning pipeline with multi-stage refinement, where the LLM progressively reconstructs the original code structure from obfuscated inputs and then generates normalized Abstract Syntax Tree (AST) representations; (2) In JavaScript ASTs, dynamic typing scatters semantically similar nodes while deeply nested functions fracture scope capturing, introducing structural noise and semantic ambiguity. To address these challenges, we then propose to learn hierarchical code graph representations via a Cluster-wise Graph that synergistically integrates graph transformer network, node clustering, and node-to-cluster attention to simultaneously capture both local node-level semantics and global cluster-induced structural relationships from AST graph. Experimental results demonstrate that our method achieves F1-scores of 94.64% and 97.71% on two benchmark datasets, demonstrating absolute improvements of 10.74% and 13.85% over state-of-the-art baselines. In false-positive control evaluation at fixed FPR levels (0.0001, 0.001, 0.01), our approach delivers 4.82, 5.91, and 2.53 higher TPR respectively compared to the best-performing baseline. These results highlight the effectiveness of LLM-based deobfuscation and underscore the importance of modeling cluster-level relationships in detecting malicious code.
☆ RCR-AF: Enhancing Model Generalization via Rademacher Complexity Reduction Activation Function
Despite their widespread success, deep neural networks remain critically vulnerable to adversarial attacks, posing significant risks in safety-sensitive applications. This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness. We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience. RCR-AF uniquely combines the advantages of GELU (including smoothness, gradient stability, and negative information retention) with ReLU's desirable monotonicity, while simultaneously controlling both model sparsity and capacity through built-in clipping mechanisms governed by two hyperparameters, $\alpha$ and $\gamma$. Our theoretical analysis, grounded in Rademacher complexity, demonstrates that these parameters directly modulate the model's Rademacher complexity, offering a principled approach to enhance robustness. Comprehensive empirical evaluations show that RCR-AF consistently outperforms widely-used alternatives (ReLU, GELU, and Swish) in both clean accuracy under standard training and in adversarial robustness within adversarial training paradigms.
☆ RANA: Robust Active Learning for Noisy Network Alignment
Network alignment has attracted widespread attention in various fields. However, most existing works mainly focus on the problem of label sparsity, while overlooking the issue of noise in network alignment, which can substantially undermine model performance. Such noise mainly includes structural noise from noisy edges and labeling noise caused by human-induced and process-driven errors. To address these problems, we propose RANA, a Robust Active learning framework for noisy Network Alignment. RANA effectively tackles both structure noise and label noise while addressing the sparsity of anchor link annotations, which can improve the robustness of network alignment models. Specifically, RANA introduces the proposed Noise-aware Selection Module and the Label Denoising Module to address structural noise and labeling noise, respectively. In the first module, we design a noise-aware maximization objective to select node pairs, incorporating a cleanliness score to address structural noise. In the second module, we propose a novel multi-source fusion denoising strategy that leverages model and twin node pairs labeling to provide more accurate labels for node pairs. Empirical results on three real-world datasets demonstrate that RANA outperforms state-of-the-art active learning-based methods in alignment accuracy. Our code is available at https://github.com/YXNan0110/RANA.
☆ Extended Factorization Machine Annealing for Rapid Discovery of Transparent Conducting Materials
The development of novel transparent conducting materials (TCMs) is essential for enhancing the performance and reducing the cost of next-generation devices such as solar cells and displays. In this research, we focus on the (Al$_x$Ga$_y$In$_z$)$_2$O$_3$ system and extend the FMA framework, which combines a Factorization Machine (FM) and annealing, to search for optimal compositions and crystal structures with high accuracy and low cost. The proposed method introduces (i) the binarization of continuous variables, (ii) the utilization of good solutions using a Hopfield network, (iii) the activation of global search through adaptive random flips, and (iv) fine-tuning via a bit-string local search. Validation using the (Al$_x$Ga$_y$In$_z$)$_2$O$_3$ data from the Kaggle "Nomad2018 Predicting Transparent Conductors" competition demonstrated that our method achieves faster and more accurate searches than Bayesian optimization and genetic algorithms. Furthermore, its application to multi-objective optimization showed its capability in designing materials by simultaneously considering both the band gap and formation energy. These results suggest that applying our method to larger, more complex search problems and diverse material designs that reflect realistic experimental conditions is expected to contribute to the further advancement of materials informatics.
comment: 12pages, 6figures
☆ On the Complexity of Finding Stationary Points in Nonconvex Simple Bilevel Optimization
In this paper, we study the problem of solving a simple bilevel optimization problem, where the upper-level objective is minimized over the solution set of the lower-level problem. We focus on the general setting in which both the upper- and lower-level objectives are smooth but potentially nonconvex. Due to the absence of additional structural assumptions for the lower-level objective-such as convexity or the Polyak-{\L}ojasiewicz (PL) condition-guaranteeing global optimality is generally intractable. Instead, we introduce a suitable notion of stationarity for this class of problems and aim to design a first-order algorithm that finds such stationary points in polynomial time. Intuitively, stationarity in this setting means the upper-level objective cannot be substantially improved locally without causing a larger deterioration in the lower-level objective. To this end, we show that a simple and implementable variant of the dynamic barrier gradient descent (DBGD) framework can effectively solve the considered nonconvex simple bilevel problems up to stationarity. Specifically, to reach an $(\epsilon_f, \epsilon_g)$-stationary point-where $\epsilon_f$ and $\epsilon_g$ denote the target stationarity accuracies for the upper- and lower-level objectives, respectively-the considered method achieves a complexity of $\mathcal{O}\left(\max\left(\epsilon_f^{-\frac{3+p}{1+p}}, \epsilon_g^{-\frac{3+p}{2}}\right)\right)$, where $p \geq 0$ is an arbitrary constant balancing the terms. To the best of our knowledge, this is the first complexity result for a discrete-time algorithm that guarantees joint stationarity for both levels in general nonconvex simple bilevel problems.
☆ FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations
Urban heatwaves, droughts, and land degradation are pressing and growing challenges in the context of climate change. A valuable approach to studying them requires accurate spatio-temporal information on land surface conditions. One of the most important variables for assessing and understanding these phenomena is Land Surface Temperature (LST), which is derived from satellites and provides essential information about the thermal state of the Earth's surface. However, satellite platforms inherently face a trade-off between spatial and temporal resolutions. To bridge this gap, we propose FuseTen, a novel generative framework that produces daily LST observations at a fine 10 m spatial resolution by fusing spatio-temporal observations derived from Sentinel-2, Landsat 8, and Terra MODIS. FuseTen employs a generative architecture trained using an averaging-based supervision strategy grounded in physical principles. It incorporates attention and normalization modules within the fusion process and uses a PatchGAN discriminator to enforce realism. Experiments across multiple dates show that FuseTen outperforms linear baselines, with an average 32.06% improvement in quantitative metrics and 31.42% in visual fidelity. To the best of our knowledge, this is the first non-linear method to generate daily LST estimates at such fine spatial resolution.
comment: Accepted in the 2025 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS)
☆ AI paradigm for solving differential equations: first-principles data generation and scale-dilation operator AI solver
Many problems are governed by differential equations (DEs). Artificial intelligence (AI) is a new path for solving DEs. However, data is very scarce and existing AI solvers struggle with approximation of high frequency components (AHFC). We propose an AI paradigm for solving diverse DEs, including DE-ruled first-principles data generation methodology and scale-dilation operator (SDO) AI solver. Using either prior knowledge or random fields, we generate solutions and then substitute them into the DEs to derive the sources and initial/boundary conditions through balancing DEs, thus producing arbitrarily vast amount of, first-principles-consistent training datasets at extremely low computational cost. We introduce a reversible SDO that leverages the Fourier transform of the multiscale solutions to fix AHFC, and design a spatiotemporally coupled, attention-based Transformer AI solver of DEs with SDO. An upper bound on the Hessian condition number of the loss function is proven to be proportional to the squared 2-norm of the solution gradient, revealing that SDO yields a smoother loss landscape, consequently fixing AHFC with efficient training. Extensive tests on diverse DEs demonstrate that our AI paradigm achieves consistently superior accuracy over state-of-the-art methods. This work makes AI solver of DEs to be truly usable in broad nature and engineering fields.
☆ Observational Multiplicity
Many prediction tasks can admit multiple models that can perform almost equally well. This phenomenon can can undermine interpretability and safety when competing models assign conflicting predictions to individuals. In this work, we study how arbitrariness can arise in probabilistic classification tasks as a result of an effect that we call \emph{observational multiplicity}. We discuss how this effect arises in a broad class of practical applications where we learn a classifier to predict probabilities $p_i \in [0,1]$ but are given a dataset of observations $y_i \in \{0,1\}$. We propose to evaluate the arbitrariness of individual probability predictions through the lens of \emph{regret}. We introduce a measure of regret for probabilistic classification tasks, which measures how the predictions of a model could change as a result of different training labels change. We present a general-purpose method to estimate the regret in a probabilistic classification task. We use our measure to show that regret is higher for certain groups in the dataset and discuss potential applications of regret. We demonstrate how estimating regret promote safety in real-world applications by abstention and data collection.
☆ Evaluating and Improving the Robustness of Speech Command Recognition Models to Noise and Distribution Shifts ICASSP 2026
Although prior work in computer vision has shown strong correlations between in-distribution (ID) and out-of-distribution (OOD) accuracies, such relationships remain underexplored in audio-based models. In this study, we investigate how training conditions and input features affect the robustness and generalization abilities of spoken keyword classifiers under OOD conditions. We benchmark several neural architectures across a variety of evaluation sets. To quantify the impact of noise on generalization, we make use of two metrics: Fairness (F), which measures overall accuracy gains compared to a baseline model, and Robustness (R), which assesses the convergence between ID and OOD performance. Our results suggest that noise-aware training improves robustness in some configurations. These findings shed new light on the benefits and limitations of noise-based augmentation for generalization in speech models.
comment: Submitted to ICASSP 2026
☆ FLOSS: Federated Learning with Opt-Out and Straggler Support
Previous work on data privacy in federated learning systems focuses on privacy-preserving operations for data from users who have agreed to share their data for training. However, modern data privacy agreements also empower users to use the system while opting out of sharing their data as desired. When combined with stragglers that arise from heterogeneous device capabilities, the result is missing data from a variety of sources that introduces bias and degrades model performance. In this paper, we present FLOSS, a system that mitigates the impacts of such missing data on federated learning in the presence of stragglers and user opt-out, and empirically demonstrate its performance in simulations.
comment: 5 pages
☆ Scalable Generative Modeling of Weighted Graphs
Weighted graphs are ubiquitous throughout biology, chemistry, and the social sciences, motivating the development of generative models for abstract weighted graph data using deep neural networks. However, most current deep generative models are either designed for unweighted graphs and are not easily extended to weighted topologies or incorporate edge weights without consideration of a joint distribution with topology. Furthermore, learning a distribution over weighted graphs must account for complex nonlocal dependencies between both the edges of the graph and corresponding weights of each edge. We develop an autoregressive model BiGG-E, a nontrivial extension of the BiGG model, that learns a joint distribution over weighted graphs while still exploiting sparsity to generate a weighted graph with $n$ nodes and $m$ edges in $O((n + m)\log n)$ time. Simulation studies and experiments on a variety of benchmark datasets demonstrate that BiGG-E best captures distributions over weighted graphs while remaining scalable and computationally efficient.
comment: 25 pages, 5 figures, included appendix. code at https://github.com/rlwilliams34/BiGG-E
☆ RASL: Retrieval Augmented Schema Linking for Massive Database Text-to-SQL
Despite advances in large language model (LLM)-based natural language interfaces for databases, scaling to enterprise-level data catalogs remains an under-explored challenge. Prior works addressing this challenge rely on domain-specific fine-tuning - complicating deployment - and fail to leverage important semantic context contained within database metadata. To address these limitations, we introduce a component-based retrieval architecture that decomposes database schemas and metadata into discrete semantic units, each separately indexed for targeted retrieval. Our approach prioritizes effective table identification while leveraging column-level information, ensuring the total number of retrieved tables remains within a manageable context budget. Experiments demonstrate that our method maintains high recall and accuracy, with our system outperforming baselines over massive databases with varying structure and available metadata. Our solution enables practical text-to-SQL systems deployable across diverse enterprise settings without specialized fine-tuning, addressing a critical scalability gap in natural language database interfaces.
☆ On the Sustainability of AI Inferences in the Edge
The proliferation of the Internet of Things (IoT) and its cutting-edge AI-enabled applications (e.g., autonomous vehicles and smart industries) combine two paradigms: data-driven systems and their deployment on the edge. Usually, edge devices perform inferences to support latency-critical applications. In addition to the performance of these resource-constrained edge devices, their energy usage is a critical factor in adopting and deploying edge applications. Examples of such devices include Raspberry Pi (RPi), Intel Neural Compute Stick (INCS), NVIDIA Jetson nano (NJn), and Google Coral USB (GCU). Despite their adoption in edge deployment for AI inferences, there is no study on their performance and energy usage for informed decision-making on the device and model selection to meet the demands of applications. This study fills the gap by rigorously characterizing the performance of traditional, neural networks, and large language models on the above-edge devices. Specifically, we analyze trade-offs among model F1 score, inference time, inference power, and memory usage. Hardware and framework optimization, along with external parameter tuning of AI models, can balance between model performance and resource usage to realize practical edge AI deployments.
comment: 14 pages, 8 figures, 6 tables, in preparation for journal submission
☆ A Foundation Model for Material Fracture Prediction
Accurately predicting when and how materials fail is critical to designing safe, reliable structures, mechanical systems, and engineered components that operate under stress. Yet, fracture behavior remains difficult to model across the diversity of materials, geometries, and loading conditions in real-world applications. While machine learning (ML) methods show promise, most models are trained on narrow datasets, lack robustness, and struggle to generalize. Meanwhile, physics-based simulators offer high-fidelity predictions but are fragmented across specialized methods and require substantial high-performance computing resources to explore the input space. To address these limitations, we present a data-driven foundation model for fracture prediction, a transformer-based architecture that operates across simulators, a wide range of materials (including plastic-bonded explosives, steel, aluminum, shale, and tungsten), and diverse loading conditions. The model supports both structured and unstructured meshes, combining them with large language model embeddings of textual input decks specifying material properties, boundary conditions, and solver settings. This multimodal input design enables flexible adaptation across simulation scenarios without changes to the model architecture. The trained model can be fine-tuned with minimal data on diverse downstream tasks, including time-to-failure estimation, modeling fracture evolution, and adapting to combined finite-discrete element method simulations. It also generalizes to unseen materials such as titanium and concrete, requiring as few as a single sample, dramatically reducing data needs compared to standard ML. Our results show that fracture prediction can be unified under a single model architecture, offering a scalable, extensible alternative to simulator-specific workflows.
☆ Locally Differentially Private Thresholding Bandits
This work investigates the impact of ensuring local differential privacy in the thresholding bandit problem. We consider both the fixed budget and fixed confidence settings. We propose methods that utilize private responses, obtained through a Bernoulli-based differentially private mechanism, to identify arms with expected rewards exceeding a predefined threshold. We show that this procedure provides strong privacy guarantees and derive theoretical performance bounds on the proposed algorithms. Additionally, we present general lower bounds that characterize the additional loss incurred by any differentially private mechanism, and show that the presented algorithms match these lower bounds up to poly-logarithmic factors. Our results provide valuable insights into privacy-preserving decision-making frameworks in bandit problems.
comment: 18th European Workshop on Reinforcement Learning (EWRL 2025)
☆ Vision-Language Fusion for Real-Time Autonomous Driving: Goal-Centered Cross-Attention of Camera, HD-Map, & Waypoints
Autonomous cars need geometric accuracy and semantic understanding to navigate complex environments, yet most stacks handle them separately. We present XYZ-Drive, a single vision-language model that reads a front-camera frame, a 25m $\times$ 25m overhead map, and the next waypoint, then outputs steering and speed. A lightweight goal-centered cross-attention layer lets waypoint tokens highlight relevant image and map patches, supporting both action and textual explanations, before the fused tokens enter a partially fine-tuned LLaMA-3.2 11B model. On the MD-NEX Outdoor-Driving benchmark XYZ-Drive attains 95% success and 0.80 Success weighted by Path Length (SPL), surpassing PhysNav-DG by 15%. and halving collisions, all while significantly improving efficiency by using only a single branch. Sixteen ablations explain the gains. Removing any modality (vision, waypoint, map) drops success by up to 11%, confirming their complementary roles and rich connections. Replacing goal-centered attention with simple concatenation cuts 3% in performance, showing query-based fusion injects map knowledge more effectively. Keeping the transformer frozen loses 5%, showing the importance of fine-tuning when applying VLMs for specific tasks such as autonomous driving. Coarsening map resolution from 10 cm to 40 cm blurs lane edges and raises crash rate. Overall, these results demonstrate that early, token-level fusion of intent and map layout enables accurate, transparent, real-time driving.
comment: 5 pages
☆ Prediction of Significant Creatinine Elevation in First ICU Stays with Vancomycin Use: A retrospective study through Catboost
Background: Vancomycin, a key antibiotic for severe Gram-positive infections in ICUs, poses a high nephrotoxicity risk. Early prediction of kidney injury in critically ill patients is challenging. This study aimed to develop a machine learning model to predict vancomycin-related creatinine elevation using routine ICU data. Methods: We analyzed 10,288 ICU patients (aged 18-80) from the MIMIC-IV database who received vancomycin. Kidney injury was defined by KDIGO criteria (creatinine rise >=0.3 mg/dL within 48h or >=50% within 7d). Features were selected via SelectKBest (top 30) and Random Forest ranking (final 15). Six algorithms were tested with 5-fold cross-validation. Interpretability was evaluated using SHAP, Accumulated Local Effects (ALE), and Bayesian posterior sampling. Results: Of 10,288 patients, 2,903 (28.2%) developed creatinine elevation. CatBoost performed best (AUROC 0.818 [95% CI: 0.801-0.834], sensitivity 0.800, specificity 0.681, negative predictive value 0.900). Key predictors were phosphate, total bilirubin, magnesium, Charlson index, and APSIII. SHAP confirmed phosphate as a major risk factor. ALE showed dose-response patterns. Bayesian analysis estimated mean risk 60.5% (95% credible interval: 16.8-89.4%) in high-risk cases. Conclusions: This machine learning model predicts vancomycin-associated creatinine elevation from routine ICU data with strong accuracy and interpretability, enabling early risk detection and supporting timely interventions in critical care.
☆ Early Goal-Guided Multi-Scale Fusion for Real-Time Vision-Language Driving
Autonomous vehicles must react in milliseconds while reasoning about road geometry and traffic intent to navigate complex situations. We introduce NovaDrive, a single-branch vision-language architecture that processes front-camera images, HD-map tiles, LiDAR depth, and textual waypoints in a single branch. A lightweight, two-stage cross-attention block first aligns waypoint tokens with the HD map, then refines attention over fine-grained image and depth patches. Coupled with a novel smoothness loss that discourages abrupt steering and speed changes, this design eliminates the need for recurrent memory. We fine-tune the top 15 layers of an 11B LLaMA-3.2 vision-language backbone, enabling real-time inference. On the nuScenes / Waymo subset of the MD-NEX Outdoor benchmark, NovaDrive raises success rate to 84% (+4%), boosts path-efficiency (SPL) to 0.66 (+0.11), and reduces collision frequency from 2.6% to 1.2% (-1.4%) relative to the previous state-of-the-art. Our ablations confirm that waypoint tokens, partial VLM fine-tuning, and the cross-attention fusion each contribute the most to these gains. Beyond safety, NovaDrive's shorter routes (resulting from the novel smoothness loss) translate to lower fuel or battery usage, pointing toward leaner, more easily updated driving stacks. NovaDrive can be extended to other embodied-AI domains as well.
comment: 6 pages
☆ Linking Actor Behavior to Process Performance Over Time
Understanding how actor behavior influences process outcomes is a critical aspect of process mining. Traditional approaches often use aggregate and static process data, overlooking the temporal and causal dynamics that arise from individual actor behavior. This limits the ability to accurately capture the complexity of real-world processes, where individual actor behavior and interactions between actors significantly shape performance. In this work, we address this gap by integrating actor behavior analysis with Granger causality to identify correlating links in time series data. We apply this approach to realworld event logs, constructing time series for actor interactions, i.e. continuation, interruption, and handovers, and process outcomes. Using Group Lasso for lag selection, we identify a small but consistently influential set of lags that capture the majority of causal influence, revealing that actor behavior has direct and measurable impacts on process performance, particularly throughput time. These findings demonstrate the potential of actor-centric, time series-based methods for uncovering the temporal dependencies that drive process outcomes, offering a more nuanced understanding of how individual behaviors impact overall process efficiency.
comment: Accepted for presentation at the 5th Workshop on Change, Drift, and Dynamics of Organizational Processes (ProDy), BPM 2025
☆ KLLM: Fast LLM Inference with K-Means Quantization
Large language model (LLM) inference poses significant challenges due to its intensive memory and computation demands. Weight and activation quantization (WAQ) offers a promising solution by reducing both memory footprint and arithmetic complexity. However, two key challenges remain in the existing WAQ designs. (1) Traditional WAQ designs rely on uniform integer-based quantization for hardware efficiency, but this often results in significant accuracy degradation at low precision. K-Means-based quantization, a non-uniform quantization technique, achieves higher accuracy by matching the Gaussian-like distributions of weights and activations in LLMs. However, its non-uniform nature prevents direct execution on low-precision compute units, requiring dequantization and floating-point matrix multiplications (MatMuls) during inference. (2) Activation outliers further hinder effective low-precision WAQ. Offline thresholding methods for outlier detection can lead to significant model performance degradation, while existing online detection techniques introduce substantial runtime overhead. To address the aforementioned challenges and fully unleash the potential of WAQ with K-Means quantization for LLM inference, in this paper, we propose KLLM, a hardware-software co-design framework. KLLM features an index-based computation scheme for efficient execution of MatMuls and nonlinear operations on K-Means-quantized data, which avoids most of the dequantization and full-precision computations. Moreover, KLLM incorporates a novel outlier detection engine, Orizuru, that efficiently identifies the top-$k$ largest and smallest elements in the activation data stream during online inference. Extensive experiments show that, on average, KLLM achieves speedups of 9.67x, 7.03x and energy efficiency improvements of 229.50x, 150.21x compared to the A100 GPU and Atom, respectively.
☆ Data Readiness for Scientific AI at Scale
This paper examines how Data Readiness for AI (DRAI) principles apply to leadership-scale scientific datasets used to train foundation models. We analyze archetypal workflows across four representative domains - climate, nuclear fusion, bio/health, and materials - to identify common preprocessing patterns and domain-specific constraints. We introduce a two-dimensional readiness framework composed of Data Readiness Levels (raw to AI-ready) and Data Processing Stages (ingest to shard), both tailored to high performance computing (HPC) environments. This framework outlines key challenges in transforming scientific data for scalable AI training, emphasizing transformer-based generative models. Together, these dimensions form a conceptual maturity matrix that characterizes scientific data readiness and guides infrastructure development toward standardized, cross-domain support for scalable and reproducible AI for science.
comment: 10 pages, 1 figure, 2 tables
☆ A Smoothing Newton Method for Rank-one Matrix Recovery
We consider the phase retrieval problem, which involves recovering a rank-one positive semidefinite matrix from rank-one measurements. A recently proposed algorithm based on Bures-Wasserstein gradient descent (BWGD) exhibits superlinear convergence, but it is unstable, and existing theory can only prove local linear convergence for higher rank matrix recovery. We resolve this gap by revealing that BWGD implements Newton's method with a nonsmooth and nonconvex objective. We develop a smoothing framework that regularizes the objective, enabling a stable method with rigorous superlinear convergence guarantees. Experiments on synthetic data demonstrate this superior stability while maintaining fast convergence.
comment: 12 pages, 4 figures
☆ Learning to Prune Branches in Modern Tree-Fruit Orchards
Dormant tree pruning is labor-intensive but essential to maintaining modern highly-productive fruit orchards. In this work we present a closed-loop visuomotor controller for robotic pruning. The controller guides the cutter through a cluttered tree environment to reach a specified cut point and ensures the cutters are perpendicular to the branch. We train the controller using a novel orchard simulation that captures the geometric distribution of branches in a target apple orchard configuration. Unlike traditional methods requiring full 3D reconstruction, our controller uses just optical flow images from a wrist-mounted camera. We deploy our learned policy in simulation and the real-world for an example V-Trellis envy tree with zero-shot transfer, achieving a 30% success rate -- approximately half the performance of an oracle planner.
☆ Investigating the Invertibility of Multimodal Latent Spaces: Limitations of Optimization-Based Methods
This paper investigates the inverse capabilities and broader utility of multimodal latent spaces within task-specific AI (Artificial Intelligence) models. While these models excel at their designed forward tasks (e.g., text-to-image generation, audio-to-text transcription), their potential for inverse mappings remains largely unexplored. We propose an optimization-based framework to infer input characteristics from desired outputs, applying it bidirectionally across Text-Image (BLIP, Flux.1-dev) and Text-Audio (Whisper-Large-V3, Chatterbox-TTS) modalities. Our central hypothesis posits that while optimization can guide models towards inverse tasks, their multimodal latent spaces will not consistently support semantically meaningful and perceptually coherent inverse mappings. Experimental results consistently validate this hypothesis. We demonstrate that while optimization can force models to produce outputs that align textually with targets (e.g., a text-to-image model generating an image that an image captioning model describes correctly, or an ASR model transcribing optimized audio accurately), the perceptual quality of these inversions is chaotic and incoherent. Furthermore, when attempting to infer the original semantic input from generative models, the reconstructed latent space embeddings frequently lack semantic interpretability, aligning with nonsensical vocabulary tokens. These findings highlight a critical limitation. multimodal latent spaces, primarily optimized for specific forward tasks, do not inherently possess the structure required for robust and interpretable inverse mappings. Our work underscores the need for further research into developing truly semantically rich and invertible multimodal latent spaces.
☆ Stop Evaluating AI with Human Tests, Develop Principled, AI-specific Tests instead
Large Language Models (LLMs) have achieved remarkable results on a range of standardized tests originally designed to assess human cognitive and psychological traits, such as intelligence and personality. While these results are often interpreted as strong evidence of human-like characteristics in LLMs, this paper argues that such interpretations constitute an ontological error. Human psychological and educational tests are theory-driven measurement instruments, calibrated to a specific human population. Applying these tests to non-human subjects without empirical validation, risks mischaracterizing what is being measured. Furthermore, a growing trend frames AI performance on benchmarks as measurements of traits such as ``intelligence'', despite known issues with validity, data contamination, cultural bias and sensitivity to superficial prompt changes. We argue that interpreting benchmark performance as measurements of human-like traits, lacks sufficient theoretical and empirical justification. This leads to our position: Stop Evaluating AI with Human Tests, Develop Principled, AI-specific Tests instead. We call for the development of principled, AI-specific evaluation frameworks tailored to AI systems. Such frameworks might build on existing frameworks for constructing and validating psychometrics tests, or could be created entirely from scratch to fit the unique context of AI.
Planning for Cooler Cities: A Multimodal AI Framework for Predicting and Mitigating Urban Heat Stress through Urban Landscape Transformation
As extreme heat events intensify due to climate change and urbanization, cities face increasing challenges in mitigating outdoor heat stress. While traditional physical models such as SOLWEIG and ENVI-met provide detailed assessments of human-perceived heat exposure, their computational demands limit scalability for city-wide planning. In this study, we propose GSM-UTCI, a multimodal deep learning framework designed to predict daytime average Universal Thermal Climate Index (UTCI) at 1-meter hyperlocal resolution. The model fuses surface morphology (nDSM), high-resolution land cover data, and hourly meteorological conditions using a feature-wise linear modulation (FiLM) architecture that dynamically conditions spatial features on atmospheric context. Trained on SOLWEIG-derived UTCI maps, GSM-UTCI achieves near-physical accuracy, with an R2 of 0.9151 and a mean absolute error (MAE) of 0.41{\deg}C, while reducing inference time from hours to under five minutes for an entire city. To demonstrate its planning relevance, we apply GSM-UTCI to simulate systematic landscape transformation scenarios in Philadelphia, replacing bare earth, grass, and impervious surfaces with tree canopy. Results show spatially heterogeneous but consistently strong cooling effects, with impervious-to-tree conversion producing the highest aggregated benefit (-4.18{\deg}C average change in UTCI across 270.7 km2). Tract-level bivariate analysis further reveals strong alignment between thermal reduction potential and land cover proportions. These findings underscore the utility of GSM-UTCI as a scalable, fine-grained decision support tool for urban climate adaptation, enabling scenario-based evaluation of greening strategies across diverse urban environments.
☆ Comparing Normalizing Flows with Kernel Density Estimation in Estimating Risk of Automated Driving Systems
The development of safety validation methods is essential for the safe deployment and operation of Automated Driving Systems (ADSs). One of the goals of safety validation is to prospectively evaluate the risk of an ADS dealing with real-world traffic. Scenario-based assessment is a widely-used approach, where test cases are derived from real-world driving data. To allow for a quantitative analysis of the system performance, the exposure of the scenarios must be accurately estimated. The exposure of scenarios at parameter level is expressed using a Probability Density Function (PDF). However, assumptions about the PDF, such as parameter independence, can introduce errors, while avoiding assumptions often leads to oversimplified models with limited parameters to mitigate the curse of dimensionality. This paper considers the use of Normalizing Flows (NF) for estimating the PDF of the parameters. NF are a class of generative models that transform a simple base distribution into a complex one using a sequence of invertible and differentiable mappings, enabling flexible, high-dimensional density estimation without restrictive assumptions on the PDF's shape. We demonstrate the effectiveness of NF in quantifying risk and risk uncertainty of an ADS, comparing its performance with Kernel Density Estimation (KDE), a traditional method for non-parametric PDF estimation. While NF require more computational resources compared to KDE, NF is less sensitive to the curse of dimensionality. As a result, NF can improve risk uncertainty estimation, offering a more precise assessment of an ADS's safety. This work illustrates the potential of NF in scenario-based safety. Future work involves experimenting more with using NF for scenario generation and optimizing the NF architecture, transformation types, and training hyperparameters to further enhance their applicability.
comment: Accepted for publication in proceedings of the 2025 IEEE International Automated Vehicle Validation Conference
☆ Theoretical Analysis of Relative Errors in Gradient Computations for Adversarial Attacks with CE Loss
Gradient-based adversarial attacks using the Cross-Entropy (CE) loss often suffer from overestimation due to relative errors in gradient computation induced by floating-point arithmetic. This paper provides a rigorous theoretical analysis of these errors, conducting the first comprehensive study of floating-point computation errors in gradient-based attacks across four distinct scenarios: (i) unsuccessful untargeted attacks, (ii) successful untargeted attacks, (iii) unsuccessful targeted attacks, and (iv) successful targeted attacks. We establish theoretical foundations characterizing the behavior of relative numerical errors under different attack conditions, revealing previously unknown patterns in gradient computation instability, and identify floating-point underflow and rounding as key contributors. Building on this insight, we propose the Theoretical MIFPE (T-MIFPE) loss function, which incorporates an optimal scaling factor $T = t^*$ to minimize the impact of floating-point errors, thereby enhancing the accuracy of gradient computation in adversarial attacks. Extensive experiments on the MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate that T-MIFPE outperforms existing loss functions, including CE, C\&W, DLR, and MIFPE, in terms of attack potency and robustness evaluation accuracy.
☆ Multimodal Late Fusion Model for Problem-Solving Strategy Classification in a Machine Learning Game
Machine learning models are widely used to support stealth assessment in digital learning environments. Existing approaches typically rely on abstracted gameplay log data, which may overlook subtle behavioral cues linked to learners' cognitive strategies. This paper proposes a multimodal late fusion model that integrates screencast-based visual data and structured in-game action sequences to classify students' problem-solving strategies. In a pilot study with secondary school students (N=149) playing a multitouch educational game, the fusion model outperformed unimodal baseline models, increasing classification accuracy by over 15%. Results highlight the potential of multimodal ML for strategy-sensitive assessment and adaptive support in interactive learning contexts.
comment: This is the author's version of a paper accepted for publication at the 2025 European Conference on Technology Enhanced Learning (EC-TEL 2025). The final authenticated version will be published in the Lecture Notes in Computer Science (LNCS) series by Springer and will be available via SpringerLink
☆ Spec-VLA: Speculative Decoding for Vision-Language-Action Models with Relaxed Acceptance
Vision-Language-Action (VLA) models have made substantial progress by leveraging the robust capabilities of Visual Language Models (VLMs). However, VLMs' significant parameter size and autoregressive (AR) decoding nature impose considerable computational demands on VLA models. While Speculative Decoding (SD) has shown efficacy in accelerating Large Language Models (LLMs) by incorporating efficient drafting and parallel verification, allowing multiple tokens to be generated in one forward pass, its application to VLA models remains unexplored. This work introduces Spec-VLA, an SD framework designed to accelerate VLA models. Due to the difficulty of the action prediction task and the greedy decoding mechanism of the VLA models, the direct application of the advanced SD framework to the VLA prediction task yields a minor speed improvement. To boost the generation speed, we propose an effective mechanism to relax acceptance utilizing the relative distances represented by the action tokens of the VLA model. Empirical results across diverse test scenarios affirm the effectiveness of the Spec-VLA framework, and further analysis substantiates the impact of our proposed strategies, which enhance the acceptance length by 44%, achieving 1.42 times speedup compared with the OpenVLA baseline, without compromising the success rate. The success of the Spec-VLA framework highlights the potential for broader application of speculative execution in VLA prediction scenarios.
comment: 12 pages, 5 figures, under review
☆ FedCVD++: Communication-Efficient Federated Learning for Cardiovascular Risk Prediction with Parametric and Non-Parametric Model Optimization
Cardiovascular diseases (CVD) cause over 17 million deaths annually worldwide, highlighting the urgent need for privacy-preserving predictive systems. We introduce FedCVD++, an enhanced federated learning (FL) framework that integrates both parametric models (logistic regression, SVM, neural networks) and non-parametric models (Random Forest, XGBoost) for coronary heart disease risk prediction. To address key FL challenges, we propose: (1) tree-subset sampling that reduces Random Forest communication overhead by 70%, (2) XGBoost-based feature extraction enabling lightweight federated ensembles, and (3) federated SMOTE synchronization for resolving cross-institutional class imbalance. Evaluated on the Framingham dataset (4,238 records), FedCVD++ achieves state-of-the-art results: federated XGBoost (F1 = 0.80) surpasses its centralized counterpart (F1 = 0.78), and federated Random Forest (F1 = 0.81) matches non-federated performance. Additionally, our communication-efficient strategies reduce bandwidth consumption by 3.2X while preserving 95% accuracy. Compared to existing FL frameworks, FedCVD++ delivers up to 15% higher F1-scores and superior scalability for multi-institutional deployment. This work represents the first practical integration of non-parametric models into federated healthcare systems, providing a privacy-preserving solution validated under real-world clinical constraints.
☆ MINR: Implicit Neural Representations with Masked Image Modelling ICCV 2023
Self-supervised learning methods like masked autoencoders (MAE) have shown significant promise in learning robust feature representations, particularly in image reconstruction-based pretraining task. However, their performance is often strongly dependent on the masking strategies used during training and can degrade when applied to out-of-distribution data. To address these limitations, we introduce the masked implicit neural representations (MINR) framework that synergizes implicit neural representations with masked image modeling. MINR learns a continuous function to represent images, enabling more robust and generalizable reconstructions irrespective of masking strategies. Our experiments demonstrate that MINR not only outperforms MAE in in-domain scenarios but also in out-of-distribution settings, while reducing model complexity. The versatility of MINR extends to various self-supervised learning applications, confirming its utility as a robust and efficient alternative to existing frameworks.
comment: Accepted to the ICCV 2023 workshop on Out-of-Distribution Generalization in Computer Vision
☆ Gems: Group Emotion Profiling Through Multimodal Situational Understanding
Understanding individual, group and event level emotions along with contextual information is crucial for analyzing a multi-person social situation. To achieve this, we frame emotion comprehension as the task of predicting fine-grained individual emotion to coarse grained group and event level emotion. We introduce GEMS that leverages a multimodal swin-transformer and S3Attention based architecture, which processes an input scene, group members, and context information to generate joint predictions. Existing multi-person emotion related benchmarks mainly focus on atomic interactions primarily based on emotion perception over time and group level. To this end, we extend and propose VGAF-GEMS to provide more fine grained and holistic analysis on top of existing group level annotation of VGAF dataset. GEMS aims to predict basic discrete and continuous emotions (including valence and arousal) as well as individual, group and event level perceived emotions. Our benchmarking effort links individual, group and situational emotional responses holistically. The quantitative and qualitative comparisons with adapted state-of-the-art models demonstrate the effectiveness of GEMS framework on VGAF-GEMS benchmarking. We believe that it will pave the way of further research. The code and data is available at: https://github.com/katariaak579/GEMS
☆ PATENTWRITER: A Benchmarking Study for Patent Drafting with LLMs
Large language models (LLMs) have emerged as transformative approaches in several important fields. This paper aims for a paradigm shift for patent writing by leveraging LLMs to overcome the tedious patent-filing process. In this work, we present PATENTWRITER, the first unified benchmarking framework for evaluating LLMs in patent abstract generation. Given the first claim of a patent, we evaluate six leading LLMs -- including GPT-4 and LLaMA-3 -- under a consistent setup spanning zero-shot, few-shot, and chain-of-thought prompting strategies to generate the abstract of the patent. Our benchmark PATENTWRITER goes beyond surface-level evaluation: we systematically assess the output quality using a comprehensive suite of metrics -- standard NLP measures (e.g., BLEU, ROUGE, BERTScore), robustness under three types of input perturbations, and applicability in two downstream patent classification and retrieval tasks. We also conduct stylistic analysis to assess length, readability, and tone. Experimental results show that modern LLMs can generate high-fidelity and stylistically appropriate patent abstracts, often surpassing domain-specific baselines. Our code and dataset are open-sourced to support reproducibility and future research.
☆ Multi-Hazard Early Warning Systems for Agriculture with Featural-Temporal Explanations
Climate extremes present escalating risks to agriculture intensifying the need for reliable multi-hazard early warning systems (EWS). The situation is evolving due to climate change and hence such systems should have the intelligent to continue to learn from recent climate behaviours. However, traditional single-hazard forecasting methods fall short in capturing complex interactions among concurrent climatic events. To address this deficiency, in this paper, we combine sequential deep learning models and advanced Explainable Artificial Intelligence (XAI) techniques to introduce a multi-hazard forecasting framework for agriculture. In our experiments, we utilize meteorological data from four prominent agricultural regions in the United States (between 2010 and 2023) to validate the predictive accuracy of our framework on multiple severe event types, which are extreme cold, floods, frost, hail, heatwaves, and heavy rainfall, with tailored models for each area. The framework uniquely integrates attention mechanisms with TimeSHAP (a recurrent XAI explainer for time series) to provide comprehensive temporal explanations revealing not only which climatic features are influential but precisely when their impacts occur. Our results demonstrate strong predictive accuracy, particularly with the BiLSTM architecture, and highlight the system's capacity to inform nuanced, proactive risk management strategies. This research significantly advances the explainability and applicability of multi-hazard EWS, fostering interdisciplinary trust and effective decision-making process for climate risk management in the agricultural industry.
comment: Pre-print v0.8 2025-07-30
☆ Set Invariance with Probability One for Controlled Diffusion: Score-based Approach
Given a controlled diffusion and a connected, bounded, Lipschitz set, when is it possible to guarantee controlled set invariance with probability one? In this work, we answer this question by deriving the necessary and sufficient conditions for the same in terms of gradients of certain log-likelihoods -- a.k.a. score vector fields -- for two cases: given finite time horizon and infinite time horizon. The deduced conditions comprise a score-based test that provably certifies or falsifies the existence of Markovian controllers for given controlled set invariance problem data. Our results are constructive in the sense when the problem data passes the proposed test, we characterize all controllers guaranteeing the desired set invariance. When the problem data fails the proposed test, there does not exist a controller that can accomplish the desired set invariance with probability one. The computation in the proposed tests involve solving certain Dirichlet boundary value problems, and in the finite horizon case, can also account for additional constraint of hitting a target subset at the terminal time. We illustrate the results using several semi-analytical and numerical examples.
☆ Improving Generalization Ability of Robotic Imitation Learning by Resolving Causal Confusion in Observations
Recent developments in imitation learning have considerably advanced robotic manipulation. However, current techniques in imitation learning can suffer from poor generalization, limiting performance even under relatively minor domain shifts. In this work, we aim to enhance the generalization capabilities of complex imitation learning algorithms to handle unpredictable changes from the training environments to deployment environments. To avoid confusion caused by observations that are not relevant to the target task, we propose to explicitly learn the causal relationship between observation components and expert actions, employing a framework similar to [6], where a causal structural function is learned by intervention on the imitation learning policy. Disentangling the feature representation from image input as in [6] is hard to satisfy in complex imitation learning process in robotic manipulation, we theoretically clarify that this requirement is not necessary in causal relationship learning. Therefore, we propose a simple causal structure learning framework that can be easily embedded in recent imitation learning architectures, such as the Action Chunking Transformer [31]. We demonstrate our approach using a simulation of the ALOHA [31] bimanual robot arms in Mujoco, and show that the method can considerably mitigate the generalization problem of existing complex imitation learning algorithms.
comment: 13 pages
☆ Prediction of acoustic field in 1-D uniform duct with varying mean flow and temperature using neural networks
Neural networks constrained by the physical laws emerged as an alternate numerical tool. In this paper, the governing equation that represents the propagation of sound inside a one-dimensional duct carrying a heterogeneous medium is derived. The problem is converted into an unconstrained optimization problem and solved using neural networks. Both the acoustic state variables: acoustic pressure and particle velocity are predicted and validated with the traditional Runge-Kutta solver. The effect of the temperature gradient on the acoustic field is studied. Utilization of machine learning techniques such as transfer learning and automatic differentiation for acoustic applications is demonstrated.
comment: 22 pages
☆ MSQ: Memory-Efficient Bit Sparsification Quantization
As deep neural networks (DNNs) see increased deployment on mobile and edge devices, optimizing model efficiency has become crucial. Mixed-precision quantization is widely favored, as it offers a superior balance between efficiency and accuracy compared to uniform quantization. However, finding the optimal precision for each layer is challenging. Recent studies utilizing bit-level sparsity have shown promise, yet they often introduce substantial training complexity and high GPU memory requirements. In this paper, we propose Memory-Efficient Bit Sparsification Quantization (MSQ), a novel approach that addresses these limitations. MSQ applies a round-clamp quantizer to enable differentiable computation of the least significant bits (LSBs) from model weights. It further employs regularization to induce sparsity in these LSBs, enabling effective precision reduction without explicit bit-level parameter splitting. Additionally, MSQ incorporates Hessian information, allowing the simultaneous pruning of multiple LSBs to further enhance training efficiency. Experimental results show that MSQ achieves up to 8.00x reduction in trainable parameters and up to 86% reduction in training time compared to previous bit-level quantization, while maintaining competitive accuracy and compression rates. This makes it a practical solution for training efficient DNNs on resource-constrained devices.
♻ ☆ Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline
Pain is a complex condition affecting a large portion of the population. Accurate and consistent evaluation is essential for individuals experiencing pain, and it supports the development of effective and advanced management strategies. Automatic pain assessment systems provide continuous monitoring and support clinical decision-making, aiming to reduce distress and prevent functional decline. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed method introduces a pipeline that leverages respiration as the input signal and incorporates a highly efficient cross-attention transformer alongside a multi-windowing strategy. Extensive experiments demonstrate that respiration is a valuable physiological modality for pain assessment. Moreover, experiments revealed that compact and efficient models, when properly optimized, can achieve strong performance, often surpassing larger counterparts. The proposed multi-window approach effectively captures both short-term and long-term features, as well as global characteristics, thereby enhancing the model's representational capacity.
comment: arXiv admin note: text overlap with arXiv:2507.21881, arXiv:2507.21875
♻ ☆ TempRe: Template generation for single and direct multi-step retrosynthesis
Retrosynthesis planning remains a central challenge in molecular discovery due to the vast and complex chemical reaction space. While traditional template-based methods offer tractability, they suffer from poor scalability and limited generalization, and template-free generative approaches risk generating invalid reactions. In this work, we propose TempRe, a generative framework that reformulates template-based approaches as sequence generation, enabling scalable, flexible, and chemically plausible retrosynthesis. We evaluated TempRe across single-step and multi-step retrosynthesis tasks, demonstrating its superiority over both template classification and SMILES-based generation methods. On the PaRoutes multi-step benchmark, TempRe achieves strong top-k route accuracy. Furthermore, we extend TempRe to direct multi-step synthesis route generation, providing a lightweight and efficient alternative to conventional single-step and search-based approaches. These results highlight the potential of template generative modeling as a powerful paradigm in computer-aided synthesis planning.
♻ ☆ Wavelet Meets Adam: Compressing Gradients for Memory-Efficient Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
♻ ☆ ($\boldsymbolθ_l, \boldsymbolθ_u$)-Parametric Multi-Task Optimization: Joint Search in Solution and Infinite Task Spaces
Multi-task optimization is typically characterized by a fixed and finite set of tasks. The present paper relaxes this condition by considering a non-fixed and potentially infinite set of optimization tasks defined in a parameterized, continuous and bounded task space. We refer to this unique problem setting as parametric multi-task optimization (PMTO). Assuming the bounds of the task parameters to be ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$), a novel ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$)-PMTO algorithm is crafted to operate in two complementary modes. In an offline optimization mode, a joint search over solution and task spaces is carried out with the creation of two approximation models: (1) for mapping points in a unified solution space to the objective spaces of all tasks, which provably accelerates convergence by acting as a conduit for inter-task knowledge transfers, and (2) for probabilistically mapping tasks to their corresponding solutions, which facilitates evolutionary exploration of under-explored regions of the task space. In the online mode, the derived models enable direct optimization of any task within the bounds without the need to search from scratch. This outcome is validated on both synthetic test problems and practical case studies, with the significant real-world applicability of PMTO shown towards fast reconfiguration of robot controllers under changing task conditions. The potential of PMTO to vastly speedup the search for solutions to minimax optimization problems is also demonstrated through an example in robust engineering design.
♻ ☆ BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems
Novelty search (NS) refers to a class of exploration algorithms that seek to uncover diverse system behaviors through simulations or experiments. Such diversity is central to many AI-driven discovery and design tasks, including material and drug development, neural architecture search, and reinforcement learning. However, existing NS methods typically rely on evolutionary strategies and other meta-heuristics that require dense sampling of the input space, making them impractical for expensive black-box systems. In this work, we introduce BEACON, a sample-efficient, Bayesian optimization-inspired approach to NS that is tailored for settings where the input-to-behavior relationship is opaque and costly to evaluate. BEACON models this mapping using multi-output Gaussian processes (MOGPs) and selects new inputs by maximizing a novelty metric computed from posterior samples of the MOGP, effectively balancing the exploration-exploitation trade-off. By leveraging recent advances in posterior sampling and high-dimensional GP modeling, our method remains scalable to large input spaces and datasets. We evaluate BEACON across ten synthetic benchmarks and eight real-world tasks, including the design of diverse materials for clean energy applications. Our results show that BEACON significantly outperforms existing NS baselines, consistently discovering a broader set of behaviors under tight evaluation budgets.
♻ ☆ SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
♻ ☆ FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.
♻ ☆ Towards Federated Learning with On-device Training and Communication in 8-bit Floating Point
Recent work has shown that 8-bit floating point (FP8) can be used for efficiently training neural networks with reduced computational cost compared to training in FP32/FP16. In this work, we investigate the use of FP8 training in a federated learning context. This approach brings not only the usual benefits of FP8 which are desirable for on-device training at the edge, but also reduces client-server communication costs due to significant weight compression. We present a novel method for combining FP8 client training while maintaining a global FP32 server model and provide convergence analysis. Experiments with various machine learning models and datasets show that our method consistently yields communication reductions of at least 2.9x across a variety of tasks and models compared to an FP32 baseline to achieve the same trained model accuracy.
comment: extended version
♻ ☆ Utilizing Evolution Strategies to Train Transformers in Reinforcement Learning
We explore the capability of evolution strategies to train an agent with a policy based on a transformer architecture in a reinforcement learning setting. We performed experiments using OpenAI's highly parallelizable evolution strategy to train Decision Transformer in the MuJoCo Humanoid locomotion environment and in the environment of Atari games, testing the ability of this black-box optimization technique to train even such relatively large and complicated models (compared to those previously tested in the literature). The examined evolution strategy proved to be, in general, capable of achieving strong results and managed to produce high-performing agents, showcasing evolution's ability to tackle the training of even such complex models.
♻ ☆ Human-Level Competitive Pokémon via Scalable Offline Reinforcement Learning with Transformers
Competitive Pok\'emon Singles (CPS) is a popular strategy game where players learn to exploit their opponent based on imperfect information in battles that can last more than one hundred stochastic turns. AI research in CPS has been led by heuristic tree search and online self-play, but the game may also create a platform to study adaptive policies trained offline on large datasets. We develop a pipeline to reconstruct the first-person perspective of an agent from logs saved from the third-person perspective of a spectator, thereby unlocking a dataset of real human battles spanning more than a decade that grows larger every day. This dataset enables a black-box approach where we train large sequence models to adapt to their opponent based solely on their input trajectory while selecting moves without explicit search of any kind. We study a progression from imitation learning to offline RL and offline fine-tuning on self-play data in the hardcore competitive setting of Pok\'emon's four oldest (and most partially observed) game generations. The resulting agents outperform a recent LLM Agent approach and a strong heuristic search engine. While playing anonymously in online battles against humans, our best agents climb to rankings inside the top 10% of active players. All agent checkpoints, training details, datasets, and baselines are available at https://metamon.tech.
comment: Reinforcement Learning Conference 2025
♻ ☆ Lightweight Online Adaption for Time Series Foundation Model Forecasts ICML 2025
Foundation models (FMs) have emerged as a promising approach for time series forecasting. While effective, FMs typically remain fixed during deployment due to the high computational costs of learning them online. Consequently, deployed FMs fail to adapt their forecasts to current data characteristics, despite the availability of online feedback from newly arriving data. This raises the question of whether FM performance can be enhanced by the efficient usage of this feedback. We propose ELF to answer this question. ELF is a lightweight mechanism for the online adaption of FM forecasts in response to online feedback. ELF consists of two parts: a) the ELF-Forecaster which is used to learn the current data distribution; and b) the ELF-Weighter which is used to combine the forecasts of the FM and the ELF-Forecaster. We evaluate the performance of ELF in conjunction with several recent FMs across a suite of standard time series datasets. In all of our experiments we find that using ELF improves performance. This work demonstrates how efficient usage of online feedback can be used to improve FM forecasts.
comment: 9 pages, Published at ICML 2025
♻ ☆ Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving
Vision-language models (VLMs) have become a promising approach to enhancing perception and decision-making in autonomous driving. The gap remains in applying VLMs to understand complex scenarios interacting with pedestrians and efficient vehicle deployment. In this paper, we propose a knowledge distillation method that transfers knowledge from large-scale vision-language foundation models to efficient vision networks, and we apply it to pedestrian behavior prediction and scene understanding tasks, achieving promising results in generating more diverse and comprehensive semantic attributes. We also utilize multiple pre-trained models and ensemble techniques to boost the model's performance. We further examined the effectiveness of the model after knowledge distillation; the results show significant metric improvements in open-vocabulary perception and trajectory prediction tasks, which can potentially enhance the end-to-end performance of autonomous driving.
♻ ☆ Curvature Dynamic Black-box Attack: revisiting adversarial robustness via dynamic curvature estimation
Adversarial attack reveals the vulnerability of deep learning models. For about a decade, countless attack and defense methods have been proposed, leading to robustified classifiers and better understanding of models. Among these methods, curvature-based approaches have attracted attention because it is assumed that high curvature may give rise to rough decision boundary. However, the most commonly used \textit{curvature} is the curvature of loss function, scores or other parameters from within the model as opposed to decision boundary curvature, since the former can be relatively easily formed using second order derivative. In this paper, we propose a new query-efficient method, dynamic curvature estimation(DCE), to estimate the decision boundary curvature in a black-box setting. Our approach is based on CGBA, a black-box adversarial attack. By performing DCE on a wide range of classifiers, we discovered, statistically, a connection between decision boundary curvature and adversarial robustness. We also propose a new attack method, curvature dynamic black-box attack(CDBA) with improved performance using the dynamically estimated curvature.
comment: This article contains several flaws
♻ ☆ The Geometry of Queries: Query-Based Innovations in Retrieval-Augmented Generation for Healthcare QA
Deploying Large Language Models (LLMs) for healthcare question answering requires robust methods to ensure accuracy and reliability. This work introduces Query-Based Retrieval Augmented Generation (QB-RAG), a framework for enhancing Retrieval-Augmented Generation (RAG) systems in healthcare question-answering by pre-aligning user queries with a database of curated, answerable questions derived from healthcare content. A key component of QB-RAG is an LLM-based filtering mechanism that ensures that only relevant and answerable questions are included in the database, enabling reliable reference query generation at scale. We provide theoretical motivation for QB-RAG, conduct a comparative analysis of existing retrieval enhancement techniques, and introduce a generalizable, comprehensive evaluation framework that assesses both the retrieval effectiveness and the quality of the generated response based on faithfulness, relevance, and adherence to the guideline. Our empirical evaluation on a healthcare data set demonstrates the superior performance of QB-RAG compared to existing retrieval methods, highlighting its practical value in building trustworthy digital health applications for health question-answering.
comment: 27 pages
♻ ☆ Repetition Makes Perfect: Recurrent Graph Neural Networks Match Message Passing Limit
We precisely characterize the expressivity of computable Recurrent Graph Neural Networks (recurrent GNNs). We prove that recurrent GNNs with finite-precision parameters, sum aggregation, and ReLU activation, can compute any graph algorithm that respects the natural message-passing invariance induced by the Color Refinement (or Weisfeiler-Leman) algorithm. While it is well known that the expressive power of GNNs is limited by this invariance [Morris et al., AAAI 2019; Xu et al., ICLR 2019], we establish that recurrent GNNs can actually match this limit. This is in contrast to non-recurrent GNNs, which have the power of Weisfeiler-Leman only in a very weak, "non-uniform", sense where each graph size requires a different GNN to compute with. Our construction introduces only a polynomial overhead in both time and space. Furthermore, we show that by incorporating random initialization, for connected graphs recurrent GNNs can express all graph algorithms. In particular, any polynomial-time graph algorithm can be emulated on connected graphs in polynomial time by a recurrent GNN with random initialization.
♻ ☆ Mitigating loss of variance in ensemble data assimilation: machine learning-based and distance-free localization
We propose two new methods based/inspired by machine learning for tabular data and distance-free localization to enhance the covariance estimations in an ensemble data assimilation. The main goal is to enhance the data assimilation results by mitigating loss of variance due to sampling errors. We also analyze the suitability of several machine learning models and the balance between accuracy and computational cost of the covariance estimations. We introduce two distance-free localization techniques leveraging machine learning methods specifically tailored for tabular data. The methods are integrated into the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) framework. The results show that the proposed localizations improve covariance accuracy and enhance data assimilation and uncertainty quantification results. We observe reduced variance loss for the input variables using the proposed methods. Furthermore, we compare several machine learning models, assessing their suitability for the problem in terms of computational cost, and quality of the covariance estimation and data match. The influence of ensemble size is also investigated, providing insights into balancing accuracy and computational efficiency. Our findings demonstrate that certain machine learning models are more suitable for this problem. This study introduces two novel methods that mitigate variance loss for model parameters in ensemble-based data assimilation, offering practical solutions that are easy to implement and do not require any additional numerical simulation or hyperparameter tuning.
♻ ☆ Towards the Law of Capacity Gap in Distilling Language Models ACL 2025
Language model (LM) distillation aims at distilling the knowledge in a large teacher LM to a small student one. As a critical issue facing LM distillation, a superior student often arises from a teacher of a relatively small scale instead of a larger one, especially in the presence of substantial capacity gap between the teacher and student. This issue, often referred to as the \textit{curse of capacity gap}, suggests that there is likely an optimal teacher yielding the best-performing student along the scaling course of the teacher. Consequently, distillation trials on teachers of a wide range of scales are called for to determine the optimal teacher, which becomes computationally intensive in the context of large LMs (LLMs). This paper addresses this critical bottleneck by providing the \textit{law of capacity gap} inducted from a preliminary study on distilling a broad range of small-scale (<3B) LMs, where the optimal teacher consistently scales linearly with the student scale across different model and data scales. By extending the law to LLM distillation on a larger scale (7B), we succeed in obtaining versatile LLMs that outperform a wide array of competitors.
comment: 32 pages, 10 figures, 15 tables, accepted to ACL 2025. Code and checkpoints are available at https://github.com/GeneZC/MiniMA
♻ ☆ Effective Non-Random Extreme Learning Machine
The Extreme Learning Machine (ELM) is a growing statistical technique widely applied to regression problems. In essence, ELMs are single-layer neural networks where the hidden layer weights are randomly sampled from a specific distribution, while the output layer weights are learned from the data. Two of the key challenges with this approach are the architecture design, specifically determining the optimal number of neurons in the hidden layer, and the method's sensitivity to the random initialization of hidden layer weights. This paper introduces a new and enhanced learning algorithm for regression tasks, the Effective Non-Random ELM (ENR-ELM), which simplifies the architecture design and eliminates the need for random hidden layer weight selection. The proposed method incorporates concepts from signal processing, such as basis functions and projections, into the ELM framework. We introduce two versions of the ENR-ELM: the approximated ENR-ELM and the incremental ENR-ELM. Experimental results on both synthetic and real datasets demonstrate that our method overcomes the problems of traditional ELM while maintaining comparable predictive performance.
comment: To appear in Neural Computing and Applications (online 29 July 2025)
♻ ☆ The Effect of Stochasticity in Score-Based Diffusion Sampling: a KL Divergence Analysis
Sampling in score-based diffusion models can be performed by solving either a reverse-time stochastic differential equation (SDE) parameterized by an arbitrary time-dependent stochasticity parameter or a probability flow ODE, corresponding to the stochasticity parameter set to zero. In this work, we study the effect of this stochasticity on the generation process through bounds on the Kullback-Leibler (KL) divergence, complementing the analysis with numerical and analytical examples. Our main results apply to linear forward SDEs with additive noise and Lipschitz-continuous score functions, and quantify how errors from the prior distribution and score approximation propagate under different choices of the stochasticity parameter. The theoretical bounds are derived using log-Sobolev inequalities for the marginals of the forward process, which enable a more effective control of the KL divergence decay along sampling. For exact score functions, we find that stochasticity acts as an error-correcting mechanism, decreasing KL divergence along the sampling trajectory. For an approximate score function, there is a trade-off between error correction and score error amplification, so that stochasticity can either improve or worsen the performance, depending on the structure of the score error. Numerical experiments on simple datasets and a fully analytical example are included to illustrate and enlighten the theoretical results.
comment: 27 pages, 16 figures
♻ ☆ Addressing Representation Collapse in Vector Quantized Models with One Linear Layer ICCV2025
Vector Quantization (VQ) is essential for discretizing continuous representations in unsupervised learning but suffers from representation collapse, causing low codebook utilization and limiting scalability. Existing solutions often rely on complex optimizations or reduce latent dimensionality, which compromises model capacity and fails to fully solve the problem. We identify the root cause as disjoint codebook optimization, where only a few code vectors are updated via gradient descent. To fix this, we propose \textbf{Sim}ple\textbf{VQ}, which reparameterizes code vectors through a learnable linear transformation layer over a latent basis, optimizing the \textit{entire linear space} rather than nearest \textit{individual code vectors}. Although the multiplication of two linear matrices is equivalent to applying a single linear layer, this simple approach effectively prevents collapse. Extensive experiments on image and audio tasks demonstrate that SimVQ improves codebook usage, is easy to implement, and generalizes well across modalities and architectures.
comment: Accepted at ICCV2025
♻ ☆ Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning
Synthetic verification techniques such as generating test cases and reward modelling are common ways to enhance the coding capabilities of large language models (LLM) beyond predefined tests. Additionally, code verification has recently found great success as a critical component in improving reasoning capability of LLMs via reinforcement learning. In this paper, we propose an approach which can transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. We also propose multiple metrics to measure different aspects of the synthetic verifiers with the proposed benchmarks. By employing the proposed approach, we release four new benchmarks (HE-R, HE-R+, MBPP-R, and MBPP-R+), and analyzed synthetic verification methods with standard, reasoning-based, and reward-based LLMs. Our experiments show that reasoning can significantly improve test case generation and that scaling the number of test cases enhances the verification accuracy.
comment: COLM 2025
♻ ☆ RocketStack: Level-aware deep recursive ensemble learning framework with adaptive feature fusion and model pruning dynamics
Ensemble learning remains a cornerstone of machine learning, with stacking used to integrate predictions from multiple base learners through a meta-model. However, deep stacking remains rare, as most designs prioritize horizontal diversity over recursive depth due to model complexity, feature redundancy, and computational burden. To address these challenges, RocketStack, a level-aware recursive ensemble framework, is introduced and explored up to ten stacking levels, extending beyond prior architectures. The framework incrementally prunes weaker learners at each level, enabling deeper stacking without excessive complexity. To mitigate early performance saturation, mild Gaussian noise is added to out-of-fold (OOF) scores before pruning, and compared against strict OOF pruning. Further both per-level and periodic feature compressions are explored using attention-based selection, Simple, Fast, Efficient (SFE) filter, and autoencoders. Across 33 datasets (23 binary, 10 multi-class), linear-trend tests confirmed rising accuracy with depth in most variants, and the top performing meta-model at each level increasingly outperformed the strongest standalone ensemble. In the binary subset, periodic SFE with mild OOF-score randomization reached 97.08% at level 10, 5.14% above the strict-pruning configuration and cut runtime by 10.5% relative to no compression. In the multi-class subset, periodic attention selection reached 98.60% at level 10, exceeding the strongest baseline by 6.11%, while reducing runtime by 56.1% and feature dimensionality by 74% compared to no compression. These findings highlight mild randomization as an effective regularizer and periodic compression as a stabilizer. Echoing the design of multistage rockets in aerospace (prune, compress, propel) RocketStack achieves deep recursive ensembling with tractable complexity.
comment: 30 pages, 1 graphical abstract, 7 figures, 9 tables, 2 supplementary figures
♻ ☆ FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation ICCV 2025
In this paper, we challenge the conventional practice in Open-Vocabulary Semantic Segmentation (OVSS) of using averaged class-wise text embeddings, which are typically obtained by encoding each class name with multiple templates (e.g., a photo of , a sketch of a ). We investigate the impact of templates for OVSS, and find that for each class, there exist single-template classifiers--which we refer to as class-experts--that significantly outperform the conventional averaged classifier. First, to identify these class-experts, we introduce a novel approach that estimates them without any labeled data or training. By leveraging the class-wise prediction entropy of single-template classifiers, we select those yielding the lowest entropy as the most reliable class-experts. Second, we combine the outputs of class-experts in a new fusion process. Our plug-and-play method, coined FLOSS, is orthogonal and complementary to existing OVSS methods, offering an improvement without the need for additional labels or training. Extensive experiments show that FLOSS consistently enhances state-of-the-art OVSS models, generalizes well across datasets with different distribution shifts, and delivers substantial improvements in low-data scenarios where only a few unlabeled images are available. Our code is available at https://github.com/yasserben/FLOSS .
comment: ICCV 2025; Project Page: https://yasserben.github.io/FLOSS/
♻ ☆ Enhancing Ultra-Low-Bit Quantization of Large Language Models Through Saliency-Aware Partial Retraining
The growing use of large language models has raised environmental and economic concerns about their intensity of resource usage during inference. Serving these models to each user requires substantial energy and water for cooling. Model compression techniques like quantization can shrink large language models and make them more resource efficient at the cost of potential performance degradation. Quantization methods compress model size through replacing their high-precision parameters by quantized values of lower precision. Among existing methods, the ApiQ method achieves superior accuracy preservation at minimal memory and time overhead. We investigate two ideas to extend performance in ultra-low-bit quantization beyond ApiQ's level. First, we look into combining existing quantization-aware training techniques with ApiQ's partial training. We show that this does not outperform the baseline ApiQ method with limited training data and frozen weights. This leads to two key insights: (1) The substantial representational capacity that is gained through full retraining is unlikely to be feasible through partial training. (2) This gain may depend on using a large and diverse dataset in quantization-aware training. Second, through a novel approach informed by the two insights, we propose an ultra-low-bit quantization method that builds upon ApiQ and extends its performance without the need for full retraining. This publicly available method relies on a saliency-aware regularization term that prioritizes preserving the most impactful parameters during quantization. Our experiments on LLaMA 7B and 13B benchmarks demonstrate that our method reduces the ApiQ's accuracy degradation by 10.85% and 7.54% respectively. A Python implementation of the proposed quantization method is publicly available on GitHub https://github.com/TokuyuSou/ULB-SAPR.
comment: This is a post-peer-review accepted manuscript from the proceedings of the 22nd International Conference on Modeling Decisions for Artificial Intelligence (MDAI'25). The publisher authenticated version and full citation details are available on Springer's website (LNAI 15957). https://doi.org/10.1007/978-3-032-00891-6_28
♻ ☆ Unsupervised Learning in Echo State Networks for Input Reconstruction
Echo state networks (ESNs) are a class of recurrent neural networks in which only the readout layer is trainable, while the recurrent and input layers are fixed. This architectural constraint enables computationally efficient processing of time-series data. Traditionally, the readout layer in ESNs is trained using supervised learning with target outputs. In this study, we focus on input reconstruction (IR), where the readout layer is trained to reconstruct the input time series fed into the ESN. We show that IR can be achieved through unsupervised learning (UL), without access to supervised targets, provided that the ESN parameters are known a priori and satisfy invertibility conditions. This formulation allows applications relying on IR, such as dynamical system replication and noise filtering, to be reformulated within the UL framework via straightforward integration with existing algorithms. Our results suggest that prior knowledge of ESN parameters can reduce reliance on supervision, thereby establishing a new principle: not only by fixing part of the network parameters but also by exploiting their specific values. Furthermore, our UL-based algorithms for input reconstruction and related tasks are suitable for autonomous processing, offering insights into how analogous computational mechanisms might operate in the brain in principle. These findings contribute to a deeper understanding of the mathematical foundations of ESNs and their relevance to models in computational neuroscience.
comment: 35 pages, 11 figures. This paper has been accepted for publication in Neural Computation (MIT Press)
♻ ☆ Inferring biological processes with intrinsic noise from cross-sectional data
Inferring dynamical models from data continues to be a significant challenge in computational biology, especially given the stochastic nature of many biological processes. We explore a common scenario in omics, where statistically independent cross-sectional samples are available at a few time points, and the goal is to infer the underlying diffusion process that generated the data. Existing inference approaches often simplify or ignore noise intrinsic to the system, compromising accuracy for the sake of optimization ease. We circumvent this compromise by inferring the phase-space probability flow that shares the same time-dependent marginal distributions as the underlying stochastic process. Our approach, probability flow inference (PFI), disentangles force from intrinsic stochasticity while retaining the algorithmic ease of ODE inference. Analytically, we prove that for Ornstein-Uhlenbeck processes the regularized PFI formalism yields a unique solution in the limit of well-sampled distributions. In practical applications, we show that PFI enables accurate parameter and force estimation in high-dimensional stochastic reaction networks, and that it allows inference of cell differentiation dynamics with molecular noise, outperforming state-of-the-art approaches.
♻ ☆ Unsupervised Learning: Comparative Analysis of Clustering Techniques on High-Dimensional Data
This paper presents a comprehensive comparative analysis of prominent clustering algorithms K-means, DBSCAN, and Spectral Clustering on high-dimensional datasets. We introduce a novel evaluation framework that assesses clustering performance across multiple dimensionality reduction techniques (PCA, t-SNE, and UMAP) using diverse quantitative metrics. Experiments conducted on MNIST, Fashion-MNIST, and UCI HAR datasets reveal that preprocessing with UMAP consistently improves clustering quality across all algorithms, with Spectral Clustering demonstrating superior performance on complex manifold structures. Our findings show that algorithm selection should be guided by data characteristics, with Kmeans excelling in computational efficiency, DBSCAN in handling irregular clusters, and Spectral Clustering in capturing complex relationships. This research contributes a systematic approach for evaluating and selecting clustering techniques for high dimensional data applications.
comment: The paper is being withdrawn due to significant errors in the analysis that affect the validity of the conclusions. A revised version may be submitted in the future once the issues are resolved
♻ ☆ Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging
Mixture of expert (MoE) models are a promising approach to increasing model capacity without increasing inference cost, and are core components of many state-of-the-art language models. However, current MoE models typically use only few experts due to prohibitive training and inference cost. We propose Test-Time Model Merging (TTMM) which scales the MoE paradigm to an order of magnitude more experts and uses model merging to avoid almost any test-time overhead. We show that TTMM is an approximation of test-time training (TTT), which fine-tunes an expert model for each prediction task, i.e., prompt. TTT has recently been shown to significantly improve language models, but is computationally expensive. We find that performance of TTMM improves with more experts and approaches the performance of TTT. Moreover, we find that with a 1B parameter base model, TTMM is more than 100x faster than TTT at test-time by amortizing the cost of TTT at train-time. Thus, TTMM offers a promising cost-effective approach to scale test-time training.
♻ ☆ Spatial Language Likelihood Grounding Network for Bayesian Fusion of Human-Robot Observations
Fusing information from human observations can help robots overcome sensing limitations in collaborative tasks. However, an uncertainty-aware fusion framework requires a grounded likelihood representing the uncertainty of human inputs. This paper presents a Feature Pyramid Likelihood Grounding Network (FP-LGN) that grounds spatial language by learning relevant map image features and their relationships with spatial relation semantics. The model is trained as a probability estimator to capture aleatoric uncertainty in human language using three-stage curriculum learning. Results showed that FP-LGN matched expert-designed rules in mean Negative Log-Likelihood (NLL) and demonstrated greater robustness with lower standard deviation. Collaborative sensing results demonstrated that the grounded likelihood successfully enabled uncertainty-aware fusion of heterogeneous human language observations and robot sensor measurements, achieving significant improvements in human-robot collaborative task performance.
comment: Accepted to the 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Supplementary video: https://cu-asl.github.io/fp-lgn/
♻ ☆ Don't Lag, RAG: Training-Free Adversarial Detection Using RAG ICML 2025
Adversarial patch attacks pose a major threat to vision systems by embedding localized perturbations that mislead deep models. Traditional defense methods often require retraining or fine-tuning, making them impractical for real-world deployment. We propose a training-free Visual Retrieval-Augmented Generation (VRAG) framework that integrates Vision-Language Models (VLMs) for adversarial patch detection. By retrieving visually similar patches and images that resemble stored attacks in a continuously expanding database, VRAG performs generative reasoning to identify diverse attack types, all without additional training or fine-tuning. We extensively evaluate open-source large-scale VLMs, including Qwen-VL-Plus, Qwen2.5-VL-72B, and UI-TARS-72B-DPO, alongside Gemini-2.0, a closed-source model. Notably, the open-source UI-TARS-72B-DPO model achieves up to 95 percent classification accuracy, setting a new state-of-the-art for open-source adversarial patch detection. Gemini-2.0 attains the highest overall accuracy, 98 percent, but remains closed-source. Experimental results demonstrate VRAG's effectiveness in identifying a variety of adversarial patches with minimal human annotation, paving the way for robust, practical defenses against evolving adversarial patch attacks.
comment: Accepted at VecDB @ ICML 2025
♻ ☆ Graph Collaborative Attention Network for Link Prediction in Knowledge Graphs
Knowledge graphs offer a structured representation of real-world entities and their relationships, enabling a wide range of applications from information retrieval to automated reasoning. In this paper, we conduct a systematic comparison between traditional rule-based approaches and modern deep learning methods for link prediction. We focus on KBGAT, a graph neural network model that leverages multi-head attention to jointly encode both entity and relation features within local neighborhood structures. To advance this line of research, we introduce \textbf{GCAT} (Graph Collaborative Attention Network), a refined model that enhances context aggregation and interaction between heterogeneous nodes. Experimental results on four widely-used benchmark datasets demonstrate that GCAT not only consistently outperforms rule-based methods but also achieves competitive or superior performance compared to existing neural embedding models. Our findings highlight the advantages of attention-based architectures in capturing complex relational patterns for knowledge graph completion tasks.
comment: Homepage: https://graphattentionnetwork.github.io
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
♻ ☆ Skull-stripping induces shortcut learning in MRI-based Alzheimer's disease classification
Objectives: High classification accuracy of Alzheimer's disease (AD) from structural MRI has been achieved using deep neural networks, yet the specific image features contributing to these decisions remain unclear. In this study, the contributions of T1-weighted (T1w) gray-white matter texture, volumetric information, and preprocessing -- particularly skull-stripping -- were systematically assessed. Methods: A dataset of 990 matched T1w MRIs from AD patients and cognitively normal controls from the ADNI database were used. Preprocessing was varied through skull-stripping and intensity binarization to isolate texture and shape contributions. A 3D convolutional neural network was trained on each configuration, and classification performance was compared using exact McNemar tests with discrete Bonferroni-Holm correction. Feature relevance was analyzed using Layer-wise Relevance Propagation, image similarity metrics, and spectral clustering of relevance maps. Results: Despite substantial differences in image content, classification accuracy, sensitivity, and specificity remained stable across preprocessing conditions. Models trained on binarized images preserved performance, indicating minimal reliance on gray-white matter texture. Instead, volumetric features -- particularly brain contours introduced through skull-stripping -- were consistently used by the models. Conclusions: This behavior reflects a shortcut learning phenomenon, where preprocessing artifacts act as potentially unintended cues. The resulting Clever Hans effect emphasizes the critical importance of interpretability tools to reveal hidden biases and to ensure robust and trustworthy deep learning in medical imaging.
♻ ☆ Compression Method for Deep Diagonal State Space Model Based on $H^2$ Optimal Reduction
Deep learning models incorporating linear SSMs have gained attention for capturing long-range dependencies in sequential data. However, their large parameter sizes pose challenges for deployment on resource-constrained devices. In this study, we propose an efficient parameter reduction method for these models by applying $H^{2}$ model order reduction techniques from control theory to their linear SSM components. In experiments, the LRA benchmark results show that the model compression based on our proposed method outperforms an existing method using the Balanced Truncation, while successfully reducing the number of parameters in the SSMs to $1/32$ without sacrificing the performance of the original models.
comment: Accepted to IEEE Control Systems Letters
♻ ☆ MLMC-based Resource Adequacy Assessment with Active Learning Trained Surrogate Models
Multilevel Monte Carlo (MLMC) is a flexible and effective variance reduction technique for accelerating reliability assessments of complex power system. Recently, data-driven surrogate models have been proposed as lower-level models in the MLMC framework due to their high correlation and negligible execution time once trained. However, in resource adequacy assessments, pre-labeled datasets are typically unavailable. For large-scale systems, the efficiency gains from surrogate models are often offset by the substantial time required for labeling training data. Therefore, this paper introduces a speed metric that accounts for training time in evaluating MLMC efficiency. Considering the total time budget is limited, a vote-by-committee active learning approach is proposed to reduce the required labeling calls. A case study demonstrates that, within a given computational budget, active learning in combination with MLMC can result in a substantial reduction variance.
comment: 5 pages, 3 figures, 1 table
♻ ☆ Hyperbolic Graph Learning: A Comprehensive Review
Graph representation learning in Euclidean space, despite its widespread adoption and proven utility in many domains, often struggles to effectively capture the inherent hierarchical and complex relational structures prevalent in real-world data, particularly for datasets exhibiting a highly non-Euclidean latent anatomy or power-law distributions. Hyperbolic geometry, with its constant negative curvature and exponential growth property, naturally accommodates such structures, offering a promising alternative for learning rich graph representations. This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL). We systematically categorize and analyze existing methods broadly dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms. Beyond methodologies, we extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios, demonstrating the broad applicability and effectiveness of hyperbolic geometry in real-world graph learning tasks. Most importantly, we identify several key challenges that serve as directions for advancing HGL, including handling complex data structures, developing geometry-aware learning objectives, ensuring trustworthy and scalable implementations, and integrating with foundation models, e.g., large language models. We highlight promising research opportunities in this exciting interdisciplinary area. A comprehensive repository can be found at https://github.com/digailab/awesome-hyperbolic-graph-learning.
comment: An improved version of "Hyperbolic Graph Neural Networks: A Review of Methods and Applications"
♻ ☆ Rethinking Individual Fairness in Deepfake Detection ACM MM 2025
Generative AI models have substantially improved the realism of synthetic media, yet their misuse through sophisticated DeepFakes poses significant risks. Despite recent advances in deepfake detection, fairness remains inadequately addressed, enabling deepfake markers to exploit biases against specific populations. While previous studies have emphasized group-level fairness, individual fairness (i.e., ensuring similar predictions for similar individuals) remains largely unexplored. In this work, we identify for the first time that the original principle of individual fairness fundamentally fails in the context of deepfake detection, revealing a critical gap previously unexplored in the literature. To mitigate it, we propose the first generalizable framework that can be integrated into existing deepfake detectors to enhance individual fairness and generalization. Extensive experiments conducted on leading deepfake datasets demonstrate that our approach significantly improves individual fairness while maintaining robust detection performance, outperforming state-of-the-art methods. The code is available at https://github.com/Purdue-M2/Individual-Fairness-Deepfake-Detection.
comment: This paper has been accepted by ACM MM 2025
♻ ☆ Reconstructing Historical Climate Fields With Deep Learning
Historical records of climate fields are often sparse due to missing measurements, especially before the introduction of large-scale satellite missions. Several statistical and model-based methods have been introduced to fill gaps and reconstruct historical records. Here, we employ a recently introduced deep-learning approach based on Fourier convolutions, trained on numerical climate model output, to reconstruct historical climate fields. Using this approach we are able to realistically reconstruct large and irregular areas of missing data, as well as reconstruct known historical events such as strong El Ni\~no and La Ni\~na with very little given information. Our method outperforms the widely used statistical kriging method as well as other recent machine learning approaches. The model generalizes to higher resolutions than the ones it was trained on and can be used on a variety of climate fields. Moreover, it allows inpainting of masks never seen before during the model training.
comment: Accepted version + SI
♻ ☆ Emergence of Quantised Representations Isolated to Anisotropic Functions
This paper presents a novel methodology for determining representational alignment, which builds upon the existing Spotlight Resonance method. Particularly, this new tool is used to gain insight into how discrete representations can emerge and organise in autoencoder models, through a controlled ablation study in which only the activation function is altered. Using this technique, the validity of whether function-driven symmetries can act as implicit inductive biases on representations is determined. Representations are found to tend to discretise when the activation functions are defined through a discrete algebraic permutation-equivariant symmetry. In contrast, they remain continuous under a continuous algebraic orthogonal-equivariant definition. This confirms the hypothesis: algebraic symmetries of network primitives can carry unintended inductive biases which produce task-independent artefactual structures in representations. The discrete symmetry of contemporary forms is shown to be a strong predictor for the induction of discrete representations transformed from otherwise continuous structures -- a quantisation effect. This motivates further reassessment of functional forms in common usage. Moreover, this supports a general causal model for one mode in which discrete representations may form, and could constitute a prerequisite for downstream interpretability phenomena, including grandmother neurons, discrete coding schemes, general linear features and possibly Superposition. Hence, this tool and proposed mechanism for the influence of functional form on representations may provide insights into emergent interpretability research. Finally, preliminary results indicate that quantisation of representations appears to correlate with a measurable increase in reconstruction error, reinforcing previous conjectures that this collapse can be detrimental.
comment: 36 pages, 31 figures, edited some introductory phrasing, conclusion and appendices
♻ ☆ Ownership Verification of DNN Models Using White-Box Adversarial Attacks with Specified Probability Manipulation
In this paper, we propose a novel framework for ownership verification of deep neural network (DNN) models for image classification tasks. It allows verification of model identity by both the rightful owner and third party without presenting the original model. We assume a gray-box scenario where an unauthorized user owns a model that is illegally copied from the original model, provides services in a cloud environment, and the user throws images and receives the classification results as a probability distribution of output classes. The framework applies a white-box adversarial attack to align the output probability of a specific class to a designated value. Due to the knowledge of original model, it enables the owner to generate such adversarial examples. We propose a simple but effective adversarial attack method based on the iterative Fast Gradient Sign Method (FGSM) by introducing control parameters. Experimental results confirm the effectiveness of the identification of DNN models using adversarial attack.
comment: Accepted to EUSIPCO 2025
♻ ☆ Probing Information Distribution in Transformer Architectures through Entropy Analysis
This work explores entropy analysis as a tool for probing information distribution within Transformer-based architectures. By quantifying token-level uncertainty and examining entropy patterns across different stages of processing, we aim to investigate how information is managed and transformed within these models. As a case study, we apply the methodology to a GPT-based large language model, illustrating its potential to reveal insights into model behavior and internal representations. This approach may offer insights into model behavior and contribute to the development of interpretability and evaluation frameworks for transformer-based models
comment: Presented to the Italian Workshop on Neural Networks (WIRN2025) and it will appear in a Springer Chapter
♻ ☆ Convergence Properties of Natural Gradient Descent for Minimizing KL Divergence
The Kullback-Leibler (KL) divergence plays a central role in probabilistic machine learning, where it commonly serves as the canonical loss function. Optimization in such settings is often performed over the probability simplex, where the choice of parameterization significantly impacts convergence. In this work, we study the problem of minimizing the KL divergence and analyze the behavior of gradient-based optimization algorithms under two dual coordinate systems within the framework of information geometry$-$ the exponential family ($\theta$ coordinates) and the mixture family ($\eta$ coordinates). We compare Euclidean gradient descent (GD) in these coordinates with the coordinate-invariant natural gradient descent (NGD), where the natural gradient is a Riemannian gradient that incorporates the intrinsic geometry of the underlying statistical model. In continuous time, we prove that the convergence rates of GD in the $\theta$ and $\eta$ coordinates provide lower and upper bounds, respectively, on the convergence rate of NGD. Moreover, under affine reparameterizations of the dual coordinates, the convergence rates of GD in $\eta$ and $\theta$ coordinates can be scaled to $2c$ and $\frac{2}{c}$, respectively, for any $c>0$, while NGD maintains a fixed convergence rate of $2$, remaining invariant to such transformations and sandwiched between them. Although this suggests that NGD may not exhibit uniformly superior convergence in continuous time, we demonstrate that its advantages become pronounced in discrete time, where it achieves faster convergence and greater robustness to noise, outperforming GD. Our analysis hinges on bounding the spectrum and condition number of the Hessian of the KL divergence at the optimum, which coincides with the Fisher information matrix.
comment: replaced earlier draft with the camera-ready version published at tmlr
♻ ☆ The Ball-Proximal (="Broximal") Point Method: a New Algorithm, Convergence Theory, and Applications
Non-smooth and non-convex global optimization poses significant challenges across various applications, where standard gradient-based methods often struggle. We propose the Ball-Proximal Point Method, Broximal Point Method, or Ball Point Method (BPM) for short - a novel algorithmic framework inspired by the classical Proximal Point Method (PPM) (Rockafellar, 1976), which, as we show, sheds new light on several foundational optimization paradigms and phenomena, including non-convex and non-smooth optimization, acceleration, smoothing, adaptive stepsize selection, and trust-region methods. At the core of BPM lies the ball-proximal ("broximal") operator, which arises from the classical proximal operator by replacing the quadratic distance penalty by a ball constraint. Surprisingly, and in sharp contrast with the sublinear rate of PPM in the nonsmooth convex regime, we prove that BPM converges linearly and in a finite number of steps in the same regime. Furthermore, by introducing the concept of ball-convexity, we prove that BPM retains the same global convergence guarantees under weaker assumptions, making it a powerful tool for a broader class of potentially non-convex optimization problems. Just like PPM plays the role of a conceptual method inspiring the development of practically efficient algorithms and algorithmic elements, e.g., gradient descent, adaptive step sizes, acceleration (Ahn & Sra, 2020), and "W" in AdamW (Zhuang et al., 2022), we believe that BPM should be understood in the same manner: as a blueprint and inspiration for further development.
comment: 47 pages, 3 figures
♻ ☆ SDBA: A Stealthy and Long-Lasting Durable Backdoor Attack in Federated Learning
Federated learning is a promising approach for training machine learning models while preserving data privacy. However, its distributed nature makes it vulnerable to backdoor attacks, particularly in NLP tasks, where related research remains limited. This paper introduces SDBA, a novel backdoor attack mechanism designed for NLP tasks in federated learning environments. Through a systematic analysis across LSTM and GPT-2 models, we identify the most vulnerable layers for backdoor injection and achieve both stealth and long-lasting durability by applying layer-wise gradient masking and top-k% gradient masking. Also, to evaluate the task generalizability of SDBA, we additionally conduct experiments on the T5 model. Experiments on next-token prediction, sentiment analysis, and question answering tasks show that SDBA outperforms existing backdoors in terms of durability and effectively bypasses representative defense mechanisms, demonstrating notable performance in transformer-based models such as GPT-2. These results highlight the urgent need for robust defense strategies in NLP-based federated learning systems.
comment: Accepted for publication in IEEE Transactions on Dependable and Secure Computing. Accepted version first online: Jul 29 2025
♻ ☆ Trajectory First: A Curriculum for Discovering Diverse Policies
Being able to solve a task in diverse ways makes agents more robust to task variations and less prone to local optima. In this context, constrained diversity optimization has emerged as a powerful reinforcement learning (RL) framework to train a diverse set of agents in parallel. However, existing constrained-diversity RL methods often under-explore in complex tasks such as robotic manipulation, leading to a lack in policy diversity. To improve diversity optimization in RL, we therefore propose a curriculum that first explores at the trajectory level before learning step-based policies. In our empirical evaluation, we provide novel insights into the shortcoming of skill-based diversity optimization, and demonstrate empirically that our curriculum improves the diversity of the learned skills.
comment: Accepted into the Inductive Biases in Reinforcement Learning Workshop at RLC 2025
♻ ☆ Strategic Integration of Artificial Intelligence in the C-Suite: The Role of the Chief AI Officer
The integration of Artificial Intelligence (AI) into corporate strategy has become critical for organizations seeking to maintain a competitive advantage in the digital age. As AI transforms business models, operations, and decision-making, the need for dedicated executive leadership to guide, govern, and orchestrate this transformation becomes increasingly evident. This paper examines emerging future scenarios across three domains: the AI Economy, the AI Organization, and Competition in the Age of AI. These domains reveal environmental, structural, and strategic tensions that existing C-suite roles struggle to resolve. In response, the paper develops a theory-informed framework for the Chief AI Officer (CAIO), outlining the distinct functions and capabilities required to guide and govern AI at scale. Drawing on illustrative cases and emerging practice, this conceptualization clarifies the CAIOs unique role within the executive landscape and presents a forward-looking research agenda. This paper advances the discourse on AI leadership by offering a theory-driven rationale for the strategic integration of AI at the executive level and by positioning the Chief AI Officer as a distinct and necessary role within modern organizations.
♻ ☆ A case for data valuation transparency via DValCards AAAI
Following the rise in popularity of data-centric machine learning (ML), various data valuation methods have been proposed to quantify the contribution of each datapoint to desired ML model performance metrics (e.g., accuracy). Beyond the technical applications of data valuation methods (e.g., data cleaning, data acquisition, etc.), it has been suggested that within the context of data markets, data buyers might utilize such methods to fairly compensate data owners. Here we demonstrate that data valuation metrics are inherently biased and unstable under simple algorithmic design choices, resulting in both technical and ethical implications. By analyzing 9 tabular classification datasets and 6 data valuation methods, we illustrate how (1) common and inexpensive data pre-processing techniques can drastically alter estimated data values; (2) subsampling via data valuation metrics may increase class imbalance; and (3) data valuation metrics may undervalue underrepresented group data. Consequently, we argue in favor of increased transparency associated with data valuation in-the-wild and introduce the novel Data Valuation Cards (DValCards) framework towards this aim. The proliferation of DValCards will reduce misuse of data valuation metrics, including in data pricing, and build trust in responsible ML systems.
comment: To be published in the proceedings of the Eighth AAAI/ACM Conference on Artificial Intelligence, Ethics and Society (AIES-25)
♻ ☆ TokenBlowUp: Resolving Representational Singularities in LLM Token Spaces via Monoidal Transformations
Recent work has provided compelling evidence challenging the foundational manifold hypothesis for the token embedding spaces of Large Language Models (LLMs). These findings reveal the presence of geometric singularities around polysemous tokens, which can lead to representational instability. Existing methodologies, which presuppose a smooth data manifold, are ill-equipped to address such intrinsic structural flaws. In this paper, we formalize this problem in the language of scheme theory and propose a rigorous resolution by applying the scheme-theoretic blow-up at each singular point. This procedure replaces a singular point in the ambient affine scheme with its exceptional divisor, which we identify as a canonical geometric space -- a projective space of directions -- that houses the disambiguated semantic meanings of the token. This process of ``representational desingularization'' constructs a new geometric landscape for embeddings. We prove a formal theorem guaranteeing the geometric regularization of this new space, showing that the original pathologies are resolved. Finally, we outline the architectural implications of our framework, arguing for a paradigm shift from static look-ups to dynamic, geometrically-grounded computation.
♻ ☆ AdaptHetero: Machine Learning Interpretation-Driven Subgroup Adaptation for EHR-Based Clinical Prediction
Machine learning interpretation (MLI) has primarily been leveraged to build clinician trust and uncover actionable insights in EHRs. However, the intrinsic complexity and heterogeneity of EHR data limit its effectiveness in guiding subgroup-specific modeling. We propose AdaptHetero, a novel MLI-driven framework that transforms interpretability insights into actionable guidance for tailoring model training and evaluation across subpopulations within individual hospital systems. Evaluated on three large-scale EHR datasets: GOSSIS-1-eICU, WiDS, and MIMIC-IV, AdaptHetero consistently identifies heterogeneous model behaviors in predicting ICU mortality, in-hospital death, and hidden hypoxemia. By integrating SHAP-based interpretation and unsupervised clustering, the framework enhances the identification of clinically meaningful subgroup-specific characteristics, leading to improved predictive performance and optimized clinical deployment.
comment: 12 pages, 4 figures
♻ ☆ Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization
We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.
comment: 8 pages, 3 figures
♻ ☆ ModalTune: Fine-Tuning Slide-Level Foundation Models with Multi-Modal Information for Multi-task Learning in Digital Pathology
Prediction tasks in digital pathology are challenging due to the massive size of whole-slide images (WSIs) and the weak nature of training signals. Advances in computing, data availability, and self-supervised learning (SSL) have paved the way for slide-level foundation models (SLFMs) that can improve prediction tasks in low-data regimes. However, current methods under-utilize shared information between tasks and modalities. To overcome this challenge, we propose ModalTune, a novel fine-tuning framework which introduces the Modal Adapter to integrate new modalities without modifying SLFM weights. Additionally, we use large-language models (LLMs) to encode labels as text, capturing semantic relationships across multiple tasks and cancer types in a single training recipe. ModalTune achieves state-of-the-art (SOTA) results against both uni-modal and multi-modal models across four cancer types, jointly improving survival and cancer subtype prediction while remaining competitive in pan-cancer settings. Additionally, we show ModalTune is generalizable to two out-of-distribution (OOD) datasets. To our knowledge, this is the first unified fine-tuning framework for multi-modal, multi-task, and pan-cancer modeling in digital pathology.
♻ ☆ MLE-STAR: Machine Learning Engineering Agent via Search and Targeted Refinement
Agents based on large language models (LLMs) for machine learning engineering (MLE) can automatically implement ML models via code generation. However, existing approaches to build such agents often rely heavily on inherent LLM knowledge and employ coarse exploration strategies that modify the entire code structure at once. This limits their ability to select effective task-specific models and perform deep exploration within specific components, such as experimenting extensively with feature engineering options. To overcome these, we propose MLE-STAR, a novel approach to build MLE agents. MLE-STAR first leverages external knowledge by using a search engine to retrieve effective models from the web, forming an initial solution, then iteratively refines it by exploring various strategies targeting specific ML components. This exploration is guided by ablation studies analyzing the impact of individual code blocks. Furthermore, we introduce a novel ensembling method using an effective strategy suggested by MLE-STAR. Our experimental results show that MLE-STAR achieves medals in 64% of the Kaggle competitions on the MLE-bench Lite, significantly outperforming the best alternative.
♻ ☆ Controlling diverse robots by inferring Jacobian fields with deep networks
Mirroring the complex structures and diverse functions of natural organisms is a long-standing challenge in robotics. Modern fabrication techniques have greatly expanded the feasible hardware, but using these systems requires control software to translate the desired motions into actuator commands. Conventional robots can easily be modeled as rigid links connected by joints, but it remains an open challenge to model and control biologically inspired robots that are often soft or made of several materials, lack sensing capabilities, and may change their material properties with use. Here, we introduce a method that uses deep neural networks to map a video stream of a robot to its visuomotor Jacobian field (the sensitivity of all 3D points to the robot's actuators). Our method enables the control of robots from only a single camera, makes no assumptions about the robots' materials, actuation, or sensing, and is trained without expert intervention by observing the execution of random commands. We demonstrate our method on a diverse set of robot manipulators that vary in actuation, materials, fabrication, and cost. Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot. Because it enables robot control using a generic camera as the only sensor, we anticipate that our work will broaden the design space of robotic systems and serve as a starting point for lowering the barrier to robotic automation.
comment: Project Page: https://sizhe-li.github.io/publication/neural_jacobian_field
♻ ☆ Insights into resource utilization of code small language models serving with runtime engines and execution providers
The rapid growth of language models, particularly in code generation, requires substantial computational resources, raising concerns about energy consumption and environmental impact. Optimizing language models inference resource utilization is crucial, and Small Language Models (SLMs) offer a promising solution to reduce resource demands. Our goal is to analyze the impact of deep learning serving configurations, defined as combinations of runtime engines and execution providers, on resource utilization, in terms of energy consumption, execution time, and computing-resource utilization from the point of view of software engineers conducting inference in the context of code generation SLMs. We conducted a technology-oriented, multi-stage experimental pipeline using twelve code generation SLMs to investigate energy consumption, execution time, and computing-resource utilization across the configurations. Significant differences emerged across configurations. CUDA execution provider configurations outperformed CPU execution provider configurations in both energy consumption and execution time. Among the configurations, TORCH paired with CUDA demonstrated the greatest energy efficiency, achieving energy savings from 37.99% up to 89.16% compared to other serving configurations. Similarly, optimized runtime engines like ONNX with the CPU execution provider achieved from 8.98% up to 72.04% energy savings within CPU-based configurations. Also, TORCH paired with CUDA exhibited efficient computing-resource utilization. Serving configuration choice significantly impacts resource utilization. While further research is needed, we recommend the above configurations best suited to software engineers' requirements for enhancing serving resource utilization efficiency.
comment: Accepted in Journal of Systems and Software (JSS). For its published version refer to the Journal of JSS
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
♻ ☆ Coarse Graining with Neural Operators for Simulating Chaotic Systems
Accurately predicting the long-term behavior of chaotic systems is crucial for various applications such as climate modeling. However, achieving such predictions typically requires iterative computations over a dense spatiotemporal grid to account for the unstable nature of chaotic systems, which is expensive and impractical in many real-world situations. An alternative approach to such a full-resolved simulation is using a coarse grid and then correcting its errors through a \textit{closure model}, which approximates the overall information from fine scales not captured in the coarse-grid simulation. Recently, ML approaches have been used for closure modeling, but they typically require a large number of training samples from expensive fully-resolved simulations (FRS). In this work, we prove an even more fundamental limitation, i.e., the standard approach to learning closure models suffers from a large approximation error for generic problems, no matter how large the model is, and it stems from the non-uniqueness of the mapping. We propose an alternative end-to-end learning approach using a physics-informed neural operator (PINO) that overcomes this limitation by not using a closure model or a coarse-grid solver. We first train the PINO model on data from a coarse-grid solver and then fine-tune it with (a small amount of) FRS and physics-based losses on a fine grid. The discretization-free nature of neural operators means that they do not suffer from the restriction of a coarse grid that closure models face, and they can provably approximate the long-term statistics of chaotic systems. In our experiments, our PINO model achieves a 330x speedup compared to FRS with a relative error $\sim 10\%$. In contrast, the closure model coupled with a coarse-grid solver is $60$x slower than PINO while having a much higher error $\sim186\%$ when the closure model is trained on the same FRS dataset.
♻ ☆ Accenture-NVS1: A Novel View Synthesis Dataset
This paper introduces ACC-NVS1, a specialized dataset designed for research on Novel View Synthesis specifically for airborne and ground imagery. Data for ACC-NVS1 was collected in Austin, TX and Pittsburgh, PA in 2023 and 2024. The collection encompasses six diverse real-world scenes captured from both airborne and ground cameras, resulting in a total of 148,000 images. ACC-NVS1 addresses challenges such as varying altitudes and transient objects. This dataset is intended to supplement existing datasets, providing additional resources for comprehensive research, rather than serving as a benchmark.
comment: 6 pages, 7 figures
♻ ☆ Learning dynamically inspired invariant subspaces for Koopman and transfer operator approximation
Transfer and Koopman operator methods offer a framework for representing complex, nonlinear dynamical systems via linear transformations, enabling a deeper understanding of the underlying dynamics. The spectra of these operators provide important insights into system predictability and emergent behaviour, although efficiently estimating them from data can be challenging. We approach this issue through the lens of general operator and representational learning, in which we approximate these linear operators using efficient finite-dimensional representations. Specifically, we machine-learn orthonormal basis functions that are dynamically tailored to the system. This learned basis provides a particularly accurate approximation of the operator's action as well as a nearly invariant finite-dimensional subspace. We illustrate our approach with examples that showcase the retrieval of spectral properties from the estimated operator, and emphasise the dynamically adaptive quality of the machine-learned basis.
comment: 23 pages, 13 figures
♻ ☆ Advancing Vision-based Human Action Recognition: Exploring Vision-Language CLIP Model for Generalisation in Domain-Independent Tasks
Human action recognition plays a critical role in healthcare and medicine, supporting applications such as patient behavior monitoring, fall detection, surgical robot supervision, and procedural skill assessment. While traditional models like CNNs and RNNs have achieved moderate success, they often struggle to generalize across diverse and complex actions. Recent advancements in vision-language models, especially the transformer-based CLIP model, offer promising capabilities for generalizing action recognition from video data. In this work, we evaluate CLIP on the UCF-101 dataset and systematically analyze its performance under three masking strategies: (1) percentage-based and shape-based black masking at 10%, 30%, and 50%, (2) feature-specific masking to suppress bias-inducing elements, and (3) isolation masking that retains only class-specific regions. Our results reveal that CLIP exhibits inconsistent behavior and frequent misclassifications, particularly when essential visual cues are obscured. To overcome these limitations, we propose incorporating class-specific noise, learned via a custom loss function, to reinforce attention to class-defining features. This enhancement improves classification accuracy and model confidence while reducing bias. We conclude with a discussion on the challenges of applying such models in clinical domains and outline directions for future work to improve generalizability across domain-independent healthcare scenarios.
♻ ☆ Affect Models Have Weak Generalizability to Atypical Speech
Speech and voice conditions can alter the acoustic properties of speech, which could impact the performance of paralinguistic models for affect for people with atypical speech. We evaluate publicly available models for recognizing categorical and dimensional affect from speech on a dataset of atypical speech, comparing results to datasets of typical speech. We investigate three dimensions of speech atypicality: intelligibility, which is related to pronounciation; monopitch, which is related to prosody, and harshness, which is related to voice quality. We look at (1) distributional trends of categorical affect predictions within the dataset, (2) distributional comparisons of categorical affect predictions to similar datasets of typical speech, and (3) correlation strengths between text and speech predictions for spontaneous speech for valence and arousal. We find that the output of affect models is significantly impacted by the presence and degree of speech atypicalities. For instance, the percentage of speech predicted as sad is significantly higher for all types and grades of atypical speech when compared to similar typical speech datasets. In a preliminary investigation on improving robustness for atypical speech, we find that fine-tuning models on pseudo-labeled atypical speech data improves performance on atypical speech without impacting performance on typical speech. Our results emphasize the need for broader training and evaluation datasets for speech emotion models, and for modeling approaches that are robust to voice and speech differences.
comment: Preprint
♻ ☆ Lattice Protein Folding with Variational Annealing
Understanding the principles of protein folding is a cornerstone of computational biology, with implications for drug design, bioengineering, and the understanding of fundamental biological processes. Lattice protein folding models offer a simplified yet powerful framework for studying the complexities of protein folding, enabling the exploration of energetically optimal folds under constrained conditions. However, finding these optimal folds is a computationally challenging combinatorial optimization problem. In this work, we introduce a novel upper-bound training scheme that employs masking to identify the lowest-energy folds in two-dimensional Hydrophobic-Polar (HP) lattice protein folding. By leveraging Dilated Recurrent Neural Networks (RNNs) integrated with an annealing process driven by temperature-like fluctuations, our method accurately predicts optimal folds for benchmark systems of up to 60 beads. Our approach also effectively masks invalid folds from being sampled without compromising the autoregressive sampling properties of RNNs. This scheme is generalizable to three spatial dimensions and can be extended to lattice protein models with larger alphabets. Our findings emphasize the potential of advanced machine learning techniques in tackling complex protein folding problems and a broader class of constrained combinatorial optimization challenges.
♻ ☆ Two-dimensional Parallel Tempering for Constrained Optimization
Sampling Boltzmann probability distributions plays a key role in machine learning and optimization, motivating the design of hardware accelerators such as Ising machines. While the Ising model can in principle encode arbitrary optimization problems, practical implementations are often hindered by soft constraints that either slow down mixing when too strong, or fail to enforce feasibility when too weak. We introduce a two-dimensional extension of the powerful parallel tempering algorithm (PT) that addresses this challenge by adding a second dimension of replicas interpolating the penalty strengths. This scheme ensures constraint satisfaction in the final replicas, analogous to low-energy states at low temperature. The resulting two-dimensional parallel tempering algorithm (2D-PT) improves mixing in heavily constrained replicas and eliminates the need to explicitly tune the penalty strength. In a representative example of graph sparsification with copy constraints, 2D-PT achieves near-ideal mixing, with Kullback-Leibler divergence decaying as O(1/t). When applied to sparsified Wishart instances, 2D-PT yields orders of magnitude speedup over conventional PT with the same number of replicas. The method applies broadly to constrained Ising problems and can be deployed on existing Ising machines.
comment: Added references in Introduction
♻ ☆ Recursive Learning-Based Virtual Buffering for Analytical Global Placement
Due to the skewed scaling of interconnect versus cell delay in modern technology nodes, placement with buffer porosity (i.e., cell density) awareness is essential for timing closure in physical synthesis flows. However, existing approaches face two key challenges: (i) traditional van Ginneken-Lillis-style buffering approaches are computationally expensive during global placement; and (ii) machine learning-based approaches, such as BufFormer, lack a thorough consideration of Electrical Rule Check (ERC) violations and fail to "close the loop" back into the physical design flow. In this work, we propose MLBuf-RePlAce, the first open-source learning-driven virtual buffering-aware analytical global placement framework, built on top of the OpenROAD infrastructure. MLBuf-RePlAce adopts an efficient recursive learning-based generative buffering approach to predict buffer types and locations, addressing ERC violations during global placement. We compare MLBuf-RePlAce against the default virtual buffering-based timing-driven global placer in OpenROAD, using open-source testcases from the TILOS MacroPlacement and OpenROAD-flow-scripts repositories. Without degradation of post-route power, MLBuf-RePlAce achieves (maximum, average) improvements of (56%, 31%) in total negative slack (TNS) within the open-source OpenROAD flow. When evaluated by completion in a commercial flow, MLBuf-RePlAce achieves (maximum, average) improvements of (53%, 28%) in TNS with an average of 0.2% improvement in post-route power.
♻ ☆ Deciphering interventional dynamical causality from non-intervention complex systems
Detecting and quantifying causality is a focal topic in the fields of science, engineering, and interdisciplinary studies. However, causal studies on non-intervention systems attract much attention but remain extremely challenging. Delay-embedding technique provides a promising approach. In this study, we propose a framework named Interventional Dynamical Causality (IntDC) in contrast to the traditional Constructive Dynamical Causality (ConDC). ConDC, including Granger causality, transfer entropy and convergence of cross-mapping, measures the causality by constructing a dynamical model without considering interventions. A computational criterion, Interventional Embedding Entropy (IEE), is proposed to measure causal strengths in an interventional manner. IEE is an intervened causal information flow but in the delay-embedding space. Further, the IEE theoretically and numerically enables the deciphering of IntDC solely from observational (non-interventional) time-series data, without requiring any knowledge of dynamical models or real interventions in the considered system. In particular, IEE can be applied to rank causal effects according to their importance and construct causal networks from data. We conducted numerical experiments to demonstrate that IEE can find causal edges accurately, eliminate effects of confounding, and quantify causal strength robustly over traditional indices. We also applied IEE to real-world tasks. IEE performed as an accurate and robust tool for causal analyses solely from the observational data. The IntDC framework and IEE algorithm provide an efficient approach to the study of causality from time series in diverse non-intervention complex systems.
♻ ☆ Hypergraph Neural Sheaf Diffusion: A Symmetric Simplicial Set Framework for Higher-Order Learning
The absence of intrinsic adjacency relations and orientation systems in hypergraphs creates fundamental challenges for constructing sheaf Laplacians of arbitrary degrees. We resolve these limitations through symmetric simplicial sets derived directly from hypergraphs, called symmetric simplicial lifting, which encode all possible oriented subrelations within each hyperedge as ordered tuples. This construction canonically defines adjacency via facet maps while inherently preserving hyperedge provenance. We establish that the normalized degree zero sheaf Laplacian on our symmetric simplicial lifting reduces exactly to the traditional graph normalized sheaf Laplacian when restricted to graphs, validating its mathematical consistency with prior graph-based sheaf theory. Furthermore, the induced structure preserves all structural information from the original hypergraph, ensuring that every multi-way relational detail is faithfully retained. Leveraging this framework, we introduce Hypergraph Neural Sheaf Diffusion (HNSD), the first principled extension of neural sheaf diffusion to hypergraphs. HNSD operates via normalized degree zero sheaf Laplacian over symmetric simplicial lifting, resolving orientation ambiguity and adjacency sparsity inherent to hypergraph learning. Experimental evaluations demonstrate HNSDs competitive performance across established benchmarks.
comment: Published in IEEE Access
♻ ☆ Bridging Privacy and Robustness for Trustworthy Machine Learning
The widespread adoption of machine learning necessitates robust privacy protection alongside algorithmic resilience. While Local Differential Privacy (LDP) provides foundational guarantees, sophisticated adversaries with prior knowledge demand more nuanced Bayesian privacy notions, such as Maximum Bayesian Privacy (MBP) and Average Bayesian Privacy (ABP), first introduced by \cite{zhang2022no}. Concurrently, machine learning systems require inherent robustness against data perturbations and adversarial manipulations. This paper systematically investigates the intricate theoretical relationships among LDP, MBP, and ABP. Crucially, we bridge these privacy concepts with algorithmic robustness, particularly within the Probably Approximately Correct (PAC) learning framework. Our work demonstrates that privacy-preserving mechanisms inherently confer PAC robustness. We present key theoretical results, including the formalization of the established LDP-MBP relationship, novel bounds between MBP and ABP, and a proof demonstrating PAC robustness from MBP. Furthermore, we establish a novel theoretical relationship quantifying how privacy leakage directly influences an algorithm's input robustness. These results provide a unified theoretical framework for understanding and optimizing the privacy-robustness trade-off, paving the way for the development of more secure, trustworthy, and resilient machine learning systems.
♻ ☆ Neural Networks as Universal Finite-State Machines: A Constructive ReLU Simulation Framework for NFAs
We present a formal and constructive simulation framework for nondeterministic finite automata (NFAs) using standard feedforward ReLU neural networks. Unlike prior approaches that rely on recurrent architectures or post hoc extraction methods, our formulation symbolically encodes automaton states as binary vectors, transitions as sparse linear transformations, and nondeterministic branching - including {\epsilon}-closures - as compositions of shared ReLU layers. We prove that every regular language can be recognized exactly by a depth-unrolled ReLU network with shared parameters, independent of input length. Our construction yields not only formal equivalence between NFAs and ReLU networks, but also practical trainability: we demonstrate that the networks can learn NFA acceptance behavior through gradient descent using standard supervised data. Extensive experiments validate all theoretical results, achieving perfect or near-perfect agreement on acceptance, state propagation, and closure dynamics. This work establishes a new bridge between symbolic automata theory and modern neural architectures, showing that feedforward networks can perform precise, interpretable, and trainable symbolic computation.
comment: 17 pages, with proofs in Appendix
♻ ☆ Federated Distributionally Robust Optimization with Non-Convex Objectives: Algorithm and Analysis
Distributionally Robust Optimization (DRO), which aims to find an optimal decision that minimizes the worst case cost over the ambiguity set of probability distribution, has been widely applied in diverse applications, e.g., network behavior analysis, risk management, etc. However, existing DRO techniques face three key challenges: 1) how to deal with the asynchronous updating in a distributed environment; 2) how to leverage the prior distribution effectively; 3) how to properly adjust the degree of robustness according to different scenarios. To this end, we propose an asynchronous distributed algorithm, named Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active SEt method (EASE) to tackle the federated distributionally robust optimization (FDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm uncertainty set, is developed to effectively leverage the prior distribution and flexibly control the degree of robustness. Finally, our theoretical analysis elucidates that the proposed algorithm is guaranteed to converge and the iteration complexity is also analyzed. Extensive empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, and remain robust against data heterogeneity as well as malicious attacks, but also tradeoff robustness with performance.
comment: arXiv admin note: substantial text overlap with arXiv:2210.07588
♻ ☆ OpenEarthSensing: Large-Scale Fine-Grained Benchmark for Open-World Remote Sensing
The advancement of remote sensing, including satellite systems, facilitates the continuous acquisition of remote sensing imagery globally, introducing novel challenges for achieving open-world tasks. Deployed models need to continuously adjust to a constant influx of new data, which frequently exhibits diverse shifts from the data encountered during the training phase. To effectively handle the new data, models are required to detect semantic shifts, adapt to covariate shifts, and continuously update their parameters without forgetting learned knowledge, as has been considered in works on a variety of open-world tasks. However, existing studies are typically conducted within a single dataset to simulate realistic conditions, with a lack of large-scale benchmarks capable of evaluating multiple open-world tasks. In this paper, we introduce \textbf{OpenEarthSensing (OES)}, a large-scale fine-grained benchmark for open-world remote sensing. OES includes 189 scene and object categories, covering the vast majority of potential semantic shifts that may occur in the real world. Additionally, to provide a more comprehensive testbed for evaluating the generalization performance, OES encompasses five data domains with significant covariate shifts, including two RGB satellite domains, one RGB aerial domain, one multispectral RGB domain, and one infrared domain. We evaluate the baselines and existing methods for diverse tasks on OES, demonstrating that it serves as a meaningful and challenging benchmark for open-world remote sensing. The proposed dataset OES is available at https://haiv-lab.github.io/OES.
comment: Full version with dataset details in Appendix
♻ ☆ Outcome-based Reinforcement Learning to Predict the Future
Reinforcement Learning with Verifiable Rewards (RLVR) has been an effective approach for improving Large Language Models' reasoning in domains such as coding and mathematics. Here, we apply RLVR methods towards forecasting future real-world events - a challenging task for RL due to the very noisy (and delayed) outcomes involved. Using a novel dataset of recent questions from a prediction market, and accompanying relevant news headlines, we show that a compact (14B) reasoning model can be trained to match or surpass the predictive accuracy of frontier models like o1, while greatly improving probabilistic calibration. The model's performance is also practically meaningful: in a Polymarket trading simulation, we estimate that its bets would have yielded a return on investment of over 10% across all questions in the test set. We detail and compare approaches used in training our model, including augmenting our training-data with synthetic prediction questions, guardrails for learning stability, and median prediction sampling at inference-time.
♻ ☆ OWLViz: An Open-World Benchmark for Visual Question Answering
We present a challenging benchmark for the Open WorLd VISual question answering (OWLViz) task. OWLViz presents concise, unambiguous queries that require integrating multiple capabilities, including visual understanding, web exploration, and specialized tool usage. While humans achieve 69.2% accuracy on these intuitive tasks, even state-of-the-art VLMs struggle, with the best model, Gemini 2.0, achieving only 26.6% accuracy. Current agentic VLMs, which rely on limited vision and vision-language models as tools, perform even worse. This performance gap reveals significant limitations in multimodal systems' ability to select appropriate tools and execute complex reasoning sequences, establishing new directions for advancing practical AI research.
comment: 8 pages + appendix
♻ ☆ MAVFlow: Preserving Paralinguistic Elements with Conditional Flow Matching for Zero-Shot AV2AV Multilingual Translation ICCV 2025
Despite recent advances in text-to-speech (TTS) models, audio-visual-to-audio-visual (AV2AV) translation still faces a critical challenge: maintaining speaker consistency between the original and translated vocal and facial features. To address this issue, we propose a conditional flow matching (CFM) zero-shot audio-visual renderer that utilizes strong dual guidance from both audio and visual modalities. By leveraging multimodal guidance with CFM, our model robustly preserves speaker-specific characteristics and enhances zero-shot AV2AV translation abilities. For the audio modality, we enhance the CFM process by integrating robust speaker embeddings with x-vectors, which serve to bolster speaker consistency. Additionally, we convey emotional nuances to the face rendering module. The guidance provided by both audio and visual cues remains independent of semantic or linguistic content, allowing our renderer to effectively handle zero-shot translation tasks for monolingual speakers in different languages. We empirically demonstrate that the inclusion of high-quality mel-spectrograms conditioned on facial information not only enhances the quality of the synthesized speech but also positively influences facial generation, leading to overall performance improvements in LSE and FID score. Our code is available at https://github.com/Peter-SungwooCho/MAVFlow.
comment: Accepted to ICCV 2025
♻ ☆ Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review
This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection, a critical issue in the financial sector. Using the Kitchenham systematic literature review approach, 57 studies published between 2019 and 2024 were analyzed. The review highlights the effectiveness of various deep learning models such as Convolutional Neural Networks, Long Short-Term Memory, and transformers across domains such as credit card transactions, insurance claims, and financial statement audits. Performance metrics such as precision, recall, F1-score, and AUC-ROC were evaluated. Key themes explored include the impact of data privacy frameworks and advancements in feature engineering and data preprocessing. The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations, alongside opportunities for automation and privacy-preserving techniques such as blockchain integration and Principal Component Analysis. By examining trends over the past five years, this review identifies critical gaps and promising directions for advancing DL applications in financial fraud detection, offering actionable insights for researchers and practitioners.
♻ ☆ BlockFFN: Towards End-Side Acceleration-Friendly Mixture-of-Experts with Chunk-Level Activation Sparsity
To alleviate the computational burden of large language models (LLMs), architectures with activation sparsity, represented by mixture-of-experts (MoE), have attracted increasing attention. However, the non-differentiable and inflexible routing of vanilla MoE hurts model performance. Moreover, while each token activates only a few parameters, these sparsely-activated architectures exhibit low chunk-level sparsity, indicating that the union of multiple consecutive tokens activates a large ratio of parameters. Such a sparsity pattern is unfriendly for acceleration under low-resource conditions (e.g., end-side devices) and incompatible with mainstream acceleration techniques (e.g., speculative decoding). To address these challenges, we introduce a novel MoE architecture, BlockFFN, as well as its efficient training and deployment techniques. Specifically, we use a router integrating ReLU activation and RMSNorm for differentiable and flexible routing. Next, to promote both token-level sparsity (TLS) and chunk-level sparsity (CLS), CLS-aware training objectives are designed, making BlockFFN more acceleration-friendly. Finally, we implement efficient acceleration kernels, combining activation sparsity and speculative decoding for the first time. The experimental results demonstrate the superior performance of BlockFFN over other MoE baselines, achieving over 80% TLS and 70% 8-token CLS. Our kernels achieve up to 3.67$\times$ speedup on real end-side devices than dense models. All codes and checkpoints are available publicly (https://github.com/thunlp/BlockFFN).
comment: 21 pages, 7 figures, 15 tables
♻ ☆ Leveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning
Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.
Graphics 8
☆ Noise-Coded Illumination for Forensic and Photometric Video Analysis SIGGRAPH 2025
The proliferation of advanced tools for manipulating video has led to an arms race, pitting those who wish to sow disinformation against those who want to detect and expose it. Unfortunately, time favors the ill-intentioned in this race, with fake videos growing increasingly difficult to distinguish from real ones. At the root of this trend is a fundamental advantage held by those manipulating media: equal access to a distribution of what we consider authentic (i.e., "natural") video. In this paper, we show how coding very subtle, noise-like modulations into the illumination of a scene can help combat this advantage by creating an information asymmetry that favors verification. Our approach effectively adds a temporal watermark to any video recorded under coded illumination. However, rather than encoding a specific message, this watermark encodes an image of the unmanipulated scene as it would appear lit only by the coded illumination. We show that even when an adversary knows that our technique is being used, creating a plausible coded fake video amounts to solving a second, more difficult version of the original adversarial content creation problem at an information disadvantage. This is a promising avenue for protecting high-stakes settings like public events and interviews, where the content on display is a likely target for manipulation, and while the illumination can be controlled, the cameras capturing video cannot.
comment: ACM Transactions on Graphics (2025), presented at SIGGRAPH 2025
♻ ☆ Signed Higher-Order Interactions for Brain Disorder Diagnosis via Multi-Channel Transformers
Accurately characterizing higher-order interactions of brain regions and extracting interpretable organizational patterns from Functional Magnetic Resonance Imaging data is crucial for brain disease diagnosis. Current graph-based deep learning models primarily focus on pairwise or triadic patterns while neglecting signed higher-order interactions, limiting comprehensive understanding of brain-wide communication. We propose HOI-Brain, a novel computational framework leveraging signed higher-order interactions and organizational patterns in fMRI data for brain disease diagnosis. First, we introduce a co-fluctuation measure based on Multiplication of Temporal Derivatives to detect higher-order interactions with temporal resolution. We then distinguish positive and negative synergistic interactions, encoding them in signed weighted simplicial complexes to reveal brain communication insights. Using Persistent Homology theory, we apply two filtration processes to these complexes to extract signed higher-dimensional neural organizations spatiotemporally. Finally, we propose a multi-channel brain Transformer to integrate heterogeneous topological features. Experiments on Alzheimer' s disease, Parkinson' s syndrome, and autism spectrum disorder datasets demonstrate our framework' s superiority, effectiveness, and interpretability. The identified key brain regions and higher-order patterns align with neuroscience literature, providing meaningful biological insights.
♻ ☆ Distance and Collision Probability Estimation from Gaussian Surface Models IROS 2025
This paper describes continuous-space methodologies to estimate the collision probability, Euclidean distance and gradient between an ellipsoidal robot model and an environment surface modeled as a set of Gaussian distributions. Continuous-space collision probability estimation is critical for uncertainty-aware motion planning. Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations and enable navigation in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds, which is computationally expensive for large workspaces. Recent advances in Gaussian surface modeling (e.g. mixture models, splatting) enable compressed and high-fidelity surface representations. Few methods exist to estimate continuous-space occupancy from such models. They require Gaussians to model free space and are unable to estimate the collision probability, Euclidean distance and gradient for an ellipsoidal robot. The proposed methods bridge this gap by extending prior work in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to Gaussian surface models. A geometric blending approach is also proposed to improve collision probability estimation. The approaches are evaluated with numerical 2D and 3D experiments using real-world point cloud data. Methods for efficient calculation of these quantities are demonstrated to execute within a few microseconds per ellipsoid pair using a single-thread on low-power CPUs of modern embedded computers
comment: Accepted at IROS 2025
♻ ☆ Text-Driven Voice Conversion via Latent State-Space Modeling
Text-driven voice conversion allows customization of speaker characteristics and prosodic elements using textual descriptions. However, most existing methods rely heavily on direct text-to-speech training, limiting their flexibility in controlling nuanced style elements or timbral features. In this paper, we propose a novel \textbf{Latent State-Space} approach for text-driven voice conversion (\textbf{LSS-VC}). Our method treats each utterance as an evolving dynamical system in a continuous latent space. Drawing inspiration from mamba, which introduced a state-space model for efficient text-driven \emph{image} style transfer, we adapt a loosely related methodology for \emph{voice} style transformation. Specifically, we learn a voice latent manifold where style and content can be manipulated independently by textual style prompts. We propose an adaptive cross-modal fusion mechanism to inject style information into the voice latent representation, enabling interpretable and fine-grained control over speaker identity, speaking rate, and emphasis. Extensive experiments show that our approach significantly outperforms recent baselines in both subjective and objective quality metrics, while offering smoother transitions between styles, reduced artifacts, and more precise text-based style control.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship and affiliation
♻ ☆ ReverBERT: A State Space Model for Efficient Text-Driven Speech Style Transfer
Text-driven speech style transfer aims to mold the intonation, pace, and timbre of a spoken utterance to match stylistic cues from text descriptions. While existing methods leverage large-scale neural architectures or pre-trained language models, the computational costs often remain high. In this paper, we present \emph{ReverBERT}, an efficient framework for text-driven speech style transfer that draws inspiration from a state space model (SSM) paradigm, loosely motivated by the image-based method of Wang and Liu~\cite{wang2024stylemamba}. Unlike image domain techniques, our method operates in the speech space and integrates a discrete Fourier transform of latent speech features to enable smooth and continuous style modulation. We also propose a novel \emph{Transformer-based SSM} layer for bridging textual style descriptors with acoustic attributes, dramatically reducing inference time while preserving high-quality speech characteristics. Extensive experiments on benchmark speech corpora demonstrate that \emph{ReverBERT} significantly outperforms baselines in terms of naturalness, expressiveness, and computational efficiency. We release our model and code publicly to foster further research in text-driven speech style transfer.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship and affiliation
♻ ☆ Cross-Modal State-Space Graph Reasoning for Structured Summarization
The ability to extract compact, meaningful summaries from large-scale and multimodal data is critical for numerous applications, ranging from video analytics to medical reports. Prior methods in cross-modal summarization have often suffered from high computational overheads and limited interpretability. In this paper, we propose a \textit{Cross-Modal State-Space Graph Reasoning} (\textbf{CSS-GR}) framework that incorporates a state-space model with graph-based message passing, inspired by prior work on efficient state-space models. Unlike existing approaches relying on purely sequential models, our method constructs a graph that captures inter- and intra-modal relationships, allowing more holistic reasoning over both textual and visual streams. We demonstrate that our approach significantly improves summarization quality and interpretability while maintaining computational efficiency, as validated on standard multimodal summarization benchmarks. We also provide a thorough ablation study to highlight the contributions of each component.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship and affiliation
♻ ☆ Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
Materials used in real clothing exhibit remarkable complexity and spatial variation due to common processes such as stitching, hemming, dyeing, printing, padding, and bonding. Simulating these materials, for instance using finite element methods, is often computationally demanding and slow. Worse, such methods can suffer from numerical artifacts called ``membrane locking'' that makes cloth appear artificially stiff. Here we propose a general framework, called Mass-Spring Net, for learning a simple yet efficient surrogate model that captures the effects of these complex materials using only motion observations. The cloth is discretized into a mass-spring network with unknown material parameters that are learned directly from the motion data, using a novel force-and-impulse loss function. Our approach demonstrates the ability to accurately model spatially varying material properties from a variety of data sources, and immunity to membrane locking which plagues FEM-based simulations. Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios.
comment: Added middle name of Prof. Pai
♻ ☆ GALE: Leveraging Heterogeneous Systems for Efficient Unstructured Mesh Data Analysis IEEE VIS 2025
Unstructured meshes present challenges in scientific data analysis due to irregular distribution and complex connectivity. Computing and storing connectivity information is a major bottleneck for visualization algorithms, affecting both time and memory performance. Recent task-parallel data structures address this by precomputing connectivity information at runtime while the analysis algorithm executes, effectively hiding computation costs and improving performance. However, existing approaches are CPU-bound, forcing the data structure and analysis algorithm to compete for the same computational resources, limiting potential speedups. To overcome this limitation, we introduce a novel task-parallel approach optimized for heterogeneous CPU-GPU systems. Specifically, we offload the computation of mesh connectivity information to GPU threads, enabling CPU threads to focus on executing the visualization algorithm. Following this paradigm, we propose GALE (GPU-Aided Localized data structurE), the first open-source CUDA-based data structure designed for heterogeneous task parallelism. Experiments on two 20-core CPUs and an NVIDIA V100 GPU show that GALE achieves up to 2.7x speedup over state-of-the-art localized data structures while maintaining memory efficiency.
comment: Accepted at IEEE VIS 2025
Robotics 50
☆ A Nonlinear MPC Framework for Loco-Manipulation of Quadrupedal Robots with Non-Negligible Manipulator Dynamics
Model predictive control (MPC) combined with reduced-order template models has emerged as a powerful tool for trajectory optimization in dynamic legged locomotion. However, loco-manipulation tasks performed by legged robots introduce additional complexity, necessitating computationally efficient MPC algorithms capable of handling high-degree-of-freedom (DoF) models. This letter presents a computationally efficient nonlinear MPC (NMPC) framework tailored for loco-manipulation tasks of quadrupedal robots equipped with robotic manipulators whose dynamics are non-negligible relative to those of the quadruped. The proposed framework adopts a decomposition strategy that couples locomotion template models -- such as the single rigid body (SRB) model -- with a full-order dynamic model of the robotic manipulator for torque-level control. This decomposition enables efficient real-time solution of the NMPC problem in a receding horizon fashion at 60 Hz. The optimal state and input trajectories generated by the NMPC for locomotion are tracked by a low-level nonlinear whole-body controller (WBC) running at 500 Hz, while the optimal torque commands for the manipulator are directly applied. The layered control architecture is validated through extensive numerical simulations and hardware experiments on a 15-kg Unitree Go2 quadrupedal robot augmented with a 4.4-kg 4-DoF Kinova arm. Given that the Kinova arm dynamics are non-negligible relative to the Go2 base, the proposed NMPC framework demonstrates robust stability in performing diverse loco-manipulation tasks, effectively handling external disturbances, payload variations, and uneven terrain.
☆ From Seeing to Experiencing: Scaling Navigation Foundation Models with Reinforcement Learning
Navigation foundation models trained on massive webscale data enable agents to generalize across diverse environments and embodiments. However, these models trained solely on offline data, often lack the capacity to reason about the consequences of their actions or adapt through counterfactual understanding. They thus face significant limitations in the real-world urban navigation where interactive and safe behaviors, such as avoiding obstacles and moving pedestrians, are critical. To tackle these challenges, we introduce the Seeing-to-Experiencing framework to scale the capability of navigation foundation models with reinforcement learning. S2E combines the strengths of pre-training on videos and post-training through RL. It maintains the generalizability acquired from large-scale real-world videos while enhancing its interactivity through RL in simulation environments. Specifically, we introduce two innovations: an Anchor-Guided Distribution Matching strategy, which stabilizes learning and models diverse motion patterns through anchor-based supervision; and a Residual-Attention Module, which obtains reactive behaviors from simulation environments without erasing the model's pretrained knowledge. Moreover, we establish a comprehensive end-to-end evaluation benchmark, NavBench-GS, built on photorealistic 3DGS reconstructions of real-world scenes that incorporate physical interactions. It can systematically assess the generalizability and safety of navigation foundation models. Extensive experiments show that S2E mitigates the diminishing returns often seen when scaling with offline data alone. We perform a thorough analysis of the benefits of Reinforcement Learning compared to Supervised Fine-Tuning in the context of post-training for robot learning. Our findings emphasize the crucial role of integrating interactive online experiences to effectively scale foundation models in Robotics.
☆ DISCOVERSE: Efficient Robot Simulation in Complex High-Fidelity Environments IROS2025
We present the first unified, modular, open-source 3DGS-based simulation framework for Real2Sim2Real robot learning. It features a holistic Real2Sim pipeline that synthesizes hyper-realistic geometry and appearance of complex real-world scenarios, paving the way for analyzing and bridging the Sim2Real gap. Powered by Gaussian Splatting and MuJoCo, Discoverse enables massively parallel simulation of multiple sensor modalities and accurate physics, with inclusive supports for existing 3D assets, robot models, and ROS plugins, empowering large-scale robot learning and complex robotic benchmarks. Through extensive experiments on imitation learning, Discoverse demonstrates state-of-the-art zero-shot Sim2Real transfer performance compared to existing simulators. For code and demos: https://air-discoverse.github.io/.
comment: 8pages, IROS2025 (Camera Ready)
☆ A Deep Learning-Driven Autonomous System for Retinal Vein Cannulation: Validation Using a Chicken Embryo Model
Retinal vein cannulation (RVC) is a minimally invasive microsurgical procedure for treating retinal vein occlusion (RVO), a leading cause of vision impairment. However, the small size and fragility of retinal veins, coupled with the need for high-precision, tremor-free needle manipulation, create significant technical challenges. These limitations highlight the need for robotic assistance to improve accuracy and stability. This study presents an automated robotic system with a top-down microscope and B-scan optical coherence tomography (OCT) imaging for precise depth sensing. Deep learning-based models enable real-time needle navigation, contact detection, and vein puncture recognition, using a chicken embryo model as a surrogate for human retinal veins. The system autonomously detects needle position and puncture events with 85% accuracy. The experiments demonstrate notable reductions in navigation and puncture times compared to manual methods. Our results demonstrate the potential of integrating advanced imaging and deep learning to automate microsurgical tasks, providing a pathway for safer and more reliable RVC procedures with enhanced precision and reproducibility.
☆ ODE Methods for Computing One-Dimensional Self-Motion Manifolds
Redundant manipulators are well understood to offer infinite joint configurations for achieving a desired end-effector pose. The multiplicity of inverse kinematics (IK) solutions allows for the simultaneous solving of auxiliary tasks like avoiding joint limits or obstacles. However, the most widely used IK solvers are numerical gradient-based iterative methods that inherently return a locally optimal solution. In this work, we explore the computation of self-motion manifolds (SMMs), which represent the set of all joint configurations that solve the inverse kinematics problem for redundant manipulators. Thus, SMMs are global IK solutions for redundant manipulators. We focus on task redundancies of dimensionality 1, introducing a novel ODE formulation for computing SMMs using standard explicit fixed-step ODE integrators. We also address the challenge of ``inducing'' redundancy in otherwise non-redundant manipulators assigned to tasks naturally described by one degree of freedom less than the non-redundant manipulator. Furthermore, recognizing that SMMs can consist of multiple disconnected components, we propose methods for searching for these separate SMM components. Our formulations and algorithms compute accurate SMM solutions without requiring additional IK refinement, and we extend our methods to prismatic joint systems -- an area not covered in current SMM literature. This manuscript presents the derivation of these methods and several examples that show how the methods work and their limitations.
☆ A Systematic Robot Design Optimization Methodology with Application to Redundant Dual-Arm Manipulators
One major recurring challenge in deploying manipulation robots is determining the optimal placement of manipulators to maximize performance. This challenge is exacerbated in complex, cluttered agricultural environments of high-value crops, such as flowers, fruits, and vegetables, that could greatly benefit from robotic systems tailored to their specific requirements. However, the design of such systems remains a challenging, intuition-driven process, limiting the affordability and adoption of robotics-based automation by domain experts like farmers. To address this challenge, we propose a four-part design optimization methodology for automating the development of task-specific robotic systems. This framework includes (a) a robot design model, (b) task and environment representations for simulation, (c) task-specific performance metrics, and (d) optimization algorithms for refining configurations. We demonstrate our framework by optimizing a dual-arm robotic system for pepper harvesting using two off-the-shelf redundant manipulators. To enhance performance, we introduce novel task metrics that leverage self-motion manifolds to characterize manipulator redundancy comprehensively. Our results show that our framework achieves simultaneous improvements in reachability success rates and improvements in dexterity. Specifically, our approach improves reachability success by at least 14\% over baseline methods and achieves over 30\% improvement in dexterity based on our task-specific metric.
comment: 8 pages, 6 figures, 2 tables
☆ Evaluating Interactions between Automated Vehicles and Cyclists using a coupled In-the-Loop Test Environment
Testing and evaluating automated driving systems (ADS) in interactions with vulnerable road users (VRUs), such as cyclists, are essential for improving the safety of VRUs, but often lack realism. This paper presents and validates a coupled in-the-loop test environment that integrates a Cyclist-in-the Loop test bench with a Vehicle-in-the-Loop test bench via a virtual environment (VE) developed in Unreal Engine 5. The setup enables closed-loop, bidirectional interaction between a real human cyclist and a real automated vehicle under safe and controllable conditions. The automated vehicle reacts to cyclist gestures via stimulated camera input, while the cyclist, riding a stationary bicycle, perceives and reacts to the vehicle in the VE in real time. Validation experiments are conducted using a real automated shuttle bus with a track-and-follow function, performing three test maneuvers - straight-line driving with stop, circular track driving, and double lane change - on a proving ground and in the coupled in-the-loop test environment. The performance is evaluated by comparing the resulting vehicle trajectories in both environments. Additionally, the introduced latencies of individual components in the test setup are measured. The results demonstrate the feasibility of the approach and highlight its strengths and limitations for realistic ADS evaluation.
☆ Interactive Adversarial Testing of Autonomous Vehicles with Adjustable Confrontation Intensity
Scientific testing techniques are essential for ensuring the safe operation of autonomous vehicles (AVs), with high-risk, highly interactive scenarios being a primary focus. To address the limitations of existing testing methods, such as their heavy reliance on high-quality test data, weak interaction capabilities, and low adversarial robustness, this paper proposes ExamPPO, an interactive adversarial testing framework that enables scenario-adaptive and intensity-controllable evaluation of autonomous vehicles. The framework models the Surrounding Vehicle (SV) as an intelligent examiner, equipped with a multi-head attention-enhanced policy network, enabling context-sensitive and sustained behavioral interventions. A scalar confrontation factor is introduced to modulate the intensity of adversarial behaviors, allowing continuous, fine-grained adjustment of test difficulty. Coupled with structured evaluation metrics, ExamPPO systematically probes AV's robustness across diverse scenarios and strategies. Extensive experiments across multiple scenarios and AV strategies demonstrate that ExamPPO can effectively modulate adversarial behavior, expose decision-making weaknesses in tested AVs, and generalize across heterogeneous environments, thereby offering a unified and reproducible solution for evaluating the safety and intelligence of autonomous decision-making systems.
☆ MoDeSuite: Robot Learning Task Suite for Benchmarking Mobile Manipulation with Deformable Objects
Mobile manipulation is a critical capability for robots operating in diverse, real-world environments. However, manipulating deformable objects and materials remains a major challenge for existing robot learning algorithms. While various benchmarks have been proposed to evaluate manipulation strategies with rigid objects, there is still a notable lack of standardized benchmarks that address mobile manipulation tasks involving deformable objects. To address this gap, we introduce MoDeSuite, the first Mobile Manipulation Deformable Object task suite, designed specifically for robot learning. MoDeSuite consists of eight distinct mobile manipulation tasks covering both elastic objects and deformable objects, each presenting a unique challenge inspired by real-world robot applications. Success in these tasks requires effective collaboration between the robot's base and manipulator, as well as the ability to exploit the deformability of the objects. To evaluate and demonstrate the use of the proposed benchmark, we train two state-of-the-art reinforcement learning algorithms and two imitation learning algorithms, highlighting the difficulties encountered and showing their performance in simulation. Furthermore, we demonstrate the practical relevance of the suite by deploying the trained policies directly into the real world with the Spot robot, showcasing the potential for sim-to-real transfer. We expect that MoDeSuite will open a novel research domain in mobile manipulation involving deformable objects. Find more details, code, and videos at https://sites.google.com/view/modesuite/home.
☆ Multi-UAV Deployment in Obstacle-Cluttered Environments with LOS Connectivity
A reliable communication network is essential for multiple UAVs operating within obstacle-cluttered environments, where limited communication due to obstructions often occurs. A common solution is to deploy intermediate UAVs to relay information via a multi-hop network, which introduces two challenges: (i) how to design the structure of multihop networks; and (ii) how to maintain connectivity during collaborative motion. To this end, this work first proposes an efficient constrained search method based on the minimumedge RRT? algorithm, to find a spanning-tree topology that requires a less number of UAVs for the deployment task. Then, to achieve this deployment, a distributed model predictive control strategy is proposed for the online motion coordination. It explicitly incorporates not only the inter-UAV and UAVobstacle distance constraints, but also the line-of-sight (LOS) connectivity constraint. These constraints are well-known to be nonlinear and often tackled by various approximations. In contrast, this work provides a theoretical guarantee that all agent trajectories are ensured to be collision-free with a teamwise LOS connectivity at all time. Numerous simulations are performed in 3D valley-like environments, while hardware experiments validate its dynamic adaptation when the deployment position changes online.
comment: iros2025
☆ Adaptive Prior Scene-Object SLAM for Dynamic Environments
Visual Simultaneous Localization and Mapping (SLAM) plays a vital role in real-time localization for autonomous systems. However, traditional SLAM methods, which assume a static environment, often suffer from significant localization drift in dynamic scenarios. While recent advancements have improved SLAM performance in such environments, these systems still struggle with localization drift, particularly due to abrupt viewpoint changes and poorly characterized moving objects. In this paper, we propose a novel scene-object-based reliability assessment framework that comprehensively evaluates SLAM stability through both current frame quality metrics and scene changes relative to reliable reference frames. Furthermore, to tackle the lack of error correction mechanisms in existing systems when pose estimation becomes unreliable, we employ a pose refinement strategy that leverages information from reliable frames to optimize camera pose estimation, effectively mitigating the adverse effects of dynamic interference. Extensive experiments on the TUM RGB-D datasets demonstrate that our approach achieves substantial improvements in localization accuracy and system robustness under challenging dynamic scenarios.
comment: Accepted by IEEE The 2025 IEEE International Conference on Real-time Computing and Robotics
☆ Assistax: A Hardware-Accelerated Reinforcement Learning Benchmark for Assistive Robotics
The development of reinforcement learning (RL) algorithms has been largely driven by ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks because they present relevant challenges, are inexpensive to run and easy to understand. While games such as Go and Atari have led to many breakthroughs, they often do not directly translate to real-world embodied applications. In recognising the need to diversify RL benchmarks and addressing complexities that arise in embodied interaction scenarios, we introduce Assistax: an open-source benchmark designed to address challenges arising in assistive robotics tasks. Assistax uses JAX's hardware acceleration for significant speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock time, Assistax runs up to $370\times$ faster when vectorising training runs compared to CPU-based alternatives. Assistax conceptualises the interaction between an assistive robot and an active human patient using multi-agent RL to train a population of diverse partner agents against which an embodied robotic agent's zero-shot coordination capabilities can be tested. Extensive evaluation and hyperparameter tuning for popular continuous control RL and MARL algorithms provide reliable baselines and establish Assistax as a practical benchmark for advancing RL research for assistive robotics. The code is available at: https://github.com/assistive-autonomy/assistax.
comment: Accepted for the Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop at the Reinforcement Learning Conference 2025
☆ Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition ICCV
With the rapid advancement of autonomous driving technology, vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety by providing visibility beyond the line of sight. However, integrating multi-source sensor data from both ego-vehicles and infrastructure under real-world constraints, such as limited communication bandwidth and dynamic environments, presents significant technical challenges. To facilitate research in this area, we organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning. Built on the UniV2X framework and the V2X-Seq-SPD dataset, the challenge attracted participation from over 30 teams worldwide and established a unified benchmark for evaluating cooperative driving systems. This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration, and analyzes emerging technical trends among top-performing solutions. By addressing practical constraints in communication and data fusion, the challenge contributes to the development of scalable and reliable V2X-cooperative autonomous driving systems.
comment: 10 pages, 4 figures, accepted by ICCVW
☆ Decentralized Modeling of Vehicular Maneuvers and Interactions at Urban Junctions
Modeling and evaluation of automated vehicles (AVs) in mixed-autonomy traffic is essential prior to their safe and efficient deployment. This is especially important at urban junctions where complex multi-agent interactions occur. Current approaches for modeling vehicular maneuvers and interactions at urban junctions have limitations in formulating non-cooperative interactions and vehicle dynamics within a unified mathematical framework. Previous studies either assume predefined paths or rely on cooperation and central controllability, limiting their realism and applicability in mixed-autonomy traffic. This paper addresses these limitations by proposing a modeling framework for trajectory planning and decentralized vehicular control at urban junctions. The framework employs a bi-level structure where the upper level generates kinematically feasible reference trajectories using an efficient graph search algorithm with a custom heuristic function, while the lower level employs a predictive controller for trajectory tracking and optimization. Unlike existing approaches, our framework does not require central controllability or knowledge sharing among vehicles. The vehicle kinematics are explicitly incorporated at both levels, and acceleration and steering angle are used as control variables. This intuitive formulation facilitates analysis of traffic efficiency, environmental impacts, and motion comfort. The framework's decentralized structure accommodates operational and stochastic elements, such as vehicles' detection range, perception uncertainties, and reaction delay, making the model suitable for safety analysis. Numerical and simulation experiments across diverse scenarios demonstrate the framework's capability in modeling accurate and realistic vehicular maneuvers and interactions at various urban junctions, including unsignalized intersections and roundabouts.
comment: Manuscript under review
☆ Pretraining a Unified PDDL Domain from Real-World Demonstrations for Generalizable Robot Task Planning
Robotic task planning in real-world environments requires reasoning over implicit constraints from language and vision. While LLMs and VLMs offer strong priors, they struggle with long-horizon structure and symbolic grounding. Existing methods that combine LLMs with symbolic planning often rely on handcrafted or narrow domains, limiting generalization. We propose UniDomain, a framework that pre-trains a PDDL domain from robot manipulation demonstrations and applies it for online robotic task planning. It extracts atomic domains from 12,393 manipulation videos to form a unified domain with 3137 operators, 2875 predicates, and 16481 causal edges. Given a target class of tasks, it retrieves relevant atomics from the unified domain and systematically fuses them into high-quality meta-domains to support compositional generalization in planning. Experiments on diverse real-world tasks show that UniDomain solves complex, unseen tasks in a zero-shot manner, achieving up to 58% higher task success and 160% improvement in plan optimality over state-of-the-art LLM and LLM-PDDL baselines.
comment: Preprint. Under review
☆ Model Predictive Adversarial Imitation Learning for Planning from Observation
Human demonstration data is often ambiguous and incomplete, motivating imitation learning approaches that also exhibit reliable planning behavior. A common paradigm to perform planning-from-demonstration involves learning a reward function via Inverse Reinforcement Learning (IRL) then deploying this reward via Model Predictive Control (MPC). Towards unifying these methods, we derive a replacement of the policy in IRL with a planning-based agent. With connections to Adversarial Imitation Learning, this formulation enables end-to-end interactive learning of planners from observation-only demonstrations. In addition to benefits in interpretability, complexity, and safety, we study and observe significant improvements on sample efficiency, out-of-distribution generalization, and robustness. The study includes evaluations in both simulated control benchmarks and real-world navigation experiments using few-to-single observation-only demonstrations.
comment: Open-source code in process of being cleaned and documented for release. Please contact directly in the meantime for code. Under Review
☆ LITE: A Learning-Integrated Topological Explorer for Multi-Floor Indoor Environments IROS2025
This work focuses on multi-floor indoor exploration, which remains an open area of research. Compared to traditional methods, recent learning-based explorers have demonstrated significant potential due to their robust environmental learning and modeling capabilities, but most are restricted to 2D environments. In this paper, we proposed a learning-integrated topological explorer, LITE, for multi-floor indoor environments. LITE decomposes the environment into a floor-stair topology, enabling seamless integration of learning or non-learning-based 2D exploration methods for 3D exploration. As we incrementally build floor-stair topology in exploration using YOLO11-based instance segmentation model, the agent can transition between floors through a finite state machine. Additionally, we implement an attention-based 2D exploration policy that utilizes an attention mechanism to capture spatial dependencies between different regions, thereby determining the next global goal for more efficient exploration. Extensive comparison and ablation studies conducted on the HM3D and MP3D datasets demonstrate that our proposed 2D exploration policy significantly outperforms all baseline explorers in terms of exploration efficiency. Furthermore, experiments in several 3D multi-floor environments indicate that our framework is compatible with various 2D exploration methods, facilitating effective multi-floor indoor exploration. Finally, we validate our method in the real world with a quadruped robot, highlighting its strong generalization capabilities.
comment: IROS2025
☆ Multifunctional physical reservoir computing in soft tensegrity robots
Recent studies have demonstrated that the dynamics of physical systems can be utilized for the desired information processing under the framework of physical reservoir computing (PRC). Robots with soft bodies are examples of such physical systems, and their nonlinear body-environment dynamics can be used to compute and generate the motor signals necessary for the control of their own behavior. In this simulation study, we extend this approach to control and embed not only one but also multiple behaviors into a type of soft robot called a tensegrity robot. The resulting system, consisting of the robot and the environment, is a multistable dynamical system that converges to different attractors from varying initial conditions. Furthermore, attractor analysis reveals that there exist "untrained attractors" in the state space of the system outside the training data. These untrained attractors reflect the intrinsic properties and structures of the tensegrity robot and its interactions with the environment. The impacts of these recent findings in PRC remain unexplored in embodied AI research. We here illustrate their potential to understand various features of embodied cognition that have not been fully addressed to date.
comment: 25 pages, 12 figures. The following article has been accepted by Chaos: An Interdisciplinary Journal of Nonlinear Science
☆ Retrieve-Augmented Generation for Speeding up Diffusion Policy without Additional Training
Diffusion Policies (DPs) have attracted attention for their ability to achieve significant accuracy improvements in various imitation learning tasks. However, DPs depend on Diffusion Models, which require multiple noise removal steps to generate a single action, resulting in long generation times. To solve this problem, knowledge distillation-based methods such as Consistency Policy (CP) have been proposed. However, these methods require a significant amount of training time, especially for difficult tasks. In this study, we propose RAGDP (Retrieve-Augmented Generation for Diffusion Policies) as a novel framework that eliminates the need for additional training using a knowledge base to expedite the inference of pre-trained DPs. In concrete, RAGDP encodes observation-action pairs through the DP encoder to construct a vector database of expert demonstrations. During inference, the current observation is embedded, and the most similar expert action is extracted. This extracted action is combined with an intermediate noise removal step to reduce the number of steps required compared to the original diffusion step. We show that by using RAGDP with the base model and existing acceleration methods, we improve the accuracy and speed trade-off with no additional training. Even when accelerating the models 20 times, RAGDP maintains an advantage in accuracy, with a 7% increase over distillation models such as CP.
☆ Recursive Visual Imagination and Adaptive Linguistic Grounding for Vision Language Navigation AAAI 2026
Vision Language Navigation (VLN) typically requires agents to navigate to specified objects or remote regions in unknown scenes by obeying linguistic commands. Such tasks require organizing historical visual observations for linguistic grounding, which is critical for long-sequence navigational decisions. However, current agents suffer from overly detailed scene representation and ambiguous vision-language alignment, which weaken their comprehension of navigation-friendly high-level scene priors and easily lead to behaviors that violate linguistic commands. To tackle these issues, we propose a navigation policy by recursively summarizing along-the-way visual perceptions, which are adaptively aligned with commands to enhance linguistic grounding. In particular, by structurally modeling historical trajectories as compact neural grids, several Recursive Visual Imagination (RVI) techniques are proposed to motivate agents to focus on the regularity of visual transitions and semantic scene layouts, instead of dealing with misleading geometric details. Then, an Adaptive Linguistic Grounding (ALG) technique is proposed to align the learned situational memories with different linguistic components purposefully. Such fine-grained semantic matching facilitates the accurate anticipation of navigation actions and progress. Our navigation policy outperforms the state-of-the-art methods on the challenging VLN-CE and ObjectNav tasks, showing the superiority of our RVI and ALG techniques for VLN.
comment: Submitted to AAAI 2026
☆ Sound Source Localization for Human-Robot Interaction in Outdoor Environments
This paper presents a sound source localization strategy that relies on a microphone array embedded in an unmanned ground vehicle and an asynchronous close-talking microphone near the operator. A signal coarse alignment strategy is combined with a time-domain acoustic echo cancellation algorithm to estimate a time-frequency ideal ratio mask to isolate the target speech from interferences and environmental noise. This allows selective sound source localization, and provides the robot with the direction of arrival of sound from the active operator, which enables rich interaction in noisy scenarios. Results demonstrate an average angle error of 4 degrees and an accuracy within 5 degrees of 95\% at a signal-to-noise ratio of 1dB, which is significantly superior to the state-of-the-art localization methods.
☆ MapDiffusion: Generative Diffusion for Vectorized Online HD Map Construction and Uncertainty Estimation in Autonomous Driving IROS 2025
Autonomous driving requires an understanding of the static environment from sensor data. Learned Bird's-Eye View (BEV) encoders are commonly used to fuse multiple inputs, and a vector decoder predicts a vectorized map representation from the latent BEV grid. However, traditional map construction models provide deterministic point estimates, failing to capture uncertainty and the inherent ambiguities of real-world environments, such as occlusions and missing lane markings. We propose MapDiffusion, a novel generative approach that leverages the diffusion paradigm to learn the full distribution of possible vectorized maps. Instead of predicting a single deterministic output from learned queries, MapDiffusion iteratively refines randomly initialized queries, conditioned on a BEV latent grid, to generate multiple plausible map samples. This allows aggregating samples to improve prediction accuracy and deriving uncertainty estimates that directly correlate with scene ambiguity. Extensive experiments on the nuScenes dataset demonstrate that MapDiffusion achieves state-of-the-art performance in online map construction, surpassing the baseline by 5% in single-sample performance. We further show that aggregating multiple samples consistently improves performance along the ROC curve, validating the benefit of distribution modeling. Additionally, our uncertainty estimates are significantly higher in occluded areas, reinforcing their value in identifying regions with ambiguous sensor input. By modeling the full map distribution, MapDiffusion enhances the robustness and reliability of online vectorized HD map construction, enabling uncertainty-aware decision-making for autonomous vehicles in complex environments.
comment: Accepted for 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Multi-Agent Path Finding Among Dynamic Uncontrollable Agents with Statistical Safety Guarantees
Existing multi-agent path finding (MAPF) solvers do not account for uncertain behavior of uncontrollable agents. We present a novel variant of Enhanced Conflict-Based Search (ECBS), for both one-shot and lifelong MAPF in dynamic environments with uncontrollable agents. Our method consists of (1) training a learned predictor for the movement of uncontrollable agents, (2) quantifying the prediction error using conformal prediction (CP), a tool for statistical uncertainty quantification, and (3) integrating these uncertainty intervals into our modified ECBS solver. Our method can account for uncertain agent behavior, comes with statistical guarantees on collision-free paths for one-shot missions, and scales to lifelong missions with a receding horizon sequence of one-shot instances. We run our algorithm, CP-Solver, across warehouse and game maps, with competitive throughput and reduced collisions.
comment: 9 pages, 4 figures
☆ Modified Smith predictor for unstable linear systems
The paper presents a new control algorithm for unstable linear systems with input delay. In comparison with known analogues, the control law has been designed, which is a modification of the Smith predictor, and is the simplest one to implement without requiring complex integration methods. At the same time, the problem of stabilization of a closed system is effectively solved, ensuring the boundedness of all state variables and the exponential stability of the equilibrium point.
comment: in Russian language
☆ Toward Trusted Onboard AI: Advancing Small Satellite Operations using Reinforcement Learning
A RL (Reinforcement Learning) algorithm was developed for command automation onboard a 3U CubeSat. This effort focused on the implementation of macro control action RL, a technique in which an onboard agent is provided with compiled information based on live telemetry as its observation. The agent uses this information to produce high-level actions, such as adjusting attitude to solar pointing, which are then translated into control algorithms and executed through lower-level instructions. Once trust in the onboard agent is established, real-time environmental information can be leveraged for faster response times and reduced reliance on ground control. The approach not only focuses on developing an RL algorithm for a specific satellite but also sets a precedent for integrating trusted AI into onboard systems. This research builds on previous work in three areas: (1) RL algorithms for issuing high-level commands that are translated into low-level executable instructions; (2) the deployment of AI inference models interfaced with live operational systems, particularly onboard spacecraft; and (3) strategies for building trust in AI systems, especially for remote and autonomous applications. Existing RL research for satellite control is largely limited to simulation-based experiments; in this work, these techniques are tailored by constructing a digital twin of a specific spacecraft and training the RL agent to issue macro actions in this simulated environment. The policy of the trained agent is copied to an isolated environment, where it is fed compiled information about the satellite to make inference predictions, thereby demonstrating the RL algorithm's validity on orbit without granting it command authority. This process enables safe comparison of the algorithm's predictions against actual satellite behavior and ensures operation within expected parameters.
comment: 11 pages, 2 figures, 2 tables, accepted to the 39th Small Satellite Conference
☆ Temporally Consistent Unsupervised Segmentation for Mobile Robot Perception
Rapid progress in terrain-aware autonomous ground navigation has been driven by advances in supervised semantic segmentation. However, these methods rely on costly data collection and labor-intensive ground truth labeling to train deep models. Furthermore, autonomous systems are increasingly deployed in unrehearsed, unstructured environments where no labeled data exists and semantic categories may be ambiguous or domain-specific. Recent zero-shot approaches to unsupervised segmentation have shown promise in such settings but typically operate on individual frames, lacking temporal consistency-a critical property for robust perception in unstructured environments. To address this gap we introduce Frontier-Seg, a method for temporally consistent unsupervised segmentation of terrain from mobile robot video streams. Frontier-Seg clusters superpixel-level features extracted from foundation model backbones-specifically DINOv2-and enforces temporal consistency across frames to identify persistent terrain boundaries or frontiers without human supervision. We evaluate Frontier-Seg on a diverse set of benchmark datasets-including RUGD and RELLIS-3D-demonstrating its ability to perform unsupervised segmentation across unstructured off-road environments.
☆ Deployment of Objects with a Soft Everting Robot
Soft everting robots present significant advantages over traditional rigid robots, including enhanced dexterity, improved environmental interaction, and safe navigation in unpredictable environments. While soft everting robots have been widely demonstrated for exploration type tasks, their potential to move and deploy payloads in such tasks has been less investigated, with previous work focusing on sensors and tools for the robot. Leveraging the navigation capabilities, and deployed body, of the soft everting robot to deliver payloads in hazardous areas, e.g. carrying a water bottle to a person stuck under debris, would represent a significant capability in many applications. In this work, we present an analysis of how soft everting robots can be used to deploy larger, heavier payloads through the inside of the robot. We analyze both what objects can be deployed and what terrain features they can be carried through. Building on existing models, we present methods to quantify the effects of payloads on robot growth and self-support, and develop a model to predict payload slip. We then experimentally quantify payload transport using soft everting robot with a variety of payload shapes, sizes, and weights and though a series of tasks: steering, vertical transport, movement through holes, and movement across gaps. Overall, the results show that we can transport payloads in a variety of shapes and up to 1.5kg in weight and that we can move through circular apertures with as little as 0.01cm clearance around payloads, carry out discrete turns up to 135 degrees, and move across unsupported gaps of 1.15m in length.
comment: 9 pages, 10 figures, This work has been submitted to the IEEE for possible publication
☆ Emergent interactions lead to collective frustration in robotic matter
Current artificial intelligence systems show near-human-level capabilities when deployed in isolation. Systems of a few collaborating intelligent agents are being engineered to perform tasks collectively. This raises the question of whether robotic matter, where many learning and intelligent agents interact, shows emergence of collective behaviour. And if so, which kind of phenomena would such systems exhibit? Here, we study a paradigmatic model for robotic matter: a stochastic many-particle system in which each particle is endowed with a deep neural network that predicts its transitions based on the particles' environments. For a one-dimensional model, we show that robotic matter exhibits complex emergent phenomena, including transitions between long-lived learning regimes, the emergence of particle species, and frustration. We also find a density-dependent phase transition with signatures of criticality. Using active matter theory, we show that this phase transition is a consequence of self-organisation mediated by emergent inter-particle interactions. Our simple model captures key features of more complex forms of robotic systems.
♻ ☆ Humanoid Occupancy: Enabling A Generalized Multimodal Occupancy Perception System on Humanoid Robots
Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse heterogeneous visual perception modules tailored to specific scenarios. Among various perception paradigms, occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding. In this work, we present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline. Our framework employs advanced multi-modal fusion techniques to generate grid-based occupancy outputs encoding both occupancy status and semantic labels, thereby enabling holistic environmental understanding for downstream tasks such as task planning and navigation. To address the unique challenges of humanoid robots, we overcome issues such as kinematic interference and occlusion, and establish an effective sensor layout strategy. Furthermore, we have developed the first panoramic occupancy dataset specifically for humanoid robots, offering a valuable benchmark and resource for future research and development in this domain. The network architecture incorporates multi-modal feature fusion and temporal information integration to ensure robust perception. Overall, Humanoid Occupancy delivers effective environmental perception for humanoid robots and establishes a technical foundation for standardizing universal visual modules, paving the way for the widespread deployment of humanoid robots in complex real-world scenarios.
comment: Tech Report
♻ ☆ MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation
In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ VLA-Touch: Enhancing Vision-Language-Action Models with Dual-Level Tactile Feedback
Tactile feedback is generally recognized to be crucial for effective interaction with the physical world. However, state-of-the-art Vision-Language-Action (VLA) models lack the ability to interpret and use tactile signals, limiting their effectiveness in contact-rich tasks. Incorporating tactile feedback into these systems is challenging due to the absence of large multi-modal datasets. We present VLA-Touch, an approach that enhances generalist robot policies with tactile sensing \emph{without fine-tuning} the base VLA. Our method introduces two key innovations: (1) a pipeline that leverages a pretrained tactile-language model that provides semantic tactile feedback for high-level task planning, and (2) a diffusion-based controller that refines VLA-generated actions with tactile signals for contact-rich manipulation. Through real-world experiments, we demonstrate that our dual-level integration of tactile feedback improves task planning efficiency while enhancing execution precision. Code is open-sourced at \href{https://github.com/jxbi1010/VLA-Touch}{this URL}.
comment: 19 pages, 5 figures
♻ ☆ Scanning Bot: Efficient Scan Planning using Panoramic Cameras
Panoramic RGB-D cameras are known for their ability to produce high quality 3D scene reconstructions. However, operating these cameras involves manually selecting viewpoints and physically transporting the camera, making the generation of a 3D model time consuming and tedious. Additionally, the process can be challenging for novice users due to spatial constraints, such as ensuring sufficient feature overlap between viewpoint frames. To address these challenges, we propose a fully autonomous scan planning that generates an efficient tour plan for environment scanning, ensuring collision-free navigation and adequate overlap between viewpoints within the plan. Extensive experiments conducted in both synthetic and real-world environments validate the performance of our planner against state-of-the-art view planners. In particular, our method achieved an average scan coverage of 99 percent in the real-world experiment, with our approach being up to 3 times faster than state-of-the-art planners in total scan time.
♻ ☆ IRASim: A Fine-Grained World Model for Robot Manipulation
World models allow autonomous agents to plan and explore by predicting the visual outcomes of different actions. However, for robot manipulation, it is challenging to accurately model the fine-grained robot-object interaction within the visual space using existing methods which overlooks precise alignment between each action and the corresponding frame. In this paper, we present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details, conditioned on historical observations and robot action trajectories. We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment. Extensive experiments show that: (1) the quality of the videos generated by our method surpasses all the baseline methods and scales effectively with increased model size and computation; (2) policy evaluations using IRASim exhibit a strong correlation with those using the ground-truth simulator, highlighting its potential to accelerate real-world policy evaluation; (3) testing-time scaling through model-based planning with IRASim significantly enhances policy performance, as evidenced by an improvement in the IoU metric on the Push-T benchmark from 0.637 to 0.961; (4) IRASim provides flexible action controllability, allowing virtual robotic arms in datasets to be controlled via a keyboard or VR controller.
comment: Opensource, project website: https://gen-irasim.github.io
♻ ☆ Integration of Large Language Models within Cognitive Architectures for Autonomous Robots
Symbolic reasoning systems have been used in cognitive architectures to provide inference and planning capabilities. However, defining domains and problems has proven difficult and prone to errors. Moreover, Large Language Models (LLMs) have emerged as tools to process natural language for different tasks. In this paper, we propose the use of LLMs to tackle these problems. This way, this paper proposes the integration of LLMs in the ROS 2-integrated cognitive architecture MERLIN2 for autonomous robots. Specifically, we present the design, development and deployment of how to leverage the reasoning capabilities of LLMs inside the deliberative processes of MERLIN2. As a result, the deliberative system is updated from a PDDL-based planner system to a natural language planning system. This proposal is evaluated quantitatively and qualitatively, measuring the impact of incorporating the LLMs in the cognitive architecture. Results show that a classical approach achieves better performance but the proposed solution provides an enhanced interaction through natural language.
comment: 9 pages, 6 figures, 2 tables, Submitted to ROBOT 2025 (8th Iberian Robotics Conference)
♻ ☆ Automated UAV-based Wind Turbine Blade Inspection: Blade Stop Angle Estimation and Blade Detail Prioritized Exposure Adjustment IROS 2025
Unmanned aerial vehicles (UAVs) are critical in the automated inspection of wind turbine blades. Nevertheless, several issues persist in this domain. Firstly, existing inspection platforms encounter challenges in meeting the demands of automated inspection tasks and scenarios. Moreover, current blade stop angle estimation methods are vulnerable to environmental factors, restricting their robustness. Additionally, there is an absence of real-time blade detail prioritized exposure adjustment during capture, where lost details cannot be restored through post-optimization. To address these challenges, we introduce a platform and two approaches. Initially, a UAV inspection platform is presented to meet the automated inspection requirements. Subsequently, a Fermat point based blade stop angle estimation approach is introduced, achieving higher precision and success rates. Finally, we propose a blade detail prioritized exposure adjustment approach to ensure appropriate brightness and preserve details during image capture. Extensive tests, comprising over 120 flights across 10 wind turbine models in 5 operational wind farms, validate the effectiveness of the proposed approaches in enhancing inspection autonomy.
comment: 8 pages, 7 figures, final submission to IROS 2025
♻ ☆ Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems
This paper formalizes Hamiltonian-Informed Optimal Neural (Hion) controllers, a novel class of neural network-based controllers for dynamical systems and explicit non-linear model-predictive control. Hion controllers estimate future states and develop an optimal control strategy using Pontryagin's Maximum Principle. The proposed framework, along with our Taylored Multi-Faceted Approach for Neural ODE and Optimal Control (T-mano) architecture, allows for custom transient behavior, predictive control, and closed-loop feedback, addressing limitations of existing methods. Comparative analyses with established model-predictive controllers revealed Hion controllers' superior optimality and tracking capabilities. Optimal control strategies are also demonstrated for both linear and non-linear dynamical systems.
comment: 27 pages. Source code: https://github.com/wzjoriv/Hion
♻ ☆ An Integrated Approach to Robotic Object Grasping and Manipulation
In response to the growing challenges of manual labor and efficiency in warehouse operations, Amazon has embarked on a significant transformation by incorporating robotics to assist with various tasks. While a substantial number of robots have been successfully deployed for tasks such as item transportation within warehouses, the complex process of object picking from shelves remains a significant challenge. This project addresses the issue by developing an innovative robotic system capable of autonomously fulfilling a simulated order by efficiently selecting specific items from shelves. A distinguishing feature of the proposed robotic system is its capacity to navigate the challenge of uncertain object positions within each bin of the shelf. The system is engineered to autonomously adapt its approach, employing strategies that enable it to efficiently locate and retrieve the desired items, even in the absence of pre-established knowledge about their placements.
♻ ☆ Category-level Meta-learned NeRF Priors for Efficient Object Mapping
In 3D object mapping, category-level priors enable efficient object reconstruction and canonical pose estimation, requiring only a single prior per semantic category (e.g., chair, book, laptop, etc.). DeepSDF has been used predominantly as a category-level shape prior, but it struggles to reconstruct sharp geometry and is computationally expensive. In contrast, NeRFs capture fine details but have yet to be effectively integrated with category-level priors in a real-time multi-object mapping framework. To bridge this gap, we introduce PRENOM, a Prior-based Efficient Neural Object Mapper that integrates category-level priors with object-level NeRFs to enhance reconstruction efficiency and enable canonical object pose estimation. PRENOM gets to know objects on a first-name basis by meta-learning on synthetic reconstruction tasks generated from open-source shape datasets. To account for object category variations, it employs a multi-objective genetic algorithm to optimize the NeRF architecture for each category, balancing reconstruction quality and training time. Additionally, prior-based probabilistic ray sampling directs sampling toward expected object regions, accelerating convergence and improving reconstruction quality under constrained resources. Experimental results highlight the ability of PRENOM to achieve high-quality reconstructions while maintaining computational feasibility. Specifically, comparisons with prior-free NeRF-based approaches on a synthetic dataset show a 21\% lower Chamfer distance. Furthermore, evaluations against other approaches using shape priors on a noisy real-world dataset indicate a 13\% improvement averaged across all reconstruction metrics, and comparable pose and size estimation accuracy, while being trained for 5$\times$ less time. Code available at: https://github.com/snt-arg/PRENOM
GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction IROS 2025
Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field. This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes are released at https://github.com/hku-mars/GS-SDF.
comment: 8 pages, IROS 2025
♻ ☆ GSON: A Group-based Social Navigation Framework with Large Multimodal Model
With the increasing presence of service robots and autonomous vehicles in human environments, navigation systems need to evolve beyond simple destination reach to incorporate social awareness. This paper introduces GSON, a novel group-based social navigation framework that leverages Large Multimodal Models (LMMs) to enhance robots' social perception capabilities. Our approach uses visual prompting to enable zero-shot extraction of social relationships among pedestrians and integrates these results with robust pedestrian detection and tracking pipelines to overcome the inherent inference speed limitations of LMMs. The planning system incorporates a mid-level planner that sits between global path planning and local motion planning, effectively preserving both global context and reactive responsiveness while avoiding disruption of the predicted social group. We validate GSON through extensive real-world mobile robot navigation experiments involving complex social scenarios such as queuing, conversations, and photo sessions. Comparative results show that our system significantly outperforms existing navigation approaches in minimizing social perturbations while maintaining comparable performance on traditional navigation metrics.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Unscented Kalman Filter with a Nonlinear Propagation Model for Navigation Applications
The unscented Kalman filter is a nonlinear estimation algorithm commonly used in navigation applications. The prediction of the mean and covariance matrix is crucial to the stable behavior of the filter. This prediction is done by propagating the sigma points according to the dynamic model at hand. In this paper, we introduce an innovative method to propagate the sigma points according to the nonlinear dynamic model of the navigation error state vector. This improves the filter accuracy and navigation performance. We demonstrate the benefits of our proposed approach using real sensor data recorded by an autonomous underwater vehicle during several scenarios.
comment: 6 pages, 4 figures
♻ ☆ RANa: Retrieval-Augmented Navigation
Methods for navigation based on large-scale learning typically treat each episode as a new problem, where the agent is spawned with a clean memory in an unknown environment. While these generalization capabilities to an unknown environment are extremely important, we claim that, in a realistic setting, an agent should have the capacity of exploiting information collected during earlier robot operations. We address this by introducing a new retrieval-augmented agent, trained with RL, capable of querying a database collected from previous episodes in the same environment and learning how to integrate this additional context information. We introduce a unique agent architecture for the general navigation task, evaluated on ImageNav, Instance-ImageNav and ObjectNav. Our retrieval and context encoding methods are data-driven and employ vision foundation models (FM) for both semantic and geometric understanding. We propose new benchmarks for these settings and we show that retrieval allows zero-shot transfer across tasks and environments while significantly improving performance.
♻ ☆ SurgiSR4K: A High-Resolution Endoscopic Video Dataset for Robotic-Assisted Minimally Invasive Procedures
High-resolution imaging is crucial for enhancing visual clarity and enabling precise computer-assisted guidance in minimally invasive surgery (MIS). Despite the increasing adoption of 4K endoscopic systems, there remains a significant gap in publicly available native 4K datasets tailored specifically for robotic-assisted MIS. We introduce SurgiSR4K, the first publicly accessible surgical imaging and video dataset captured at a native 4K resolution, representing realistic conditions of robotic-assisted procedures. SurgiSR4K comprises diverse visual scenarios including specular reflections, tool occlusions, bleeding, and soft tissue deformations, meticulously designed to reflect common challenges faced during laparoscopic and robotic surgeries. This dataset opens up possibilities for a broad range of computer vision tasks that might benefit from high resolution data, such as super resolution (SR), smoke removal, surgical instrument detection, 3D tissue reconstruction, monocular depth estimation, instance segmentation, novel view synthesis, and vision-language model (VLM) development. SurgiSR4K provides a robust foundation for advancing research in high-resolution surgical imaging and fosters the development of intelligent imaging technologies aimed at enhancing performance, safety, and usability in image-guided robotic surgeries.
♻ ☆ ManiTaskGen: A Comprehensive Task Generator for Benchmarking and Improving Vision-Language Agents on Embodied Decision-Making
Building embodied agents capable of accomplishing arbitrary tasks is a core objective towards achieving embodied artificial general intelligence (E-AGI). While recent work has advanced such general robot policies, their training and evaluation are often limited to tasks within specific scenes, involving restricted instructions and scenarios. Existing benchmarks also typically rely on manual annotation of limited tasks in a few scenes. We argue that exploring the full spectrum of feasible tasks within any given scene is crucial, as they provide both extensive benchmarks for evaluation and valuable resources for agent improvement. Towards this end, we introduce ManiTaskGen, a novel system that automatically generates comprehensive, diverse, feasible mobile manipulation tasks for any given scene. The generated tasks encompass both process-based, specific instructions (e.g., "move object from X to Y") and outcome-based, abstract instructions (e.g., "clear the table"). We apply ManiTaskGen to both simulated and real-world scenes, demonstrating the validity and diversity of the generated tasks. We then leverage these tasks to automatically construct benchmarks, thoroughly evaluating the embodied decision-making capabilities of agents built upon existing vision-language models (VLMs). Furthermore, we propose a simple yet effective method that utilizes ManiTaskGen tasks to enhance embodied decision-making. Overall, this work presents a universal task generation framework for arbitrary scenes, facilitating both benchmarking and improvement of embodied decision-making agents.
comment: Project Website: https://manitaskgen.github.io/
♻ ☆ OPAL: Encoding Causal Understanding of Physical Systems for Robot Learning
We present OPAL (Operant Physical Agent with Language), a novel vision-language-action architecture that introduces topological constraints to flow matching for robotic control. To do so, we further introduce topological attention. Our approach models action sequences as topologically-structured representations with non-trivial constraints. Experimental results across 10 complex manipulation tasks demonstrate OPAL's superior performance compared to previous approaches, including Octo, OpenVLA, and ${\pi}$0. Our architecture achieves significant improvements in zero-shot performance without requiring task-specific fine-tuning, while reducing inference computational requirements by 42%. The theoretical guarantees provided by our topological approach result in more coherent long-horizon action sequences. Our results highlight the potential of constraining the search space of learning problems in robotics by deriving from fundamental physical laws, and the possibility of using topological attention to embed causal understanding into transformer architectures.
comment: We withdraw our submission following peer review feedback that identified methodological limitations: specifically, our experimental design does not adequately support the causal claims made in the submission. The work was preliminary undergraduate research that requires substantial additional experimental validation to properly establish the proposed causal relationships
♻ ☆ Learning Approach to Efficient Vision-based Active Tracking of a Flying Target by an Unmanned Aerial Vehicle
Autonomous tracking of flying aerial objects has important civilian and defense applications, ranging from search and rescue to counter-unmanned aerial systems (counter-UAS). Ground based tracking requires setting up infrastructure, could be range limited, and may not be feasible in remote areas, crowded cities or in dense vegetation areas. Vision based active tracking of aerial objects from another airborne vehicle, e.g., a chaser unmanned aerial vehicle (UAV), promises to fill this important gap, along with serving aerial coordination use cases. Vision-based active tracking by a UAV entails solving two coupled problems: 1) compute-efficient and accurate (target) object detection and target state estimation; and 2) maneuver decisions to ensure that the target remains in the field of view in the future time-steps and favorably positioned for continued detection. As a solution to the first problem, this paper presents a novel integration of standard deep learning based architectures with Kernelized Correlation Filter (KCF) to achieve compute-efficient object detection without compromising accuracy, unlike standalone learning or filtering approaches. The proposed perception framework is validated using a lab-scale setup. For the second problem, to obviate the linearity assumptions and background variations limiting effectiveness of the traditional controllers, we present the use of reinforcement learning to train a neuro-controller for fast computation of velocity maneuvers. New state space, action space and reward formulations are developed for this purpose, and training is performed in simulation using AirSim. The trained model is also tested in AirSim with respect to complex target maneuvers, and is found to outperform a baseline PID control in terms of tracking up-time and average distance maintained (from the target) during tracking.
comment: Accepted for presentation in proceedings of AIAA Aviation 2025
♻ ☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
♻ ☆ KIX: A Knowledge and Interaction-Centric Metacognitive Framework for Task Generalization
People aptly exhibit general intelligence behaviors through flexible problem-solving and the ability to adapt to novel situations by reusing and applying high-level knowledge acquired over time. In contrast, artificial agents tend to be specialists, lacking such generalist behaviors. To bridge this gap, artificial agents will require understanding and exploiting critical structured knowledge representations. We introduce a metacognitive reasoning framework, Knowledge-Interaction-eXecution (KIX), and argue that interactions with objects, by leveraging a type space, facilitate the learning of transferable interaction concepts and promote generalization. This framework offers a principled approach for integrating knowledge into reinforcement learning and holds promise as an enabler for generalist behaviors in artificial intelligence, robotics, and autonomous systems.
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis ICCV 2025
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 27 pages, 10 figures, 20 tables. Accepted by ICCV 2025
Computer Vision and Pattern Recognition 157
☆ MetaCLIP 2: A Worldwide Scaling Recipe
Contrastive Language-Image Pretraining (CLIP) is a popular foundation model, supporting from zero-shot classification, retrieval to encoders for multimodal large language models (MLLMs). Although CLIP is successfully trained on billion-scale image-text pairs from the English world, scaling CLIP's training further to learning from the worldwide web data is still challenging: (1) no curation method is available to handle data points from non-English world; (2) the English performance from existing multilingual CLIP is worse than its English-only counterpart, i.e., "curse of multilinguality" that is common in LLMs. Here, we present MetaCLIP 2, the first recipe training CLIP from scratch on worldwide web-scale image-text pairs. To generalize our findings, we conduct rigorous ablations with minimal changes that are necessary to address the above challenges and present a recipe enabling mutual benefits from English and non-English world data. In zero-shot ImageNet classification, MetaCLIP 2 ViT-H/14 surpasses its English-only counterpart by 0.8% and mSigLIP by 0.7%, and surprisingly sets new state-of-the-art without system-level confounding factors (e.g., translation, bespoke architecture changes) on multilingual benchmarks, such as CVQA with 57.4%, Babel-ImageNet with 50.2% and XM3600 with 64.3% on image-to-text retrieval.
comment: 10 pages
☆ MOVE: Motion-Guided Few-Shot Video Object Segmentation ICCV 2025
This work addresses motion-guided few-shot video object segmentation (FSVOS), which aims to segment dynamic objects in videos based on a few annotated examples with the same motion patterns. Existing FSVOS datasets and methods typically focus on object categories, which are static attributes that ignore the rich temporal dynamics in videos, limiting their application in scenarios requiring motion understanding. To fill this gap, we introduce MOVE, a large-scale dataset specifically designed for motion-guided FSVOS. Based on MOVE, we comprehensively evaluate 6 state-of-the-art methods from 3 different related tasks across 2 experimental settings. Our results reveal that current methods struggle to address motion-guided FSVOS, prompting us to analyze the associated challenges and propose a baseline method, Decoupled Motion Appearance Network (DMA). Experiments demonstrate that our approach achieves superior performance in few shot motion understanding, establishing a solid foundation for future research in this direction.
comment: ICCV 2025, Project Page: https://henghuiding.com/MOVE/
☆ StepAL: Step-aware Active Learning for Cataract Surgical Videos MICCAI 2025
Active learning (AL) can reduce annotation costs in surgical video analysis while maintaining model performance. However, traditional AL methods, developed for images or short video clips, are suboptimal for surgical step recognition due to inter-step dependencies within long, untrimmed surgical videos. These methods typically select individual frames or clips for labeling, which is ineffective for surgical videos where annotators require the context of the entire video for annotation. To address this, we propose StepAL, an active learning framework designed for full video selection in surgical step recognition. StepAL integrates a step-aware feature representation, which leverages pseudo-labels to capture the distribution of predicted steps within each video, with an entropy-weighted clustering strategy. This combination prioritizes videos that are both uncertain and exhibit diverse step compositions for annotation. Experiments on two cataract surgery datasets (Cataract-1k and Cataract-101) demonstrate that StepAL consistently outperforms existing active learning approaches, achieving higher accuracy in step recognition with fewer labeled videos. StepAL offers an effective approach for efficient surgical video analysis, reducing the annotation burden in developing computer-assisted surgical systems.
comment: Accepted to MICCAI 2025
☆ X-Omni: Reinforcement Learning Makes Discrete Autoregressive Image Generative Models Great Again
Numerous efforts have been made to extend the ``next token prediction'' paradigm to visual contents, aiming to create a unified approach for both image generation and understanding. Nevertheless, attempts to generate images through autoregressive modeling with discrete tokens have been plagued by issues such as low visual fidelity, distorted outputs, and failure to adhere to complex instructions when rendering intricate details. These shortcomings are likely attributed to cumulative errors during autoregressive inference or information loss incurred during the discretization process. Probably due to this challenge, recent research has increasingly shifted toward jointly training image generation with diffusion objectives and language generation with autoregressive objectives, moving away from unified modeling approaches. In this work, we demonstrate that reinforcement learning can effectively mitigate artifacts and largely enhance the generation quality of a discrete autoregressive modeling method, thereby enabling seamless integration of image and language generation. Our framework comprises a semantic image tokenizer, a unified autoregressive model for both language and images, and an offline diffusion decoder for image generation, termed X-Omni. X-Omni achieves state-of-the-art performance in image generation tasks using a 7B language model, producing images with high aesthetic quality while exhibiting strong capabilities in following instructions and rendering long texts.
☆ MetaLab: Few-Shot Game Changer for Image Recognition
Difficult few-shot image recognition has significant application prospects, yet remaining the substantial technical gaps with the conventional large-scale image recognition. In this paper, we have proposed an efficient original method for few-shot image recognition, called CIELab-Guided Coherent Meta-Learning (MetaLab). Structurally, our MetaLab comprises two collaborative neural networks: LabNet, which can perform domain transformation for the CIELab color space and extract rich grouped features, and coherent LabGNN, which can facilitate mutual learning between lightness graph and color graph. For sufficient certification, we have implemented extensive comparative studies on four coarse-grained benchmarks, four fine-grained benchmarks, and four cross-domain few-shot benchmarks. Specifically, our method can achieve high accuracy, robust performance, and effective generalization capability with one-shot sample per class. Overall, all experiments have demonstrated that our MetaLab can approach 99\% $\uparrow\downarrow$ accuracy, reaching the human recognition ceiling with little visual deviation.
☆ Ov3R: Open-Vocabulary Semantic 3D Reconstruction from RGB Videos
We present Ov3R, a novel framework for open-vocabulary semantic 3D reconstruction from RGB video streams, designed to advance Spatial AI. The system features two key components: CLIP3R, a CLIP-informed 3D reconstruction module that predicts dense point maps from overlapping clips while embedding object-level semantics; and 2D-3D OVS, a 2D-3D open-vocabulary semantic module that lifts 2D features into 3D by learning fused descriptors integrating spatial, geometric, and semantic cues. Unlike prior methods, Ov3R incorporates CLIP semantics directly into the reconstruction process, enabling globally consistent geometry and fine-grained semantic alignment. Our framework achieves state-of-the-art performance in both dense 3D reconstruction and open-vocabulary 3D segmentation, marking a step forward toward real-time, semantics-aware Spatial AI.
☆ Shallow Deep Learning Can Still Excel in Fine-Grained Few-Shot Learning
Deep learning has witnessed the extensive utilization across a wide spectrum of domains, including fine-grained few-shot learning (FGFSL) which heavily depends on deep backbones. Nonetheless, shallower deep backbones such as ConvNet-4, are not commonly preferred because they're prone to extract a larger quantity of non-abstract visual attributes. In this paper, we initially re-evaluate the relationship between network depth and the ability to fully encode few-shot instances, and delve into whether shallow deep architecture could effectuate comparable or superior performance to mainstream deep backbone. Fueled by the inspiration from vanilla ConvNet-4, we introduce a location-aware constellation network (LCN-4), equipped with a cutting-edge location-aware feature clustering module. This module can proficiently encoder and integrate spatial feature fusion, feature clustering, and recessive feature location, thereby significantly minimizing the overall loss. Specifically, we innovatively put forward a general grid position encoding compensation to effectively address the issue of positional information missing during the feature extraction process of specific ordinary convolutions. Additionally, we further propose a general frequency domain location embedding technique to offset for the location loss in clustering features. We have carried out validation procedures on three representative fine-grained few-shot benchmarks. Relevant experiments have established that LCN-4 notably outperforms the ConvNet-4 based State-of-the-Arts and achieves performance that is on par with or superior to most ResNet12-based methods, confirming the correctness of our conjecture.
☆ Supervised Quantum Image Processing
In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI performs a higher compression of image information than TNR, NEQR, and QPIE. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
comment: 13 pages, 11 figures
☆ ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports
We present ReXGroundingCT, the first publicly available dataset to link free-text radiology findings with pixel-level segmentations in 3D chest CT scans that is manually annotated. While prior datasets have relied on structured labels or predefined categories, ReXGroundingCT captures the full expressiveness of clinical language represented in free text and grounds it to spatially localized 3D segmentation annotations in volumetric imaging. This addresses a critical gap in medical AI: the ability to connect complex, descriptive text, such as "3 mm nodule in the left lower lobe", to its precise anatomical location in three-dimensional space, a capability essential for grounded radiology report generation systems. The dataset comprises 3,142 non-contrast chest CT scans paired with standardized radiology reports from the CT-RATE dataset. Using a systematic three-stage pipeline, GPT-4 was used to extract positive lung and pleural findings, which were then manually segmented by expert annotators. A total of 8,028 findings across 16,301 entities were annotated, with quality control performed by board-certified radiologists. Approximately 79% of findings are focal abnormalities, while 21% are non-focal. The training set includes up to three representative segmentations per finding, while the validation and test sets contain exhaustive labels for each finding entity. ReXGroundingCT establishes a new benchmark for developing and evaluating sentence-level grounding and free-text medical segmentation models in chest CT. The dataset can be accessed at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.
☆ From Seeing to Experiencing: Scaling Navigation Foundation Models with Reinforcement Learning
Navigation foundation models trained on massive webscale data enable agents to generalize across diverse environments and embodiments. However, these models trained solely on offline data, often lack the capacity to reason about the consequences of their actions or adapt through counterfactual understanding. They thus face significant limitations in the real-world urban navigation where interactive and safe behaviors, such as avoiding obstacles and moving pedestrians, are critical. To tackle these challenges, we introduce the Seeing-to-Experiencing framework to scale the capability of navigation foundation models with reinforcement learning. S2E combines the strengths of pre-training on videos and post-training through RL. It maintains the generalizability acquired from large-scale real-world videos while enhancing its interactivity through RL in simulation environments. Specifically, we introduce two innovations: an Anchor-Guided Distribution Matching strategy, which stabilizes learning and models diverse motion patterns through anchor-based supervision; and a Residual-Attention Module, which obtains reactive behaviors from simulation environments without erasing the model's pretrained knowledge. Moreover, we establish a comprehensive end-to-end evaluation benchmark, NavBench-GS, built on photorealistic 3DGS reconstructions of real-world scenes that incorporate physical interactions. It can systematically assess the generalizability and safety of navigation foundation models. Extensive experiments show that S2E mitigates the diminishing returns often seen when scaling with offline data alone. We perform a thorough analysis of the benefits of Reinforcement Learning compared to Supervised Fine-Tuning in the context of post-training for robot learning. Our findings emphasize the crucial role of integrating interactive online experiences to effectively scale foundation models in Robotics.
☆ Cardiac-CLIP: A Vision-Language Foundation Model for 3D Cardiac CT Images
Foundation models have demonstrated remarkable potential in medical domain. However, their application to complex cardiovascular diagnostics remains underexplored. In this paper, we present Cardiac-CLIP, a multi-modal foundation model designed for 3D cardiac CT images. Cardiac-CLIP is developed through a two-stage pre-training strategy. The first stage employs a 3D masked autoencoder (MAE) to perform self-supervised representation learning from large-scale unlabeled volumetric data, enabling the visual encoder to capture rich anatomical and contextual features. In the second stage, contrastive learning is introduced to align visual and textual representations, facilitating cross-modal understanding. To support the pre-training, we collect 16641 real clinical CT scans, supplemented by 114k publicly available data. Meanwhile, we standardize free-text radiology reports into unified templates and construct the pathology vectors according to diagnostic attributes, based on which the soft-label matrix is generated to supervise the contrastive learning process. On the other hand, to comprehensively evaluate the effectiveness of Cardiac-CLIP, we collect 6,722 real-clinical data from 12 independent institutions, along with the open-source data to construct the evaluation dataset. Specifically, Cardiac-CLIP is comprehensively evaluated across multiple tasks, including cardiovascular abnormality classification, information retrieval and clinical analysis. Experimental results demonstrate that Cardiac-CLIP achieves state-of-the-art performance across various downstream tasks in both internal and external data. Particularly, Cardiac-CLIP exhibits great effectiveness in supporting complex clinical tasks such as the prospective prediction of acute coronary syndrome, which is notoriously difficult in real-world scenarios.
☆ XAI for Point Cloud Data using Perturbations based on Meaningful Segmentation
We propose a novel segmentation-based explainable artificial intelligence (XAI) method for neural networks working on point cloud classification. As one building block of this method, we propose a novel point-shifting mechanism to introduce perturbations in point cloud data. Recently, AI has seen an exponential growth. Hence, it is important to understand the decision-making process of AI algorithms when they are applied in critical areas. Our work focuses on explaining AI algorithms that classify point cloud data. An important aspect of the methods used for explaining AI algorithms is their ability to produce explanations that are easy for humans to understand. This allows them to analyze the AI algorithms better and make appropriate decisions based on that analysis. Therefore, in this work, we intend to generate meaningful explanations that can be easily interpreted by humans. The point cloud data we consider represents 3D objects such as cars, guitars, and laptops. We make use of point cloud segmentation models to generate explanations for the working of classification models. The segments are used to introduce perturbations into the input point cloud data and generate saliency maps. The perturbations are introduced using the novel point-shifting mechanism proposed in this work which ensures that the shifted points no longer influence the output of the classification algorithm. In contrast to previous methods, the segments used by our method are meaningful, i.e. humans can easily interpret the meaning of the segments. Thus, the benefit of our method over other methods is its ability to produce more meaningful saliency maps. We compare our method with the use of classical clustering algorithms to generate explanations. We also analyze the saliency maps generated for example inputs using our method to demonstrate the usefulness of the method in generating meaningful explanations.
comment: 18 pages, 14 figures
☆ Cyst-X: AI-Powered Pancreatic Cancer Risk Prediction from Multicenter MRI in Centralized and Federated Learning
Pancreatic cancer is projected to become the second-deadliest malignancy in Western countries by 2030, highlighting the urgent need for better early detection. Intraductal papillary mucinous neoplasms (IPMNs), key precursors to pancreatic cancer, are challenging to assess with current guidelines, often leading to unnecessary surgeries or missed malignancies. We present Cyst-X, an AI framework that predicts IPMN malignancy using multicenter MRI data, leveraging MRI's superior soft tissue contrast over CT. Trained on 723 T1- and 738 T2-weighted scans from 764 patients across seven institutions, our models (AUC=0.82) significantly outperform both Kyoto guidelines (AUC=0.75) and expert radiologists. The AI-derived imaging features align with known clinical markers and offer biologically meaningful insights. We also demonstrate strong performance in a federated learning setting, enabling collaborative training without sharing patient data. To promote privacy-preserving AI development and improve IPMN risk stratification, the Cyst-X dataset is released as the first large-scale, multi-center pancreatic cysts MRI dataset.
☆ VeS: Teaching Pixels to Listen Without Supervision
Recent dense audio-visual (AV) models achieve impressive retrieval and emergent localization, but almost all evidence comes from English-centric, caption-rich web video. It is unclear whether these objectives survive in low-resource, code-switched, and noisy multilingual settings that typify developing regions. We show they do**-**and that the choice of aggregation function becomes even more critical. Using a multilingual subset of Project Vaani spanning dozens of Indian languages and dialectal variants, we compare three contrastive objectives: (i) a global mean-pooled loss (CLIP-style), (ii) a dense max-mean token matcher (DenseAV-style), and (iii) a simple hybrid (motivated by frozen-vision alignment strategies). The dense objective delivers a +59% relative R@1 (Audio Visual) improvement over global pooling and substantially lower mean/median ranks, while consistently producing sharp zero-shot localization heatmaps of spoken objects-despite keeping the vision backbone entirely frozen (no LoRA / partial fine-tuning). Our results demonstrate that dense token routing is not a luxury of high-resource English corpora; it is more decisive when annotations and acoustic cleanliness are scarce. We release the codebase and trained models.
comment: 6 pages, 1 figure, 1 table. Code and models are released
☆ Bridging Synthetic and Real-World Domains: A Human-in-the-Loop Weakly-Supervised Framework for Industrial Toxic Emission Segmentation
Industrial smoke segmentation is critical for air-quality monitoring and environmental protection but is often hampered by the high cost and scarcity of pixel-level annotations in real-world settings. We introduce CEDANet, a human-in-the-loop, class-aware domain adaptation framework that uniquely integrates weak, citizen-provided video-level labels with adversarial feature alignment. Specifically, we refine pseudo-labels generated by a source-trained segmentation model using citizen votes, and employ class-specific domain discriminators to transfer rich source-domain representations to the industrial domain. Comprehensive experiments on SMOKE5K and custom IJmond datasets demonstrate that CEDANet achieves an F1-score of 0.414 and a smoke-class IoU of 0.261 with citizen feedback, vastly outperforming the baseline model, which scored 0.083 and 0.043 respectively. This represents a five-fold increase in F1-score and a six-fold increase in smoke-class IoU. Notably, CEDANet with citizen-constrained pseudo-labels achieves performance comparable to the same architecture trained on limited 100 fully annotated images with F1-score of 0.418 and IoU of 0.264, demonstrating its ability to reach small-sampled fully supervised-level accuracy without target-domain annotations. Our research validates the scalability and cost-efficiency of combining citizen science with weakly supervised domain adaptation, offering a practical solution for complex, data-scarce environmental monitoring applications.
☆ Staining and locking computer vision models without retraining
We introduce new methods of staining and locking computer vision models, to protect their owners' intellectual property. Staining, also known as watermarking, embeds secret behaviour into a model which can later be used to identify it, while locking aims to make a model unusable unless a secret trigger is inserted into input images. Unlike existing methods, our algorithms can be used to stain and lock pre-trained models without requiring fine-tuning or retraining, and come with provable, computable guarantees bounding their worst-case false positive rates. The stain and lock are implemented by directly modifying a small number of the model's weights and have minimal impact on the (unlocked) model's performance. Locked models are unlocked by inserting a small `trigger patch' into the corner of the input image. We present experimental results showing the efficacy of our methods and demonstrating their practical performance on a variety of computer vision models.
comment: 10 pages, 9 pages of appendices, 10 figures
☆ ZIUM: Zero-Shot Intent-Aware Adversarial Attack on Unlearned Models ICCV2025
Machine unlearning (MU) removes specific data points or concepts from deep learning models to enhance privacy and prevent sensitive content generation. Adversarial prompts can exploit unlearned models to generate content containing removed concepts, posing a significant security risk. However, existing adversarial attack methods still face challenges in generating content that aligns with an attacker's intent while incurring high computational costs to identify successful prompts. To address these challenges, we propose ZIUM, a Zero-shot Intent-aware adversarial attack on Unlearned Models, which enables the flexible customization of target attack images to reflect an attacker's intent. Additionally, ZIUM supports zero-shot adversarial attacks without requiring further optimization for previously attacked unlearned concepts. The evaluation across various MU scenarios demonstrated ZIUM's effectiveness in successfully customizing content based on user-intent prompts while achieving a superior attack success rate compared to existing methods. Moreover, its zero-shot adversarial attack significantly reduces the attack time for previously attacked unlearned concepts.
comment: Accepted to ICCV2025
☆ Motion Matters: Motion-guided Modulation Network for Skeleton-based Micro-Action Recognition
Micro-Actions (MAs) are an important form of non-verbal communication in social interactions, with potential applications in human emotional analysis. However, existing methods in Micro-Action Recognition often overlook the inherent subtle changes in MAs, which limits the accuracy of distinguishing MAs with subtle changes. To address this issue, we present a novel Motion-guided Modulation Network (MMN) that implicitly captures and modulates subtle motion cues to enhance spatial-temporal representation learning. Specifically, we introduce a Motion-guided Skeletal Modulation module (MSM) to inject motion cues at the skeletal level, acting as a control signal to guide spatial representation modeling. In parallel, we design a Motion-guided Temporal Modulation module (MTM) to incorporate motion information at the frame level, facilitating the modeling of holistic motion patterns in micro-actions. Finally, we propose a motion consistency learning strategy to aggregate the motion cues from multi-scale features for micro-action classification. Experimental results on the Micro-Action 52 and iMiGUE datasets demonstrate that MMN achieves state-of-the-art performance in skeleton-based micro-action recognition, underscoring the importance of explicitly modeling subtle motion cues. The code will be available at https://github.com/momiji-bit/MMN.
☆ EIFNet: Leveraging Event-Image Fusion for Robust Semantic Segmentation
Event-based semantic segmentation explores the potential of event cameras, which offer high dynamic range and fine temporal resolution, to achieve robust scene understanding in challenging environments. Despite these advantages, the task remains difficult due to two main challenges: extracting reliable features from sparse and noisy event streams, and effectively fusing them with dense, semantically rich image data that differ in structure and representation. To address these issues, we propose EIFNet, a multi-modal fusion network that combines the strengths of both event and frame-based inputs. The network includes an Adaptive Event Feature Refinement Module (AEFRM), which improves event representations through multi-scale activity modeling and spatial attention. In addition, we introduce a Modality-Adaptive Recalibration Module (MARM) and a Multi-Head Attention Gated Fusion Module (MGFM), which align and integrate features across modalities using attention mechanisms and gated fusion strategies. Experiments on DDD17-Semantic and DSEC-Semantic datasets show that EIFNet achieves state-of-the-art performance, demonstrating its effectiveness in event-based semantic segmentation.
☆ A Deep Learning Pipeline Using Synthetic Data to Improve Interpretation of Paper ECG Images
Cardiovascular diseases (CVDs) are the leading global cause of death, and early detection is essential to improve patient outcomes. Electrocardiograms (ECGs), especially 12-lead ECGs, play a key role in the identification of CVDs. These are routinely interpreted by human experts, a process that is time-consuming and requires expert knowledge. Historical research in this area has focused on automatic ECG interpretation from digital signals, with recent deep learning approaches achieving strong results. In practice, however, most ECG data in clinical practice are stored or shared in image form. To bridge this gap, we propose a deep learning framework designed specifically to classify paper-like ECG images into five main diagnostic categories. Our method was the winning entry to the 2024 British Heart Foundation Open Data Science Challenge. It addresses two main challenges of paper ECG classification: visual noise (e.g., shadows or creases) and the need to detect fine-detailed waveform patterns. We propose a pre-processing pipeline that reduces visual noise and a two-stage fine-tuning strategy: the model is first fine-tuned on synthetic and external ECG image datasets to learn domain-specific features, and then further fine-tuned on the target dataset to enhance disease-specific recognition. We adopt the ConvNeXt architecture as the backbone of our model. Our method achieved AUROC scores of 0.9688 on the public validation set and 0.9677 on the private test set of the British Heart Foundation Open Data Science Challenge, highlighting its potential as a practical tool for automated ECG interpretation in clinical workflows.
☆ PanoSplatt3R: Leveraging Perspective Pretraining for Generalized Unposed Wide-Baseline Panorama Reconstruction ICCV 2025
Wide-baseline panorama reconstruction has emerged as a highly effective and pivotal approach for not only achieving geometric reconstruction of the surrounding 3D environment, but also generating highly realistic and immersive novel views. Although existing methods have shown remarkable performance across various benchmarks, they are predominantly reliant on accurate pose information. In real-world scenarios, the acquisition of precise pose often requires additional computational resources and is highly susceptible to noise. These limitations hinder the broad applicability and practicality of such methods. In this paper, we present PanoSplatt3R, an unposed wide-baseline panorama reconstruction method. We extend and adapt the foundational reconstruction pretrainings from the perspective domain to the panoramic domain, thus enabling powerful generalization capabilities. To ensure a seamless and efficient domain-transfer process, we introduce RoPE rolling that spans rolled coordinates in rotary positional embeddings across different attention heads, maintaining a minimal modification to RoPE's mechanism, while modeling the horizontal periodicity of panorama images. Comprehensive experiments demonstrate that PanoSplatt3R, even in the absence of pose information, significantly outperforms current state-of-the-art methods. This superiority is evident in both the generation of high-quality novel views and the accuracy of depth estimation, thereby showcasing its great potential for practical applications. Project page: https://npucvr.github.io/PanoSplatt3R
comment: Accepted to ICCV 2025
☆ Mitigating Spurious Correlations in Weakly Supervised Semantic Segmentation via Cross-architecture Consistency Regularization
Scarcity of pixel-level labels is a significant challenge in practical scenarios. In specific domains like industrial smoke, acquiring such detailed annotations is particularly difficult and often requires expert knowledge. To alleviate this, weakly supervised semantic segmentation (WSSS) has emerged as a promising approach. However, due to the supervision gap and inherent bias in models trained with only image level labels, existing WSSS methods suffer from limitations such as incomplete foreground coverage, inaccurate object boundaries, and spurious correlations, especially in our domain, where emissions are always spatially coupled with chimneys. Previous solutions typically rely on additional priors or external knowledge to mitigate these issues, but they often lack scalability and fail to address the model's inherent bias toward co-occurring context. To address this, we propose a novel WSSS framework that directly targets the co-occurrence problem without relying on external supervision. Unlike prior methods that adopt a single network, we employ a teacher-student framework that combines CNNs and ViTs. We introduce a knowledge transfer loss that enforces cross-architecture consistency by aligning internal representations. Additionally, we incorporate post-processing techniques to address partial coverage and further improve pseudo mask quality.
☆ Contrast-Prior Enhanced Duality for Mask-Free Shadow Removal
Existing shadow removal methods often rely on shadow masks, which are challenging to acquire in real-world scenarios. Exploring intrinsic image cues, such as local contrast information, presents a potential alternative for guiding shadow removal in the absence of explicit masks. However, the cue's inherent ambiguity becomes a critical limitation in complex scenes, where it can fail to distinguish true shadows from low-reflectance objects and intricate background textures. To address this motivation, we propose the Adaptive Gated Dual-Branch Attention (AGBA) mechanism. AGBA dynamically filters and re-weighs the contrast prior to effectively disentangle shadow features from confounding visual elements. Furthermore, to tackle the persistent challenge of restoring soft shadow boundaries and fine-grained details, we introduce a diffusion-based Frequency-Contrast Fusion Network (FCFN) that leverages high-frequency and contrast cues to guide the generative process. Extensive experiments demonstrate that our method achieves state-of-the-art results among mask-free approaches while maintaining competitive performance relative to mask-based methods.
☆ Enhancing Generalization in Data-free Quantization via Mixup-class Prompting
Post-training quantization (PTQ) improves efficiency but struggles with limited calibration data, especially under privacy constraints. Data-free quantization (DFQ) mitigates this by generating synthetic images using generative models such as generative adversarial networks (GANs) and text-conditioned latent diffusion models (LDMs), while applying existing PTQ algorithms. However, the relationship between generated synthetic images and the generalizability of the quantized model during PTQ remains underexplored. Without investigating this relationship, synthetic images generated by previous prompt engineering methods based on single-class prompts suffer from issues such as polysemy, leading to performance degradation. We propose \textbf{mixup-class prompt}, a mixup-based text prompting strategy that fuses multiple class labels at the text prompt level to generate diverse, robust synthetic data. This approach enhances generalization, and improves optimization stability in PTQ. We provide quantitative insights through gradient norm and generalization error analysis. Experiments on convolutional neural networks (CNNs) and vision transformers (ViTs) show that our method consistently outperforms state-of-the-art DFQ methods like GenQ. Furthermore, it pushes the performance boundary in extremely low-bit scenarios, achieving new state-of-the-art accuracy in challenging 2-bit weight, 4-bit activation (W2A4) quantization.
☆ Attention-Driven Multimodal Alignment for Long-term Action Quality Assessment
Long-term action quality assessment (AQA) focuses on evaluating the quality of human activities in videos lasting up to several minutes. This task plays an important role in the automated evaluation of artistic sports such as rhythmic gymnastics and figure skating, where both accurate motion execution and temporal synchronization with background music are essential for performance assessment. However, existing methods predominantly fall into two categories: unimodal approaches that rely solely on visual features, which are inadequate for modeling multimodal cues like music; and multimodal approaches that typically employ simple feature-level contrastive fusion, overlooking deep cross-modal collaboration and temporal dynamics. As a result, they struggle to capture complex interactions between modalities and fail to accurately track critical performance changes throughout extended sequences. To address these challenges, we propose the Long-term Multimodal Attention Consistency Network (LMAC-Net). LMAC-Net introduces a multimodal attention consistency mechanism to explicitly align multimodal features, enabling stable integration of visual and audio information and enhancing feature representations. Specifically, we introduce a multimodal local query encoder module to capture temporal semantics and cross-modal relations, and use a two-level score evaluation for interpretable results. In addition, attention-based and regression-based losses are applied to jointly optimize multimodal alignment and score fusion. Experiments conducted on the RG and Fis-V datasets demonstrate that LMAC-Net significantly outperforms existing methods, validating the effectiveness of our proposed approach.
comment: Accepted to Applied Soft Computing
☆ MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning
Large Language Models (LLMs), enhanced through agent tuning, have demonstrated remarkable capabilities in Chain-of-Thought (CoT) and tool utilization, significantly surpassing the performance of standalone models. However, the multimodal domain still lacks a large-scale, high-quality agent tuning dataset to unlock the full potential of multimodal large language models. To bridge this gap, we introduce MMAT-1M, the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage. Our dataset is constructed through a novel four-stage data engine: 1) We first curate publicly available multimodal datasets containing question-answer pairs; 2) Then, leveraging GPT-4o, we generate rationales for the original question-answer pairs and dynamically integrate API calls and Retrieval Augmented Generation (RAG) information through a multi-turn paradigm; 3) Furthermore, we refine the rationales through reflection to ensure logical consistency and accuracy, creating a multi-turn dialogue dataset with both Rationale and Reflection (RR); 4) Finally, to enhance efficiency, we optionally compress multi-turn dialogues into a One-turn Rationale and Reflection (ORR) format. By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains. For instance, the InternVL2.5-8B-RR model achieves an average improvement of 2.7% across eight public benchmarks and 8.8% on the RAG benchmark Dyn-VQA, demonstrating the dataset's effectiveness in enhancing multimodal reasoning and tool-based capabilities. The dataset is publicly available at https://github.com/VIS-MPU-Agent/MMAT-1M.
☆ SwinECAT: A Transformer-based fundus disease classification model with Shifted Window Attention and Efficient Channel Attention
In recent years, artificial intelligence has been increasingly applied in the field of medical imaging. Among these applications, fundus image analysis presents special challenges, including small lesion areas in certain fundus diseases and subtle inter-disease differences, which can lead to reduced prediction accuracy and overfitting in the models. To address these challenges, this paper proposes the Transformer-based model SwinECAT, which combines the Shifted Window (Swin) Attention with the Efficient Channel Attention (ECA) Attention. SwinECAT leverages the Swin Attention mechanism in the Swin Transformer backbone to effectively capture local spatial structures and long-range dependencies within fundus images. The lightweight ECA mechanism is incorporated to guide the SwinECAT's attention toward critical feature channels, enabling more discriminative feature representation. In contrast to previous studies that typically classify fundus images into 4 to 6 categories, this work expands fundus disease classification to 9 distinct types, thereby enhancing the granularity of diagnosis. We evaluate our method on the Eye Disease Image Dataset (EDID) containing 16,140 fundus images for 9-category classification. Experimental results demonstrate that SwinECAT achieves 88.29\% accuracy, with weighted F1-score of 0.88 and macro F1-score of 0.90. The classification results of our proposed model SwinECAT significantly outperform the baseline Swin Transformer and multiple compared baseline models. To our knowledge, this represents the highest reported performance for 9-category classification on this public dataset.
comment: 17 pages
☆ ArtSeek: Deep artwork understanding via multimodal in-context reasoning and late interaction retrieval
Analyzing digitized artworks presents unique challenges, requiring not only visual interpretation but also a deep understanding of rich artistic, contextual, and historical knowledge. We introduce ArtSeek, a multimodal framework for art analysis that combines multimodal large language models with retrieval-augmented generation. Unlike prior work, our pipeline relies only on image input, enabling applicability to artworks without links to Wikidata or Wikipedia-common in most digitized collections. ArtSeek integrates three key components: an intelligent multimodal retrieval module based on late interaction retrieval, a contrastive multitask classification network for predicting artist, genre, style, media, and tags, and an agentic reasoning strategy enabled through in-context examples for complex visual question answering and artwork explanation via Qwen2.5-VL. Central to this approach is WikiFragments, a Wikipedia-scale dataset of image-text fragments curated to support knowledge-grounded multimodal reasoning. Our framework achieves state-of-the-art results on multiple benchmarks, including a +8.4% F1 improvement in style classification over GraphCLIP and a +7.1 BLEU@1 gain in captioning on ArtPedia. Qualitative analyses show that ArtSeek can interpret visual motifs, infer historical context, and retrieve relevant knowledge, even for obscure works. Though focused on visual arts, our approach generalizes to other domains requiring external knowledge, supporting scalable multimodal AI research. Both the dataset and the source code will be made publicly available at https://github.com/cilabuniba/artseek.
☆ Evaluating Deepfake Detectors in the Wild ICML 2025
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/messlav/Deepfake-Detectors-in-the-Wild.
comment: Accepted to the ICML 2025 Workshop 'DataWorld: Unifying Data Curation Frameworks Across Domains'
☆ Aether Weaver: Multimodal Affective Narrative Co-Generation with Dynamic Scene Graphs
We introduce Aether Weaver, a novel, integrated framework for multimodal narrative co-generation that overcomes limitations of sequential text-to-visual pipelines. Our system concurrently synthesizes textual narratives, dynamic scene graph representations, visual scenes, and affective soundscapes, driven by a tightly integrated, co-generation mechanism. At its core, the Narrator, a large language model, generates narrative text and multimodal prompts, while the Director acts as a dynamic scene graph manager, and analyzes the text to build and maintain a structured representation of the story's world, ensuring spatio-temporal and relational consistency for visual rendering and subsequent narrative generation. Additionally, a Narrative Arc Controller guides the high-level story structure, influencing multimodal affective consistency, further complemented by an Affective Tone Mapper that ensures congruent emotional expression across all modalities. Through qualitative evaluations on a diverse set of narrative prompts encompassing various genres, we demonstrate that Aether Weaver significantly enhances narrative depth, visual fidelity, and emotional resonance compared to cascaded baseline approaches. This integrated framework provides a robust platform for rapid creative prototyping and immersive storytelling experiences.
☆ CAPE: A CLIP-Aware Pointing Ensemble of Complementary Heatmap Cues for Embodied Reference Understanding
We address the problem of Embodied Reference Understanding, which involves predicting the object that a person in the scene is referring to through both pointing gesture and language. Accurately identifying the referent requires multimodal understanding: integrating textual instructions, visual pointing, and scene context. However, existing methods often struggle to effectively leverage visual clues for disambiguation. We also observe that, while the referent is often aligned with the head-to-fingertip line, it occasionally aligns more closely with the wrist-to-fingertip line. Therefore, relying on a single line assumption can be overly simplistic and may lead to suboptimal performance. To address this, we propose a dual-model framework, where one model learns from the head-to-fingertip direction and the other from the wrist-to-fingertip direction. We further introduce a Gaussian ray heatmap representation of these lines and use them as input to provide a strong supervisory signal that encourages the model to better attend to pointing cues. To combine the strengths of both models, we present the CLIP-Aware Pointing Ensemble module, which performs a hybrid ensemble based on CLIP features. Additionally, we propose an object center prediction head as an auxiliary task to further enhance referent localization. We validate our approach through extensive experiments and analysis on the benchmark YouRefIt dataset, achieving an improvement of approximately 4 mAP at the 0.25 IoU threshold.
☆ VidFuncta: Towards Generalizable Neural Representations for Ultrasound Videos MICCAI 2025
Ultrasound is widely used in clinical care, yet standard deep learning methods often struggle with full video analysis due to non-standardized acquisition and operator bias. We offer a new perspective on ultrasound video analysis through implicit neural representations (INRs). We build on Functa, an INR framework in which each image is represented by a modulation vector that conditions a shared neural network. However, its extension to the temporal domain of medical videos remains unexplored. To address this gap, we propose VidFuncta, a novel framework that leverages Functa to encode variable-length ultrasound videos into compact, time-resolved representations. VidFuncta disentangles each video into a static video-specific vector and a sequence of time-dependent modulation vectors, capturing both temporal dynamics and dataset-level redundancies. Our method outperforms 2D and 3D baselines on video reconstruction and enables downstream tasks to directly operate on the learned 1D modulation vectors. We validate VidFuncta on three public ultrasound video datasets -- cardiac, lung, and breast -- and evaluate its downstream performance on ejection fraction prediction, B-line detection, and breast lesion classification. These results highlight the potential of VidFuncta as a generalizable and efficient representation framework for ultrasound videos. Our code is publicly available under https://github.com/JuliaWolleb/VidFuncta_public.
comment: Accepted 6th International Workshop of Advances in Simplifying Medical UltraSound (ASMUS) to be held at MICCAI 2025
☆ Low-Cost Test-Time Adaptation for Robust Video Editing
Video editing is a critical component of content creation that transforms raw footage into coherent works aligned with specific visual and narrative objectives. Existing approaches face two major challenges: temporal inconsistencies due to failure in capturing complex motion patterns, and overfitting to simple prompts arising from limitations in UNet backbone architectures. While learning-based methods can enhance editing quality, they typically demand substantial computational resources and are constrained by the scarcity of high-quality annotated data. In this paper, we present Vid-TTA, a lightweight test-time adaptation framework that personalizes optimization for each test video during inference through self-supervised auxiliary tasks. Our approach incorporates a motion-aware frame reconstruction mechanism that identifies and preserves crucial movement regions, alongside a prompt perturbation and reconstruction strategy that strengthens model robustness to diverse textual descriptions. These innovations are orchestrated by a meta-learning driven dynamic loss balancing mechanism that adaptively adjusts the optimization process based on video characteristics. Extensive experiments demonstrate that Vid-TTA significantly improves video temporal consistency and mitigates prompt overfitting while maintaining low computational overhead, offering a plug-and-play performance boost for existing video editing models.
☆ Unleashing the Power of Motion and Depth: A Selective Fusion Strategy for RGB-D Video Salient Object Detection
Applying salient object detection (SOD) to RGB-D videos is an emerging task called RGB-D VSOD and has recently gained increasing interest, due to considerable performance gains of incorporating motion and depth and that RGB-D videos can be easily captured now in daily life. Existing RGB-D VSOD models have different attempts to derive motion cues, in which extracting motion information explicitly from optical flow appears to be a more effective and promising alternative. Despite this, there remains a key issue that how to effectively utilize optical flow and depth to assist the RGB modality in SOD. Previous methods always treat optical flow and depth equally with respect to model designs, without explicitly considering their unequal contributions in individual scenarios, limiting the potential of motion and depth. To address this issue and unleash the power of motion and depth, we propose a novel selective cross-modal fusion framework (SMFNet) for RGB-D VSOD, incorporating a pixel-level selective fusion strategy (PSF) that achieves optimal fusion of optical flow and depth based on their actual contributions. Besides, we propose a multi-dimensional selective attention module (MSAM) to integrate the fused features derived from PSF with the remaining RGB modality at multiple dimensions, effectively enhancing feature representation to generate refined features. We conduct comprehensive evaluation of SMFNet against 19 state-of-the-art models on both RDVS and DVisal datasets, making the evaluation the most comprehensive RGB-D VSOD benchmark up to date, and it also demonstrates the superiority of SMFNet over other models. Meanwhile, evaluation on five video benchmark datasets incorporating synthetic depth validates the efficacy of SMFNet as well. Our code and benchmark results are made publicly available at https://github.com/Jia-hao999/SMFNet.
comment: submitted to TMM on 11-Jun-2024, ID: MM-020522, still in peer review
☆ Cross-Architecture Distillation Made Simple with Redundancy Suppression ICCV 2025
We describe a simple method for cross-architecture knowledge distillation, where the knowledge transfer is cast into a redundant information suppression formulation. Existing methods introduce sophisticated modules, architecture-tailored designs, and excessive parameters, which impair their efficiency and applicability. We propose to extract the architecture-agnostic knowledge in heterogeneous representations by reducing the redundant architecture-exclusive information. To this end, we present a simple redundancy suppression distillation (RSD) loss, which comprises cross-architecture invariance maximisation and feature decorrelation objectives. To prevent the student from entirely losing its architecture-specific capabilities, we further design a lightweight module that decouples the RSD objective from the student's internal representations. Our method is devoid of the architecture-specific designs and complex operations in the pioneering method of OFA. It outperforms OFA on CIFAR-100 and ImageNet-1k benchmarks with only a fraction of their parameter overhead, which highlights its potential as a simple and strong baseline to the cross-architecture distillation community.
comment: Accepted by ICCV 2025 (Highlight)
☆ Anyone Can Jailbreak: Prompt-Based Attacks on LLMs and T2Is
Despite significant advancements in alignment and content moderation, large language models (LLMs) and text-to-image (T2I) systems remain vulnerable to prompt-based attacks known as jailbreaks. Unlike traditional adversarial examples requiring expert knowledge, many of today's jailbreaks are low-effort, high-impact crafted by everyday users with nothing more than cleverly worded prompts. This paper presents a systems-style investigation into how non-experts reliably circumvent safety mechanisms through techniques such as multi-turn narrative escalation, lexical camouflage, implication chaining, fictional impersonation, and subtle semantic edits. We propose a unified taxonomy of prompt-level jailbreak strategies spanning both text-output and T2I models, grounded in empirical case studies across popular APIs. Our analysis reveals that every stage of the moderation pipeline, from input filtering to output validation, can be bypassed with accessible strategies. We conclude by highlighting the urgent need for context-aware defenses that reflect the ease with which these jailbreaks can be reproduced in real-world settings.
☆ HunyuanWorld 1.0: Generating Immersive, Explorable, and Interactive 3D Worlds from Words or Pixels
Creating immersive and playable 3D worlds from texts or images remains a fundamental challenge in computer vision and graphics. Existing world generation approaches typically fall into two categories: video-based methods that offer rich diversity but lack 3D consistency and rendering efficiency, and 3D-based methods that provide geometric consistency but struggle with limited training data and memory-inefficient representations. To address these limitations, we present HunyuanWorld 1.0, a novel framework that combines the best of both worlds for generating immersive, explorable, and interactive 3D scenes from text and image conditions. Our approach features three key advantages: 1) 360{\deg} immersive experiences via panoramic world proxies; 2) mesh export capabilities for seamless compatibility with existing computer graphics pipelines; 3) disentangled object representations for augmented interactivity. The core of our framework is a semantically layered 3D mesh representation that leverages panoramic images as 360{\deg} world proxies for semantic-aware world decomposition and reconstruction, enabling the generation of diverse 3D worlds. Extensive experiments demonstrate that our method achieves state-of-the-art performance in generating coherent, explorable, and interactive 3D worlds while enabling versatile applications in virtual reality, physical simulation, game development, and interactive content creation.
comment: Technical Report; Project Page: https://3d-models.hunyuan.tencent.com/world/
☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.
☆ Distribution-Based Masked Medical Vision-Language Model Using Structured Reports MICCAI
Medical image-language pre-training aims to align medical images with clinically relevant text to improve model performance on various downstream tasks. However, existing models often struggle with the variability and ambiguity inherent in medical data, limiting their ability to capture nuanced clinical information and uncertainty. This work introduces an uncertainty-aware medical image-text pre-training model that enhances generalization capabilities in medical image analysis. Building on previous methods and focusing on Chest X-Rays, our approach utilizes structured text reports generated by a large language model (LLM) to augment image data with clinically relevant context. These reports begin with a definition of the disease, followed by the `appearance' section to highlight critical regions of interest, and finally `observations' and `verdicts' that ground model predictions in clinical semantics. By modeling both inter- and intra-modal uncertainty, our framework captures the inherent ambiguity in medical images and text, yielding improved representations and performance on downstream tasks. Our model demonstrates significant advances in medical image-text pre-training, obtaining state-of-the-art performance on multiple downstream tasks.
comment: Accepted in MICCAI-W 2025
☆ MSGCoOp: Multiple Semantic-Guided Context Optimization for Few-Shot Learning
Vision-language pre-trained models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, and prompt learning has emerged as an efficient alternative to full fine-tuning. However, existing methods often struggle with generalization to novel classes, a phenomenon attributed to overfitting on seen classes and forgetting general knowledge. Furthermore, recent approaches that improve generalization often introduce complex architectures or heavy computational overhead. In this paper, we propose a Multiple Semantic-Guided Context Optimization (MSGCoOp) framework to enhance few-shot generalization while maintaining computational efficiency. Our approach leverages an ensemble of parallel learnable context vectors to capture diverse semantic aspects. To enrich these prompts, we introduce a semantic guidance mechanism that aligns them with comprehensive class descriptions automatically generated by a Large Language Model (LLM). Furthermore, a diversity regularization loss encourages the prompts to learn complementary and orthogonal features, preventing them from collapsing into redundant representations. Extensive experiments on 11 benchmark datasets show that MSGCoOp significantly improves performance on base-to-novel generalization, achieving an average harmonic mean improvement of 1.10\% over the strong KgCoOp baseline. Our method also demonstrates enhanced robustness in cross-domain generalization tasks. Our code is avaliable at: \href{https://github.com/Rain-Bus/MSGCoOp}{https://github.com/Rain-Bus/MSGCoOp}.
☆ AU-LLM: Micro-Expression Action Unit Detection via Enhanced LLM-Based Feature Fusion
The detection of micro-expression Action Units (AUs) is a formidable challenge in affective computing, pivotal for decoding subtle, involuntary human emotions. While Large Language Models (LLMs) demonstrate profound reasoning abilities, their application to the fine-grained, low-intensity domain of micro-expression AU detection remains unexplored. This paper pioneers this direction by introducing \textbf{AU-LLM}, a novel framework that for the first time uses LLM to detect AUs in micro-expression datasets with subtle intensities and the scarcity of data. We specifically address the critical vision-language semantic gap, the \textbf{Enhanced Fusion Projector (EFP)}. The EFP employs a Multi-Layer Perceptron (MLP) to intelligently fuse mid-level (local texture) and high-level (global semantics) visual features from a specialized 3D-CNN backbone into a single, information-dense token. This compact representation effectively empowers the LLM to perform nuanced reasoning over subtle facial muscle movements.Through extensive evaluations on the benchmark CASME II and SAMM datasets, including stringent Leave-One-Subject-Out (LOSO) and cross-domain protocols, AU-LLM establishes a new state-of-the-art, validating the significant potential and robustness of LLM-based reasoning for micro-expression analysis. The codes are available at https://github.com/ZS-liu-JLU/AU-LLMs.
☆ MOR-VIT: Efficient Vision Transformer with Mixture-of-Recursions
Vision Transformers (ViTs) have achieved remarkable success in image recognition, yet standard ViT architectures are hampered by substantial parameter redundancy and high computational cost, limiting their practical deployment. While recent efforts on efficient ViTs primarily focus on static model compression or token-level sparsification, they remain constrained by fixed computational depth for all tokens. In this work, we present MoR-ViT, a novel vision transformer framework that, for the first time, incorporates a token-level dynamic recursion mechanism inspired by the Mixture-of-Recursions (MoR) paradigm. This approach enables each token to adaptively determine its processing depth, yielding a flexible and input-dependent allocation of computational resources. Extensive experiments on ImageNet-1K and transfer benchmarks demonstrate that MoR-ViT not only achieves state-of-the-art accuracy with up to 70% parameter reduction and 2.5x inference acceleration, but also outperforms leading efficient ViT baselines such as DynamicViT and TinyViT under comparable conditions. These results establish dynamic recursion as an effective strategy for efficient vision transformers and open new avenues for scalable and deployable deep learning models in real-world scenarios.
comment: 18 pages,9 figuers
☆ LiteFat: Lightweight Spatio-Temporal Graph Learning for Real-Time Driver Fatigue Detection
Detecting driver fatigue is critical for road safety, as drowsy driving remains a leading cause of traffic accidents. Many existing solutions rely on computationally demanding deep learning models, which result in high latency and are unsuitable for embedded robotic devices with limited resources (such as intelligent vehicles/cars) where rapid detection is necessary to prevent accidents. This paper introduces LiteFat, a lightweight spatio-temporal graph learning model designed to detect driver fatigue efficiently while maintaining high accuracy and low computational demands. LiteFat involves converting streaming video data into spatio-temporal graphs (STG) using facial landmark detection, which focuses on key motion patterns and reduces unnecessary data processing. LiteFat uses MobileNet to extract facial features and create a feature matrix for the STG. A lightweight spatio-temporal graph neural network is then employed to identify signs of fatigue with minimal processing and low latency. Experimental results on benchmark datasets show that LiteFat performs competitively while significantly decreasing computational complexity and latency as compared to current state-of-the-art methods. This work enables the development of real-time, resource-efficient human fatigue detection systems that can be implemented upon embedded robotic devices.
comment: 6 pages, 1 figure
☆ Few-Shot Vision-Language Reasoning for Satellite Imagery via Verifiable Rewards ICCV 2025
Recent advances in large language and vision-language models have enabled strong reasoning capabilities, yet they remain impractical for specialized domains like remote sensing, where annotated data is scarce and expensive. We present the first few-shot reinforcement learning with verifiable reward (RLVR) framework for satellite imagery that eliminates the need for caption supervision--relying solely on lightweight, rule-based binary or IoU-based rewards. Adapting the "1-shot RLVR" paradigm from language models to vision-language models, we employ policy-gradient optimization with as few as one curated example to align model outputs for satellite reasoning tasks. Comprehensive experiments across multiple remote sensing benchmarks--including classification, visual question answering, and grounding--show that even a single example yields substantial improvements over the base model. Scaling to 128 examples matches or exceeds models trained on thousands of annotated samples. While the extreme one-shot setting can induce mild, task-specific overfitting, our approach consistently demonstrates robust generalization and efficiency across diverse tasks. Further, we find that prompt design and loss weighting significantly influence training stability and final accuracy. Our method enables cost-effective and data-efficient development of domain-specialist vision-language reasoning models, offering a pragmatic recipe for data-scarce fields: start from a compact VLM, curate a handful of reward-checkable cases, and train via RLVR.
comment: ICCV 2025 Workshop on Curated Data for Efficient Learning (CDEL). 10 pages, 3 figures, 6 tables. Our model, training code and dataset will be at https://github.com/aybora/FewShotReasoning
☆ Adversarial Reconstruction Feedback for Robust Fine-grained Generalization ICCV 2025
Existing fine-grained image retrieval (FGIR) methods predominantly rely on supervision from predefined categories to learn discriminative representations for retrieving fine-grained objects. However, they inadvertently introduce category-specific semantics into the retrieval representation, creating semantic dependencies on predefined classes that critically hinder generalization to unseen categories. To tackle this, we propose AdvRF, a novel adversarial reconstruction feedback framework aimed at learning category-agnostic discrepancy representations. Specifically, AdvRF reformulates FGIR as a visual discrepancy reconstruction task via synergizing category-aware discrepancy localization from retrieval models with category-agnostic feature learning from reconstruction models. The reconstruction model exposes residual discrepancies overlooked by the retrieval model, forcing it to improve localization accuracy, while the refined signals from the retrieval model guide the reconstruction model to improve its reconstruction ability. Consequently, the retrieval model localizes visual differences, while the reconstruction model encodes these differences into category-agnostic representations. This representation is then transferred to the retrieval model through knowledge distillation for efficient deployment. Quantitative and qualitative evaluations demonstrate that our AdvRF achieves impressive performance on both widely-used fine-grained and coarse-grained datasets.
comment: ICCV 2025
☆ MAGE: Multimodal Alignment and Generation Enhancement via Bridging Visual and Semantic Spaces
In the latest advancements in multimodal learning, effectively addressing the spatial and semantic losses of visual data after encoding remains a critical challenge. This is because the performance of large multimodal models is positively correlated with the coupling between visual encoders and large language models. Existing approaches often face issues such as vector gaps or semantic disparities, resulting in information loss during the propagation process. To address these issues, we propose MAGE (Multimodal Alignment and Generation Enhancement), a novel framework that bridges the semantic spaces of vision and text through an innovative alignment mechanism. By introducing the Intelligent Alignment Network (IAN), MAGE achieves dimensional and semantic alignment. To reduce the gap between synonymous heterogeneous data, we employ a training strategy that combines cross-entropy and mean squared error, significantly enhancing the alignment effect. Moreover, to enhance MAGE's "Any-to-Any" capability, we developed a fine-tuning dataset for multimodal tool-calling instructions to expand the model's output capability boundaries. Finally, our proposed multimodal large model architecture, MAGE, achieved significantly better performance compared to similar works across various evaluation benchmarks, including MME, MMBench, and SEED. Complete code and appendix are available at: https://github.com/GTCOM-NLP/MAGE.
comment: 9 pages
☆ SAMITE: Position Prompted SAM2 with Calibrated Memory for Visual Object Tracking
Visual Object Tracking (VOT) is widely used in applications like autonomous driving to continuously track targets in videos. Existing methods can be roughly categorized into template matching and autoregressive methods, where the former usually neglects the temporal dependencies across frames and the latter tends to get biased towards the object categories during training, showing weak generalizability to unseen classes. To address these issues, some methods propose to adapt the video foundation model SAM2 for VOT, where the tracking results of each frame would be encoded as memory for conditioning the rest of frames in an autoregressive manner. Nevertheless, existing methods fail to overcome the challenges of object occlusions and distractions, and do not have any measures to intercept the propagation of tracking errors. To tackle them, we present a SAMITE model, built upon SAM2 with additional modules, including: (1) Prototypical Memory Bank: We propose to quantify the feature-wise and position-wise correctness of each frame's tracking results, and select the best frames to condition subsequent frames. As the features of occluded and distracting objects are feature-wise and position-wise inaccurate, their scores would naturally be lower and thus can be filtered to intercept error propagation; (2) Positional Prompt Generator: To further reduce the impacts of distractors, we propose to generate positional mask prompts to provide explicit positional clues for the target, leading to more accurate tracking. Extensive experiments have been conducted on six benchmarks, showing the superiority of SAMITE. The code is available at https://github.com/Sam1224/SAMITE.
Detection Transformers Under the Knife: A Neuroscience-Inspired Approach to Ablations
In recent years, Explainable AI has gained traction as an approach to enhancing model interpretability and transparency, particularly in complex models such as detection transformers. Despite rapid advancements, a substantial research gap remains in understanding the distinct roles of internal components - knowledge that is essential for improving transparency and efficiency. Inspired by neuroscientific ablation studies, which investigate the functions of brain regions through selective impairment, we systematically analyze the impact of ablating key components in three state-of-the-art detection transformer models: Detection transformer (DETR), deformable detection transformer (DDETR), and DETR with improved denoising anchor boxes (DINO). The ablations target query embeddings, encoder and decoder multi-head self-attentions (MHSA) as well as decoder multi-head cross-attention (MHCA) layers. We evaluate the effects of these ablations on the performance metrics gIoU and F1-score, quantifying effects on both the classification and regression sub-tasks on the COCO dataset. To facilitate reproducibility and future research, we publicly release the DeepDissect library. Our findings reveal model-specific resilience patterns: while DETR is particularly sensitive to ablations in encoder MHSA and decoder MHCA, DDETR's multi-scale deformable attention enhances robustness, and DINO exhibits the greatest resilience due to its look-forward twice update rule, which helps distributing knowledge across blocks. These insights also expose structural redundancies, particularly in DDETR's and DINO's decoder MHCA layers, highlighting opportunities for model simplification without sacrificing performance. This study advances XAI for DETRs by clarifying the contributions of internal components to model performance, offering insights to optimize and improve transparency and efficiency in critical applications.
☆ Impact of Underwater Image Enhancement on Feature Matching
We introduce local matching stability and furthest matchable frame as quantitative measures for evaluating the success of underwater image enhancement. This enhancement process addresses visual degradation caused by light absorption, scattering, marine growth, and debris. Enhanced imagery plays a critical role in downstream tasks such as path detection and autonomous navigation for underwater vehicles, relying on robust feature extraction and frame matching. To assess the impact of enhancement techniques on frame-matching performance, we propose a novel evaluation framework tailored to underwater environments. Through metric-based analysis, we identify strengths and limitations of existing approaches and pinpoint gaps in their assessment of real-world applicability. By incorporating a practical matching strategy, our framework offers a robust, context-aware benchmark for comparing enhancement methods. Finally, we demonstrate how visual improvements affect the performance of a complete real-world algorithm -- Simultaneous Localization and Mapping (SLAM) -- reinforcing the framework's relevance to operational underwater scenarios.
☆ APT: Improving Diffusion Models for High Resolution Image Generation with Adaptive Path Tracing
Latent Diffusion Models (LDMs) are generally trained at fixed resolutions, limiting their capability when scaling up to high-resolution images. While training-based approaches address this limitation by training on high-resolution datasets, they require large amounts of data and considerable computational resources, making them less practical. Consequently, training-free methods, particularly patch-based approaches, have become a popular alternative. These methods divide an image into patches and fuse the denoising paths of each patch, showing strong performance on high-resolution generation. However, we observe two critical issues for patch-based approaches, which we call ``patch-level distribution shift" and ``increased patch monotonicity." To address these issues, we propose Adaptive Path Tracing (APT), a framework that combines Statistical Matching to ensure patch distributions remain consistent in upsampled latents and Scale-aware Scheduling to deal with the patch monotonicity. As a result, APT produces clearer and more refined details in high-resolution images. In addition, APT enables a shortcut denoising process, resulting in faster sampling with minimal quality degradation. Our experimental results confirm that APT produces more detailed outputs with improved inference speed, providing a practical approach to high-resolution image generation.
☆ Automated Detection of Antarctic Benthic Organisms in High-Resolution In Situ Imagery to Aid Biodiversity Monitoring ICCV 2025
Monitoring benthic biodiversity in Antarctica is vital for understanding ecological change in response to climate-driven pressures. This work is typically performed using high-resolution imagery captured in situ, though manual annotation of such data remains laborious and specialised, impeding large-scale analysis. We present a tailored object detection framework for identifying and classifying Antarctic benthic organisms in high-resolution towed camera imagery, alongside the first public computer vision dataset for benthic biodiversity monitoring in the Weddell Sea. Our approach addresses key challenges associated with marine ecological imagery, including limited annotated data, variable object sizes, and complex seafloor structure. The proposed framework combines resolution-preserving patching, spatial data augmentation, fine-tuning, and postprocessing via Slicing Aided Hyper Inference. We benchmark multiple object detection architectures and demonstrate strong performance in detecting medium and large organisms across 25 fine-grained morphotypes, significantly more than other works in this area. Detection of small and rare taxa remains a challenge, reflecting limitations in current detection architectures. Our framework provides a scalable foundation for future machine-assisted in situ benthic biodiversity monitoring research.
comment: Accepted to ICCV 2025's Joint Workshop on Marine Vision (ICCVW, CVAUI&AAMVEM). Main paper (11 pages, 3 figures, 3 tables) plus supplementary (7 pages, 5 figures, 2 tables)
☆ The Evolution of Video Anomaly Detection: A Unified Framework from DNN to MLLM
Video anomaly detection (VAD) aims to identify and ground anomalous behaviors or events in videos, serving as a core technology in the fields of intelligent surveillance and public safety. With the advancement of deep learning, the continuous evolution of deep model architectures has driven innovation in VAD methodologies, significantly enhancing feature representation and scene adaptability, thereby improving algorithm generalization and expanding application boundaries. More importantly, the rapid development of multi-modal large language (MLLMs) and large language models (LLMs) has introduced new opportunities and challenges to the VAD field. Under the support of MLLMs and LLMs, VAD has undergone significant transformations in terms of data annotation, input modalities, model architectures, and task objectives. The surge in publications and the evolution of tasks have created an urgent need for systematic reviews of recent advancements. This paper presents the first comprehensive survey analyzing VAD methods based on MLLMs and LLMs, providing an in-depth discussion of the changes occurring in the VAD field in the era of large models and their underlying causes. Additionally, this paper proposes a unified framework that encompasses both deep neural network (DNN)-based and LLM-based VAD methods, offering a thorough analysis of the new VAD paradigms empowered by LLMs, constructing a classification system, and comparing their strengths and weaknesses. Building on this foundation, this paper focuses on current VAD methods based on MLLMs/LLMs. Finally, based on the trajectory of technological advancements and existing bottlenecks, this paper distills key challenges and outlines future research directions, offering guidance for the VAD community.
☆ GuidPaint: Class-Guided Image Inpainting with Diffusion Models
In recent years, diffusion models have been widely adopted for image inpainting tasks due to their powerful generative capabilities, achieving impressive results. Existing multimodal inpainting methods based on diffusion models often require architectural modifications and retraining, resulting in high computational cost. In contrast, context-aware diffusion inpainting methods leverage the model's inherent priors to adjust intermediate denoising steps, enabling high-quality inpainting without additional training and significantly reducing computation. However, these methods lack fine-grained control over the masked regions, often leading to semantically inconsistent or visually implausible content. To address this issue, we propose GuidPaint, a training-free, class-guided image inpainting framework. By incorporating classifier guidance into the denoising process, GuidPaint enables precise control over intermediate generations within the masked areas, ensuring both semantic consistency and visual realism. Furthermore, it integrates stochastic and deterministic sampling, allowing users to select preferred intermediate results and deterministically refine them. Experimental results demonstrate that GuidPaint achieves clear improvements over existing context-aware inpainting methods in both qualitative and quantitative evaluations.
☆ EMIT: Enhancing MLLMs for Industrial Anomaly Detection via Difficulty-Aware GRPO
Industrial anomaly detection (IAD) plays a crucial role in maintaining the safety and reliability of manufacturing systems. While multimodal large language models (MLLMs) show strong vision-language reasoning abilities, their effectiveness in IAD remains limited without domain-specific adaptation. In this work, we propose EMIT, a unified framework that enhances MLLMs for IAD via difficulty-aware group relative policy optimization (GRPO). EMIT constructs a multi-task IAD dataset and utilizes GPT-generated object text descriptions to compensate for missing defective images. For few-shot anomaly detection, it integrates a soft prompt and heatmap-guided contrastive embeddings derived from patch-level comparisons. To better handle difficult data samples, i.e., cases where the MLLM struggles to generate correct answers, we propose a difficulty-aware GRPO that extends the original GRPO by incorporating a response resampling strategy to ensure the inclusion of correct answers in the sampled responses, as well as an advantage reweighting mechanism to strengthen learning from such difficult data samples. Extensive experiments on the MMAD benchmark demonstrate that EMIT significantly enhances the IAD performance of MLLMs, achieving an average improvement of 7.77\% over the base model (InternVL3-8B) across seven tasks.
☆ Wind Turbine Feature Detection Using Deep Learning and Synthetic Data
For the autonomous drone-based inspection of wind turbine (WT) blades, accurate detection of the WT and its key features is essential for safe drone positioning and collision avoidance. Existing deep learning methods typically rely on manually labeled real-world images, which limits both the quantity and the diversity of training datasets in terms of weather conditions, lighting, turbine types, and image complexity. In this paper, we propose a method to generate synthetic training data that allows controlled variation of visual and environmental factors, increasing the diversity and hence creating challenging learning scenarios. Furthermore, we train a YOLOv11 feature detection network solely on synthetic WT images with a modified loss function, to detect WTs and their key features within an image. The resulting network is evaluated both using synthetic images and a set of real-world WT images and shows promising performance across both synthetic and real-world data, achieving a Pose mAP50-95 of 0.97 on real images never seen during training.
comment: 8 pages, 5 figures, accepted at ICMV 2025
☆ Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition ICCV
With the rapid advancement of autonomous driving technology, vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety by providing visibility beyond the line of sight. However, integrating multi-source sensor data from both ego-vehicles and infrastructure under real-world constraints, such as limited communication bandwidth and dynamic environments, presents significant technical challenges. To facilitate research in this area, we organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning. Built on the UniV2X framework and the V2X-Seq-SPD dataset, the challenge attracted participation from over 30 teams worldwide and established a unified benchmark for evaluating cooperative driving systems. This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration, and analyzes emerging technical trends among top-performing solutions. By addressing practical constraints in communication and data fusion, the challenge contributes to the development of scalable and reliable V2X-cooperative autonomous driving systems.
comment: 10 pages, 4 figures, accepted by ICCVW
☆ Semantic Segmentation of iPS Cells: Case Study on Model Complexity in Biomedical Imaging
Medical image segmentation requires not only accuracy but also robustness under challenging imaging conditions. In this study, we show that a carefully configured DeepLabv3 model can achieve high performance in segmenting induced pluripotent stem (iPS) cell colonies, and, under our experimental conditions, outperforms large-scale foundation models such as SAM2 and its medical variant MedSAM2 without structural modifications. These results suggest that, for specialized tasks characterized by subtle, low-contrast boundaries, increased model complexity does not necessarily translate to better performance. Our work revisits the assumption that ever-larger and more generalized architectures are always preferable, and provides evidence that appropriately adapted, simpler models may offer strong accuracy and practical reliability in domain-specific biomedical applications. We also offer an open-source implementation that includes strategies for small datasets and domain-specific encoding, with the aim of supporting further advances in semantic segmentation for regenerative medicine and related fields.
comment: 19th International Conference on Machine Vision Applications MVA2025
☆ Decoupled Spatio-Temporal Consistency Learning for Self-Supervised Tracking AAAI2025
The success of visual tracking has been largely driven by datasets with manual box annotations. However, these box annotations require tremendous human effort, limiting the scale and diversity of existing tracking datasets. In this work, we present a novel Self-Supervised Tracking framework named \textbf{{\tracker}}, designed to eliminate the need of box annotations. Specifically, a decoupled spatio-temporal consistency training framework is proposed to learn rich target information across timestamps through global spatial localization and local temporal association. This allows for the simulation of appearance and motion variations of instances in real-world scenarios. Furthermore, an instance contrastive loss is designed to learn instance-level correspondences from a multi-view perspective, offering robust instance supervision without additional labels. This new design paradigm enables {\tracker} to effectively learn generic tracking representations in a self-supervised manner, while reducing reliance on extensive box annotations. Extensive experiments on nine benchmark datasets demonstrate that {\tracker} surpasses \textit{SOTA} self-supervised tracking methods, achieving an improvement of more than 25.3\%, 20.4\%, and 14.8\% in AUC (AO) score on the GOT10K, LaSOT, TrackingNet datasets, respectively. Code: https://github.com/GXNU-ZhongLab/SSTrack.
comment: Accepted by AAAI2025
☆ Locally Controlled Face Aging with Latent Diffusion Models
We present a novel approach to face aging that addresses the limitations of current methods which treat aging as a global, homogeneous process. Existing techniques using GANs and diffusion models often condition generation on a reference image and target age, neglecting that facial regions age heterogeneously due to both intrinsic chronological factors and extrinsic elements like sun exposure. Our method leverages latent diffusion models to selectively age specific facial regions using local aging signs. This approach provides significantly finer-grained control over the generation process, enabling more realistic and personalized aging. We employ a latent diffusion refiner to seamlessly blend these locally aged regions, ensuring a globally consistent and natural-looking synthesis. Experimental results demonstrate that our method effectively achieves three key criteria for successful face aging: robust identity preservation, high-fidelity and realistic imagery, and a natural, controllable aging progression.
☆ Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning ICCV 2025
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.
comment: Accepted by ICCV 2025
☆ Emerging Trends in Pseudo-Label Refinement for Weakly Supervised Semantic Segmentation with Image-Level Supervision
Unlike fully supervised semantic segmentation, weakly supervised semantic segmentation (WSSS) relies on weaker forms of supervision to perform dense prediction tasks. Among the various types of weak supervision, WSSS with image level annotations is considered both the most challenging and the most practical, attracting significant research attention. Therefore, in this review, we focus on WSSS with image level annotations. Additionally, this review concentrates on mainstream research directions, deliberately omitting less influential branches. Given the rapid development of new methods and the limitations of existing surveys in capturing recent trends, there is a pressing need for an updated and comprehensive review. Our goal is to fill this gap by synthesizing the latest advancements and state-of-the-art techniques in WSSS with image level labels. Basically, we provide a comprehensive review of recent advancements in WSSS with image level labels, categorizing existing methods based on the types and levels of additional supervision involved. We also examine the challenges of applying advanced methods to domain specific datasets in WSSS,a topic that remains underexplored. Finally, we discuss the current challenges, evaluate the limitations of existing approaches, and outline several promising directions for future research. This review is intended for researchers who are already familiar with the fundamental concepts of WSSS and are seeking to deepen their understanding of current advances and methodological innovations.
☆ TARS: MinMax Token-Adaptive Preference Strategy for Hallucination Reduction in MLLMs
Multimodal large language models (MLLMs) enable vision-language reasoning, yet often generate plausible outputs that are factually incorrect or visually ungrounded, thereby compromising their reliability. Direct preference optimization (DPO) is a common strategy for correcting hallucinations by aligning model outputs with human preferences. Existing DPO strategies typically treat hallucination-related preferences as fixed targets, relying on static supervision signals during training. This approach tends to overfit to superficial linguistic cues in preference data, leading to distributional rigidity and spurious correlations that impair grounding in causally relevant visual information. To overcome this limitation, we propose TARS, a token-adaptive preference strategy that reformulates DPO as a min-max optimization problem. TARS maximizes token-level distributional shifts under semantic constraints to simulate alignment uncertainty, and simultaneously minimizes the expected preference loss under these controlled perturbations. This joint objective preserves causal grounding while mitigating overfitting to preference patterns, thereby reducing hallucinations in multimodal reasoning. We evaluate TARS on multiple hallucination benchmarks and find consistently strong performance. Using only 4.8k preference samples and no expert feedback, TARS reduces hallucination rates from 26.4% to 13.2% and decreases cognition value from 2.5 to 0.4. It outperforms standard DPO and matches GPT-4o on several key metrics.
☆ LinDeps: A Fine-tuning Free Post-Pruning Method to Remove Layer-Wise Linear Dependencies with Guaranteed Performance Preservation
Convolutional Neural Networks (CNN) are widely used in many computer vision tasks. Yet, their increasing size and complexity pose significant challenges for efficient deployment on resource-constrained platforms. Hence, network pruning has emerged as an effective way of reducing the size and computational requirements of neural networks by removing redundant or unimportant parameters. However, a fundamental challenge with pruning consists in optimally removing redundancies without degrading performance. Most existing pruning techniques overlook structural dependencies across feature maps within a layer, resulting in suboptimal pruning decisions. In this work, we introduce LinDeps, a novel post-pruning method, i.e., a pruning method that can be applied on top of any pruning technique, which systematically identifies and removes redundant filters via linear dependency analysis. Particularly, LinDeps applies pivoted QR decomposition to feature maps to detect and prune linearly dependent filters. Then, a novel signal recovery mechanism adjusts the next layer's kernels to preserve compatibility and performance without requiring any fine-tuning. Our experiments on CIFAR-10 and ImageNet with VGG and ResNet backbones demonstrate that LinDeps improves compression rates of existing pruning techniques while preserving performances, leading to a new state of the art in CNN pruning. We also benchmark LinDeps in low-resource setups where no retraining can be performed, which shows significant pruning improvements and inference speedups over a state-of-the-art method. LinDeps therefore constitutes an essential add-on for any current or future pruning technique.
comment: 10 pages, 4 figures, 5 tables, 45 references
☆ RelMap: Enhancing Online Map Construction with Class-Aware Spatial Relation and Semantic Priors
Online high-definition (HD) map construction plays an increasingly important role in scaling autonomous driving systems. Transformer-based methods have become prevalent in online HD map construction; however, existing approaches often neglect the inherent spatial and semantic relationships among map elements, which limits their accuracy and generalization. To address this, we propose RelMap, an end-to-end framework that enhances online map construction by incorporating spatial relations and semantic priors. We introduce a Class-aware Spatial Relation Prior, which explicitly encodes relative positional dependencies between map elements using a learnable class-aware relation encoder. Additionally, we propose a Mixture-of-Experts (MoE)-based Semantic Prior, which routes features to class-specific experts based on predicted class probabilities, refining instance feature decoding. Our method is compatible with both single-frame and temporal perception backbones, achieving state-of-the-art performance on both the nuScenes and Argoverse 2 datasets.
☆ Multi-View Reconstruction with Global Context for 3D Anomaly Detection
3D anomaly detection is critical in industrial quality inspection. While existing methods achieve notable progress, their performance degrades in high-precision 3D anomaly detection due to insufficient global information. To address this, we propose Multi-View Reconstruction (MVR), a method that losslessly converts high-resolution point clouds into multi-view images and employs a reconstruction-based anomaly detection framework to enhance global information learning. Extensive experiments demonstrate the effectiveness of MVR, achieving 89.6\% object-wise AU-ROC and 95.7\% point-wise AU-ROC on the Real3D-AD benchmark.
comment: 6 pages, 5 figures, IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC), 2025
☆ Sun sensor calibration algorithms: A systematic mapping and survey
Attitude sensors determine the spacecraft attitude through the sensing of an astronomical object, field or other phenomena. The Sun and fixed stars are the two primary astronomical sensing objects. Attitude sensors are critical components for the survival and knowledge improvement of spacecraft. Of these, sun sensors are the most common and important sensor for spacecraft attitude determination. The sun sensor measures the Sun vector in spacecraft coordinates. The sun sensor calibration process is particularly difficult due to the complex nature of the uncertainties involved. The uncertainties are small, difficult to observe, and vary spatio-temporally over the lifecycle of the sensor. In addition, the sensors are affected by numerous sources of uncertainties, including manufacturing, electrical, environmental, and interference sources. This motivates the development of advanced calibration algorithms to minimize uncertainty over the sensor lifecycle and improve accuracy. Although modeling and calibration techniques for sun sensors have been explored extensively in the literature over the past two decades, there is currently no resource that consolidates and systematically reviews this body of work. The present review proposes a systematic mapping of sun sensor modeling and calibration algorithms across a breadth of sensor configurations. It specifically provides a comprehensive survey of each methodology, along with an analysis of research gaps and recommendations for future directions in sun sensor modeling and calibration techniques.
comment: Submitted to Acta Astronautica
☆ PRISM: Programmatic Reasoning with Image Sequence Manipulation for LVLM Jailbreaking
The increasing sophistication of large vision-language models (LVLMs) has been accompanied by advances in safety alignment mechanisms designed to prevent harmful content generation. However, these defenses remain vulnerable to sophisticated adversarial attacks. Existing jailbreak methods typically rely on direct and semantically explicit prompts, overlooking subtle vulnerabilities in how LVLMs compose information over multiple reasoning steps. In this paper, we propose a novel and effective jailbreak framework inspired by Return-Oriented Programming (ROP) techniques from software security. Our approach decomposes a harmful instruction into a sequence of individually benign visual gadgets. A carefully engineered textual prompt directs the sequence of inputs, prompting the model to integrate the benign visual gadgets through its reasoning process to produce a coherent and harmful output. This makes the malicious intent emergent and difficult to detect from any single component. We validate our method through extensive experiments on established benchmarks including SafeBench and MM-SafetyBench, targeting popular LVLMs. Results show that our approach consistently and substantially outperforms existing baselines on state-of-the-art models, achieving near-perfect attack success rates (over 0.90 on SafeBench) and improving ASR by up to 0.39. Our findings reveal a critical and underexplored vulnerability that exploits the compositional reasoning abilities of LVLMs, highlighting the urgent need for defenses that secure the entire reasoning process.
☆ Suppressing Gradient Conflict for Generalizable Deepfake Detection
Robust deepfake detection models must be capable of generalizing to ever-evolving manipulation techniques beyond training data. A promising strategy is to augment the training data with online synthesized fake images containing broadly generalizable artifacts. However, in the context of deepfake detection, it is surprising that jointly training on both original and online synthesized forgeries may result in degraded performance. This contradicts the common belief that incorporating more source-domain data should enhance detection accuracy. Through empirical analysis, we trace this degradation to gradient conflicts during backpropagation which force a trade-off between source domain accuracy and target domain generalization. To overcome this issue, we propose a Conflict-Suppressed Deepfake Detection (CS-DFD) framework that explicitly mitigates the gradient conflict via two synergistic modules. First, an Update Vector Search (UVS) module searches for an alternative update vector near the initial gradient vector to reconcile the disparities of the original and online synthesized forgeries. By further transforming the search process into an extremum optimization problem, UVS yields the uniquely update vector, which maximizes the simultaneous loss reductions for each data type. Second, a Conflict Gradient Reduction (CGR) module enforces a low-conflict feature embedding space through a novel Conflict Descent Loss. This loss penalizes misaligned gradient directions and guides the learning of representations with aligned, non-conflicting gradients. The synergy of UVS and CGR alleviates gradient interference in both parameter optimization and representation learning. Experiments on multiple deepfake benchmarks demonstrate that CS-DFD achieves state-of-the-art performance in both in-domain detection accuracy and cross-domain generalization.
comment: V1
☆ Chain-of-Cooking:Cooking Process Visualization via Bidirectional Chain-of-Thought Guidance ACM MM 2025
Cooking process visualization is a promising task in the intersection of image generation and food analysis, which aims to generate an image for each cooking step of a recipe. However, most existing works focus on generating images of finished foods based on the given recipes, and face two challenges to visualize the cooking process. First, the appearance of ingredients changes variously across cooking steps, it is difficult to generate the correct appearances of foods that match the textual description, leading to semantic inconsistency. Second, the current step might depend on the operations of previous step, it is crucial to maintain the contextual coherence of images in sequential order. In this work, we present a cooking process visualization model, called Chain-of-Cooking. Specifically, to generate correct appearances of ingredients, we present a Dynamic Patch Selection Module to retrieve previously generated image patches as references, which are most related to current textual contents. Furthermore, to enhance the coherence and keep the rational order of generated images, we propose a Semantic Evolution Module and a Bidirectional Chain-of-Thought (CoT) Guidance. To better utilize the semantics of previous texts, the Semantic Evolution Module establishes the semantical association between latent prompts and current cooking step, and merges it with the latent features. Then the CoT Guidance updates the merged features to guide the current cooking step remain coherent with the previous step. Moreover, we construct a dataset named CookViz, consisting of intermediate image-text pairs for the cooking process. Quantitative and qualitative experiments show that our method outperforms existing methods in generating coherent and semantic consistent cooking process.
comment: Accepted by ACM MM 2025
☆ Optimizing Active Learning in Vision-Language Models via Parameter-Efficient Uncertainty Calibration
Active Learning (AL) has emerged as a powerful approach for minimizing labeling costs by selectively sampling the most informative data for neural network model development. Effective AL for large-scale vision-language models necessitates addressing challenges in uncertainty estimation and efficient sampling given the vast number of parameters involved. In this work, we introduce a novel parameter-efficient learning methodology that incorporates uncertainty calibration loss within the AL framework. We propose a differentiable loss function that promotes uncertainty calibration for effectively selecting fewer and most informative data samples for fine-tuning. Through extensive experiments across several datasets and vision backbones, we demonstrate that our solution can match and exceed the performance of complex feature-based sampling techniques while being computationally very efficient. Additionally, we investigate the efficacy of Prompt learning versus Low-rank adaptation (LoRA) in sample selection, providing a detailed comparative analysis of these methods in the context of efficient AL.
comment: International Joint Conference on Neural Networks 2025 (Accepted)
☆ ST-DAI: Single-shot 2.5D Spatial Transcriptomics with Intra-Sample Domain Adaptive Imputation for Cost-efficient 3D Reconstruction
For 3D spatial transcriptomics (ST), the high per-section acquisition cost of fully sampling every tissue section remains a significant challenge. Although recent approaches predict gene expression from histology images, these methods require large external datasets, which leads to high-cost and suffers from substantial domain discrepancies that lead to poor generalization on new samples. In this work, we introduce ST-DAI, a single-shot framework for 3D ST that couples a cost-efficient 2.5D sampling scheme with an intra-sample domain-adaptive imputation framework. First, in the cost-efficient 2.5D sampling stage, one reference section (central section) is fully sampled while other sections (adjacent sections) is sparsely sampled, thereby capturing volumetric context at significantly reduced experimental cost. Second, we propose a single-shot 3D imputation learning method that allows us to generate fully sampled 3D ST from this cost-efficient 2.5D ST scheme, using only sample-specific training. We observe position misalignment and domain discrepancy between sections. To address those issues, we adopt a pipeline that first aligns the central section to the adjacent section, thereafter generates dense pseudo-supervision on the central section, and then performs Fast Multi-Domain Refinement (FMDR), which adapts the network to the domain of the adjacent section while fine-tuning only a few parameters through the use of Parameter-Efficient Domain-Alignment Layers (PDLs). During this refinement, a Confidence Score Generator (CSG) reweights the pseudo-labels according to their estimated reliability, thereby directing imputation toward trustworthy regions. Our experimental results demonstrate that ST-DAI achieves gene expression prediction performance comparable to fully sampled approaches while substantially reducing the measurement burden.
comment: 21 pages, 4 figures, 3 tables, under review
☆ VAGU & GtS: LLM-Based Benchmark and Framework for Joint Video Anomaly Grounding and Understanding
Video Anomaly Detection (VAD) aims to identify anomalous events in videos and accurately determine their time intervals. Current VAD methods mainly fall into two categories: traditional DNN-based approaches that focus on temporal localization, and LLM-based approaches that emphasize semantic understanding. Both anomaly understanding and grounding are essential for comprehensive video anomaly detection and can complement each other. However, no existing model or dataset supports both tasks simultaneously. To address this, we introduce VAGU (Video Anomaly Grounding and Understanding), the first benchmark to integrate both tasks. Each VAGU instance includes annotations for anomaly category, semantic explanation, precise temporal grounding and Video QA. We also provide multiple-choice Video QA for objective evaluation. Based on this dataset, we propose Glance then Scrutinize (GtS), a training-free framework guided by textual prompts. The framework first enables coarse localization of high-probability anomalous regions, followed by detailed anomaly interpretation and temporal boundary refinement. Additionally, we propose the JeAUG metric, which jointly evaluates semantic interpretability and temporal precision, overcoming the limitations of traditional metrics. Extensive experiments verify the effectiveness of our benchmark, framework, and evaluation metric.
comment: 21 pages, 19 figures, 8 tables
☆ MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/DSTTSD/MoHoBench.
☆ Describe, Adapt and Combine: Empowering CLIP Encoders for Open-set 3D Object Retrieval ICCV 2025
Open-set 3D object retrieval (3DOR) is an emerging task aiming to retrieve 3D objects of unseen categories beyond the training set. Existing methods typically utilize all modalities (i.e., voxels, point clouds, multi-view images) and train specific backbones before fusion. However, they still struggle to produce generalized representations due to insufficient 3D training data. Being contrastively pre-trained on web-scale image-text pairs, CLIP inherently produces generalized representations for a wide range of downstream tasks. Building upon it, we present a simple yet effective framework named Describe, Adapt and Combine (DAC) by taking only multi-view images for open-set 3DOR. DAC innovatively synergizes a CLIP model with a multi-modal large language model (MLLM) to learn generalized 3D representations, where the MLLM is used for dual purposes. First, it describes the seen category information to align with CLIP's training objective for adaptation during training. Second, it provides external hints about unknown objects complementary to visual cues during inference. To improve the synergy, we introduce an Additive-Bias Low-Rank adaptation (AB-LoRA), which alleviates overfitting and further enhances the generalization to unseen categories. With only multi-view images, DAC significantly surpasses prior arts by an average of +10.01\% mAP on four open-set 3DOR datasets. Moreover, its generalization is also validated on image-based and cross-dataset setups. Code is available at https://github.com/wangzhichuan123/DAC.
comment: Accepted to ICCV 2025
☆ An Angular-Temporal Interaction Network for Light Field Object Tracking in Low-Light Scenes
High-quality 4D light field representation with efficient angular feature modeling is crucial for scene perception, as it can provide discriminative spatial-angular cues to identify moving targets. However, recent developments still struggle to deliver reliable angular modeling in the temporal domain, particularly in complex low-light scenes. In this paper, we propose a novel light field epipolar-plane structure image (ESI) representation that explicitly defines the geometric structure within the light field. By capitalizing on the abrupt changes in the angles of light rays within the epipolar plane, this representation can enhance visual expression in low-light scenes and reduce redundancy in high-dimensional light fields. We further propose an angular-temporal interaction network (ATINet) for light field object tracking that learns angular-aware representations from the geometric structural cues and angular-temporal interaction cues of light fields. Furthermore, ATINet can also be optimized in a self-supervised manner to enhance the geometric feature interaction across the temporal domain. Finally, we introduce a large-scale light field low-light dataset for object tracking. Extensive experimentation demonstrates that ATINet achieves state-of-the-art performance in single object tracking. Furthermore, we extend the proposed method to multiple object tracking, which also shows the effectiveness of high-quality light field angular-temporal modeling.
☆ Boost Self-Supervised Dataset Distillation via Parameterization, Predefined Augmentation, and Approximation
Although larger datasets are crucial for training large deep models, the rapid growth of dataset size has brought a significant challenge in terms of considerable training costs, which even results in prohibitive computational expenses. Dataset Distillation becomes a popular technique recently to reduce the dataset size via learning a highly compact set of representative exemplars, where the model trained with these exemplars ideally should have comparable performance with respect to the one trained with the full dataset. While most of existing works upon dataset distillation focus on supervised datasets, we instead aim to distill images and their self-supervisedly trained representations into a distilled set. This procedure, named as Self-Supervised Dataset Distillation, effectively extracts rich information from real datasets, yielding the distilled sets with enhanced cross-architecture generalizability. Particularly, in order to preserve the key characteristics of original dataset more faithfully and compactly, several novel techniques are proposed: 1) we introduce an innovative parameterization upon images and representations via distinct low-dimensional bases, where the base selection for parameterization is experimentally shown to play a crucial role; 2) we tackle the instability induced by the randomness of data augmentation -- a key component in self-supervised learning but being underestimated in the prior work of self-supervised dataset distillation -- by utilizing predetermined augmentations; 3) we further leverage a lightweight network to model the connections among the representations of augmented views from the same image, leading to more compact pairs of distillation. Extensive experiments conducted on various datasets validate the superiority of our approach in terms of distillation efficiency, cross-architecture generalization, and transfer learning performance.
☆ Recursive Visual Imagination and Adaptive Linguistic Grounding for Vision Language Navigation AAAI 2026
Vision Language Navigation (VLN) typically requires agents to navigate to specified objects or remote regions in unknown scenes by obeying linguistic commands. Such tasks require organizing historical visual observations for linguistic grounding, which is critical for long-sequence navigational decisions. However, current agents suffer from overly detailed scene representation and ambiguous vision-language alignment, which weaken their comprehension of navigation-friendly high-level scene priors and easily lead to behaviors that violate linguistic commands. To tackle these issues, we propose a navigation policy by recursively summarizing along-the-way visual perceptions, which are adaptively aligned with commands to enhance linguistic grounding. In particular, by structurally modeling historical trajectories as compact neural grids, several Recursive Visual Imagination (RVI) techniques are proposed to motivate agents to focus on the regularity of visual transitions and semantic scene layouts, instead of dealing with misleading geometric details. Then, an Adaptive Linguistic Grounding (ALG) technique is proposed to align the learned situational memories with different linguistic components purposefully. Such fine-grained semantic matching facilitates the accurate anticipation of navigation actions and progress. Our navigation policy outperforms the state-of-the-art methods on the challenging VLN-CE and ObjectNav tasks, showing the superiority of our RVI and ALG techniques for VLN.
comment: Submitted to AAAI 2026
☆ Dual Cross-image Semantic Consistency with Self-aware Pseudo Labeling for Semi-supervised Medical Image Segmentation
Semi-supervised learning has proven highly effective in tackling the challenge of limited labeled training data in medical image segmentation. In general, current approaches, which rely on intra-image pixel-wise consistency training via pseudo-labeling, overlook the consistency at more comprehensive semantic levels (e.g., object region) and suffer from severe discrepancy of extracted features resulting from an imbalanced number of labeled and unlabeled data. To overcome these limitations, we present a new \underline{Du}al \underline{C}ross-\underline{i}mage \underline{S}emantic \underline{C}onsistency (DuCiSC) learning framework, for semi-supervised medical image segmentation. Concretely, beyond enforcing pixel-wise semantic consistency, DuCiSC proposes dual paradigms to encourage region-level semantic consistency across: 1) labeled and unlabeled images; and 2) labeled and fused images, by explicitly aligning their prototypes. Relying on the dual paradigms, DuCiSC can effectively establish consistent cross-image semantics via prototype representations, thereby addressing the feature discrepancy issue. Moreover, we devise a novel self-aware confidence estimation strategy to accurately select reliable pseudo labels, allowing for exploiting the training dynamics of unlabeled data. Our DuCiSC method is extensively validated on four datasets, including two popular binary benchmarks in segmenting the left atrium and pancreas, a multi-class Automatic Cardiac Diagnosis Challenge dataset, and a challenging scenario of segmenting the inferior alveolar nerve that features complicated anatomical structures, showing superior segmentation results over previous state-of-the-art approaches. Our code is publicly available at \href{https://github.com/ShanghaiTech-IMPACT/DuCiSC}{https://github.com/ShanghaiTech-IMPACT/DuCiSC}.
comment: IEEE TMI
☆ MapDiffusion: Generative Diffusion for Vectorized Online HD Map Construction and Uncertainty Estimation in Autonomous Driving IROS 2025
Autonomous driving requires an understanding of the static environment from sensor data. Learned Bird's-Eye View (BEV) encoders are commonly used to fuse multiple inputs, and a vector decoder predicts a vectorized map representation from the latent BEV grid. However, traditional map construction models provide deterministic point estimates, failing to capture uncertainty and the inherent ambiguities of real-world environments, such as occlusions and missing lane markings. We propose MapDiffusion, a novel generative approach that leverages the diffusion paradigm to learn the full distribution of possible vectorized maps. Instead of predicting a single deterministic output from learned queries, MapDiffusion iteratively refines randomly initialized queries, conditioned on a BEV latent grid, to generate multiple plausible map samples. This allows aggregating samples to improve prediction accuracy and deriving uncertainty estimates that directly correlate with scene ambiguity. Extensive experiments on the nuScenes dataset demonstrate that MapDiffusion achieves state-of-the-art performance in online map construction, surpassing the baseline by 5% in single-sample performance. We further show that aggregating multiple samples consistently improves performance along the ROC curve, validating the benefit of distribution modeling. Additionally, our uncertainty estimates are significantly higher in occluded areas, reinforcing their value in identifying regions with ambiguous sensor input. By modeling the full map distribution, MapDiffusion enhances the robustness and reliability of online vectorized HD map construction, enabling uncertainty-aware decision-making for autonomous vehicles in complex environments.
comment: Accepted for 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ ReGATE: Learning Faster and Better with Fewer Tokens in MLLMs
The computational cost of training multimodal large language models (MLLMs) rapidly increases with the number of tokens involved. Existing efficiency methods primarily target inference and rely on token reduction or merging, offering limited benefit during training. In this paper, we propose ReGATE (Reference$-$Guided Adaptive Token Elision), an adaptive token pruning method for accelerating MLLM training. Specifically, ReGATE adopts a teacher-student framework in which the MLLM being trained serves as the student, and a frozen reference large language model (LLM) acts as the teacher. The teacher computes per-token reference losses, which are combined with an exponential moving average (EMA) of the student's own difficulty scores. This adaptive difficulty-based scoring enables the selective processing of crucial tokens while bypassing less informative ones in the forward pass, significantly reducing computational overhead. Experiments demonstrate that ReGATE, when applied to VideoLLaMA2, matches the peak accuracy of standard training on MVBench up to 2$\times$ faster, using only 35% of the tokens. With additional training, it even surpasses the baseline on several multimodal benchmarks, all while reducing the total token count by over 41%. Code and models will be released soon.
♻ ☆ Back Home: A Computer Vision Solution to Seashell Identification for Ecological Restoration ICCV 2025
Illegal souvenir collection strips an estimated five tonnes of seashells from Costa Rica's beaches each year. Yet, once these specimens are seized, their coastal origin -- Pacific or Caribbean -- cannot be verified easily due to the lack of information, preventing their return when confiscated by local authorities. To solve this issue, we introduce BackHome19K, the first large-scale image corpus (19,058 photographs, 516 species) annotated with coast-level labels, and propose a lightweight pipeline that infers provenance in real time on a mobile-grade CPU. A trained anomaly filter pre-screens uploads, increasing robustness to user-generated noise. On a held-out test set, the classifier attains 86.3% balanced accuracy, while the filter rejects 93% of 180 out-of-domain objects with zero false negatives. Deployed as a web application, the system has already processed 70,000 shells for wildlife officers in under three seconds per image, enabling confiscated specimens to be safely repatriated to their native ecosystems. The dataset is available at https://huggingface.co/datasets/FIFCO/BackHome19K
comment: ICCV 2025 (CV4E Workshop)
♻ ☆ JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1 ICCV 2025
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.
comment: WiCV @ ICCV 2025
♻ ☆ Efficacy of Image Similarity as a Metric for Augmenting Small Dataset Retinal Image Segmentation
Synthetic images are an option for augmenting limited medical imaging datasets to improve the performance of various machine learning models. A common metric for evaluating synthetic image quality is the Fr\'echet Inception Distance (FID) which measures the similarity of two image datasets. In this study we evaluate the relationship between this metric and the improvement which synthetic images, generated by a Progressively Growing Generative Adversarial Network (PGGAN), grant when augmenting Diabetes-related Macular Edema (DME) intraretinal fluid segmentation performed by a U-Net model with limited amounts of training data. We find that the behaviour of augmenting with standard and synthetic images agrees with previously conducted experiments. Additionally, we show that dissimilar (high FID) datasets do not improve segmentation significantly. As FID between the training and augmenting datasets decreases, the augmentation datasets are shown to contribute to significant and robust improvements in image segmentation. Finally, we find that there is significant evidence to suggest that synthetic and standard augmentations follow separate log-normal trends between FID and improvements in model performance, with synthetic data proving more effective than standard augmentation techniques. Our findings show that more similar datasets (lower FID) will be more effective at improving U-Net performance, however, the results also suggest that this improvement may only occur when images are sufficiently dissimilar.
comment: 30 pages, 10 figures
♻ ☆ YOLO-PRO: Enhancing Instance-Specific Object Detection with Full-Channel Global Self-Attention
This paper addresses the inherent limitations of conventional bottleneck structures (diminished instance discriminability due to overemphasis on batch statistics) and decoupled heads (computational redundancy) in object detection frameworks by proposing two novel modules: the Instance-Specific Bottleneck with full-channel global self-attention (ISB) and the Instance-Specific Asymmetric Decoupled Head (ISADH). The ISB module innovatively reconstructs feature maps to establish an efficient full-channel global attention mechanism through synergistic fusion of batch-statistical and instance-specific features. Complementing this, the ISADH module pioneers an asymmetric decoupled architecture enabling hierarchical multi-dimensional feature integration via dual-stream batch-instance representation fusion. Extensive experiments on the MS-COCO benchmark demonstrate that the coordinated deployment of ISB and ISADH in the YOLO-PRO framework achieves state-of-the-art performance across all computational scales. Specifically, YOLO-PRO surpasses YOLOv8 by 1.0-1.6% AP (N/S/M/L/X scales) and outperforms YOLO11 by 0.1-0.5% AP in critical N/M/L/X groups, while maintaining competitive computational efficiency. This work provides practical insights for developing high-precision detectors deployable on edge devices.
♻ ☆ T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation ICCV 2025
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.
comment: ICCV 2025
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ Beyond Class Tokens: LLM-guided Dominant Property Mining for Few-shot Classification
Few-shot Learning (FSL), which endeavors to develop the generalization ability for recognizing novel classes using only a few images, faces significant challenges due to data scarcity. Recent CLIP-like methods based on contrastive language-image pertaining mitigate the issue by leveraging textual representation of the class name for unseen image discovery. Despite the achieved success, simply aligning visual representations to class name embeddings would compromise the visual diversity for novel class discrimination. To this end, we proposed a novel Few-Shot Learning (FSL) method (BCT-CLIP) that explores \textbf{dominating properties} via contrastive learning beyond simply using class tokens. Through leveraging LLM-based prior knowledge, our method pushes forward FSL with comprehensive structural image representations, including both global category representation and the patch-aware property embeddings. In particular, we presented a novel multi-property generator (MPG) with patch-aware cross-attentions to generate multiple visual property tokens, a Large-Language Model (LLM)-assistant retrieval procedure with clustering-based pruning to obtain dominating property descriptions, and a new contrastive learning strategy for property-token learning. The superior performances on the 11 widely used datasets demonstrate that our investigation of dominating properties advances discriminative class-specific representation learning and few-shot classification.
comment: 11 pages, 7 figures
♻ ☆ VLM-CPL: Consensus Pseudo Labels from Vision-Language Models for Annotation-Free Pathological Image Classification
Classification of pathological images is the basis for automatic cancer diagnosis. Despite that deep learning methods have achieved remarkable performance, they heavily rely on labeled data, demanding extensive human annotation efforts. In this study, we present a novel human annotation-free method by leveraging pre-trained Vision-Language Models (VLMs). Without human annotation, pseudo-labels of the training set are obtained by utilizing the zero-shot inference capabilities of VLM, which may contain a lot of noise due to the domain gap between the pre-training and target datasets. To address this issue, we introduce VLM-CPL, a novel approach that contains two noisy label filtering techniques with a semi-supervised learning strategy. Specifically, we first obtain prompt-based pseudo-labels with uncertainty estimation by zero-shot inference with the VLM using multiple augmented views of an input. Then, by leveraging the feature representation ability of VLM, we obtain feature-based pseudo-labels via sample clustering in the feature space. Prompt-feature consensus is introduced to select reliable samples based on the consensus between the two types of pseudo-labels. We further propose High-confidence Cross Supervision by to learn from samples with reliable pseudo-labels and the remaining unlabeled samples. Additionally, we present an innovative open-set prompting strategy that filters irrelevant patches from whole slides to enhance the quality of selected patches. Experimental results on five public pathological image datasets for patch-level and slide-level classification showed that our method substantially outperformed zero-shot classification by VLMs, and was superior to existing noisy label learning methods. The code is publicly available at https://github.com/HiLab-git/VLM-CPL.
comment: Accepted at TMI
♻ ☆ From Gallery to Wrist: Realistic 3D Bracelet Insertion in Videos
Inserting 3D objects into videos is a longstanding challenge in computer graphics with applications in augmented reality, virtual try-on, and video composition. Achieving both temporal consistency, or realistic lighting remains difficult, particularly in dynamic scenarios with complex object motion, perspective changes, and varying illumination. While 2D diffusion models have shown promise for producing photorealistic edits, they often struggle with maintaining temporal coherence across frames. Conversely, traditional 3D rendering methods excel in spatial and temporal consistency but fall short in achieving photorealistic lighting. In this work, we propose a hybrid object insertion pipeline that combines the strengths of both paradigms. Specifically, we focus on inserting bracelets into dynamic wrist scenes, leveraging the high temporal consistency of 3D Gaussian Splatting (3DGS) for initial rendering and refining the results using a 2D diffusion-based enhancement model to ensure realistic lighting interactions. Our method introduces a shading-driven pipeline that separates intrinsic object properties (albedo, shading, reflectance) and refines both shading and sRGB images for photorealism. To maintain temporal coherence, we optimize the 3DGS model with multi-frame weighted adjustments. This is the first approach to synergize 3D rendering and 2D diffusion for video object insertion, offering a robust solution for realistic and consistent video editing. Project Page: https://cjeen.github.io/BraceletPaper/
comment: 12 pages
♻ ☆ A Multi-Agent System Enables Versatile Information Extraction from the Chemical Literature
To fully expedite AI-powered chemical research, high-quality chemical databases are the cornerstone. Automatic extraction of chemical information from the literature is essential for constructing reaction databases, but it is currently limited by the multimodality and style variability of chemical information. In this work, we developed a multimodal large language model (MLLM)-based multi-agent system for robust and automated chemical information extraction. It utilizes the MLLM's strong reasoning capability to understand the structure of diverse chemical graphics, decompose the extraction task into sub-tasks, and coordinate a set of specialized agents, each combining the capabilities of the MLLM with the precise, domain-specific strengths of dedicated tools, to solve them accurately and integrate the results into a unified output. Our system achieved an F1 score of 80.8% on a benchmark dataset of sophisticated multimodal chemical reaction graphics from the literature, surpassing the previous state-of-the-art model (F1 score of 35.6%) by a significant margin. Additionally, it demonstrated consistent improvements in key sub-tasks, including molecular image recognition, reaction image parsing, named entity recognition and text-based reaction extraction. This work is a critical step toward automated chemical information extraction into structured datasets, which will be a strong promoter of AI-driven chemical research.
♻ ☆ Humanoid Occupancy: Enabling A Generalized Multimodal Occupancy Perception System on Humanoid Robots
Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse heterogeneous visual perception modules tailored to specific scenarios. Among various perception paradigms, occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding. In this work, we present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline. Our framework employs advanced multi-modal fusion techniques to generate grid-based occupancy outputs encoding both occupancy status and semantic labels, thereby enabling holistic environmental understanding for downstream tasks such as task planning and navigation. To address the unique challenges of humanoid robots, we overcome issues such as kinematic interference and occlusion, and establish an effective sensor layout strategy. Furthermore, we have developed the first panoramic occupancy dataset specifically for humanoid robots, offering a valuable benchmark and resource for future research and development in this domain. The network architecture incorporates multi-modal feature fusion and temporal information integration to ensure robust perception. Overall, Humanoid Occupancy delivers effective environmental perception for humanoid robots and establishes a technical foundation for standardizing universal visual modules, paving the way for the widespread deployment of humanoid robots in complex real-world scenarios.
comment: Tech Report
♻ ☆ When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.
comment: For ongoing updates and to track the latest advances in this promising area, we maintain a public repository: https://github.com/cokeshao/Awesome-Multimodal-Token-Compression
♻ ☆ SCALAR: Scale-wise Controllable Visual Autoregressive Learning
Controllable image synthesis, which enables fine-grained control over generated outputs, has emerged as a key focus in visual generative modeling. However, controllable generation remains challenging for Visual Autoregressive (VAR) models due to their hierarchical, next-scale prediction style. Existing VAR-based methods often suffer from inefficient control encoding and disruptive injection mechanisms that compromise both fidelity and efficiency. In this work, we present SCALAR, a controllable generation method based on VAR, incorporating a novel Scale-wise Conditional Decoding mechanism. SCALAR leverages a pretrained image encoder to extract semantic control signal encodings, which are projected into scale-specific representations and injected into the corresponding layers of the VAR backbone. This design provides persistent and structurally aligned guidance throughout the generation process. Building on SCALAR, we develop SCALAR-Uni, a unified extension that aligns multiple control modalities into a shared latent space, supporting flexible multi-conditional guidance in a single model. Extensive experiments show that SCALAR achieves superior generation quality and control precision across various tasks.
♻ ☆ GLIMPSE: Holistic Cross-Modal Explainability for Large Vision-Language Models
Recent large vision-language models (LVLMs) have advanced capabilities in visual question answering (VQA). However, interpreting where LVLMs direct their visual attention remains a significant challenge, yet is essential for understanding model behavior. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals that support open-ended generation. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps for interpreting cross-modal reasoning, outperforming prior methods in faithfulness and pushing the state-of-the-art in human-attention alignment. We demonstrate an analytic approach to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic misalignment, diagnose hallucination and bias, and ensure transparency.
comment: Keywords: Explainable Computer Vision, Large Vision-Language Models, AI Interpretability, Explainable AI, Visual Saliency, Attribution Maps, Cross-Modal Attribution, Human Attention Alignment, AI Transparency
♻ ☆ NarrLV: Towards a Comprehensive Narrative-Centric Evaluation for Long Video Generation Models
With the rapid development of foundation video generation technologies, long video generation models have exhibited promising research potential thanks to expanded content creation space. Recent studies reveal that the goal of long video generation tasks is not only to extend video duration but also to accurately express richer narrative content within longer videos. However, due to the lack of evaluation benchmarks specifically designed for long video generation models, the current assessment of these models primarily relies on benchmarks with simple narrative prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the first benchmark to comprehensively evaluate the Narrative expression capabilities of Long Video generation models. Inspired by film narrative theory, (i) we first introduce the basic narrative unit maintaining continuous visual presentation in videos as Temporal Narrative Atom (TNA), and use its count to quantitatively measure narrative richness. Guided by three key film narrative elements influencing TNA changes, we construct an automatic prompt generation pipeline capable of producing evaluation prompts with a flexibly expandable number of TNAs. (ii) Then, based on the three progressive levels of narrative content expression, we design an effective evaluation metric using the MLLM-based question generation and answering framework. (iii) Finally, we conduct extensive evaluations on existing long video generation models and the foundation generation models. Experimental results demonstrate that our metric aligns closely with human judgments. The derived evaluation outcomes reveal the detailed capability boundaries of current video generation models in narrative content expression.
comment: Project Page: https://amap-ml.github.io/NarrLV-Website/
♻ ☆ IRASim: A Fine-Grained World Model for Robot Manipulation
World models allow autonomous agents to plan and explore by predicting the visual outcomes of different actions. However, for robot manipulation, it is challenging to accurately model the fine-grained robot-object interaction within the visual space using existing methods which overlooks precise alignment between each action and the corresponding frame. In this paper, we present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details, conditioned on historical observations and robot action trajectories. We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment. Extensive experiments show that: (1) the quality of the videos generated by our method surpasses all the baseline methods and scales effectively with increased model size and computation; (2) policy evaluations using IRASim exhibit a strong correlation with those using the ground-truth simulator, highlighting its potential to accelerate real-world policy evaluation; (3) testing-time scaling through model-based planning with IRASim significantly enhances policy performance, as evidenced by an improvement in the IoU metric on the Push-T benchmark from 0.637 to 0.961; (4) IRASim provides flexible action controllability, allowing virtual robotic arms in datasets to be controlled via a keyboard or VR controller.
comment: Opensource, project website: https://gen-irasim.github.io
♻ ☆ From Semantics, Scene to Instance-awareness: Distilling Foundation Model for Open-vocabulary Situation Recognition
Recent Multimodal Large Language Models (MLLMs) exhibit strong zero-shot abilities but struggle with complex Grounded Situation Recognition (GSR) and are resource-intensive for edge device deployment. Meanwhile, conventional GSR models often lack generalization ability, falling short in recognizing unseen and rare situations. In this paper, we exploit transferring knowledge from a teacher MLLM to a small GSR model to enhance its generalization and zero-shot abilities, thereby introducing the task of Open-vocabulary Grounded Situation Recognition (Ov-GSR). To achieve this, we propose Multimodal Interactive Prompt Distillation (MIPD), a novel framework that distills enriched multimodal knowledge from the foundation model, enabling the student Ov-GSR model to recognize unseen situations and be better aware of rare situations. Specifically, the MIPD framework first leverages the LLM-based Judgmental Rationales Generator (JRG) to construct positive and negative glimpse and gaze rationales enriched with contextual semantic information. The proposed scene-aware and instance-perception prompts are then introduced to align rationales with visual information from the MLLM teacher via the Negative-Guided Multimodal Prompting Alignment (NMPA) module, effectively capturing holistic and perceptual multimodal knowledge. Finally, the aligned multimodal knowledge is distilled into the student Ov-GSR model, providing a stronger foundation for generalization that enhances situation understanding, bridges the gap between seen and unseen scenarios, and mitigates prediction bias in rare cases. We evaluate MIPD on the refined Ov-SWiG dataset, achieving superior performance on seen, rare, and unseen situations, and further demonstrate improved unseen detection on the HICO-DET dataset.
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Ensuring Medical AI Safety: Interpretability-Driven Detection and Mitigation of Spurious Model Behavior and Associated Data
Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (cross-reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new cross-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the training views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate cross-reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
♻ ☆ An Integrated Approach to Robotic Object Grasping and Manipulation
In response to the growing challenges of manual labor and efficiency in warehouse operations, Amazon has embarked on a significant transformation by incorporating robotics to assist with various tasks. While a substantial number of robots have been successfully deployed for tasks such as item transportation within warehouses, the complex process of object picking from shelves remains a significant challenge. This project addresses the issue by developing an innovative robotic system capable of autonomously fulfilling a simulated order by efficiently selecting specific items from shelves. A distinguishing feature of the proposed robotic system is its capacity to navigate the challenge of uncertain object positions within each bin of the shelf. The system is engineered to autonomously adapt its approach, employing strategies that enable it to efficiently locate and retrieve the desired items, even in the absence of pre-established knowledge about their placements.
♻ ☆ DIVE: Taming DINO for Subject-Driven Video Editing ICCV 2025
Building on the success of diffusion models in image generation and editing, video editing has recently gained substantial attention. However, maintaining temporal consistency and motion alignment still remains challenging. To address these issues, this paper proposes DINO-guided Video Editing (DIVE), a framework designed to facilitate subject-driven editing in source videos conditioned on either target text prompts or reference images with specific identities. The core of DIVE lies in leveraging the powerful semantic features extracted from a pretrained DINOv2 model as implicit correspondences to guide the editing process. Specifically, to ensure temporal motion consistency, DIVE employs DINO features to align with the motion trajectory of the source video. For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model to learn Low-Rank Adaptations (LoRAs), effectively registering the target subject's identity. Extensive experiments on diverse real-world videos demonstrate that our framework can achieve high-quality editing results with robust motion consistency, highlighting the potential of DINO to contribute to video editing. Project page: https://dino-video-editing.github.io
comment: Accepted by ICCV 2025
♻ ☆ Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning
Self-supervised deep learning has accelerated 2D natural image analysis but remains difficult to translate into 3D MRI, where data are scarce and pre-trained 2D backbones cannot capture volumetric context. We present a \emph{sequence-invariant} self-supervised framework leveraging quantitative MRI (qMRI). By simulating multiple MRI contrasts from a single 3D qMRI scan and enforcing consistent representations across these contrasts, we learn anatomy-centric rather than sequence-specific features. The result is a single 3D encoder that excels across tasks and protocols. Experiments on healthy brain segmentation (IXI), stroke lesion segmentation (ARC), and MRI denoising show significant gains over baseline SSL approaches, especially in low-data settings (up to +8.3\% Dice, +4.2 dB PSNR). It also generalises to unseen sites, supporting scalable clinical use. Code and trained models are publicly available at https://github.com/liamchalcroft/contrast-squared
♻ ☆ DreamScene: 3D Gaussian-based End-to-end Text-to-3D Scene Generation ECCV 2024
Generating 3D scenes from natural language holds great promise for applications in gaming, film, and design. However, existing methods struggle with automation, 3D consistency, and fine-grained control. We present DreamScene, an end-to-end framework for high-quality and editable 3D scene generation from text or dialogue. DreamScene begins with a scene planning module, where a GPT-4 agent infers object semantics and spatial constraints to construct a hybrid graph. A graph-based placement algorithm then produces a structured, collision-free layout. Based on this layout, Formation Pattern Sampling (FPS) generates object geometry using multi-timestep sampling and reconstructive optimization, enabling fast and realistic synthesis. To ensure global consistent, DreamScene employs a progressive camera sampling strategy tailored to both indoor and outdoor settings. Finally, the system supports fine-grained scene editing, including object movement, appearance changes, and 4D dynamic motion. Experiments demonstrate that DreamScene surpasses prior methods in quality, consistency, and flexibility, offering a practical solution for open-domain 3D content creation. Code and demos are available at https://jahnsonblack.github.io/DreamScene-Full/.
comment: Extended version of ECCV 2024 paper "DreamScene"
♻ ☆ Texture, Shape, Order, and Relation Matter: A New Transformer Design for Sequential DeepFake Detection WACV 2025
Sequential DeepFake detection is an emerging task that predicts the manipulation sequence in order. Existing methods typically formulate it as an image-to-sequence problem, employing conventional Transformer architectures. However, these methods lack dedicated design and consequently result in limited performance. As such, this paper describes a new Transformer design, called {TSOM}, by exploring three perspectives: Texture, Shape, and Order of Manipulations. Our method features four major improvements: \ding{182} we describe a new texture-aware branch that effectively captures subtle manipulation traces with a Diversiform Pixel Difference Attention module. \ding{183} Then we introduce a Multi-source Cross-attention module to seek deep correlations among spatial and sequential features, enabling effective modeling of complex manipulation traces. \ding{184} To further enhance the cross-attention, we describe a Shape-guided Gaussian mapping strategy, providing initial priors of the manipulation shape. \ding{185} Finally, observing that the subsequent manipulation in a sequence may influence traces left in the preceding one, we intriguingly invert the prediction order from forward to backward, leading to notable gains as expected. Building upon TSOM, we introduce an extended method, {TSOM++}, which additionally explores Relation of manipulations: \ding{186} we propose a new sequential contrastive learning scheme to capture relationships between various manipulation types in sequence, further enhancing the detection of manipulation traces. We conduct extensive experiments in comparison with several state-of-the-art methods, demonstrating the superiority of our method. The code has been released at https://github.com/OUC-VAS/TSOM.
comment: An extension of WACV 2025 (Oral)
♻ ☆ Category-level Meta-learned NeRF Priors for Efficient Object Mapping
In 3D object mapping, category-level priors enable efficient object reconstruction and canonical pose estimation, requiring only a single prior per semantic category (e.g., chair, book, laptop, etc.). DeepSDF has been used predominantly as a category-level shape prior, but it struggles to reconstruct sharp geometry and is computationally expensive. In contrast, NeRFs capture fine details but have yet to be effectively integrated with category-level priors in a real-time multi-object mapping framework. To bridge this gap, we introduce PRENOM, a Prior-based Efficient Neural Object Mapper that integrates category-level priors with object-level NeRFs to enhance reconstruction efficiency and enable canonical object pose estimation. PRENOM gets to know objects on a first-name basis by meta-learning on synthetic reconstruction tasks generated from open-source shape datasets. To account for object category variations, it employs a multi-objective genetic algorithm to optimize the NeRF architecture for each category, balancing reconstruction quality and training time. Additionally, prior-based probabilistic ray sampling directs sampling toward expected object regions, accelerating convergence and improving reconstruction quality under constrained resources. Experimental results highlight the ability of PRENOM to achieve high-quality reconstructions while maintaining computational feasibility. Specifically, comparisons with prior-free NeRF-based approaches on a synthetic dataset show a 21\% lower Chamfer distance. Furthermore, evaluations against other approaches using shape priors on a noisy real-world dataset indicate a 13\% improvement averaged across all reconstruction metrics, and comparable pose and size estimation accuracy, while being trained for 5$\times$ less time. Code available at: https://github.com/snt-arg/PRENOM
♻ ☆ Knowledge Regularized Negative Feature Tuning of Vision-Language Models for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for building reliable machine learning models. Although negative prompt tuning has enhanced the OOD detection capabilities of vision-language models, these tuned models often suffer from reduced generalization performance on unseen classes and styles. To address this challenge, we propose a novel method called Knowledge Regularized Negative Feature Tuning (KR-NFT), which integrates an innovative adaptation architecture termed Negative Feature Tuning (NFT) and a corresponding knowledge-regularization (KR) optimization strategy. Specifically, NFT applies distribution-aware transformations to pre-trained text features, effectively separating positive and negative features into distinct spaces. This separation maximizes the distinction between in-distribution (ID) and OOD images. Additionally, we introduce image-conditional learnable factors through a lightweight meta-network, enabling dynamic adaptation to individual images and mitigating sensitivity to class and style shifts. Compared to traditional negative prompt tuning, NFT demonstrates superior efficiency and scalability. To optimize this adaptation architecture, the KR optimization strategy is designed to enhance the discrimination between ID and OOD sets while mitigating pre-trained knowledge forgetting. This enhances OOD detection performance on trained ID classes while simultaneously improving OOD detection on unseen ID datasets. Notably, when trained with few-shot samples from ImageNet dataset, KR-NFT not only improves ID classification accuracy and OOD detection but also significantly reduces the FPR95 by 5.44\% under an unexplored generalization setting with unseen ID categories. Codes can be found at \href{https://github.com/ZhuWenjie98/KRNFT}.
comment: accepted by ACMMM 2025
GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction IROS 2025
Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field. This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes are released at https://github.com/hku-mars/GS-SDF.
comment: 8 pages, IROS 2025
♻ ☆ Bias Analysis for Synthetic Face Detection: A Case Study of the Impact of Facial Attributes
Bias analysis for synthetic face detection is bound to become a critical topic in the coming years. Although many detection models have been developed and several datasets have been released to reliably identify synthetic content, one crucial aspect has been largely overlooked: these models and training datasets can be biased, leading to failures in detection for certain demographic groups and raising significant social, legal, and ethical issues. In this work, we introduce an evaluation framework to contribute to the analysis of bias of synthetic face detectors with respect to several facial attributes. This framework exploits synthetic data generation, with evenly distributed attribute labels, for mitigating any skew in the data that could otherwise influence the outcomes of bias analysis. We build on the proposed framework to provide an extensive case study of the bias level of five state-of-the-art detectors in synthetic datasets with 25 controlled facial attributes. While the results confirm that, in general, synthetic face detectors are biased towards the presence/absence of specific facial attributes, our study also sheds light on the origins of the observed bias through the analysis of the correlations with the balancing of facial attributes in the training sets of the detectors, and the analysis of detectors activation maps in image pairs with controlled attribute modifications.
comment: Accepted at IJCB2025
♻ ☆ RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS ICCV 2025
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances. To address this, we propose RobustSplat, a robust solution based on two critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method. Our project page is https://fcyycf.github.io/RobustSplat/.
comment: ICCV 2025. Project page: https://fcyycf.github.io/RobustSplat/
♻ ☆ A Survey on Wi-Fi Sensing Generalizability: Taxonomy, Techniques, Datasets, and Future Research Prospects
Wi-Fi sensing has emerged as a powerful non-intrusive technology for recognizing human activities, monitoring vital signs, and enabling context-aware applications using commercial wireless devices. However, the performance of Wi-Fi sensing often degrades when applied to new users, devices, or environments due to significant domain shifts. To address this challenge, researchers have proposed a wide range of generalization techniques aimed at enhancing the robustness and adaptability of Wi-Fi sensing systems. In this survey, we provide a comprehensive and structured review of over 200 papers published since 2015, categorizing them according to the Wi-Fi sensing pipeline: experimental setup, signal preprocessing, feature learning, and model deployment. We analyze key techniques, including signal preprocessing, domain adaptation, meta-learning, metric learning, data augmentation, cross-modal alignment, federated learning, and continual learning. Furthermore, we summarize publicly available datasets across various tasks,such as activity recognition, user identification, indoor localization, and pose estimation, and provide insights into their domain diversity. We also discuss emerging trends and future directions, including large-scale pretraining, integration with multimodal foundation models, and continual deployment. To foster community collaboration, we introduce the Sensing Dataset Platform (SDP) for sharing datasets and models. This survey aims to serve as a valuable reference and practical guide for researchers and practitioners dedicated to improving the generalizability of Wi-Fi sensing systems.
comment: Under Review; 30 pages, 322 references
♻ ☆ Fuse Before Transfer: Knowledge Fusion for Heterogeneous Distillation ICCV2025
Most knowledge distillation (KD) methodologies predominantly focus on teacher-student pairs with similar architectures, such as both being convolutional neural networks (CNNs). However, the potential and flexibility of KD can be greatly improved by expanding it to novel Cross-Architecture KD (CAKD), where the knowledge of homogeneous and heterogeneous teachers can be transferred flexibly to a given student. The primary challenge in CAKD lies in the substantial feature gaps between heterogeneous models, originating from the distinction of their inherent inductive biases and module functions. To this end, we introduce an assistant model as a bridge to facilitate smooth feature knowledge transfer between heterogeneous teachers and students. More importantly, within our proposed design principle, the assistant model combines the advantages of cross-architecture inductive biases and module functions by merging convolution and attention modules derived from both student and teacher module functions. Furthermore, we observe that heterogeneous features exhibit diverse spatial distributions in CAKD, hindering the effectiveness of conventional pixel-wise mean squared error (MSE) loss. Therefore, we leverage a spatial-agnostic InfoNCE loss to align features after spatial smoothing, thereby improving the feature alignments in CAKD. Our proposed method is evaluated across some homogeneous model pairs and arbitrary heterogeneous combinations of CNNs, ViTs, and MLPs, achieving state-of-the-art performance for distilled models with a maximum gain of 11.47% on CIFAR-100 and 3.67% on ImageNet-1K. Our code and models will be released.
comment: Accepted by ICCV2025
♻ ☆ Motion Diffusion Autoencoders: Enabling Attribute Manipulation in Human Motion Demonstrated on Karate Techniques
Attribute manipulation deals with the problem of changing individual attributes of a data point or a time series, while leaving all other aspects unaffected. This work focuses on the domain of human motion, more precisely karate movement patterns. To the best of our knowledge, it presents the first success at manipulating attributes of human motion data. One of the key requirements for achieving attribute manipulation on human motion is a suitable pose representation. Therefore, we design a novel continuous, rotation-based pose representation that enables the disentanglement of the human skeleton and the motion trajectory, while still allowing an accurate reconstruction of the original anatomy. The core idea of the manipulation approach is to use a transformer encoder for discovering high-level semantics, and a diffusion probabilistic model for modeling the remaining stochastic variations. We show that the embedding space obtained from the transformer encoder is semantically meaningful and linear. This enables the manipulation of high-level attributes, by discovering their linear direction of change in the semantic embedding space and moving the embedding along said direction. All code and data is made publicly available.
comment: 9 pages, 7 figures
♻ ☆ Very High-Resolution Bridge Deformation Monitoring Using UAV-based Photogrammetry
Accurate and efficient structural health monitoring of infrastructure objects such as bridges is a vital task, as many existing constructions have already reached or are approaching their planned service life. In this contribution, we address the question of the suitability of UAV-based monitoring for SHM, in particular focusing on the geometric deformation under load. Such an advanced technology is becoming increasingly popular due to its ability to decrease the cost and risk of tedious traditional inspection methods. To this end, we performed extensive tests employing a research reinforced concrete bridge that can be exposed to a predefined load via ground anchors. Very high-resolution image blocks have been captured before, during, and after the application of controlled loads. From those images, the motion of distinct points on the bridge has been monitored, and in addition, dense image point clouds were computed to evaluate the performance of surface-based data acquisition. Moreover, a geodetic control network in stable regions is used as control information for bundle adjustment. We applied different sensing technologies in order to be able to judge the image-based deformation results: displacement transducers, tachymetry, and laser profiling. As a platform for the photogrammetric measurements, a multi-rotor UAV DJI Matrice 600 Pro was employed, equipped with two RTK-GNSS receivers. The mounted camera was a PhaseOne iXM-100 (100MP) with an 80 mm lens. With a flying height of 30 m above the terrain, this resulted in a GSD of 1.3 mm while a forward and sideward overlap of 80% was maintained. The comparison with reference data (displacement transducers) reveals a difference of less than 1 mm. We show that by employing the introduced UAV-based monitoring approach, a full area-wide quantification of deformation is possible in contrast to classical point or profile measurements.
♻ ☆ UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model ICML'25
The introduction of the Segment Anything Model (SAM) has paved the way for numerous semantic segmentation applications. For several tasks, quantifying the uncertainty of SAM is of particular interest. However, the ambiguous nature of the class-agnostic foundation model SAM challenges current uncertainty quantification (UQ) approaches. This paper presents a theoretically motivated uncertainty quantification model based on a Bayesian entropy formulation jointly respecting aleatoric, epistemic, and the newly introduced task uncertainty. We use this formulation to train USAM, a lightweight post-hoc UQ method. Our model traces the root of uncertainty back to under-parameterised models, insufficient prompts or image ambiguities. Our proposed deterministic USAM demonstrates superior predictive capabilities on the SA-V, MOSE, ADE20k, DAVIS, and COCO datasets, offering a computationally cheap and easy-to-use UQ alternative that can support user-prompting, enhance semi-supervised pipelines, or balance the tradeoff between accuracy and cost efficiency.
comment: Accepted to ICML'25
♻ ☆ UniPaint: Unified Space-time Video Inpainting via Mixture-of-Experts ICCV 1
In this paper, we present UniPaint, a unified generative space-time video inpainting framework that enables spatial-temporal inpainting and interpolation. Different from existing methods that treat video inpainting and video interpolation as two distinct tasks, we leverage a unified inpainting framework to tackle them and observe that these two tasks can mutually enhance synthesis performance. Specifically, we first introduce a plug-and-play space-time video inpainting adapter, which can be employed in various personalized models. The key insight is to propose a Mixture of Experts (MoE) attention to cover various tasks. Then, we design a spatial-temporal masking strategy during the training stage to mutually enhance each other and improve performance. UniPaint produces high-quality and aesthetically pleasing results, achieving the best quantitative results across various tasks and scale setups. The code and checkpoints are available at $\href{https://github.com/mmmmm-w/UniPaint}{this \ repository}$.
comment: ICCV 1st Workshop on Human-Interactive Generation and Editing (poster)
♻ ☆ Differential-UMamba: Rethinking Tumor Segmentation Under Limited Data Scenarios
In data-scarce scenarios, deep learning models often overfit to noise and irrelevant patterns, which limits their ability to generalize to unseen samples. To address these challenges in medical image segmentation, we introduce Diff-UMamba, a novel architecture that combines the UNet framework with the mamba mechanism to model long-range dependencies. At the heart of Diff-UMamba is a noise reduction module, which employs a signal differencing strategy to suppress noisy or irrelevant activations within the encoder. This encourages the model to filter out spurious features and enhance task-relevant representations, thereby improving its focus on clinically significant regions. As a result, the architecture achieves improved segmentation accuracy and robustness, particularly in low-data settings. Diff-UMamba is evaluated on multiple public datasets, including medical segmentation decathalon dataset (lung and pancreas) and AIIB23, demonstrating consistent performance gains of 1-3% over baseline methods in various segmentation tasks. To further assess performance under limited data conditions, additional experiments are conducted on the BraTS-21 dataset by varying the proportion of available training samples. The approach is also validated on a small internal non-small cell lung cancer dataset for the segmentation of gross tumor volume in cone beam CT, where it achieves a 4-5% improvement over baseline.
♻ ☆ Geometric Algebra Meets Large Language Models: Instruction-Based Transformations of Separate Meshes in 3D, Interactive and Controllable Scenes
This paper introduces a novel integration of Large Language Models (LLMs) with Conformal Geometric Algebra (CGA) to revolutionize controllable 3D scene editing, particularly for object repositioning tasks, which traditionally requires intricate manual processes and specialized expertise. These conventional methods typically suffer from reliance on large training datasets or lack a formalized language for precise edits. Utilizing CGA as a robust formal language, our system, Shenlong, precisely models spatial transformations necessary for accurate object repositioning. Leveraging the zero-shot learning capabilities of pre-trained LLMs, Shenlong translates natural language instructions into CGA operations which are then applied to the scene, facilitating exact spatial transformations within 3D scenes without the need for specialized pre-training. Implemented in a realistic simulation environment, Shenlong ensures compatibility with existing graphics pipelines. To accurately assess the impact of CGA, we benchmark against robust Euclidean Space baselines, evaluating both latency and accuracy. Comparative performance evaluations indicate that Shenlong significantly reduces LLM response times by 16% and boosts success rates by 9.6% on average compared to the traditional methods. Notably, Shenlong achieves a 100% perfect success rate in common practical queries, a benchmark where other systems fall short. These advancements underscore Shenlong's potential to democratize 3D scene editing, enhancing accessibility and fostering innovation across sectors such as education, digital entertainment, and virtual reality.
comment: 10 pages, 4 figures
♻ ☆ Image Captioning via Compact Bidirectional Architecture
Most current image captioning models typically generate captions from left-to-right. This unidirectional property makes them can only leverage past context but not future context. Though refinement-based models can exploit both past and future context by generating a new caption in the second stage based on pre-retrieved or pre-generated captions in the first stage, the decoder of these models generally consists of two networks~(i.e. a retriever or captioner in the first stage and a captioner in the second stage), which can only be executed sequentially. In this paper, we introduce a Compact Bidirectional Transformer model for image captioning that can leverage bidirectional context implicitly and explicitly while the decoder can be executed parallelly. Specifically, it is implemented by tightly coupling left-to-right(L2R) and right-to-left(R2L) flows into a single compact model to serve as a regularization for implicitly exploiting bidirectional context and optionally allowing explicit interaction of the bidirectional flows, while the final caption is chosen from either L2R or R2L flow in a sentence-level ensemble manner. We conduct extensive ablation studies on MSCOCO benchmark and find that the compact bidirectional architecture and the sentence-level ensemble play more important roles than the explicit interaction mechanism. By combining with word-level ensemble seamlessly, the effect of sentence-level ensemble is further enlarged. We further extend the conventional one-flow self-critical training to the two-flows version under this architecture and achieve new state-of-the-art results in comparison with non-vision-language-pretraining models. Finally, we verify the generality of this compact bidirectional architecture by extending it to LSTM backbone. Source code is available at https://github.com/YuanEZhou/cbtic.
♻ ☆ ZeroStereo: Zero-shot Stereo Matching from Single Images ICCV 2025
State-of-the-art supervised stereo matching methods have achieved remarkable performance on various benchmarks. However, their generalization to real-world scenarios remains challenging due to the scarcity of annotated real-world stereo data. In this paper, we propose ZeroStereo, a novel stereo image generation pipeline for zero-shot stereo matching. Our approach synthesizes high-quality right images from arbitrary single images by leveraging pseudo disparities generated by a monocular depth estimation model. Unlike previous methods that address occluded regions by filling missing areas with neighboring pixels or random backgrounds, we fine-tune a diffusion inpainting model to recover missing details while preserving semantic structure. Additionally, we propose Training-Free Confidence Generation, which mitigates the impact of unreliable pseudo labels without additional training, and Adaptive Disparity Selection, which ensures a diverse and realistic disparity distribution while preventing excessive occlusion and foreground distortion. Experiments demonstrate that models trained with our pipeline achieve state-of-the-art zero-shot generalization across multiple datasets with only a dataset volume comparable to Scene Flow. Code: https://github.com/Windsrain/ZeroStereo.
comment: Accepted to ICCV 2025
♻ ☆ RANa: Retrieval-Augmented Navigation
Methods for navigation based on large-scale learning typically treat each episode as a new problem, where the agent is spawned with a clean memory in an unknown environment. While these generalization capabilities to an unknown environment are extremely important, we claim that, in a realistic setting, an agent should have the capacity of exploiting information collected during earlier robot operations. We address this by introducing a new retrieval-augmented agent, trained with RL, capable of querying a database collected from previous episodes in the same environment and learning how to integrate this additional context information. We introduce a unique agent architecture for the general navigation task, evaluated on ImageNav, Instance-ImageNav and ObjectNav. Our retrieval and context encoding methods are data-driven and employ vision foundation models (FM) for both semantic and geometric understanding. We propose new benchmarks for these settings and we show that retrieval allows zero-shot transfer across tasks and environments while significantly improving performance.
♻ ☆ Few-shot Online Anomaly Detection and Segmentation
Detecting anomaly patterns from images is a crucial artificial intelligence technique in industrial applications. Recent research in this domain has emphasized the necessity of a large volume of training data, overlooking the practical scenario where, post-deployment of the model, unlabeled data containing both normal and abnormal samples can be utilized to enhance the model's performance. Consequently, this paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task. Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously. To tackle this issue, we propose modeling the feature distribution of normal images using a Neural Gas network, which offers the flexibility to adapt the topology structure to identify outliers in the data flow. In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation. Furthermore, we introduce an algorithm that can incrementally update parameters without the need to store previous samples. Comprehensive experimental results demonstrate that our method can achieve substantial performance under the FOADS setting, while ensuring that the time complexity remains within an acceptable range on MVTec AD and BTAD datasets.
AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning ICCV 2025
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that our method substantially reduces computation load (e.g., a $\textbf{7-fold}$ reduction in FLOPs) while preserving the performance of video and image LLMs. Further, at a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., $\textbf{+4.6}$ on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code is available at https://github.com/LaVi-Lab/AIM.
comment: Accepted to ICCV 2025
♻ ☆ PEVLM: Parallel Encoding for Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong capabilities in multimodal understanding and generation tasks. However, their application to long video understanding remains hindered by the quadratic complexity of standard attention mechanisms. In this work, we introduce \textbf{PEVLM}, a fine-tuning-free parallel encoding method designed to enhance the prefilling efficiency of VLMs in long video scenarios. PEVLM partitions the input video into context blocks with a shared sink block, while preserving sequential position embeddings to align the attention weight distribution with that of Full-Attention. This design reduces attention complexity from $O((T \times N)^2)$ to $O(T \times N)$ where $T$ is the number of frames and $N$ the number of tokens per frame, without sacrificing accuracy. Extensive experiments across multiple state-of-the-art models and benchmarks demonstrate that PEVLM consistently outperforms existing parallel encoding approaches, achieving up to \textbf{7.47x} speedup in attention computation and reducing end-to-end latency by \textbf{40\%}. Remarkably, PEVLM not only maintains high accuracy, but in some settings even surpasses Full-Attention performance. Under strict latency constraints, it achieves substantial gains, improving accuracy from \textbf{23.26\%} to \textbf{61.03\%}. These results underscore the effectiveness of PEVLM for low-latency, long-context video understanding, making it a promising solution for real-world applications.
♻ ☆ C2-Evo: Co-Evolving Multimodal Data and Model for Self-Improving Reasoning
Recent advances in multimodal large language models (MLLMs) have shown impressive reasoning capabilities. However, further enhancing existing MLLMs necessitates high-quality vision-language datasets with carefully curated task complexities, which are both costly and challenging to scale. Although recent self-improving models that iteratively refine themselves offer a feasible solution, they still suffer from two core challenges: (i) most existing methods augment visual or textual data separately, resulting in discrepancies in data complexity (e.g., over-simplified diagrams paired with redundant textual descriptions); and (ii) the evolution of data and models is also separated, leading to scenarios where models are exposed to tasks with mismatched difficulty levels. To address these issues, we propose C2-Evo, an automatic, closed-loop self-improving framework that jointly evolves both training data and model capabilities. Specifically, given a base dataset and a base model, C2-Evo enhances them by a cross-modal data evolution loop and a data-model evolution loop. The former loop expands the base dataset by generating complex multimodal problems that combine structured textual sub-problems with iteratively specified geometric diagrams, while the latter loop adaptively selects the generated problems based on the performance of the base model, to conduct supervised fine-tuning and reinforcement learning alternately. Consequently, our method continuously refines its model and training data, and consistently obtains considerable performance gains across multiple mathematical reasoning benchmarks. Our code, models, and datasets will be released.
♻ ☆ Latent Swap Joint Diffusion for 2D Long-Form Latent Generation
This paper introduces Swap Forward (SaFa), a modality-agnostic and efficient method to generate seamless and coherence long spectrum and panorama through latent swap joint diffusion across multi-views. We first investigate the spectrum aliasing problem in spectrum-based audio generation caused by existing joint diffusion methods. Through a comparative analysis of the VAE latent representation of Mel-spectra and RGB images, we identify that the failure arises from excessive suppression of high-frequency components during the spectrum denoising process due to the averaging operator. To address this issue, we propose Self-Loop Latent Swap, a frame-level bidirectional swap applied to the overlapping region of adjacent views. Leveraging stepwise differentiated trajectories of adjacent subviews, this swap operator adaptively enhances high-frequency components and avoid spectrum distortion. Furthermore, to improve global cross-view consistency in non-overlapping regions, we introduce Reference-Guided Latent Swap, a unidirectional latent swap operator that provides a centralized reference trajectory to synchronize subview diffusions. By refining swap timing and intervals, we can achieve a cross-view similarity-diversity balance in a forward-only manner. Quantitative and qualitative experiments demonstrate that SaFa significantly outperforms existing joint diffusion methods and even training-based methods in audio generation using both U-Net and DiT models, along with effective longer length adaptation. It also adapts well to panorama generation, achieving comparable performance with 2 $\sim$ 20 $\times$ faster speed and greater model generalizability. More generation demos are available at https://swapforward.github.io/
♻ ☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ Signs as Tokens: A Retrieval-Enhanced Multilingual Sign Language Generator ICCV 2025
Sign language is a visual language that encompasses all linguistic features of natural languages and serves as the primary communication method for the deaf and hard-of-hearing communities. Although many studies have successfully adapted pretrained language models (LMs) for sign language translation (sign-to-text), the reverse task-sign language generation (text-to-sign)-remains largely unexplored. In this work, we introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs using a pretrained LM. To align sign language with the LM, we leverage a decoupled tokenizer that discretizes continuous signs into token sequences representing various body parts. During decoding, unlike existing approaches that flatten all part-wise tokens into a single sequence and predict one token at a time, we propose a multi-head decoding method capable of predicting multiple tokens simultaneously. This approach improves inference efficiency while maintaining effective information fusion across different body parts. To further ease the generation process, we propose a retrieval-enhanced SLG approach, which incorporates external sign dictionaries to provide accurate word-level signs as auxiliary conditions, significantly improving the precision of generated signs. Extensive qualitative and quantitative evaluations demonstrate the effectiveness of SOKE.
comment: Accepted by ICCV 2025
♻ ☆ AI-ming backwards: Vanishing archaeological landscapes in Mesopotamia and automatic detection of sites on CORONA imagery
By upgrading an existing deep learning model with the knowledge provided by one of the oldest sets of grayscale satellite imagery, known as CORONA, we improved the AI model attitude towards the automatic identification of archaeological sites in an environment which has been completely transformed in the last five decades, including the complete destruction of many of those same sites. The initial Bing based convolutional network model was retrained using CORONA satellite imagery for the district of Abu Ghraib, west of Baghdad, central Mesopotamian floodplain. The results were twofold and surprising. First, the detection precision obtained on the area of interest increased sensibly: in particular, the Intersection over Union (IoU) values, at the image segmentation level, surpassed 85 percent, while the general accuracy in detecting archeological sites reached 90 percent. Second, our retrained model allowed the identification of four new sites of archaeological interest (confirmed through field verification), previously not identified by archaeologists with traditional techniques. This has confirmed the efficacy of using AI techniques and the CORONA imagery from the 1960 to discover archaeological sites currently no longer visible, a concrete breakthrough with significant consequences for the study of landscapes with vanishing archaeological evidence induced by anthropization
comment: 25 pages, 9 Figures
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advancements in Deep Learning and its application on the edge hold great potential for the revolution of routine screenings for skin cancers like Melanoma. Along with the anticipated benefits of this technology, potential dangers arise from unforseen and inherent biases. Thus, assessing and improving the fairness of such systems is of utmost importance. A key challenge in fairness assessment is to ensure that the evaluation dataset is sufficiently representative of different Personal Identifiable Information (PII) (sex, age, and race) and other minority groups. Against the backdrop of this challenge, this study leverages the state-of-the-art Generative AI (GenAI) LightningDiT model to assess the fairness of publicly available melanoma classifiers. The results suggest that fairness assessment using highly realistic synthetic data is a promising direction. Yet, our findings indicate that verifying fairness becomes difficult when the melanoma-detection model used for evaluation is trained on data that differ from the dataset underpinning the synthetic images. Nonetheless, we propose that our approach offers a valuable new avenue for employing synthetic data to gauge and enhance fairness in medical-imaging GenAI systems.
♻ ☆ Fast Globally Optimal and Geometrically Consistent 3D Shape Matching
Geometric consistency, i.e. the preservation of neighbourhoods, is a natural and strong prior in 3D shape matching. Geometrically consistent matchings are crucial for many downstream applications, such as texture transfer or statistical shape modelling. Yet, in practice, geometric consistency is often overlooked, or only achieved under severely limiting assumptions (e.g. a good initialisation). In this work, we propose a novel formalism for computing globally optimal and geometrically consistent matchings between 3D shapes which is scalable in practice. Our key idea is to represent the surface of the source shape as a collection of cyclic paths, which are then consistently matched to the target shape. Mathematically, we construct a hyper product graph (between source and target shape), and then cast 3D shape matching as a minimum-cost circulation flow problem in this hyper graph, which yields global geometrically consistent matchings between both shapes. We empirically show that our formalism is efficiently solvable and that it leads to high-quality results.
comment: 8 pages main paper, 9 pages supplementary
♻ ☆ DASH: 4D Hash Encoding with Self-Supervised Decomposition for Real-Time Dynamic Scene Rendering ICCV 2025
Dynamic scene reconstruction is a long-term challenge in 3D vision. Existing plane-based methods in dynamic Gaussian splatting suffer from an unsuitable low-rank assumption, causing feature overlap and poor rendering quality. Although 4D hash encoding provides an explicit representation without low-rank constraints, directly applying it to the entire dynamic scene leads to substantial hash collisions and redundancy. To address these challenges, we present DASH, a real-time dynamic scene rendering framework that employs 4D hash encoding coupled with self-supervised decomposition. Our approach begins with a self-supervised decomposition mechanism that separates dynamic and static components without manual annotations or precomputed masks. Next, we introduce a multiresolution 4D hash encoder for dynamic elements, providing an explicit representation that avoids the low-rank assumption. Finally, we present a spatio-temporal smoothness regularization strategy to mitigate unstable deformation artifacts. Experiments on real-world datasets demonstrate that DASH achieves state-of-the-art dynamic rendering performance, exhibiting enhanced visual quality at real-time speeds of 264 FPS on a single 4090 GPU. Code: https://github.com/chenj02/DASH.
comment: ICCV 2025
♻ ☆ DEPTHOR: Depth Enhancement from a Practical Light-Weight dToF Sensor and RGB Image
Depth enhancement, which uses RGB images as guidance to convert raw signals from dToF into high-precision, dense depth maps, is a critical task in computer vision. Although existing super-resolution-based methods show promising results on public datasets, they often rely on idealized assumptions like accurate region correspondences and reliable dToF inputs, overlooking calibration errors that cause misalignment and anomaly signals inherent to dToF imaging, limiting real-world applicability. To address these challenges, we propose a novel completion-based method, named DEPTHOR, featuring advances in both the training strategy and model architecture. First, we propose a method to simulate real-world dToF data from the accurate ground truth in synthetic datasets to enable noise-robust training. Second, we design a novel network that incorporates monocular depth estimation (MDE), leveraging global depth relationships and contextual information to improve prediction in challenging regions. On the ZJU-L5 dataset, our training strategy significantly enhances depth completion models, achieving results comparable to depth super-resolution methods, while our model achieves state-of-the-art results, improving Rel and RMSE by 27% and 18%, respectively. On a more challenging set of dToF samples we collected, our method outperforms SOTA methods on preliminary stereo-based GT, improving Rel and RMSE by 23% and 22%, respectively. Our Code is available at https://github.com/ShadowBbBb/Depthor
comment: 16 pages, 15 figures, 7 tables
♻ ☆ Posture-Driven Action Intent Inference for Playing style and Fatigue Assessment
Posture-based mental state inference has significant potential in diagnosing fatigue, preventing injury, and enhancing performance across various domains. Such tools must be research-validated with large datasets before being translated into practice. Unfortunately, such vision diagnosis faces serious challenges due to the sensitivity of human subject data. To address this, we identify sports settings as a viable alternative for accumulating data from human subjects experiencing diverse emotional states. We test our hypothesis in the game of cricket and present a posture-based solution to identify human intent from activity videos. Our method achieves over 75\% F1 score and over 80\% AUC-ROC in discriminating aggressive and defensive shot intent through motion analysis. These findings indicate that posture leaks out strong signals for intent inference, even with inherent noise in the data pipeline. Furthermore, we utilize existing data statistics as weak supervision to validate our findings, offering a potential solution for overcoming data labelling limitations. This research contributes to generalizable techniques for sports analytics and also opens possibilities for applying human behavior analysis across various fields.
♻ ☆ LookCloser: Frequency-aware Radiance Field for Tiny-Detail Scene CVPR 2025
Humans perceive and comprehend their surroundings through information spanning multiple frequencies. In immersive scenes, people naturally scan their environment to grasp its overall structure while examining fine details of objects that capture their attention. However, current NeRF frameworks primarily focus on modeling either high-frequency local views or the broad structure of scenes with low-frequency information, which is limited to balancing both. We introduce FA-NeRF, a novel frequency-aware framework for view synthesis that simultaneously captures the overall scene structure and high-definition details within a single NeRF model. To achieve this, we propose a 3D frequency quantification method that analyzes the scene's frequency distribution, enabling frequency-aware rendering. Our framework incorporates a frequency grid for fast convergence and querying, a frequency-aware feature re-weighting strategy to balance features across different frequency contents. Extensive experiments show that our method significantly outperforms existing approaches in modeling entire scenes while preserving fine details. Project page: https://coscatter.github.io/LookCloser/
comment: Accepted to CVPR 2025. Project page: https://coscatter.github.io/LookCloser
♻ ☆ Probabilistic Directed Distance Fields for Ray-Based Shape Representations
In modern computer vision, the optimal representation of 3D shape continues to be task-dependent. One fundamental operation applied to such representations is differentiable rendering, as it enables inverse graphics approaches in learning frameworks. Standard explicit shape representations (voxels, point clouds, or meshes) are often easily rendered, but can suffer from limited geometric fidelity, among other issues. On the other hand, implicit representations (occupancy, distance, or radiance fields) preserve greater fidelity, but suffer from complex or inefficient rendering processes, limiting scalability. In this work, we devise Directed Distance Fields (DDFs), a novel neural shape representation that builds upon classical distance fields. The fundamental operation in a DDF maps an oriented point (position and direction) to surface visibility and depth. This enables efficient differentiable rendering, obtaining depth with a single forward pass per pixel, as well as differential geometric quantity extraction (e.g., surface normals), with only additional backward passes. Using probabilistic DDFs (PDDFs), we show how to model inherent discontinuities in the underlying field. We then apply DDFs to several applications, including single-shape fitting, generative modelling, and single-image 3D reconstruction, showcasing strong performance with simple architectural components via the versatility of our representation. Finally, since the dimensionality of DDFs permits view-dependent geometric artifacts, we conduct a theoretical investigation of the constraints necessary for view consistency. We find a small set of field properties that are sufficient to guarantee a DDF is consistent, without knowing, for instance, which shape the field is expressing.
comment: Extension of arXiv:2112.05300. Accepted to TPAMI
♻ ☆ One-stage Modality Distillation for Incomplete Multimodal Learning
Learning based on multimodal data has attracted increasing interest recently. While a variety of sensory modalities can be collected for training, not all of them are always available in development scenarios, which raises the challenge to infer with incomplete modality. To address this issue, this paper presents a one-stage modality distillation framework that unifies the privileged knowledge transfer and modality information fusion into a single optimization procedure via multi-task learning. Compared with the conventional modality distillation that performs them independently, this helps to capture the valuable representation that can assist the final model inference directly. Specifically, we propose the joint adaptation network for the modality transfer task to preserve the privileged information. This addresses the representation heterogeneity caused by input discrepancy via the joint distribution adaptation. Then, we introduce the cross translation network for the modality fusion task to aggregate the restored and available modality features. It leverages the parameters-sharing strategy to capture the cross-modal cues explicitly. Extensive experiments on RGB-D classification and segmentation tasks demonstrate the proposed multimodal inheritance framework can overcome the problem of incomplete modality input in various scenes and achieve state-of-the-art performance.
♻ ☆ Semantic segmentation of SEM images of lower bainitic and tempered martensitic steels
This study employs deep learning techniques to segment scanning electron microscope images, enabling a quantitative analysis of carbide precipitates in lower bainite and tempered martensite steels with comparable strength. Following segmentation, carbides are investigated, and their volume percentage, size distribution, and orientations are probed within the image dataset. Our findings reveal that lower bainite and tempered martensite exhibit comparable volume percentages of carbides, albeit with a more uniform distribution of carbides in tempered martensite. Carbides in lower bainite demonstrate a tendency for better alignment than those in tempered martensite, aligning with the observations of other researchers. However, both microstructures display a scattered carbide orientation, devoid of any discernible pattern. Comparative analysis of aspect ratios and sizes of carbides in lower bainite and tempered martensite unveils striking similarities. The deep learning model achieves an impressive pixelwise accuracy of 98.0% in classifying carbide/iron matrix at the individual pixel level. The semantic segmentation derived from deep learning extends its applicability to the analysis of secondary phases in various materials, offering a time-efficient, versatile AI-powered workflow for quantitative microstructure analysis.
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ PPJudge: Towards Human-Aligned Assessment of Artistic Painting Process
Artistic image assessment has become a prominent research area in computer vision. In recent years, the field has witnessed a proliferation of datasets and methods designed to evaluate the aesthetic quality of paintings. However, most existing approaches focus solely on static final images, overlooking the dynamic and multi-stage nature of the artistic painting process. To address this gap, we propose a novel framework for human-aligned assessment of painting processes. Specifically, we introduce the Painting Process Assessment Dataset (PPAD), the first large-scale dataset comprising real and synthetic painting process images, annotated by domain experts across eight detailed attributes. Furthermore, we present PPJudge (Painting Process Judge), a Transformer-based model enhanced with temporally-aware positional encoding and a heterogeneous mixture-of-experts architecture, enabling effective assessment of the painting process. Experimental results demonstrate that our method outperforms existing baselines in accuracy, robustness, and alignment with human judgment, offering new insights into computational creativity and art education.
comment: ACM International Conference on Multimedia 2025
♻ ☆ Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
Visual defect detection in industrial glass manufacturing remains a critical challenge due to the low frequency of defective products, leading to imbalanced datasets that limit the performance of deep learning models and computer vision systems. This paper presents a novel approach using Denoising Diffusion Probabilistic Models (DDPMs) to generate synthetic defective glass product images for data augmentation, effectively addressing class imbalance issues in manufacturing quality control and automated visual inspection. The methodology significantly enhances image classification performance of standard CNN architectures (ResNet50V2, EfficientNetB0, and MobileNetV2) in detecting anomalies by increasing the minority class representation. Experimental results demonstrate substantial improvements in key machine learning metrics, particularly in recall for defective samples across all tested deep neural network architectures while maintaining perfect precision on the validation set. The most dramatic improvement was observed in ResNet50V2's overall classification accuracy, which increased from 78\% to 93\% when trained with the augmented data. This work provides a scalable, cost-effective approach to enhancing automated defect detection in glass manufacturing that can potentially be extended to other industrial quality assurance systems and industries with similar class imbalance challenges.
comment: 12 pages, 7 figures, published in Computer and Decision Making - An International Journal (COMDEM)
♻ ☆ Improving Visual Place Recognition with Sequence-Matching Receptiveness Prediction IROS
In visual place recognition (VPR), filtering and sequence-based matching approaches can improve performance by integrating temporal information across image sequences, especially in challenging conditions. While these methods are commonly applied, their effects on system behavior can be unpredictable and can actually make performance worse in certain situations. In this work, we present a new supervised learning approach that learns to predict the per-frame sequence matching receptiveness (SMR) of VPR techniques, enabling the system to selectively decide when to trust the output of a sequence matching system. Our approach is agnostic to the underlying VPR technique and effectively predicts SMR, and hence significantly improves VPR performance across a large range of state-of-the-art and classical VPR techniques (namely CosPlace, MixVPR, EigenPlaces, SALAD, AP-GeM, NetVLAD and SAD), and across three benchmark VPR datasets (Nordland, Oxford RobotCar, and SFU-Mountain). We also provide insights into a complementary approach that uses the predictor to replace discarded matches, and present ablation studies including an analysis of the interactions between our SMR predictor and the selected sequence length.
comment: 8 pages, 5 figures, Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
♻ ☆ SCORE: Scene Context Matters in Open-Vocabulary Remote Sensing Instance Segmentation ICCV 2025
Most existing remote sensing instance segmentation approaches are designed for close-vocabulary prediction, limiting their ability to recognize novel categories or generalize across datasets. This restricts their applicability in diverse Earth observation scenarios. To address this, we introduce open-vocabulary (OV) learning for remote sensing instance segmentation. While current OV segmentation models perform well on natural image datasets, their direct application to remote sensing faces challenges such as diverse landscapes, seasonal variations, and the presence of small or ambiguous objects in aerial imagery. To overcome these challenges, we propose $\textbf{SCORE}$ ($\textbf{S}$cene $\textbf{C}$ontext matters in $\textbf{O}$pen-vocabulary $\textbf{RE}$mote sensing instance segmentation), a framework that integrates multi-granularity scene context, i.e., regional context and global context, to enhance both visual and textual representations. Specifically, we introduce Region-Aware Integration, which refines class embeddings with regional context to improve object distinguishability. Additionally, we propose Global Context Adaptation, which enriches naive text embeddings with remote sensing global context, creating a more adaptable and expressive linguistic latent space for the classifier. We establish new benchmarks for OV remote sensing instance segmentation across diverse datasets. Experimental results demonstrate that, our proposed method achieves SOTA performance, which provides a robust solution for large-scale, real-world geospatial analysis. Our code is available at https://github.com/HuangShiqi128/SCORE.
comment: ICCV 2025 (Highlight), code see https://github.com/HuangShiqi128/SCORE
♻ ☆ Generative Ghost: Investigating Ranking Bias Hidden in AI-Generated Videos
With the rapid development of AI-generated content (AIGC), the creation of high-quality AI-generated videos has become faster and easier, resulting in the Internet being flooded with all kinds of video content. However, the impact of these videos on the content ecosystem remains largely unexplored. Video information retrieval remains a fundamental approach for accessing video content. Building on the observation that retrieval models often favor AI-generated content in ad-hoc and image retrieval tasks, we investigate whether similar biases emerge in the context of challenging video retrieval, where temporal and visual factors may further influence model behavior. To explore this, we first construct a comprehensive benchmark dataset containing both real and AI-generated videos, along with a set of fair and rigorous metrics to assess bias. This benchmark consists of 13,000 videos generated by two state-of-the-art open-source video generation models. We meticulously design a suite of rigorous metrics to accurately measure this preference, accounting for potential biases arising from the limited frame rate and suboptimal quality of AIGC videos. We then applied three off-the-shelf video retrieval models to perform retrieval tasks on this hybrid dataset. Our findings reveal a clear preference for AI-generated videos in retrieval. Further investigation shows that incorporating AI-generated videos into the training set of retrieval models exacerbates this bias. Unlike the preference observed in image modalities, we find that video retrieval bias arises from both unseen visual and temporal information, making the root causes of video bias a complex interplay of these two factors. To mitigate this bias, we fine-tune the retrieval models using a contrastive learning approach. The results of this study highlight the potential implications of AI-generated videos on retrieval systems.
comment: 13 pages, Accepted at ACMMM2025
♻ ☆ LoRA-Loop: Closing the Synthetic Replay Cycle for Continual VLM Learning
Continual learning for vision-language models has achieved remarkable performance through synthetic replay, where samples are generated using Stable Diffusion to regularize during finetuning and retain knowledge. However, real-world downstream applications often exhibit domain-specific nuances and fine-grained semantics not captured by generators, causing synthetic-replay methods to produce misaligned samples that misguide finetuning and undermine retention of prior knowledge. In this work, we propose a LoRA-enhanced synthetic-replay framework that injects task-specific low-rank adapters into a frozen Stable Diffusion model, efficiently capturing each new task's unique visual and semantic patterns. Specifically, we introduce a two-stage, confidence-based sample selection: we first rank real task data by post-finetuning VLM confidence to focus LoRA finetuning on the most representative examples, then generate synthetic samples and again select them by confidence for distillation. Our approach integrates seamlessly with existing replay pipelines-simply swap in the adapted generator to boost replay fidelity. Extensive experiments on the Multi-domain Task Incremental Learning (MTIL) benchmark show that our method outperforms previous synthetic-replay techniques, achieving an optimal balance among plasticity, stability, and zero-shot capability. These results demonstrate the effectiveness of generator adaptation via LoRA for robust continual learning in VLMs.
♻ ☆ Generalizable Neural Electromagnetic Inverse Scattering
Solving Electromagnetic Inverse Scattering Problems (EISP) is fundamental in applications such as medical imaging, where the goal is to reconstruct the relative permittivity from scattered electromagnetic field. This inverse process is inherently ill-posed and highly nonlinear, making it particularly challenging. A recent machine learning-based approach, Img-Interiors, shows promising results by leveraging continuous implicit functions. However, it requires case-specific optimization, lacks generalization to unseen data, and fails under sparse transmitter setups (e.g., with only one transmitter). To address these limitations, we revisit EISP from a physics-informed perspective, reformulating it as a two stage inverse transmission-scattering process. This formulation reveals the induced current as a generalizable intermediate representation, effectively decoupling the nonlinear scattering process from the ill-posed inverse problem. Built on this insight, we propose the first generalizable physics-driven framework for EISP, comprising a current estimator and a permittivity solver, working in an end-to-end manner. The current estimator explicitly learns the induced current as a physical bridge between the incident and scattered field, while the permittivity solver computes the relative permittivity directly from the estimated induced current. This design enables data-driven training and generalizable feed-forward prediction of relative permittivity on unseen data while maintaining strong robustness to transmitter sparsity. Extensive experiments show that our method outperforms state-of-the-art approaches in reconstruction accuracy, generalization, and robustness. This work offers a fundamentally new perspective on electromagnetic inverse scattering and represents a major step toward cost-effective practical solutions for electromagnetic imaging.
♻ ☆ SurgiSR4K: A High-Resolution Endoscopic Video Dataset for Robotic-Assisted Minimally Invasive Procedures
High-resolution imaging is crucial for enhancing visual clarity and enabling precise computer-assisted guidance in minimally invasive surgery (MIS). Despite the increasing adoption of 4K endoscopic systems, there remains a significant gap in publicly available native 4K datasets tailored specifically for robotic-assisted MIS. We introduce SurgiSR4K, the first publicly accessible surgical imaging and video dataset captured at a native 4K resolution, representing realistic conditions of robotic-assisted procedures. SurgiSR4K comprises diverse visual scenarios including specular reflections, tool occlusions, bleeding, and soft tissue deformations, meticulously designed to reflect common challenges faced during laparoscopic and robotic surgeries. This dataset opens up possibilities for a broad range of computer vision tasks that might benefit from high resolution data, such as super resolution (SR), smoke removal, surgical instrument detection, 3D tissue reconstruction, monocular depth estimation, instance segmentation, novel view synthesis, and vision-language model (VLM) development. SurgiSR4K provides a robust foundation for advancing research in high-resolution surgical imaging and fosters the development of intelligent imaging technologies aimed at enhancing performance, safety, and usability in image-guided robotic surgeries.
♻ ☆ SegQuant: A Semantics-Aware and Generalizable Quantization Framework for Diffusion Models
Diffusion models have demonstrated exceptional generative capabilities but are computationally intensive, posing significant challenges for deployment in resource-constrained or latency-sensitive environments. Quantization offers an effective means to reduce model size and computational cost, with post-training quantization (PTQ) being particularly appealing due to its compatibility with pre-trained models without requiring retraining or training data. However, existing PTQ methods for diffusion models often rely on architecture-specific heuristics that limit their generalizability and hinder integration with industrial deployment pipelines. To address these limitations, we propose SegQuant, a unified quantization framework that adaptively combines complementary techniques to enhance cross-model versatility. SegQuant consists of a segment-aware, graph-based quantization strategy (SegLinear) that captures structural semantics and spatial heterogeneity, along with a dual-scale quantization scheme (DualScale) that preserves polarity-asymmetric activations, which is crucial for maintaining visual fidelity in generated outputs. SegQuant is broadly applicable beyond Transformer-based diffusion models, achieving strong performance while ensuring seamless compatibility with mainstream deployment tools.
♻ ☆ FIX-CLIP: Dual-Branch Hierarchical Contrastive Learning via Synthetic Captions for Better Understanding of Long Text ICCV 2025
CLIP has shown promising performance across many short-text tasks in a zero-shot manner. However, limited by the input length of the text encoder, CLIP struggles on under-stream tasks with long-text inputs ($>77$ tokens). To remedy this issue, we propose FIX-CLIP, which includes three novel modules: (1) A dual-branch training pipeline that aligns short and long texts with masked and raw images, respectively, which boosts the long-text representation while preserving the short-text ability. (2) Multiple learnable regional prompts with unidirectional masks in Transformer layers for regional information extraction. (3) A hierarchical feature alignment module in the intermediate encoder layers to promote the consistency of multi-scale features. Furthermore, we collect 30M images and utilize existing MLLMs to synthesize long-text captions for training. Extensive experiments show that FIX-CLIP achieves state-of-the-art performance on both long-text and short-text retrieval benchmarks. For downstream applications, we reveal that FIX-CLIP's text encoder delivers promising performance in a plug-and-play manner for diffusion models with long-text input. The code is available at https://github.com/bcwang-sjtu/Fix-CLIP.
comment: Accepted by ICCV 2025
♻ ☆ Sparfels: Fast Reconstruction from Sparse Unposed Imagery ICCV 2025
We present a method for Sparse view reconstruction with surface element splatting that runs within 3 minutes on a consumer grade GPU. While few methods address sparse radiance field learning from noisy or unposed sparse cameras, shape recovery remains relatively underexplored in this setting. Several radiance and shape learning test-time optimization methods address the sparse posed setting by learning data priors or using combinations of external monocular geometry priors. Differently, we propose an efficient and simple pipeline harnessing a single recent 3D foundation model. We leverage its various task heads, notably point maps and camera initializations to instantiate a bundle adjusting 2D Gaussian Splatting (2DGS) model, and image correspondences to guide camera optimization midst 2DGS training. Key to our contribution is a novel formulation of splatted color variance along rays, which can be computed efficiently. Reducing this moment in training leads to more accurate shape reconstructions. We demonstrate state-of-the-art performances in the sparse uncalibrated setting in reconstruction and novel view benchmarks based on established multi-view datasets.
comment: ICCV 2025. Project page : https://shubhendu-jena.github.io/Sparfels-web/
♻ ☆ RISEE: A Highly Interactive Naturalistic Driving Trajectories Dataset with Human Subjective Risk Perception and Eye-tracking Information SC 2025
In the research and development (R&D) and verification and validation (V&V) phases of autonomous driving decision-making and planning systems, it is necessary to integrate human factors to achieve decision-making and evaluation that align with human cognition. However, most existing datasets primarily focus on vehicle motion states and trajectories, neglecting human-related information. In addition, current naturalistic driving datasets lack sufficient safety-critical scenarios while simulated datasets suffer from low authenticity. To address these issues, this paper constructs the Risk-Informed Subjective Evaluation and Eye-tracking (RISEE) dataset which specifically contains human subjective evaluations and eye-tracking data apart from regular naturalistic driving trajectories. By leveraging the complementary advantages of drone-based (high realism and extensive scenario coverage) and simulation-based (high safety and reproducibility) data collection methods, we first conduct drone-based traffic video recording at a highway ramp merging area. After that, the manually selected highly interactive scenarios are reconstructed in simulation software, and drivers' first-person view (FPV) videos are generated, which are then viewed and evaluated by recruited participants. During the video viewing process, participants' eye-tracking data is collected. After data processing and filtering, 3567 valid subjective risk ratings from 101 participants across 179 scenarios are retained, along with 2045 qualified eye-tracking data segments. The collected data and examples of the generated FPV videos are available in our website.
comment: Preprint accepted by ITSC 2025
♻ ☆ InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity ICCV 2025
Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.
comment: ICCV 2025 (Highlight). Project page: https://bytedance.github.io/InfiniteYou/ Code and model: https://github.com/bytedance/InfiniteYou
♻ ☆ MedViT V2: Medical Image Classification with KAN-Integrated Transformers and Dilated Neighborhood Attention
Convolutional networks, transformers, hybrid models, and Mamba-based architectures have demonstrated strong performance across various medical image classification tasks. However, these methods were primarily designed to classify clean images using labeled data. In contrast, real-world clinical data often involve image corruptions that are unique to multi-center studies and stem from variations in imaging equipment across manufacturers. In this paper, we introduce the Medical Vision Transformer (MedViTV2), a novel architecture incorporating Kolmogorov-Arnold Network (KAN) layers into the transformer architecture for the first time, aiming for generalized medical image classification. We have developed an efficient KAN block to reduce computational load while enhancing the accuracy of the original MedViT. Additionally, to counteract the fragility of our MedViT when scaled up, we propose an enhanced Dilated Neighborhood Attention (DiNA), an adaptation of the efficient fused dot-product attention kernel capable of capturing global context and expanding receptive fields to scale the model effectively and addressing feature collapse issues. Moreover, a hierarchical hybrid strategy is introduced to stack our Local Feature Perception and Global Feature Perception blocks in an efficient manner, which balances local and global feature perceptions to boost performance. Extensive experiments on 17 medical image classification datasets and 12 corrupted medical image datasets demonstrate that MedViTV2 achieved state-of-the-art results in 27 out of 29 experiments with reduced computational complexity. MedViTV2 is 44\% more computationally efficient than the previous version and significantly enhances accuracy, achieving improvements of 4.6\% on MedMNIST, 5.8\% on NonMNIST, and 13.4\% on the MedMNIST-C benchmark.
♻ ☆ SAM2Long: Enhancing SAM 2 for Long Video Segmentation with a Training-Free Memory Tree ICCV 2025
The Segment Anything Model 2 (SAM 2) has emerged as a powerful foundation model for object segmentation in both images and videos, paving the way for various downstream video applications. The crucial design of SAM 2 for video segmentation is its memory module, which prompts object-aware memories from previous frames for current frame prediction. However, its greedy-selection memory design suffers from the "error accumulation" problem, where an errored or missed mask will cascade and influence the segmentation of the subsequent frames, which limits the performance of SAM 2 toward complex long-term videos. To this end, we introduce SAM2Long, an improved training-free video object segmentation strategy, which considers the segmentation uncertainty within each frame and chooses the video-level optimal results from multiple segmentation pathways in a constrained tree search manner. In practice, we maintain a fixed number of segmentation pathways throughout the video. For each frame, multiple masks are proposed based on the existing pathways, creating various candidate branches. We then select the same fixed number of branches with higher cumulative scores as the new pathways for the next frame. After processing the final frame, the pathway with the highest cumulative score is chosen as the final segmentation result. Benefiting from its heuristic search design, SAM2Long is robust toward occlusions and object reappearances, and can effectively segment and track objects for complex long-term videos. Notably, SAM2Long achieves an average improvement of 3.0 points across all 24 head-to-head comparisons, with gains of up to 5.3 points in J&F on long-term video object segmentation benchmarks such as SA-V and LVOS. The code is released at https://github.com/Mark12Ding/SAM2Long.
comment: ICCV 2025, Project page: https://mark12ding.github.io/project/SAM2Long/ ; github page: https://github.com/Mark12Ding/SAM2Long/
♻ ☆ The Importance of Facial Features in Vision-based Sign Language Recognition: Eyes, Mouth or Full Face?
Non-manual facial features play a crucial role in sign language communication, yet their importance in automatic sign language recognition (ASLR) remains underexplored. While prior studies have shown that incorporating facial features can improve recognition, related work often relies on hand-crafted feature extraction and fails to go beyond the comparison of manual features versus the combination of manual and facial features. In this work, we systematically investigate the contribution of distinct facial regionseyes, mouth, and full faceusing two different deep learning models (a CNN-based model and a transformer-based model) trained on an SLR dataset of isolated signs with randomly selected classes. Through quantitative performance and qualitative saliency map evaluation, we reveal that the mouth is the most important non-manual facial feature, significantly improving accuracy. Our findings highlight the necessity of incorporating facial features in ASLR.
comment: Accepted at 9th International Workshop on Sign Language Translation and Avatar Technologies @ ACM IVA'25
♻ ☆ Harnessing Diffusion-Yielded Score Priors for Image Restoration
Deep image restoration models aim to learn a mapping from degraded image space to natural image space. However, they face several critical challenges: removing degradation, generating realistic details, and ensuring pixel-level consistency. Over time, three major classes of methods have emerged, including MSE-based, GAN-based, and diffusion-based methods. However, they fail to achieve a good balance between restoration quality, fidelity, and speed. We propose a novel method, HYPIR, to address these challenges. Our solution pipeline is straightforward: it involves initializing the image restoration model with a pre-trained diffusion model and then fine-tuning it with adversarial training. This approach does not rely on diffusion loss, iterative sampling, or additional adapters. We theoretically demonstrate that initializing adversarial training from a pre-trained diffusion model positions the initial restoration model very close to the natural image distribution. Consequently, this initialization improves numerical stability, avoids mode collapse, and substantially accelerates the convergence of adversarial training. Moreover, HYPIR inherits the capabilities of diffusion models with rich user control, enabling text-guided restoration and adjustable texture richness. Requiring only a single forward pass, it achieves faster convergence and inference speed than diffusion-based methods. Extensive experiments show that HYPIR outperforms previous state-of-the-art methods, achieving efficient and high-quality image restoration.
Artificial Intelligence 210
☆ Foundation Models for Demand Forecasting via Dual-Strategy Ensembling
Accurate demand forecasting is critical for supply chain optimization, yet remains difficult in practice due to hierarchical complexity, domain shifts, and evolving external factors. While recent foundation models offer strong potential for time series forecasting, they often suffer from architectural rigidity and limited robustness under distributional change. In this paper, we propose a unified ensemble framework that enhances the performance of foundation models for sales forecasting in real-world supply chains. Our method combines two complementary strategies: (1) Hierarchical Ensemble (HE), which partitions training and inference by semantic levels (e.g., store, category, department) to capture localized patterns; and (2) Architectural Ensemble (AE), which integrates predictions from diverse model backbones to mitigate bias and improve stability. We conduct extensive experiments on the M5 benchmark and three external sales datasets, covering both in-domain and zero-shot forecasting. Results show that our approach consistently outperforms strong baselines, improves accuracy across hierarchical levels, and provides a simple yet effective mechanism for boosting generalization in complex forecasting environments.
☆ The Interspeech 2025 Speech Accessibility Project Challenge
While the last decade has witnessed significant advancements in Automatic Speech Recognition (ASR) systems, performance of these systems for individuals with speech disabilities remains inadequate, partly due to limited public training data. To bridge this gap, the 2025 Interspeech Speech Accessibility Project (SAP) Challenge was launched, utilizing over 400 hours of SAP data collected and transcribed from more than 500 individuals with diverse speech disabilities. Hosted on EvalAI and leveraging the remote evaluation pipeline, the SAP Challenge evaluates submissions based on Word Error Rate and Semantic Score. Consequently, 12 out of 22 valid teams outperformed the whisper-large-v2 baseline in terms of WER, while 17 teams surpassed the baseline on SemScore. Notably, the top team achieved the lowest WER of 8.11\%, and the highest SemScore of 88.44\% at the same time, setting new benchmarks for future ASR systems in recognizing impaired speech.
comment: To appear in Proceedings of Interspeech, 2025
☆ Supervised Quantum Image Processing
In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI performs a higher compression of image information than TNR, NEQR, and QPIE. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
comment: 13 pages, 11 figures
☆ Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security
The rapid advancement of multimodal large language models (MLLMs) has led to breakthroughs in various applications, yet their security remains a critical challenge. One pressing issue involves unsafe image-query pairs--jailbreak inputs specifically designed to bypass security constraints and elicit unintended responses from MLLMs. Compared to general multimodal data, such unsafe inputs are relatively sparse, which limits the diversity and richness of training samples available for developing robust defense models. Meanwhile, existing guardrail-type methods rely on external modules to enforce security constraints but fail to address intrinsic vulnerabilities within MLLMs. Traditional supervised fine-tuning (SFT), on the other hand, often over-refuses harmless inputs, compromising general performance. Given these challenges, we propose Secure Tug-of-War (SecTOW), an innovative iterative defense-attack training method to enhance the security of MLLMs. SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO). During the iterative process, the attacker identifies security vulnerabilities in the defense model and expands jailbreak data. The expanded data are then used to train the defender, enabling it to address identified security vulnerabilities. We also design reward mechanisms used for GRPO to simplify the use of response labels, reducing dependence on complex generative labels and enabling the efficient use of synthetic data. Additionally, a quality monitoring mechanism is used to mitigate the defender's over-refusal of harmless inputs and ensure the diversity of the jailbreak data generated by the attacker. Experimental results on safety-specific and general benchmarks demonstrate that SecTOW significantly improves security while preserving general performance.
comment: 10 pages, 4 figures
☆ UserBench: An Interactive Gym Environment for User-Centric Agents
Large Language Models (LLMs)-based agents have made impressive progress in reasoning and tool use, enabling them to solve complex tasks. However, their ability to proactively collaborate with users, especially when goals are vague, evolving, or indirectly expressed, remains underexplored. To address this gap, we introduce UserBench, a user-centric benchmark designed to evaluate agents in multi-turn, preference-driven interactions. UserBench features simulated users who start with underspecified goals and reveal preferences incrementally, requiring agents to proactively clarify intent and make grounded decisions with tools. Our evaluation of leading open- and closed-source LLMs reveals a significant disconnect between task completion and user alignment. For instance, models provide answers that fully align with all user intents only 20% of the time on average, and even the most advanced models uncover fewer than 30% of all user preferences through active interaction. These results highlight the challenges of building agents that are not just capable task executors, but true collaborative partners. UserBench offers an interactive environment to measure and advance this critical capability.
comment: 25 Pages, 17 Figures, 6 Tables
☆ ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports
We present ReXGroundingCT, the first publicly available dataset to link free-text radiology findings with pixel-level segmentations in 3D chest CT scans that is manually annotated. While prior datasets have relied on structured labels or predefined categories, ReXGroundingCT captures the full expressiveness of clinical language represented in free text and grounds it to spatially localized 3D segmentation annotations in volumetric imaging. This addresses a critical gap in medical AI: the ability to connect complex, descriptive text, such as "3 mm nodule in the left lower lobe", to its precise anatomical location in three-dimensional space, a capability essential for grounded radiology report generation systems. The dataset comprises 3,142 non-contrast chest CT scans paired with standardized radiology reports from the CT-RATE dataset. Using a systematic three-stage pipeline, GPT-4 was used to extract positive lung and pleural findings, which were then manually segmented by expert annotators. A total of 8,028 findings across 16,301 entities were annotated, with quality control performed by board-certified radiologists. Approximately 79% of findings are focal abnormalities, while 21% are non-focal. The training set includes up to three representative segmentations per finding, while the validation and test sets contain exhaustive labels for each finding entity. ReXGroundingCT establishes a new benchmark for developing and evaluating sentence-level grounding and free-text medical segmentation models in chest CT. The dataset can be accessed at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.
☆ XAI for Point Cloud Data using Perturbations based on Meaningful Segmentation
We propose a novel segmentation-based explainable artificial intelligence (XAI) method for neural networks working on point cloud classification. As one building block of this method, we propose a novel point-shifting mechanism to introduce perturbations in point cloud data. Recently, AI has seen an exponential growth. Hence, it is important to understand the decision-making process of AI algorithms when they are applied in critical areas. Our work focuses on explaining AI algorithms that classify point cloud data. An important aspect of the methods used for explaining AI algorithms is their ability to produce explanations that are easy for humans to understand. This allows them to analyze the AI algorithms better and make appropriate decisions based on that analysis. Therefore, in this work, we intend to generate meaningful explanations that can be easily interpreted by humans. The point cloud data we consider represents 3D objects such as cars, guitars, and laptops. We make use of point cloud segmentation models to generate explanations for the working of classification models. The segments are used to introduce perturbations into the input point cloud data and generate saliency maps. The perturbations are introduced using the novel point-shifting mechanism proposed in this work which ensures that the shifted points no longer influence the output of the classification algorithm. In contrast to previous methods, the segments used by our method are meaningful, i.e. humans can easily interpret the meaning of the segments. Thus, the benefit of our method over other methods is its ability to produce more meaningful saliency maps. We compare our method with the use of classical clustering algorithms to generate explanations. We also analyze the saliency maps generated for example inputs using our method to demonstrate the usefulness of the method in generating meaningful explanations.
comment: 18 pages, 14 figures
☆ Exploring the Stratified Space Structure of an RL Game with the Volume Growth Transform
In this work, we explore the structure of the embedding space of a transformer model trained for playing a particular reinforcement learning (RL) game. Specifically, we investigate how a transformer-based Proximal Policy Optimization (PPO) model embeds visual inputs in a simple environment where an agent must collect "coins" while avoiding dynamic obstacles consisting of "spotlights." By adapting Robinson et al.'s study of the volume growth transform for LLMs to the RL setting, we find that the token embedding space for our visual coin collecting game is also not a manifold, and is better modeled as a stratified space, where local dimension can vary from point to point. We further strengthen Robinson's method by proving that fairly general volume growth curves can be realized by stratified spaces. Finally, we carry out an analysis that suggests that as an RL agent acts, its latent representation alternates between periods of low local dimension, while following a fixed sub-strategy, and bursts of high local dimension, where the agent achieves a sub-goal (e.g., collecting an object) or where the environmental complexity increases (e.g., more obstacles appear). Consequently, our work suggests that the distribution of dimensions in a stratified latent space may provide a new geometric indicator of complexity for RL games.
comment: 17 pages and 8 figures. Preliminary report. Feedback welcome!
☆ PHAX: A Structured Argumentation Framework for User-Centered Explainable AI in Public Health and Biomedical Sciences
Ensuring transparency and trust in AI-driven public health and biomedical sciences systems requires more than accurate predictions-it demands explanations that are clear, contextual, and socially accountable. While explainable AI (XAI) has advanced in areas like feature attribution and model interpretability, most methods still lack the structure and adaptability needed for diverse health stakeholders, including clinicians, policymakers, and the general public. We introduce PHAX-a Public Health Argumentation and eXplainability framework-that leverages structured argumentation to generate human-centered explanations for AI outputs. PHAX is a multi-layer architecture combining defeasible reasoning, adaptive natural language techniques, and user modeling to produce context-aware, audience-specific justifications. More specifically, we show how argumentation enhances explainability by supporting AI-driven decision-making, justifying recommendations, and enabling interactive dialogues across user types. We demonstrate the applicability of PHAX through use cases such as medical term simplification, patient-clinician communication, and policy justification. In particular, we show how simplification decisions can be modeled as argument chains and personalized based on user expertise-enhancing both interpretability and trust. By aligning formal reasoning methods with communicative demands, PHAX contributes to a broader vision of transparent, human-centered AI in public health.
comment: Preprint. Under review
☆ Bridging Synthetic and Real-World Domains: A Human-in-the-Loop Weakly-Supervised Framework for Industrial Toxic Emission Segmentation
Industrial smoke segmentation is critical for air-quality monitoring and environmental protection but is often hampered by the high cost and scarcity of pixel-level annotations in real-world settings. We introduce CEDANet, a human-in-the-loop, class-aware domain adaptation framework that uniquely integrates weak, citizen-provided video-level labels with adversarial feature alignment. Specifically, we refine pseudo-labels generated by a source-trained segmentation model using citizen votes, and employ class-specific domain discriminators to transfer rich source-domain representations to the industrial domain. Comprehensive experiments on SMOKE5K and custom IJmond datasets demonstrate that CEDANet achieves an F1-score of 0.414 and a smoke-class IoU of 0.261 with citizen feedback, vastly outperforming the baseline model, which scored 0.083 and 0.043 respectively. This represents a five-fold increase in F1-score and a six-fold increase in smoke-class IoU. Notably, CEDANet with citizen-constrained pseudo-labels achieves performance comparable to the same architecture trained on limited 100 fully annotated images with F1-score of 0.418 and IoU of 0.264, demonstrating its ability to reach small-sampled fully supervised-level accuracy without target-domain annotations. Our research validates the scalability and cost-efficiency of combining citizen science with weakly supervised domain adaptation, offering a practical solution for complex, data-scarce environmental monitoring applications.
☆ Staining and locking computer vision models without retraining
We introduce new methods of staining and locking computer vision models, to protect their owners' intellectual property. Staining, also known as watermarking, embeds secret behaviour into a model which can later be used to identify it, while locking aims to make a model unusable unless a secret trigger is inserted into input images. Unlike existing methods, our algorithms can be used to stain and lock pre-trained models without requiring fine-tuning or retraining, and come with provable, computable guarantees bounding their worst-case false positive rates. The stain and lock are implemented by directly modifying a small number of the model's weights and have minimal impact on the (unlocked) model's performance. Locked models are unlocked by inserting a small `trigger patch' into the corner of the input image. We present experimental results showing the efficacy of our methods and demonstrating their practical performance on a variety of computer vision models.
comment: 10 pages, 9 pages of appendices, 10 figures
☆ Teach Me to Trick: Exploring Adversarial Transferability via Knowledge Distillation
We investigate whether knowledge distillation (KD) from multiple heterogeneous teacher models can enhance the generation of transferable adversarial examples. A lightweight student model is trained using two KD strategies: curriculum-based switching and joint optimization, with ResNet50 and DenseNet-161 as teachers. The trained student is then used to generate adversarial examples using FG, FGS, and PGD attacks, which are evaluated against a black-box target model (GoogLeNet). Our results show that student models distilled from multiple teachers achieve attack success rates comparable to ensemble-based baselines, while reducing adversarial example generation time by up to a factor of six. An ablation study further reveals that lower temperature settings and the inclusion of hard-label supervision significantly enhance transferability. These findings suggest that KD can serve not only as a model compression technique but also as a powerful tool for improving the efficiency and effectiveness of black-box adversarial attacks.
comment: 10 pages, 4 figures
☆ The Effect of Compression Techniques on Large Multimodal Language Models in the Medical Domain
Multimodal Large Language Models (MLLMs) hold huge potential for usage in the medical domain, but their computational costs necessitate efficient compression techniques. This paper evaluates the impact of structural pruning and activation-aware quantization on a fine-tuned LLAVA model for medical applications. We propose a novel layer selection method for pruning, analyze different quantization techniques, and assess the performance trade-offs in a prune-SFT-quantize pipeline. Our proposed method enables MLLMs with 7B parameters to run within 4 GB of VRAM, reducing memory usage by 70% while achieving 4% higher model performance compared to traditional pruning and quantization techniques in the same compression ratio.
comment: 12 pages, 5 figures. tcolorbox dependencies were removed for arXiv compatibility. All references are included via a precompiled .bbl file
☆ Reasoning Language Models for Root Cause Analysis in 5G Wireless Networks
Root Cause Analysis (RCA) in mobile networks remains a challenging task due to the need for interpretability, domain expertise, and causal reasoning. In this work, we propose a lightweight framework that leverages Large Language Models (LLMs) for RCA. To do so, we introduce TeleLogs, a curated dataset of annotated troubleshooting problems designed to benchmark RCA capabilities. Our evaluation reveals that existing open-source reasoning LLMs struggle with these problems, underscoring the need for domain-specific adaptation. To address this issue, we propose a two-stage training methodology that combines supervised fine-tuning with reinforcement learning to improve the accuracy and reasoning quality of LLMs. The proposed approach fine-tunes a series of RCA models to integrate domain knowledge and generate structured, multi-step diagnostic explanations, improving both interpretability and effectiveness. Extensive experiments across multiple LLM sizes show significant performance gains over state-of-the-art reasoning and non-reasoning models, including strong generalization to randomized test variants. These results demonstrate the promise of domain-adapted, reasoning-enhanced LLMs for practical and explainable RCA in network operation and management.
☆ Thou Shalt Not Prompt: Zero-Shot Human Activity Recognition in Smart Homes via Language Modeling of Sensor Data & Activities
Developing zero-shot human activity recognition (HAR) methods is a critical direction in smart home research -- considering its impact on making HAR systems work across smart homes having diverse sensing modalities, layouts, and activities of interest. The state-of-the-art solutions along this direction are based on generating natural language descriptions of the sensor data and feeding it via a carefully crafted prompt to the LLM to perform classification. Despite their performance guarantees, such ``prompt-the-LLM'' approaches carry several risks, including privacy invasion, reliance on an external service, and inconsistent predictions due to version changes, making a case for alternative zero-shot HAR methods that do not require prompting the LLMs. In this paper, we propose one such solution that models sensor data and activities using natural language, leveraging its embeddings to perform zero-shot classification and thereby bypassing the need to prompt the LLMs for activity predictions. The impact of our work lies in presenting a detailed case study on six datasets, highlighting how language modeling can bolster HAR systems in zero-shot recognition.
☆ Fine-Tuning Code Language Models to Detect Cross-Language Bugs
Multilingual programming, which involves using multiple programming languages (PLs) in a single project, is increasingly common due to its benefits. However, it introduces cross-language bugs (CLBs), which arise from interactions between different PLs and are difficult to detect by single-language bug detection tools. This paper investigates the potential of pre-trained code language models (CodeLMs) in CLB detection. We developed CLCFinder, a cross-language code identification tool, and constructed a CLB dataset involving three PL combinations (Python-C/C++, Java-C/C++, and Python-Java) with nine interaction types. We fine-tuned 13 CodeLMs on this dataset and evaluated their performance, analyzing the effects of dataset size, token sequence length, and code comments. Results show that all CodeLMs performed poorly before fine-tuning, but exhibited varying degrees of performance improvement after fine-tuning, with UniXcoder-base achieving the best F1 score (0.7407). Notably, small fine-tuned CodeLMs tended to performe better than large ones. CodeLMs fine-tuned on single-language bug datasets performed poorly on CLB detection, demonstrating the distinction between CLBs and single-language bugs. Additionally, increasing the fine-tuning dataset size significantly improved performance, while longer token sequences did not necessarily improve the model performance. The impact of code comments varied across models. Some fine-tuned CodeLMs' performance was improved, while others showed degraded performance.
comment: 33 pages, 6 images, 9 tables, Manuscript submitted to a journal (2025)
☆ MapAgent: Trajectory-Constructed Memory-Augmented Planning for Mobile Task Automation
The recent advancement of autonomous agents powered by Large Language Models (LLMs) has demonstrated significant potential for automating tasks on mobile devices through graphical user interfaces (GUIs). Despite initial progress, these agents still face challenges when handling complex real-world tasks. These challenges arise from a lack of knowledge about real-life mobile applications in LLM-based agents, which may lead to ineffective task planning and even cause hallucinations. To address these challenges, we propose a novel LLM-based agent framework called MapAgent that leverages memory constructed from historical trajectories to augment current task planning. Specifically, we first propose a trajectory-based memory mechanism that transforms task execution trajectories into a reusable and structured page-memory database. Each page within a trajectory is extracted as a compact yet comprehensive snapshot, capturing both its UI layout and functional context. Secondly, we introduce a coarse-to-fine task planning approach that retrieves relevant pages from the memory database based on similarity and injects them into the LLM planner to compensate for potential deficiencies in understanding real-world app scenarios, thereby achieving more informed and context-aware task planning. Finally, planned tasks are transformed into executable actions through a task executor supported by a dual-LLM architecture, ensuring effective tracking of task progress. Experimental results in real-world scenarios demonstrate that MapAgent achieves superior performance to existing methods. The code will be open-sourced to support further research.
☆ Contrast-Prior Enhanced Duality for Mask-Free Shadow Removal
Existing shadow removal methods often rely on shadow masks, which are challenging to acquire in real-world scenarios. Exploring intrinsic image cues, such as local contrast information, presents a potential alternative for guiding shadow removal in the absence of explicit masks. However, the cue's inherent ambiguity becomes a critical limitation in complex scenes, where it can fail to distinguish true shadows from low-reflectance objects and intricate background textures. To address this motivation, we propose the Adaptive Gated Dual-Branch Attention (AGBA) mechanism. AGBA dynamically filters and re-weighs the contrast prior to effectively disentangle shadow features from confounding visual elements. Furthermore, to tackle the persistent challenge of restoring soft shadow boundaries and fine-grained details, we introduce a diffusion-based Frequency-Contrast Fusion Network (FCFN) that leverages high-frequency and contrast cues to guide the generative process. Extensive experiments demonstrate that our method achieves state-of-the-art results among mask-free approaches while maintaining competitive performance relative to mask-based methods.
☆ Enhancing Generalization in Data-free Quantization via Mixup-class Prompting
Post-training quantization (PTQ) improves efficiency but struggles with limited calibration data, especially under privacy constraints. Data-free quantization (DFQ) mitigates this by generating synthetic images using generative models such as generative adversarial networks (GANs) and text-conditioned latent diffusion models (LDMs), while applying existing PTQ algorithms. However, the relationship between generated synthetic images and the generalizability of the quantized model during PTQ remains underexplored. Without investigating this relationship, synthetic images generated by previous prompt engineering methods based on single-class prompts suffer from issues such as polysemy, leading to performance degradation. We propose \textbf{mixup-class prompt}, a mixup-based text prompting strategy that fuses multiple class labels at the text prompt level to generate diverse, robust synthetic data. This approach enhances generalization, and improves optimization stability in PTQ. We provide quantitative insights through gradient norm and generalization error analysis. Experiments on convolutional neural networks (CNNs) and vision transformers (ViTs) show that our method consistently outperforms state-of-the-art DFQ methods like GenQ. Furthermore, it pushes the performance boundary in extremely low-bit scenarios, achieving new state-of-the-art accuracy in challenging 2-bit weight, 4-bit activation (W2A4) quantization.
☆ Post-Training Large Language Models via Reinforcement Learning from Self-Feedback
Large Language Models (LLMs) often produce plausible but poorly-calibrated answers, limiting their reliability on reasoning-intensive tasks. We present Reinforcement Learning from Self-Feedback (RLSF), a post-training stage that uses the model's own confidence as an intrinsic reward, mimicking how humans learn in the absence of external feedback. After a frozen LLM generates several chain-of-thought solutions, we define and compute the confidence of each final answer span and rank the traces accordingly. These synthetic preferences are then used to fine-tune the policy with standard preference optimization, similar to RLHF yet requiring no human labels, gold answers, or externally curated rewards. RLSF simultaneously (i) refines the model's probability estimates -- restoring well-behaved calibration -- and (ii) strengthens step-by-step reasoning, yielding improved performance on arithmetic reasoning and multiple-choice question answering. By turning a model's own uncertainty into useful self-feedback, RLSF affirms reinforcement learning on intrinsic model behaviour as a principled and data-efficient component of the LLM post-training pipeline and warrents further research in intrinsic rewards for LLM post-training.
☆ Libra: Large Chinese-based Safeguard for AI Content
Large language models (LLMs) excel in text understanding and generation but raise significant safety and ethical concerns in high-stakes applications. To mitigate these risks, we present Libra-Guard, a cutting-edge safeguard system designed to enhance the safety of Chinese-based LLMs. Leveraging a two-stage curriculum training pipeline, Libra-Guard enhances data efficiency by employing guard pretraining on synthetic samples, followed by fine-tuning on high-quality, real-world data, thereby significantly reducing reliance on manual annotations. To enable rigorous safety evaluations, we also introduce Libra-Test, the first benchmark specifically designed to evaluate the effectiveness of safeguard systems for Chinese content. It covers seven critical harm scenarios and includes over 5,700 samples annotated by domain experts. Experiments show that Libra-Guard achieves 86.79% accuracy, outperforming Qwen2.5-14B-Instruct (74.33%) and ShieldLM-Qwen-14B-Chat (65.69%), and nearing closed-source models like Claude-3.5-Sonnet and GPT-4o. These contributions establish a robust framework for advancing the safety governance of Chinese LLMs and represent a tentative step toward developing safer, more reliable Chinese AI systems.
☆ Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition, Implications, and Research Agenda
Software development is undergoing a fundamental transformation as vibe coding becomes widespread, with large portions of contemporary codebases now being AI-generated. The disconnect between rapid adoption and limited conceptual understanding highlights the need for an inquiry into this emerging paradigm. Drawing on an intent perspective and historical analysis, we define vibe coding as a software development paradigm where humans and generative AI engage in collaborative flow to co-create software artifacts through natural language dialogue, shifting the mediation of developer intent from deterministic instruction to probabilistic inference. By intent mediation, we refer to the fundamental process through which developers translate their conceptual goals into representations that computational systems can execute. Our results show that vibe coding reconfigures cognitive work by redistributing epistemic labor between humans and machines, shifting the expertise in the software development process away from traditional areas such as design or technical implementation toward collaborative orchestration. We identify key opportunities, including democratization, acceleration, and systemic leverage, alongside risks, such as black box codebases, responsibility gaps, and ecosystem bias. We conclude with a research agenda spanning human-, technology-, and organization-centered directions to guide future investigations of this paradigm.
☆ SwinECAT: A Transformer-based fundus disease classification model with Shifted Window Attention and Efficient Channel Attention
In recent years, artificial intelligence has been increasingly applied in the field of medical imaging. Among these applications, fundus image analysis presents special challenges, including small lesion areas in certain fundus diseases and subtle inter-disease differences, which can lead to reduced prediction accuracy and overfitting in the models. To address these challenges, this paper proposes the Transformer-based model SwinECAT, which combines the Shifted Window (Swin) Attention with the Efficient Channel Attention (ECA) Attention. SwinECAT leverages the Swin Attention mechanism in the Swin Transformer backbone to effectively capture local spatial structures and long-range dependencies within fundus images. The lightweight ECA mechanism is incorporated to guide the SwinECAT's attention toward critical feature channels, enabling more discriminative feature representation. In contrast to previous studies that typically classify fundus images into 4 to 6 categories, this work expands fundus disease classification to 9 distinct types, thereby enhancing the granularity of diagnosis. We evaluate our method on the Eye Disease Image Dataset (EDID) containing 16,140 fundus images for 9-category classification. Experimental results demonstrate that SwinECAT achieves 88.29\% accuracy, with weighted F1-score of 0.88 and macro F1-score of 0.90. The classification results of our proposed model SwinECAT significantly outperform the baseline Swin Transformer and multiple compared baseline models. To our knowledge, this represents the highest reported performance for 9-category classification on this public dataset.
comment: 17 pages
☆ Evaluating Deepfake Detectors in the Wild ICML 2025
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/messlav/Deepfake-Detectors-in-the-Wild.
comment: Accepted to the ICML 2025 Workshop 'DataWorld: Unifying Data Curation Frameworks Across Domains'
☆ LLM-based Content Classification Approach for GitHub Repositories by the README Files
GitHub is the world's most popular platform for storing, sharing, and managing code. Every GitHub repository has a README file associated with it. The README files should contain project-related information as per the recommendations of GitHub to support the usage and improvement of repositories. However, GitHub repository owners sometimes neglected these recommendations. This prevents a GitHub repository from reaching its full potential. This research posits that the comprehensiveness of a GitHub repository's README file significantly influences its adoption and utilization, with a lack of detail potentially hindering its full potential for widespread engagement and impact within the research community. Large Language Models (LLMs) have shown great performance in many text-based tasks including text classification, text generation, text summarization and text translation. In this study, an approach is developed to fine-tune LLMs for automatically classifying different sections of GitHub README files. Three encoder-only LLMs are utilized, including BERT, DistilBERT and RoBERTa. These pre-trained models are then fine-tuned based on a gold-standard dataset consisting of 4226 README file sections. This approach outperforms current state-of-the-art methods and has achieved an overall F1 score of 0.98. Moreover, we have also investigated the use of Parameter-Efficient Fine-Tuning (PEFT) techniques like Low-Rank Adaptation (LoRA) and shown an economical alternative to full fine-tuning without compromising much performance. The results demonstrate the potential of using LLMs in designing an automatic classifier for categorizing the content of GitHub README files. Consequently, this study contributes to the development of automated tools for GitHub repositories to improve their identifications and potential usages.
comment: 8 pages, 4 Figures
☆ Data-driven quantum Koopman method for simulating nonlinear dynamics
Quantum computation offers potential exponential speedups for simulating certain physical systems, but its application to nonlinear dynamics is inherently constrained by the requirement of unitary evolution. We propose the quantum Koopman method (QKM), a data-driven framework that bridges this gap through transforming nonlinear dynamics into linear unitary evolution in higher-dimensional observable spaces. Leveraging the Koopman operator theory to achieve a global linearization, our approach maps system states into a hierarchy of Hilbert spaces using a deep autoencoder. Within the linearized embedding spaces, the state representation is decomposed into modulus and phase components, and the evolution is governed by a set of unitary Koopman operators that act exclusively on the phase. These operators are constructed from diagonal Hamiltonians with coefficients learned from data, a structure designed for efficient implementation on quantum hardware. This architecture enables direct multi-step prediction, and the operator's computational complexity scales logarithmically with the observable space dimension. The QKM is validated across diverse nonlinear systems. Its predictions maintain relative errors below 6% for reaction-diffusion systems and shear flows, and capture key statistics in 2D turbulence. This work establishes a practical pathway for quantum-accelerated simulation of nonlinear phenomena, exploring a framework built on the synergy between deep learning for global linearization and quantum algorithms for unitary dynamics evolution.
☆ The Impact of Foundational Models on Patient-Centric e-Health Systems
As Artificial Intelligence (AI) becomes increasingly embedded in healthcare technologies, understanding the maturity of AI in patient-centric applications is critical for evaluating its trustworthiness, transparency, and real-world impact. In this study, we investigate the integration and maturity of AI feature integration in 116 patient-centric healthcare applications. Using Large Language Models (LLMs), we extracted key functional features, which are then categorized into different stages of the Gartner AI maturity model. Our results show that over 86.21\% of applications remain at the early stages of AI integration, while only 13.79% demonstrate advanced AI integration.
comment: Paper published in COMPSAC 2025
☆ A Neuro-Symbolic Approach for Probabilistic Reasoning on Graph Data
Graph neural networks (GNNs) excel at predictive tasks on graph-structured data but often lack the ability to incorporate symbolic domain knowledge and perform general reasoning. Relational Bayesian Networks (RBNs), in contrast, enable fully generative probabilistic modeling over graph-like structures and support rich symbolic knowledge and probabilistic inference. This paper presents a neuro-symbolic framework that seamlessly integrates GNNs into RBNs, combining the learning strength of GNNs with the flexible reasoning capabilities of RBNs. We develop two implementations of this integration: one compiles GNNs directly into the native RBN language, while the other maintains the GNN as an external component. Both approaches preserve the semantics and computational properties of GNNs while fully aligning with the RBN modeling paradigm. We also propose a maximum a-posteriori (MAP) inference method for these neuro-symbolic models. To demonstrate the framework's versatility, we apply it to two distinct problems. First, we transform a GNN for node classification into a collective classification model that explicitly models homo- and heterophilic label patterns, substantially improving accuracy. Second, we introduce a multi-objective network optimization problem in environmental planning, where MAP inference supports complex decision-making. Both applications include new publicly available benchmark datasets. This work introduces a powerful and coherent neuro-symbolic approach to graph data, bridging learning and reasoning in ways that enable novel applications and improved performance across diverse tasks.
comment: Submitted to the Journal of Artificial Intelligence Research (JAIR); under revision. 29 pages, 6 figures. Code available at https://github.com/raffaelepojer/NeSy-for-graph-data
☆ EDGE-GRPO: Entropy-Driven GRPO with Guided Error Correction for Advantage Diversity
Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts \textbf{E}ntropy-\textbf{D}riven Advantage and \textbf{G}uided \textbf{E}rror Correction to effectively mitigate the problem of advantage collapse. Extensive experiments on several main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. It is available at https://github.com/ZhangXJ199/EDGE-GRPO.
☆ Probabilistic Active Goal Recognition KR2025
In multi-agent environments, effective interaction hinges on understanding the beliefs and intentions of other agents. While prior work on goal recognition has largely treated the observer as a passive reasoner, Active Goal Recognition (AGR) focuses on strategically gathering information to reduce uncertainty. We adopt a probabilistic framework for Active Goal Recognition and propose an integrated solution that combines a joint belief update mechanism with a Monte Carlo Tree Search (MCTS) algorithm, allowing the observer to plan efficiently and infer the actor's hidden goal without requiring domain-specific knowledge. Through comprehensive empirical evaluation in a grid-based domain, we show that our joint belief update significantly outperforms passive goal recognition, and that our domain-independent MCTS performs comparably to our strong domain-specific greedy baseline. These results establish our solution as a practical and robust framework for goal inference, advancing the field toward more interactive and adaptive multi-agent systems.
comment: Accepted by KR2025
☆ Against racing to AGI: Cooperation, deterrence, and catastrophic risks
AGI Racing is the view that it is in the self-interest of major actors in AI development, especially powerful nations, to accelerate their frontier AI development to build highly capable AI, especially artificial general intelligence (AGI), before competitors have a chance. We argue against AGI Racing. First, the downsides of racing to AGI are much higher than portrayed by this view. Racing to AGI would substantially increase catastrophic risks from AI, including nuclear instability, and undermine the prospects of technical AI safety research to be effective. Second, the expected benefits of racing may be lower than proponents of AGI Racing hold. In particular, it is questionable whether winning the race enables complete domination over losers. Third, international cooperation and coordination, and perhaps carefully crafted deterrence measures, constitute viable alternatives to racing to AGI which have much smaller risks and promise to deliver most of the benefits that racing to AGI is supposed to provide. Hence, racing to AGI is not in anyone's self-interest as other actions, particularly incentivizing and seeking international cooperation around AI issues, are preferable.
☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for high-dimensional partial-differential equations, yet their stability, generalization and frequency behavior lack a principled explanation. We present the first systematic effective-field-theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high-frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks we obtain explicit criticality conditions on the weight-initialization ensemble that keep small input perturbations to have uniform scale across depth, and empirical tests validate these predictions. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyper-parameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs.
comment: 37 pages, 10 figures
☆ Introducing HALC: A general pipeline for finding optimal prompting strategies for automated coding with LLMs in the computational social sciences
LLMs are seeing widespread use for task automation, including automated coding in the social sciences. However, even though researchers have proposed different prompting strategies, their effectiveness varies across LLMs and tasks. Often trial and error practices are still widespread. We propose HALC$-$a general pipeline that allows for the systematic and reliable construction of optimal prompts for any given coding task and model, permitting the integration of any prompting strategy deemed relevant. To investigate LLM coding and validate our pipeline, we sent a total of 1,512 individual prompts to our local LLMs in over two million requests. We test prompting strategies and LLM task performance based on few expert codings (ground truth). When compared to these expert codings, we find prompts that code reliably for single variables (${\alpha}$climate = .76; ${\alpha}$movement = .78) and across two variables (${\alpha}$climate = .71; ${\alpha}$movement = .74) using the LLM Mistral NeMo. Our prompting strategies are set up in a way that aligns the LLM to our codebook$-$we are not optimizing our codebook for LLM friendliness. Our paper provides insights into the effectiveness of different prompting strategies, crucial influencing factors, and the identification of reliable prompts for each coding task and model.
comment: 48 pages, 9 figures and 8 tables
☆ An Agentic AI for a New Paradigm in Business Process Development
Artificial Intelligence agents represent the next major revolution in the continuous technological evolution of industrial automation. In this paper, we introduce a new approach for business process design and development that leverages the capabilities of Agentic AI. Departing from the traditional task-based approach to business process design, we propose an agent-based method, where agents contribute to the achievement of business goals, identified by a set of business objects. When a single agent cannot fulfill a goal, we have a merge goal that can be achieved through the collaboration of multiple agents. The proposed model leads to a more modular and intelligent business process development by organizing it around goals, objects, and agents. As a result, this approach enables flexible and context-aware automation in dynamic industrial environments.
☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.
☆ Unlocking Interpretability for RF Sensing: A Complex-Valued White-Box Transformer
The empirical success of deep learning has spurred its application to the radio-frequency (RF) domain, leading to significant advances in Deep Wireless Sensing (DWS). However, most existing DWS models function as black boxes with limited interpretability, which hampers their generalizability and raises concerns in security-sensitive physical applications. In this work, inspired by the remarkable advances of white-box transformers, we present RF-CRATE, the first mathematically interpretable deep network architecture for RF sensing, grounded in the principles of complex sparse rate reduction. To accommodate the unique RF signals, we conduct non-trivial theoretical derivations that extend the original real-valued white-box transformer to the complex domain. By leveraging the CR-Calculus framework, we successfully construct a fully complex-valued white-box transformer with theoretically derived self-attention and residual multi-layer perceptron modules. Furthermore, to improve the model's ability to extract discriminative features from limited wireless data, we introduce Subspace Regularization, a novel regularization strategy that enhances feature diversity, resulting in an average performance improvement of 19.98% across multiple sensing tasks. We extensively evaluate RF-CRATE against seven baselines with multiple public and self-collected datasets involving different RF signals. The results show that RF-CRATE achieves performance on par with thoroughly engineered black-box models, while offering full mathematical interpretability. More importantly, by extending CRATE to the complex domain, RF-CRATE yields substantial improvements, achieving an average classification gain of 5.08% and reducing regression error by 10.34% across diverse sensing tasks compared to CRATE. RF-CRATE is fully open-sourced at: https://github.com/rfcrate/RF_CRATE.
☆ MoDeSuite: Robot Learning Task Suite for Benchmarking Mobile Manipulation with Deformable Objects
Mobile manipulation is a critical capability for robots operating in diverse, real-world environments. However, manipulating deformable objects and materials remains a major challenge for existing robot learning algorithms. While various benchmarks have been proposed to evaluate manipulation strategies with rigid objects, there is still a notable lack of standardized benchmarks that address mobile manipulation tasks involving deformable objects. To address this gap, we introduce MoDeSuite, the first Mobile Manipulation Deformable Object task suite, designed specifically for robot learning. MoDeSuite consists of eight distinct mobile manipulation tasks covering both elastic objects and deformable objects, each presenting a unique challenge inspired by real-world robot applications. Success in these tasks requires effective collaboration between the robot's base and manipulator, as well as the ability to exploit the deformability of the objects. To evaluate and demonstrate the use of the proposed benchmark, we train two state-of-the-art reinforcement learning algorithms and two imitation learning algorithms, highlighting the difficulties encountered and showing their performance in simulation. Furthermore, we demonstrate the practical relevance of the suite by deploying the trained policies directly into the real world with the Spot robot, showcasing the potential for sim-to-real transfer. We expect that MoDeSuite will open a novel research domain in mobile manipulation involving deformable objects. Find more details, code, and videos at https://sites.google.com/view/modesuite/home.
☆ Hybrid Causal Identification and Causal Mechanism Clustering
Bivariate causal direction identification is a fundamental and vital problem in the causal inference field. Among binary causal methods, most methods based on additive noise only use one single causal mechanism to construct a causal model. In the real world, observations are always collected in different environments with heterogeneous causal relationships. Therefore, on observation data, this paper proposes a Mixture Conditional Variational Causal Inference model (MCVCI) to infer heterogeneous causality. Specifically, according to the identifiability of the Hybrid Additive Noise Model (HANM), MCVCI combines the superior fitting capabilities of the Gaussian mixture model and the neural network and elegantly uses the likelihoods obtained from the probabilistic bounds of the mixture conditional variational auto-encoder as causal decision criteria. Moreover, we model the casual heterogeneity into cluster numbers and propose the Mixture Conditional Variational Causal Clustering (MCVCC) method, which can reveal causal mechanism expression. Compared with state-of-the-art methods, the comprehensive best performance demonstrates the effectiveness of the methods proposed in this paper on several simulated and real data.
☆ Can large language models assist choice modelling? Insights into prompting strategies and current models capabilities
Large Language Models (LLMs) are widely used to support various workflows across different disciplines, yet their potential in choice modelling remains relatively unexplored. This work examines the potential of LLMs as assistive agents in the specification and, where technically feasible, estimation of Multinomial Logit models. We implement a systematic experimental framework involving thirteen versions of six leading LLMs (ChatGPT, Claude, DeepSeek, Gemini, Gemma, and Llama) evaluated under five experimental configurations. These configurations vary along three dimensions: modelling goal (suggesting vs. suggesting and estimating MNLs); prompting strategy (Zero-Shot vs. Chain-of-Thoughts); and information availability (full dataset vs. data dictionary only). Each LLM-suggested specification is implemented, estimated, and evaluated based on goodness-of-fit metrics, behavioural plausibility, and model complexity. Findings reveal that proprietary LLMs can generate valid and behaviourally sound utility specifications, particularly when guided by structured prompts. Open-weight models such as Llama and Gemma struggled to produce meaningful specifications. Claude 4 Sonnet consistently produced the best-fitting and most complex models, while GPT models suggested models with robust and stable modelling outcomes. Some LLMs performed better when provided with just data dictionary, suggesting that limiting raw data access may enhance internal reasoning capabilities. Among all LLMs, GPT o3 was uniquely capable of correctly estimating its own specifications by executing self-generated code. Overall, the results demonstrate both the promise and current limitations of LLMs as assistive agents in choice modelling, not only for model specification but also for supporting modelling decision and estimation, and provide practical guidance for integrating these tools into choice modellers' workflows.
comment: 32 pages, 6 figures, 14 tables
☆ Proposing a Semantic Movie Recommendation System Enhanced by ChatGPT's NLP Results
The importance of recommender systems on the web has grown, especially in the movie industry, with a vast selection of options to watch. To assist users in traversing available items and finding relevant results, recommender systems analyze operational data and investigate users' tastes and habits. Providing highly individualized suggestions can boost user engagement and satisfaction, which is one of the fundamental goals of the movie industry, significantly in online platforms. According to recent studies and research, using knowledge-based techniques and considering the semantic ideas of the textual data is a suitable way to get more appropriate results. This study provides a new method for building a knowledge graph based on semantic information. It uses the ChatGPT, as a large language model, to assess the brief descriptions of movies and extract their tone of voice. Results indicated that using the proposed method may significantly enhance accuracy rather than employing the explicit genres supplied by the publishers.
comment: May 2023, 6 pages, 5 figures
☆ Learning Kinetic Monte Carlo stochastic dynamics with Deep Generative Adversarial Networks
We show that Generative Adversarial Networks (GANs) may be fruitfully exploited to learn stochastic dynamics, surrogating traditional models while capturing thermal fluctuations. Specifically, we showcase the application to a two-dimensional, many-particle system, focusing on surface-step fluctuations and on the related time-dependent roughness. After the construction of a dataset based on Kinetic Monte Carlo simulations, a conditional GAN is trained to propagate stochastically the state of the system in time, allowing the generation of new sequences with a reduced computational cost. Modifications with respect to standard GANs, which facilitate convergence and increase accuracy, are discussed. The trained network is demonstrated to quantitatively reproduce equilibrium and kinetic properties, including scaling laws, with deviations of a few percent from the exact value. Extrapolation limits and future perspectives are critically discussed.
comment: 15 pages, 8 figures, 2 appendices
☆ LiteFat: Lightweight Spatio-Temporal Graph Learning for Real-Time Driver Fatigue Detection
Detecting driver fatigue is critical for road safety, as drowsy driving remains a leading cause of traffic accidents. Many existing solutions rely on computationally demanding deep learning models, which result in high latency and are unsuitable for embedded robotic devices with limited resources (such as intelligent vehicles/cars) where rapid detection is necessary to prevent accidents. This paper introduces LiteFat, a lightweight spatio-temporal graph learning model designed to detect driver fatigue efficiently while maintaining high accuracy and low computational demands. LiteFat involves converting streaming video data into spatio-temporal graphs (STG) using facial landmark detection, which focuses on key motion patterns and reduces unnecessary data processing. LiteFat uses MobileNet to extract facial features and create a feature matrix for the STG. A lightweight spatio-temporal graph neural network is then employed to identify signs of fatigue with minimal processing and low latency. Experimental results on benchmark datasets show that LiteFat performs competitively while significantly decreasing computational complexity and latency as compared to current state-of-the-art methods. This work enables the development of real-time, resource-efficient human fatigue detection systems that can be implemented upon embedded robotic devices.
comment: 6 pages, 1 figure
☆ Towards a rigorous evaluation of RAG systems: the challenge of due diligence
The rise of generative AI, has driven significant advancements in high-risk sectors like healthcare and finance. The Retrieval-Augmented Generation (RAG) architecture, combining language models (LLMs) with search engines, is particularly notable for its ability to generate responses from document corpora. Despite its potential, the reliability of RAG systems in critical contexts remains a concern, with issues such as hallucinations persisting. This study evaluates a RAG system used in due diligence for an investment fund. We propose a robust evaluation protocol combining human annotations and LLM-Judge annotations to identify system failures, like hallucinations, off-topic, failed citations, and abstentions. Inspired by the Prediction Powered Inference (PPI) method, we achieve precise performance measurements with statistical guarantees. We provide a comprehensive dataset for further analysis. Our contributions aim to enhance the reliability and scalability of RAG systems evaluation protocols in industrial applications.
comment: in French language. EvalLLM2025: Workshop on Evaluation Generative Models (LLM) and Challenges, AMIAD, 2025, Marseille, France
☆ SAT-Based Bounded Fitting for the Description Logic ALC ISWC 2025
Bounded fitting is a general paradigm for learning logical formulas from positive and negative data examples, that has received considerable interest recently. We investigate bounded fitting for the description logic ALC and its syntactic fragments. We show that the underlying size-restricted fitting problem is NP-complete for all studied fragments, even in the special case of a single positive and a single negative example. By design, bounded fitting comes with probabilistic guarantees in Valiant's PAC learning framework. In contrast, we show that other classes of algorithms for learning ALC concepts do not provide such guarantees. Finally, we present an implementation of bounded fitting in ALC and its fragments based on a SAT solver. We discuss optimizations and compare our implementation to other concept learning tools.
comment: 33 pages, full version of paper accepted at ISWC 2025
☆ Zero-Shot Machine Unlearning with Proxy Adversarial Data Generation IJCAI 2025
Machine unlearning aims to remove the influence of specific samples from a trained model. A key challenge in this process is over-unlearning, where the model's performance on the remaining data significantly drops due to the change in the model's parameters. Existing unlearning algorithms depend on the remaining data to prevent this issue. As such, these methods are inapplicable in a more practical scenario, where only the unlearning samples are available (i.e., zero-shot unlearning). This paper presents a novel framework, ZS-PAG, to fill this gap. Our approach offers three key innovations: (1) we approximate the inaccessible remaining data by generating adversarial samples; (2) leveraging the generated samples, we pinpoint a specific subspace to perform the unlearning process, therefore preventing over-unlearning in the challenging zero-shot scenario; and (3) we consider the influence of the unlearning process on the remaining samples and design an influence-based pseudo-labeling strategy. As a result, our method further improves the model's performance after unlearning. The proposed method holds a theoretical guarantee, and experiments on various benchmarks validate the effectiveness and superiority of our proposed method over several baselines.
comment: Accepted by IJCAI 2025
☆ GDAIP: A Graph-Based Domain Adaptive Framework for Individual Brain Parcellation
Recent deep learning approaches have shown promise in learning such individual brain parcellations from functional magnetic resonance imaging (fMRI). However, most existing methods assume consistent data distributions across domains and struggle with domain shifts inherent to real-world cross-dataset scenarios. To address this challenge, we proposed Graph Domain Adaptation for Individual Parcellation (GDAIP), a novel framework that integrates Graph Attention Networks (GAT) with Minimax Entropy (MME)-based domain adaptation. We construct cross-dataset brain graphs at both the group and individual levels. By leveraging semi-supervised training and adversarial optimization of the prediction entropy on unlabeled vertices from target brain graph, the reference atlas is adapted from the group-level brain graph to the individual brain graph, enabling individual parcellation under cross-dataset settings. We evaluated our method using parcellation visualization, Dice coefficient, and functional homogeneity. Experimental results demonstrate that GDAIP produces individual parcellations with topologically plausible boundaries, strong cross-session consistency, and ability of reflecting functional organization.
Detection Transformers Under the Knife: A Neuroscience-Inspired Approach to Ablations
In recent years, Explainable AI has gained traction as an approach to enhancing model interpretability and transparency, particularly in complex models such as detection transformers. Despite rapid advancements, a substantial research gap remains in understanding the distinct roles of internal components - knowledge that is essential for improving transparency and efficiency. Inspired by neuroscientific ablation studies, which investigate the functions of brain regions through selective impairment, we systematically analyze the impact of ablating key components in three state-of-the-art detection transformer models: Detection transformer (DETR), deformable detection transformer (DDETR), and DETR with improved denoising anchor boxes (DINO). The ablations target query embeddings, encoder and decoder multi-head self-attentions (MHSA) as well as decoder multi-head cross-attention (MHCA) layers. We evaluate the effects of these ablations on the performance metrics gIoU and F1-score, quantifying effects on both the classification and regression sub-tasks on the COCO dataset. To facilitate reproducibility and future research, we publicly release the DeepDissect library. Our findings reveal model-specific resilience patterns: while DETR is particularly sensitive to ablations in encoder MHSA and decoder MHCA, DDETR's multi-scale deformable attention enhances robustness, and DINO exhibits the greatest resilience due to its look-forward twice update rule, which helps distributing knowledge across blocks. These insights also expose structural redundancies, particularly in DDETR's and DINO's decoder MHCA layers, highlighting opportunities for model simplification without sacrificing performance. This study advances XAI for DETRs by clarifying the contributions of internal components to model performance, offering insights to optimize and improve transparency and efficiency in critical applications.
☆ EnTao-GPM: DNA Foundation Model for Predicting the Germline Pathogenic Mutations
Distinguishing pathogenic mutations from benign polymorphisms remains a critical challenge in precision medicine. EnTao-GPM, developed by Fudan University and BioMap, addresses this through three innovations: (1) Cross-species targeted pre-training on disease-relevant mammalian genomes (human, pig, mouse), leveraging evolutionary conservation to enhance interpretation of pathogenic motifs, particularly in non-coding regions; (2) Germline mutation specialization via fine-tuning on ClinVar and HGMD, improving accuracy for both SNVs and non-SNVs; (3) Interpretable clinical framework integrating DNA sequence embeddings with LLM-based statistical explanations to provide actionable insights. Validated against ClinVar, EnTao-GPM demonstrates superior accuracy in mutation classification. It revolutionizes genetic testing by enabling faster, more accurate, and accessible interpretation for clinical diagnostics (e.g., variant assessment, risk identification, personalized treatment) and research, advancing personalized medicine.
☆ Unrolling Dynamic Programming via Graph Filters
Dynamic programming (DP) is a fundamental tool used across many engineering fields. The main goal of DP is to solve Bellman's optimality equations for a given Markov decision process (MDP). Standard methods like policy iteration exploit the fixed-point nature of these equations to solve them iteratively. However, these algorithms can be computationally expensive when the state-action space is large or when the problem involves long-term dependencies. Here we propose a new approach that unrolls and truncates policy iterations into a learnable parametric model dubbed BellNet, which we train to minimize the so-termed Bellman error from random value function initializations. Viewing the transition probability matrix of the MDP as the adjacency of a weighted directed graph, we draw insights from graph signal processing to interpret (and compactly re-parameterize) BellNet as a cascade of nonlinear graph filters. This fresh look facilitates a concise, transferable, and unifying representation of policy and value iteration, with an explicit handle on complexity during inference. Preliminary experiments conducted in a grid-like environment demonstrate that BellNet can effectively approximate optimal policies in a fraction of the iterations required by classical methods.
☆ Towards a Large Physics Benchmark
We introduce a benchmark framework developed by and for the scientific community to evaluate, monitor and steer large language model development in fundamental physics. Building on philosophical concepts of scientific understanding and creativity, we develop a scoring system in which each question is scored by an expert for its correctness, difficulty, and surprise. The questions are of three forms: (i) multiple-choice questions for conceptual understanding, (ii) analytical problems requiring mathematical derivation, and (iii) openended tasks requiring complex problem solving. Our current dataset contains diverse set of examples, including a machine learning challenge to classify high-energy physics events, such as the four top quark signal. To ensure continued relevance, we propose a living benchmark, where physicists contribute questions, for instance alongside new publications. We invite contributions via: http://www.physicsbenchmarks.org/. We hope that this benchmark will enable a targeted AI development that can make a meaningful contribution to fundamental physics research.
☆ A Multi-Agent Generative AI Framework for IC Module-Level Verification Automation
As large language models demonstrate enormous potential in the field of Electronic Design Automation (EDA), generative AI-assisted chip design is attracting widespread attention from academia and industry. Although these technologies have made preliminary progress in tasks such as code generation, their application in chip verification -- a critical bottleneck in the chip development cycle -- remains at an exploratory stage. This paper proposes an innovative Multi-Agent Verification Framework (MAVF) aimed at addressing the limitations of current single-LLM approaches in complex verification tasks. Our framework builds an automated transformation system from design specifications to testbench through the collaborative work of multiple specialized agents, including specification parsing, verification strategy generation, and code implementation. Through verification experiments on multiple chip modules of varying complexity, results show that MAVF significantly outperforms traditional manual methods and single-dialogue generative AI approaches in verification document parsing and generation, as well as automated testbench generation. This research opens new directions for exploring generative AI applications in verification automation, potentially providing effective approaches to solving the most challenging bottleneck issues in chip design.
comment: 20 pages, 12 figures. DVCon China 2025
☆ MultiAIGCD: A Comprehensive dataset for AI Generated Code Detection Covering Multiple Languages, Models,Prompts, and Scenarios
As large language models (LLMs) rapidly advance, their role in code generation has expanded significantly. While this offers streamlined development, it also creates concerns in areas like education and job interviews. Consequently, developing robust systems to detect AI-generated code is imperative to maintain academic integrity and ensure fairness in hiring processes. In this study, we introduce MultiAIGCD, a dataset for AI-generated code detection for Python, Java, and Go. From the CodeNet dataset's problem definitions and human-authored codes, we generate several code samples in Java, Python, and Go with six different LLMs and three different prompts. This generation process covered three key usage scenarios: (i) generating code from problem descriptions, (ii) fixing runtime errors in human-written code, and (iii) correcting incorrect outputs. Overall, MultiAIGCD consists of 121,271 AI-generated and 32,148 human-written code snippets. We also benchmark three state-of-the-art AI-generated code detection models and assess their performance in various test scenarios such as cross-model and cross-language. We share our dataset and codes to support research in this field.
☆ APT: Improving Diffusion Models for High Resolution Image Generation with Adaptive Path Tracing
Latent Diffusion Models (LDMs) are generally trained at fixed resolutions, limiting their capability when scaling up to high-resolution images. While training-based approaches address this limitation by training on high-resolution datasets, they require large amounts of data and considerable computational resources, making them less practical. Consequently, training-free methods, particularly patch-based approaches, have become a popular alternative. These methods divide an image into patches and fuse the denoising paths of each patch, showing strong performance on high-resolution generation. However, we observe two critical issues for patch-based approaches, which we call ``patch-level distribution shift" and ``increased patch monotonicity." To address these issues, we propose Adaptive Path Tracing (APT), a framework that combines Statistical Matching to ensure patch distributions remain consistent in upsampled latents and Scale-aware Scheduling to deal with the patch monotonicity. As a result, APT produces clearer and more refined details in high-resolution images. In addition, APT enables a shortcut denoising process, resulting in faster sampling with minimal quality degradation. Our experimental results confirm that APT produces more detailed outputs with improved inference speed, providing a practical approach to high-resolution image generation.
☆ diffSPH: Differentiable Smoothed Particle Hydrodynamics for Adjoint Optimization and Machine Learning
We present diffSPH, a novel open-source differentiable Smoothed Particle Hydrodynamics (SPH) framework developed entirely in PyTorch with GPU acceleration. diffSPH is designed centrally around differentiation to facilitate optimization and machine learning (ML) applications in Computational Fluid Dynamics~(CFD), including training neural networks and the development of hybrid models. Its differentiable SPH core, and schemes for compressible (with shock capturing and multi-phase flows), weakly compressible (with boundary handling and free-surface flows), and incompressible physics, enable a broad range of application areas. We demonstrate the framework's unique capabilities through several applications, including addressing particle shifting via a novel, target-oriented approach by minimizing physical and regularization loss terms, a task often intractable in traditional solvers. Further examples include optimizing initial conditions and physical parameters to match target trajectories, shape optimization, implementing a solver-in-the-loop setup to emulate higher-order integration, and demonstrating gradient propagation through hundreds of full simulation steps. Prioritizing readability, usability, and extensibility, this work offers a foundational platform for the CFD community to develop and deploy novel neural networks and adjoint optimization applications.
☆ Can the current trends of AI handle a full course of mathematics?
This paper addresses the question of how able the current trends of Artificial Intelligence (AI) are in managing to take the responsibility of a full course of mathematics at a college level. The study evaluates this ability in four significant aspects, namely, creating a course syllabus, presenting selected material, answering student questions, and creating an assessment. It shows that even though the AI is strong in some important parts like organization and accuracy, there are still some human aspects that are far away from the current abilities of AI. There is still a hidden emotional part, even in science, that cannot be fulfilled by the AI in its current state. This paper suggests some recommendations to integrate the human and AI potentials to create better outcomes in terms of reaching the target of creating a full course of mathematics, at a university level, as best as possible.
comment: 36 pages
☆ AI Literacy as a Key Driver of User Experience in AI-Powered Assessment: Insights from Socratic Mind
As Artificial Intelligence (AI) tools become increasingly embedded in higher education, understanding how students interact with these systems is essential to supporting effective learning. This study examines how students' AI literacy and prior exposure to AI technologies shape their perceptions of Socratic Mind, an interactive AI-powered formative assessment tool. Drawing on Self-Determination Theory and user experience research, we analyze relationships among AI literacy, perceived usability, satisfaction, engagement, and perceived learning effectiveness. Data from 309 undergraduates in Computer Science and Business courses were collected through validated surveys. Partial least squares structural equation modeling showed that AI literacy - especially self-efficacy, conceptual understanding, and application skills - significantly predicts usability, satisfaction, and engagement. Usability and satisfaction, in turn, strongly predict perceived learning effectiveness, while prior AI exposure showed no significant effect. These findings highlight that AI literacy, rather than exposure alone, shapes student experiences. Designers should integrate adaptive guidance and user-centered features to support diverse literacy levels, fostering inclusive, motivating, and effective AI-based learning environments.
comment: 34 pages, 1 figure, 3 tables
☆ DGP: A Dual-Granularity Prompting Framework for Fraud Detection with Graph-Enhanced LLMs
Real-world fraud detection applications benefit from graph learning techniques that jointly exploit node features, often rich in textual data, and graph structural information. Recently, Graph-Enhanced LLMs emerge as a promising graph learning approach that converts graph information into prompts, exploiting LLMs' ability to reason over both textual and structural information. Among them, text-only prompting, which converts graph information to prompts consisting solely of text tokens, offers a solution that relies only on LLM tuning without requiring additional graph-specific encoders. However, text-only prompting struggles on heterogeneous fraud-detection graphs: multi-hop relations expand exponentially with each additional hop, leading to rapidly growing neighborhoods associated with dense textual information. These neighborhoods may overwhelm the model with long, irrelevant content in the prompt and suppress key signals from the target node, thereby degrading performance. To address this challenge, we propose Dual Granularity Prompting (DGP), which mitigates information overload by preserving fine-grained textual details for the target node while summarizing neighbor information into coarse-grained text prompts. DGP introduces tailored summarization strategies for different data modalities, bi-level semantic abstraction for textual fields and statistical aggregation for numerical features, enabling effective compression of verbose neighbor content into concise, informative prompts. Experiments across public and industrial datasets demonstrate that DGP operates within a manageable token budget while improving fraud detection performance by up to 6.8% (AUPRC) over state-of-the-art methods, showing the potential of Graph-Enhanced LLMs for fraud detection.
☆ GUARD-CAN: Graph-Understanding and Recurrent Architecture for CAN Anomaly Detection
Modern in-vehicle networks face various cyber threats due to the lack of encryption and authentication in the Controller Area Network (CAN). To address this security issue, this paper presents GUARD-CAN, an anomaly detection framework that combines graph-based representation learning with time-series modeling. GUARD-CAN splits CAN messages into fixed-length windows and converts each window into a graph that preserves message order. To detect anomalies in the timeaware and structure-aware context at the same window, GUARD-CAN takes advantage of the overcomplete Autoencoder (AE) and Graph Convolutional Network (GCN) to generate graph embedding vectors. The model groups these vectors into sequences and feeds them into the Gated Recurrent Unit (GRU) to detect temporal anomaly patterns across the graphs. GUARD-CAN performs anomaly detection at both the sequence level and the window level, and this allows multi-perspective performance evaluation. The model also verifies the importance of window size selection through an analysis based on Shannon entropy. As a result, GUARD-CAN shows that the proposed model detects four types of CAN attacks (flooding, fuzzing, replay and spoofing attacks) effectively without relying on complex feature engineering.
comment: Comments:12 pages, 3 figures, 3 tables; accepted to the 26th World Conference on Information Security Applications (WISA 2025)
☆ Assistax: A Hardware-Accelerated Reinforcement Learning Benchmark for Assistive Robotics
The development of reinforcement learning (RL) algorithms has been largely driven by ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks because they present relevant challenges, are inexpensive to run and easy to understand. While games such as Go and Atari have led to many breakthroughs, they often do not directly translate to real-world embodied applications. In recognising the need to diversify RL benchmarks and addressing complexities that arise in embodied interaction scenarios, we introduce Assistax: an open-source benchmark designed to address challenges arising in assistive robotics tasks. Assistax uses JAX's hardware acceleration for significant speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock time, Assistax runs up to $370\times$ faster when vectorising training runs compared to CPU-based alternatives. Assistax conceptualises the interaction between an assistive robot and an active human patient using multi-agent RL to train a population of diverse partner agents against which an embodied robotic agent's zero-shot coordination capabilities can be tested. Extensive evaluation and hyperparameter tuning for popular continuous control RL and MARL algorithms provide reliable baselines and establish Assistax as a practical benchmark for advancing RL research for assistive robotics. The code is available at: https://github.com/assistive-autonomy/assistax.
comment: Accepted for the Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop at the Reinforcement Learning Conference 2025
☆ Self-Aware Safety Augmentation: Leveraging Internal Semantic Understanding to Enhance Safety in Vision-Language Models
Large vision-language models (LVLMs) are vulnerable to harmful input compared to their language-only backbones. We investigated this vulnerability by exploring LVLMs internal dynamics, framing their inherent safety understanding in terms of three key capabilities. Specifically, we define these capabilities as safety perception, semantic understanding, and alignment for linguistic expression, and experimentally pinpointed their primary locations within the model architecture. The results indicate that safety perception often emerges before comprehensive semantic understanding, leading to the reduction in safety. Motivated by these findings, we propose \textbf{Self-Aware Safety Augmentation (SASA)}, a technique that projects informative semantic representations from intermediate layers onto earlier safety-oriented layers. This approach leverages the model's inherent semantic understanding to enhance safety recognition without fine-tuning. Then, we employ linear probing to articulate the model's internal semantic comprehension to detect the risk before the generation process. Extensive experiments on various datasets and tasks demonstrate that SASA significantly improves the safety of LVLMs, with minimal impact on the utility.
comment: Accepted by ACM Multimedia 2025
☆ StaffPro: an LLM Agent for Joint Staffing and Profiling
Large language model (LLM) agents integrate pre-trained LLMs with modular algorithmic components and have shown remarkable reasoning and decision-making abilities. In this work, we investigate their use for two tightly intertwined challenges in workforce management: staffing, i.e., the assignment and scheduling of tasks to workers, which may require team formation; and profiling, i.e., the continuous estimation of workers' skills, preferences, and other latent attributes from unstructured data. We cast these problems in a formal mathematical framework that links scheduling decisions to latent feature estimation, and we introduce StaffPro, an LLM agent that addresses staffing and profiling jointly. Differently from existing staffing solutions, StaffPro allows expressing optimization objectives using natural language, accepts textual task descriptions and provides high flexibility. StaffPro interacts directly with humans by establishing a continuous human-agent feedback loop, ensuring natural and intuitive use. By analyzing human feedback, our agent continuously estimates the latent features of workers, realizing life-long worker profiling and ensuring optimal staffing performance over time. A consulting firm simulation example demonstrates that StaffPro successfully estimates workers' attributes and generates high quality schedules. With its innovative design, StaffPro offers a robust, interpretable, and human-centric solution for automated personnel management.
☆ "Teammates, Am I Clear?": Analysing Legible Behaviours in Teams
In this paper we investigate the notion of legibility in sequential decision-making in the context of teams and teamwork. There have been works that extend the notion of legibility to sequential decision making, for deterministic and for stochastic scenarios. However, these works focus on one agent interacting with one human, foregoing the benefits of having legible decision making in teams of agents or in team configurations with humans. In this work we propose an extension of legible decision-making to multi-agent settings that improves the performance of agents working in collaboration. We showcase the performance of legible decision making in team scenarios using our proposed extension in multi-agent benchmark scenarios. We show that a team with a legible agent is able to outperform a team composed solely of agents with standard optimal behaviour.
☆ Hierarchical Graph Neural Network for Compressed Speech Steganalysis
Steganalysis methods based on deep learning (DL) often struggle with computational complexity and challenges in generalizing across different datasets. Incorporating a graph neural network (GNN) into steganalysis schemes enables the leveraging of relational data for improved detection accuracy and adaptability. This paper presents the first application of a Graph Neural Network (GNN), specifically the GraphSAGE architecture, for steganalysis of compressed voice over IP (VoIP) speech streams. The method involves straightforward graph construction from VoIP streams and employs GraphSAGE to capture hierarchical steganalysis information, including both fine grained details and high level patterns, thereby achieving high detection accuracy. Experimental results demonstrate that the developed approach performs well in uncovering quantization index modulation (QIM)-based steganographic patterns in VoIP signals. It achieves detection accuracy exceeding 98 percent even for short 0.5 second samples, and 95.17 percent accuracy under challenging conditions with low embedding rates, representing an improvement of 2.8 percent over the best performing state of the art methods. Furthermore, the model exhibits superior efficiency, with an average detection time as low as 0.016 seconds for 0.5-second samples an improvement of 0.003 seconds. This makes it efficient for online steganalysis tasks, providing a superior balance between detection accuracy and efficiency under the constraint of short samples with low embedding rates.
☆ Exploring the Link Between Bayesian Inference and Embodied Intelligence: Toward Open Physical-World Embodied AI Systems
Embodied intelligence posits that cognitive capabilities fundamentally emerge from - and are shaped by - an agent's real-time sensorimotor interactions with its environment. Such adaptive behavior inherently requires continuous inference under uncertainty. Bayesian statistics offers a principled probabilistic framework to address this challenge by representing knowledge as probability distributions and updating beliefs in response to new evidence. The core computational processes underlying embodied intelligence - including perception, action selection, learning, and even higher-level cognition - can be effectively understood and modeled as forms of Bayesian inference. Despite the deep conceptual connection between Bayesian statistics and embodied intelligence, Bayesian principles have not been widely or explicitly applied in today's embodied intelligence systems. In this work, we examine both Bayesian and contemporary embodied intelligence approaches through two fundamental lenses: search and learning - the two central themes in modern AI, as highlighted in Rich Sutton's influential essay "The Bitter Lesson". This analysis sheds light on why Bayesian inference has not played a central role in the development of modern embodied intelligence. At the same time, it reveals that current embodied intelligence systems remain largely confined to closed-physical-world environments, and highlights the potential for Bayesian methods to play a key role in extending these systems toward truly open physical-world embodied intelligence.
comment: 16 pages
☆ Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning ICCV 2025
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.
comment: Accepted by ICCV 2025
☆ SafeDriveRAG: Towards Safe Autonomous Driving with Knowledge Graph-based Retrieval-Augmented Generation
In this work, we study how vision-language models (VLMs) can be utilized to enhance the safety for the autonomous driving system, including perception, situational understanding, and path planning. However, existing research has largely overlooked the evaluation of these models in traffic safety-critical driving scenarios. To bridge this gap, we create the benchmark (SafeDrive228K) and propose a new baseline based on VLM with knowledge graph-based retrieval-augmented generation (SafeDriveRAG) for visual question answering (VQA). Specifically, we introduce SafeDrive228K, the first large-scale multimodal question-answering benchmark comprising 228K examples across 18 sub-tasks. This benchmark encompasses a diverse range of traffic safety queries, from traffic accidents and corner cases to common safety knowledge, enabling a thorough assessment of the comprehension and reasoning abilities of the models. Furthermore, we propose a plug-and-play multimodal knowledge graph-based retrieval-augmented generation approach that employs a novel multi-scale subgraph retrieval algorithm for efficient information retrieval. By incorporating traffic safety guidelines collected from the Internet, this framework further enhances the model's capacity to handle safety-critical situations. Finally, we conduct comprehensive evaluations on five mainstream VLMs to assess their reliability in safety-sensitive driving tasks. Experimental results demonstrate that integrating RAG significantly improves performance, achieving a +4.73% gain in Traffic Accidents tasks, +8.79% in Corner Cases tasks and +14.57% in Traffic Safety Commonsense across five mainstream VLMs, underscoring the potential of our proposed benchmark and methodology for advancing research in traffic safety. Our source code and data are available at https://github.com/Lumos0507/SafeDriveRAG.
☆ Finding Uncommon Ground: A Human-Centered Model for Extrospective Explanations IJCAI 2023
The need for explanations in AI has, by and large, been driven by the desire to increase the transparency of black-box machine learning models. However, such explanations, which focus on the internal mechanisms that lead to a specific output, are often unsuitable for non-experts. To facilitate a human-centered perspective on AI explanations, agents need to focus on individuals and their preferences as well as the context in which the explanations are given. This paper proposes a personalized approach to explanation, where the agent tailors the information provided to the user based on what is most likely pertinent to them. We propose a model of the agent's worldview that also serves as a personal and dynamic memory of its previous interactions with the same user, based on which the artificial agent can estimate what part of its knowledge is most likely new information to the user.
comment: Presented at the IJCAI 2023 Workshop on Explainable Artificial Intelligence (XAI)
☆ Model Predictive Adversarial Imitation Learning for Planning from Observation
Human demonstration data is often ambiguous and incomplete, motivating imitation learning approaches that also exhibit reliable planning behavior. A common paradigm to perform planning-from-demonstration involves learning a reward function via Inverse Reinforcement Learning (IRL) then deploying this reward via Model Predictive Control (MPC). Towards unifying these methods, we derive a replacement of the policy in IRL with a planning-based agent. With connections to Adversarial Imitation Learning, this formulation enables end-to-end interactive learning of planners from observation-only demonstrations. In addition to benefits in interpretability, complexity, and safety, we study and observe significant improvements on sample efficiency, out-of-distribution generalization, and robustness. The study includes evaluations in both simulated control benchmarks and real-world navigation experiments using few-to-single observation-only demonstrations.
comment: Open-source code in process of being cleaned and documented for release. Please contact directly in the meantime for code. Under Review
☆ Automatic Classification of User Requirements from Online Feedback -- A Replication Study
Natural language processing (NLP) techniques have been widely applied in the requirements engineering (RE) field to support tasks such as classification and ambiguity detection. Although RE research is rooted in empirical investigation, it has paid limited attention to replicating NLP for RE (NLP4RE) studies. The rapidly advancing realm of NLP is creating new opportunities for efficient, machine-assisted workflows, which can bring new perspectives and results to the forefront. Thus, we replicate and extend a previous NLP4RE study (baseline), "Classifying User Requirements from Online Feedback in Small Dataset Environments using Deep Learning", which evaluated different deep learning models for requirement classification from user reviews. We reproduced the original results using publicly released source code, thereby helping to strengthen the external validity of the baseline study. We then extended the setup by evaluating model performance on an external dataset and comparing results to a GPT-4o zero-shot classifier. Furthermore, we prepared the replication study ID-card for the baseline study, important for evaluating replication readiness. Results showed diverse reproducibility levels across different models, with Naive Bayes demonstrating perfect reproducibility. In contrast, BERT and other models showed mixed results. Our findings revealed that baseline deep learning models, BERT and ELMo, exhibited good generalization capabilities on an external dataset, and GPT-4o showed performance comparable to traditional baseline machine learning models. Additionally, our assessment confirmed the baseline study's replication readiness; however missing environment setup files would have further enhanced readiness. We include this missing information in our replication package and provide the replication study ID-card for our study to further encourage and support the replication of our study.
comment: 10 pages, 3 figures, Replication package available at https://zenodo.org/records/15626782, Accepted at AIRE 2025 (12th International Workshop on Artificial Intelligence and Requirements Engineering)
☆ Large Language Models for Wireless Communications: From Adaptation to Autonomy
The emergence of large language models (LLMs) has revolutionized artificial intelligence, offering unprecedented capabilities in reasoning, generalization, and zero-shot learning. These strengths open new frontiers in wireless communications, where increasing complexity and dynamics demand intelligent and adaptive solutions. This article explores the role of LLMs in transforming wireless systems across three key directions: adapting pretrained LLMs for core communication tasks, developing wireless-specific foundation models to balance versatility and efficiency, and enabling agentic LLMs with autonomous reasoning and coordination capabilities. We highlight recent advances, practical case studies, and the unique benefits of LLM-based approaches over traditional methods. Finally, we outline open challenges and research opportunities, including multimodal fusion, collaboration with lightweight models, and self-improving capabilities, charting a path toward intelligent, adaptive, and autonomous wireless networks of the future.
☆ What Does it Mean for a Neural Network to Learn a "World Model"?
We propose a set of precise criteria for saying a neural net learns and uses a "world model." The goal is to give an operational meaning to terms that are often used informally, in order to provide a common language for experimental investigation. We focus specifically on the idea of representing a latent "state space" of the world, leaving modeling the effect of actions to future work. Our definition is based on ideas from the linear probing literature, and formalizes the notion of a computation that factors through a representation of the data generation process. An essential addition to the definition is a set of conditions to check that such a "world model" is not a trivial consequence of the neural net's data or task.
☆ Evaluation and Benchmarking of LLM Agents: A Survey
The rise of LLM-based agents has opened new frontiers in AI applications, yet evaluating these agents remains a complex and underdeveloped area. This survey provides an in-depth overview of the emerging field of LLM agent evaluation, introducing a two-dimensional taxonomy that organizes existing work along (1) evaluation objectives -- what to evaluate, such as agent behavior, capabilities, reliability, and safety -- and (2) evaluation process -- how to evaluate, including interaction modes, datasets and benchmarks, metric computation methods, and tooling. In addition to taxonomy, we highlight enterprise-specific challenges, such as role-based access to data, the need for reliability guarantees, dynamic and long-horizon interactions, and compliance, which are often overlooked in current research. We also identify future research directions, including holistic, more realistic, and scalable evaluation. This work aims to bring clarity to the fragmented landscape of agent evaluation and provide a framework for systematic assessment, enabling researchers and practitioners to evaluate LLM agents for real-world deployment.
☆ MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/DSTTSD/MoHoBench.
☆ Large Language Models for Supply Chain Decisions
Supply Chain Management requires addressing a variety of complex decision-making challenges, from sourcing strategies to planning and execution. Over the last few decades, advances in computation and information technologies have enabled the transition from manual, intuition and experience-based decision-making, into more automated and data-driven decisions using a variety of tools that apply optimization techniques. These techniques use mathematical methods to improve decision-making. Unfortunately, business planners and executives still need to spend considerable time and effort to (i) understand and explain the recommendations coming out of these technologies; (ii) analyze various scenarios and answer what-if questions; and (iii) update the mathematical models used in these tools to reflect current business environments. Addressing these challenges requires involving data science teams and/or the technology providers to explain results or make the necessary changes in the technology and hence significantly slows down decision making. Motivated by the recent advances in Large Language Models (LLMs), we report how this disruptive technology can democratize supply chain technology - namely, facilitate the understanding of tools' outcomes, as well as the interaction with supply chain tools without human-in-the-loop. Specifically, we report how we apply LLMs to address the three challenges described above, thus substantially reducing the time to decision from days and weeks to minutes and hours as well as dramatically increasing planners' and executives' productivity and impact.
comment: Forthcoming chapter in AI in Supply Chains: Perspectives from Global Thought Leaders, edited by Maxime C. Cohen and Tinglong Dai, and part of the Springer Series in Supply Chain Management (edited by Prof. Chris Tang)
☆ VN-MTEB: Vietnamese Massive Text Embedding Benchmark
Vietnam ranks among the top countries in terms of both internet traffic and online toxicity. As a result, implementing embedding models for recommendation and content control duties in applications is crucial. However, a lack of large-scale test datasets, both in volume and task diversity, makes it tricky for scientists to effectively evaluate AI models before deploying them in real-world, large-scale projects. To solve this important problem, we introduce a Vietnamese benchmark, VN-MTEB for embedding models, which we created by translating a large number of English samples from the Massive Text Embedding Benchmark using our new automated framework. We leverage the strengths of large language models (LLMs) and cutting-edge embedding models to conduct translation and filtering processes to retain high-quality samples, guaranteeing a natural flow of language and semantic fidelity while preserving named entity recognition (NER) and code snippets. Our comprehensive benchmark consists of 41 datasets from six tasks specifically designed for Vietnamese text embeddings. In our analysis, we find that bigger and more complex models using Rotary Positional Embedding outperform those using Absolute Positional Embedding in embedding tasks. Datasets are available at HuggingFace: https://huggingface.co/collections/GreenNode/vn-mteb-68871433f0f7573b8e1a6686
comment: 19 pages (including reference, appendix) 41 datasets from 6 tasks (retrieval, classification, pair-classification, clustering, rerank, sts) 7 figures, 16 tables, benchmark 18 text embedding models
☆ Learning to Imitate with Less: Efficient Individual Behavior Modeling in Chess
As humans seek to collaborate with, learn from, and better understand artificial intelligence systems, developing AIs that can accurately emulate individual decision-making becomes increasingly important. Chess, a long-standing AI benchmark with precise skill measurement, offers an ideal testbed for human-AI alignment. However, existing approaches to modeling human behavior require prohibitively large amounts of data from each individual, making them impractical for new or sparsely represented users. In this work, we introduce Maia4All, a framework designed to learn and adapt to individual decision-making styles efficiently, even with limited data. Maia4All achieves this through a two-stage optimization process: (1) an enrichment step, which bridges population and individual-level human behavior modeling with a prototype-enriched model, and (2) a democratization step, which leverages ability levels or user prototypes to initialize and refine individual embeddings with minimal data. Our experimental results show that Maia4All can accurately predict individual moves and profile behavioral patterns with high fidelity, establishing a new standard for personalized human-like AI behavior modeling in chess. Maia4All achieves individual human behavior modeling in chess with only 20 games, compared to the 5,000 games required previously, representing a significant improvement in data efficiency. Our work provides an example of how population AI systems can flexibly adapt to individual users using a prototype-enriched model as a bridge. This approach extends beyond chess, as shown in our case study on idiosyncratic LLMs, highlighting its potential for broader applications in personalized AI adaptation.
☆ HLSDebugger: Identification and Correction of Logic Bugs in HLS Code with LLM Solutions
High-level synthesis (HLS) accelerates hardware design by enabling the automatic translation of high-level descriptions into efficient hardware implementations. However, debugging HLS code is a challenging and labor-intensive task, especially for novice circuit designers or software engineers without sufficient hardware domain knowledge. The recent emergence of Large Language Models (LLMs) is promising in automating the HLS debugging process. Despite the great potential, three key challenges persist when applying LLMs to HLS logic debugging: 1) High-quality circuit data for training LLMs is scarce, posing a significant challenge. 2) Debugging logic bugs in hardware is inherently more complex than identifying software bugs with existing golden test cases. 3) The absence of reliable test cases requires multi-tasking solutions, performing both bug identification and correction. complicates the multi-tasking required for effective HLS debugging. In this work, we propose a customized solution named HLSDebugger to address the challenges. HLSDebugger first generates and releases a large labeled dataset with 300K data samples, targeting HLS logic bugs. The HLSDebugger model adopts an encoder-decoder structure, performing bug location identification, bug type prediction, and bug correction with the same model. HLSDebugger significantly outperforms advanced LLMs like GPT-4 in bug identification and by more than 3x in bug correction. It makes a substantial advancement in the exploration of automated debugging of HLS code.
comment: This work has been accepted at ICCAD 2025 (International Conference on Computer-Aided Design)
☆ NCCR: to Evaluate the Robustness of Neural Networks and Adversarial Examples
Neural networks have received a lot of attention recently, and related security issues have come with it. Many studies have shown that neural networks are vulnerable to adversarial examples that have been artificially perturbed with modification, which is too small to be distinguishable by human perception. Different attacks and defenses have been proposed to solve these problems, but there is little research on evaluating the robustness of neural networks and their inputs. In this work, we propose a metric called the neuron cover change rate (NCCR) to measure the ability of deep learning models to resist attacks and the stability of adversarial examples. NCCR monitors alterations in the output of specifically chosen neurons when the input is perturbed, and networks with a smaller degree of variation are considered to be more robust. The results of the experiment on image recognition and the speaker recognition model show that our metrics can provide a good assessment of the robustness of neural networks or their inputs. It can also be used to detect whether an input is adversarial or not, as adversarial examples are always less robust.
☆ Improving Task Diversity in Label Efficient Supervised Finetuning of LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, but developing high-performing models for specialized applications often requires substantial human annotation -- a process that is time-consuming, labor-intensive, and expensive. In this paper, we address the label-efficient learning problem for supervised finetuning (SFT) by leveraging task-diversity as a fundamental principle for effective data selection. This is markedly different from existing methods based on the prompt-diversity. Our approach is based on two key observations: 1) task labels for different prompts are often readily available; 2) pre-trained models have significantly varying levels of confidence across tasks. We combine these facts to devise a simple yet effective sampling strategy: we select examples across tasks using an inverse confidence weighting strategy. This produces models comparable to or better than those trained with more complex sampling procedures, while being significantly easier to implement and less computationally intensive. Notably, our experimental results demonstrate that this method can achieve better accuracy than training on the complete dataset (a 4\% increase in MMLU score). Across various annotation budgets and two instruction finetuning datasets, our algorithm consistently performs at or above the level of the best existing methods, while reducing annotation costs by up to 80\%.
☆ Capacity-Constrained Continual Learning
Any agents we can possibly build are subject to capacity constraints, as memory and compute resources are inherently finite. However, comparatively little attention has been dedicated to understanding how agents with limited capacity should allocate their resources for optimal performance. The goal of this paper is to shed some light on this question by studying a simple yet relevant continual learning problem: the capacity-constrained linear-quadratic-Gaussian (LQG) sequential prediction problem. We derive a solution to this problem under appropriate technical conditions. Moreover, for problems that can be decomposed into a set of sub-problems, we also demonstrate how to optimally allocate capacity across these sub-problems in the steady state. We view the results of this paper as a first step in the systematic theoretical study of learning under capacity constraints.
☆ Which LLMs Get the Joke? Probing Non-STEM Reasoning Abilities with HumorBench
We present HumorBench, a benchmark designed to evaluate large language models' (LLMs) ability to reason about and explain sophisticated humor in cartoon captions. As reasoning models increasingly saturate existing benchmarks in mathematics and science, novel and challenging evaluations of model intelligence beyond STEM domains are essential. Reasoning is fundamentally involved in text-based humor comprehension, requiring the identification of connections between concepts in cartoons/captions and external cultural references, wordplays, and other mechanisms. HumorBench includes approximately 300 unique cartoon-caption pairs from the New Yorker Caption Contest and Cartoonstock.com, with expert-annotated evaluation rubrics identifying essential joke elements. LLMs are evaluated based on their explanations towards the humor and abilities in identifying the joke elements. To perform well on this task, models must form and test hypotheses about associations between concepts, potentially backtracking from initial interpretations to arrive at the most plausible explanation. Our extensive benchmarking of current SOTA models reveals three key insights: (1) LLM progress on STEM reasoning transfers effectively to humor comprehension; (2) models trained exclusively on STEM reasoning data still perform well on HumorBench, demonstrating strong transferability of reasoning abilities; and (3) test-time scaling by increasing thinking token budgets yields mixed results across different models in humor reasoning.
☆ Hebbian Memory-Augmented Recurrent Networks: Engram Neurons in Deep Learning
Despite success across diverse tasks, current artificial recurrent network architectures rely primarily on implicit hidden-state memories, limiting their interpretability and ability to model long-range dependencies. In contrast, biological neural systems employ explicit, associative memory traces (i.e., engrams) strengthened through Hebbian synaptic plasticity and activated sparsely during recall. Motivated by these neurobiological insights, we introduce the Engram Neural Network (ENN), a novel recurrent architecture incorporating an explicit, differentiable memory matrix with Hebbian plasticity and sparse, attention-driven retrieval mechanisms. The ENN explicitly models memory formation and recall through dynamic Hebbian traces, improving transparency and interpretability compared to conventional RNN variants. We evaluate the ENN architecture on three canonical benchmarks: MNIST digit classification, CIFAR-10 image sequence modeling, and WikiText-103 language modeling. Our empirical results demonstrate that the ENN achieves accuracy and generalization performance broadly comparable to classical RNN, GRU, and LSTM architectures, with all models converging to similar accuracy and perplexity on the large-scale WikiText-103 task. At the same time, the ENN offers significant enhancements in interpretability through observable memory dynamics. Hebbian trace visualizations further reveal biologically plausible, structured memory formation processes, validating the potential of neuroscience-inspired mechanisms to inform the development of more interpretable and robust deep learning models.
comment: 20 pages, 11 figures, 4 tables
☆ An LLM Driven Agent Framework for Automated Infrared Spectral Multi Task Reasoning
Infrared spectroscopy offers rapid, non destructive measurement of chemical and material properties but suffers from high dimensional, overlapping spectral bands that challenge conventional chemometric approaches. Emerging large language models (LLMs), with their capacity for generalization and reasoning, offer promising potential for automating complex scientific workflows. Despite this promise, their application in IR spectral analysis remains largely unexplored. This study addresses the critical challenge of achieving accurate, automated infrared spectral interpretation under low-data conditions using an LLM-driven framework. We introduce an end-to-end, large language model driven agent framework that integrates a structured literature knowledge base, automated spectral preprocessing, feature extraction, and multi task reasoning in a unified pipeline. By querying a curated corpus of peer reviewed IR publications, the agent selects scientifically validated routines. The selected methods transform each spectrum into low dimensional feature sets, which are fed into few shot prompt templates for classification, regression, and anomaly detection. A closed loop, multi turn protocol iteratively appends mispredicted samples to the prompt, enabling dynamic refinement of predictions. Across diverse materials: stamp pad ink, Chinese medicine, Pu'er tea, Citri Reticulatae Pericarpium and waste water COD datasets, the multi turn LLM consistently outperforms single turn inference, rivaling or exceeding machine learning and deep learning models under low data regimes.
comment: 19 pages
☆ Boost Self-Supervised Dataset Distillation via Parameterization, Predefined Augmentation, and Approximation
Although larger datasets are crucial for training large deep models, the rapid growth of dataset size has brought a significant challenge in terms of considerable training costs, which even results in prohibitive computational expenses. Dataset Distillation becomes a popular technique recently to reduce the dataset size via learning a highly compact set of representative exemplars, where the model trained with these exemplars ideally should have comparable performance with respect to the one trained with the full dataset. While most of existing works upon dataset distillation focus on supervised datasets, we instead aim to distill images and their self-supervisedly trained representations into a distilled set. This procedure, named as Self-Supervised Dataset Distillation, effectively extracts rich information from real datasets, yielding the distilled sets with enhanced cross-architecture generalizability. Particularly, in order to preserve the key characteristics of original dataset more faithfully and compactly, several novel techniques are proposed: 1) we introduce an innovative parameterization upon images and representations via distinct low-dimensional bases, where the base selection for parameterization is experimentally shown to play a crucial role; 2) we tackle the instability induced by the randomness of data augmentation -- a key component in self-supervised learning but being underestimated in the prior work of self-supervised dataset distillation -- by utilizing predetermined augmentations; 3) we further leverage a lightweight network to model the connections among the representations of augmented views from the same image, leading to more compact pairs of distillation. Extensive experiments conducted on various datasets validate the superiority of our approach in terms of distillation efficiency, cross-architecture generalization, and transfer learning performance.
☆ Validating Pharmacogenomics Generative Artificial Intelligence Query Prompts Using Retrieval-Augmented Generation (RAG)
This study evaluated Sherpa Rx, an artificial intelligence tool leveraging large language models and retrieval-augmented generation (RAG) for pharmacogenomics, to validate its performance on key response metrics. Sherpa Rx integrated Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines with Pharmacogenomics Knowledgebase (PharmGKB) data to generate contextually relevant responses. A dataset (N=260 queries) spanning 26 CPIC guidelines was used to evaluate drug-gene interactions, dosing recommendations, and therapeutic implications. In Phase 1, only CPIC data was embedded. Phase 2 additionally incorporated PharmGKB content. Responses were scored on accuracy, relevance, clarity, completeness (5-point Likert scale), and recall. Wilcoxon signed-rank tests compared accuracy between Phase 1 and Phase 2, and between Phase 2 and ChatGPT-4omini. A 20-question quiz assessed the tool's real-world applicability against other models. In Phase 1 (N=260), Sherpa Rx demonstrated high performance of accuracy 4.9, relevance 5.0, clarity 5.0, completeness 4.8, and recall 0.99. The subset analysis (N=20) showed improvements in accuracy (4.6 vs. 4.4, Phase 2 vs. Phase 1 subset) and completeness (5.0 vs. 4.8). ChatGPT-4omini performed comparably in relevance (5.0) and clarity (4.9) but lagged in accuracy (3.9) and completeness (4.2). Differences in accuracy between Phase 1 and Phase 2 was not statistically significant. However, Phase 2 significantly outperformed ChatGPT-4omini. On the 20-question quiz, Sherpa Rx achieved 90% accuracy, outperforming other models. Integrating additional resources like CPIC and PharmGKB with RAG enhances AI accuracy and performance. This study highlights the transformative potential of generative AI like Sherpa Rx in pharmacogenomics, improving decision-making with accurate, personalized responses.
☆ Evo-DKD: Dual-Knowledge Decoding for Autonomous Ontology Evolution in Large Language Models
Ontologies and knowledge graphs require continuous evolution to remain comprehensive and accurate, but manual curation is labor intensive. Large Language Models (LLMs) possess vast unstructured knowledge but struggle with maintaining structured consistency. We propose Evo-DKD, a novel dual-decoder framework for autonomous ontology evolution that combines structured ontology traversal with unstructured text reasoning. Evo-DKD introduces two parallel decoding streams within an LLM: one decoder generates candidate ontology edits (e.g., new concepts or relations) while the other produces natural-language justifications. A dynamic attention-based gating mechanism coordinates the two streams, deciding at each step how to blend structured and unstructured knowledge. Due to GPU constraints, we simulate the dual-decoder behavior using prompt-based mode control to approximate coordinated decoding in a single-stream mode. The system operates in a closed reasoning loop: proposed ontology edits are validated (via consistency checks and cross-verification with the text explanations) and then injected into the knowledge base, which in turn informs subsequent reasoning. We demonstrate Evo-DKD's effectiveness on use cases including healthcare ontology refinement, semantic search improvement, and cultural heritage timeline modeling. Experiments show that Evo-DKD outperforms baselines using structured-only or unstructured-only decoding in both precision of ontology updates and downstream task performance. We present quantitative metrics and qualitative examples, confirming the contributions of the dual-decoder design and gating router. Evo-DKD offers a new paradigm for LLM-driven knowledge base maintenance, combining the strengths of symbolic and neural reasoning for sustainable ontology evolution.
comment: 9 pages, 10 figures
☆ MemShare: Memory Efficient Inference for Large Reasoning Models through KV Cache Reuse AAAI 2026
Large Reasoning Models (LRMs) have achieved significant advances in mathematical reasoning and formal logic tasks. However, their tendency to generate lengthy chain-of-thought sequences leads to substantial memory overhead during inference. We observe that LRMs frequently produce highly similar intermediate reasoning steps, which correspond to similar KV cache states across layers. Motivated by this observation, we propose MemShare, a novel KV cache management approach that effectively reduces memory overhead. MemShare employs a collaborative filtering algorithm to efficiently identify reusable KV cache blocks and enables zero copy cache reuse to significantly reduce memory overhead, improve throughput while maintaining accuracy. Experimental results demonstrate that MemShare delivers up to 84.79\% improvement in throughput while maintaining better accuracy compared to existing KV cache management methods.
comment: 11 pages, 7 figures, submitted to AAAI 2026
☆ Towards Locally Deployable Fine-Tuned Causal Large Language Models for Mode Choice Behaviour
This study investigates the adoption of open-access, locally deployable causal large language models (LLMs) for travel mode choice prediction and introduces LiTransMC, the first fine-tuned causal LLM developed for this task. We systematically benchmark eleven LLMs (1-12B parameters) across three stated and revealed preference datasets, testing 396 configurations and generating over 79,000 synthetic commuter predictions. Beyond predictive accuracy, we evaluate models generated reasoning using BERTopic for topic modelling and a novel Explanation Strength Index, providing the first structured analysis of how LLMs articulate decision factors in alignment with behavioural theory. LiTransMC, fine-tuned using parameter efficient and loss masking strategy, achieved a weighted F1 score of 0.6845 and a Jensen-Shannon Divergence of 0.000245, surpassing both untuned local models and larger proprietary systems, including GPT-4o with advanced persona inference and embedding-based loading, while also outperforming classical mode choice methods such as discrete choice models and machine learning classifiers for the same dataset. This dual improvement, i.e., high instant-level accuracy and near-perfect distributional calibration, demonstrates the feasibility of creating specialist, locally deployable LLMs that integrate prediction and interpretability. Through combining structured behavioural prediction with natural language reasoning, this work unlocks the potential for conversational, multi-task transport models capable of supporting agent-based simulations, policy testing, and behavioural insight generation. These findings establish a pathway for transforming general purpose LLMs into specialized, explainable tools for transportation research and policy formulation, while maintaining privacy, reducing cost, and broadening access through local deployment.
☆ MapDiffusion: Generative Diffusion for Vectorized Online HD Map Construction and Uncertainty Estimation in Autonomous Driving IROS 2025
Autonomous driving requires an understanding of the static environment from sensor data. Learned Bird's-Eye View (BEV) encoders are commonly used to fuse multiple inputs, and a vector decoder predicts a vectorized map representation from the latent BEV grid. However, traditional map construction models provide deterministic point estimates, failing to capture uncertainty and the inherent ambiguities of real-world environments, such as occlusions and missing lane markings. We propose MapDiffusion, a novel generative approach that leverages the diffusion paradigm to learn the full distribution of possible vectorized maps. Instead of predicting a single deterministic output from learned queries, MapDiffusion iteratively refines randomly initialized queries, conditioned on a BEV latent grid, to generate multiple plausible map samples. This allows aggregating samples to improve prediction accuracy and deriving uncertainty estimates that directly correlate with scene ambiguity. Extensive experiments on the nuScenes dataset demonstrate that MapDiffusion achieves state-of-the-art performance in online map construction, surpassing the baseline by 5% in single-sample performance. We further show that aggregating multiple samples consistently improves performance along the ROC curve, validating the benefit of distribution modeling. Additionally, our uncertainty estimates are significantly higher in occluded areas, reinforcing their value in identifying regions with ambiguous sensor input. By modeling the full map distribution, MapDiffusion enhances the robustness and reliability of online vectorized HD map construction, enabling uncertainty-aware decision-making for autonomous vehicles in complex environments.
comment: Accepted for 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ GovRelBench:A Benchmark for Government Domain Relevance
Current evaluations of LLMs in the government domain primarily focus on safety considerations in specific scenarios, while the assessment of the models' own core capabilities, particularly domain relevance, remains insufficient. To address this gap, we propose GovRelBench, a benchmark specifically designed for evaluating the core capabilities of LLMs in the government domain. GovRelBench consists of government domain prompts and a dedicated evaluation tool, GovRelBERT. During the training process of GovRelBERT, we introduce the SoftGovScore method: this method trains a model based on the ModernBERT architecture by converting hard labels to soft scores, enabling it to accurately compute the text's government domain relevance score. This work aims to enhance the capability evaluation framework for large models in the government domain, providing an effective tool for relevant research and practice. Our code and dataset are available at https://github.com/pan-xi/GovRelBench.
Graph-Augmented Large Language Model Agents: Current Progress and Future Prospects
Autonomous agents based on large language models (LLMs) have demonstrated impressive capabilities in a wide range of applications, including web navigation, software development, and embodied control. While most LLMs are limited in several key agentic procedures, such as reliable planning, long-term memory, tool management, and multi-agent coordination, graphs can serve as a powerful auxiliary structure to enhance structure, continuity, and coordination in complex agent workflows. Given the rapid growth and fragmentation of research on Graph-augmented LLM Agents (GLA), this paper offers a timely and comprehensive overview of recent advances and also highlights key directions for future work. Specifically, we categorize existing GLA methods by their primary functions in LLM agent systems, including planning, memory, and tool usage, and then analyze how graphs and graph learning algorithms contribute to each. For multi-agent systems, we further discuss how GLA solutions facilitate the orchestration, efficiency optimization, and trustworthiness of MAS. Finally, we highlight key future directions to advance this field, from improving structural adaptability to enabling unified, scalable, and multimodal GLA systems. We hope this paper can serve as a roadmap for future research on GLA and foster a deeper understanding of the role of graphs in LLM agent systems.
comment: 15 pages, 7 figures
☆ Shapley Uncertainty in Natural Language Generation
In question-answering tasks, determining when to trust the outputs is crucial to the alignment of large language models (LLMs). Kuhn et al. (2023) introduces semantic entropy as a measure of uncertainty, by incorporating linguistic invariances from the same meaning. It primarily relies on setting threshold to measure the level of semantic equivalence relation. We propose a more nuanced framework that extends beyond such thresholding by developing a Shapley-based uncertainty metric that captures the continuous nature of semantic relationships. We establish three fundamental properties that characterize valid uncertainty metrics and prove that our Shapley uncertainty satisfies these criteria. Through extensive experiments, we demonstrate that our Shapley uncertainty more accurately predicts LLM performance in question-answering and other datasets, compared to similar baseline measures.
☆ Sync-TVA: A Graph-Attention Framework for Multimodal Emotion Recognition with Cross-Modal Fusion
Multimodal emotion recognition (MER) is crucial for enabling emotionally intelligent systems that perceive and respond to human emotions. However, existing methods suffer from limited cross-modal interaction and imbalanced contributions across modalities. To address these issues, we propose Sync-TVA, an end-to-end graph-attention framework featuring modality-specific dynamic enhancement and structured cross-modal fusion. Our design incorporates a dynamic enhancement module for each modality and constructs heterogeneous cross-modal graphs to model semantic relations across text, audio, and visual features. A cross-attention fusion mechanism further aligns multimodal cues for robust emotion inference. Experiments on MELD and IEMOCAP demonstrate consistent improvements over state-of-the-art models in both accuracy and weighted F1 score, especially under class-imbalanced conditions.
☆ Meaning-infused grammar: Gradient Acceptability Shapes the Geometric Representations of Constructions in LLMs
The usage-based constructionist (UCx) approach posits that language comprises a network of learned form-meaning pairings (constructions) whose use is largely determined by their meanings or functions, requiring them to be graded and probabilistic. This study investigates whether the internal representations in Large Language Models (LLMs) reflect the proposed function-infused gradience. We analyze the neural representations of the English dative constructions (Double Object and Prepositional Object) in Pythia-$1.4$B, using a dataset of $5000$ sentence pairs systematically varied for human-rated preference strength. A macro-level geometric analysis finds that the separability between construction representations, as measured by Energy Distance or Jensen-Shannon Divergence, is systematically modulated by gradient preference strength. More prototypical exemplars of each construction occupy more distinct regions in the activation space of LLMs. These results provide strong evidence that LLMs learn rich, meaning-infused, graded representations of constructions and offer support for geometric measures of basic constructionist principles in LLMs.
comment: 5 pages, 3 figures, Accepted for publication at the Second International Workshop on Construction Grammars and NLP at the 16th International Conference for Computational Semantics (IWCS) 2025
☆ CoEx -- Co-evolving World-model and Exploration
Planning in modern LLM agents relies on the utilization of LLM as an internal world model, acquired during pretraining. However, existing agent designs fail to effectively assimilate new observations into dynamic updates of the world model. This reliance on the LLM's static internal world model is progressively prone to misalignment with the underlying true state of the world, leading to the generation of divergent and erroneous plans. We introduce a hierarchical agent architecture, CoEx, in which hierarchical state abstraction allows LLM planning to co-evolve with a dynamically updated model of the world. CoEx plans and interacts with the world by using LLM reasoning to orchestrate dynamic plans consisting of subgoals, and its learning mechanism continuously incorporates these subgoal experiences into a persistent world model in the form of a neurosymbolic belief state, comprising textual inferences and code-based symbolic memory. We evaluate our agent across a diverse set of agent scenarios involving rich environments and complex tasks including ALFWorld, PDDL, and Jericho. Our experiments show that CoEx outperforms existing agent paradigms in planning and exploration.
☆ Multi-modal Relational Item Representation Learning for Inferring Substitutable and Complementary Items
We introduce a novel self-supervised multi-modal relational item representation learning framework designed to infer substitutable and complementary items. Existing approaches primarily focus on modeling item-item associations deduced from user behaviors using graph neural networks (GNNs) or leveraging item content information. However, these methods often overlook critical challenges, such as noisy user behavior data and data sparsity due to the long-tailed distribution of these behaviors. In this paper, we propose MMSC, a self-supervised multi-modal relational item representation learning framework to address these challenges. Specifically, MMSC consists of three main components: (1) a multi-modal item representation learning module that leverages a multi-modal foundational model and learns from item metadata, (2) a self-supervised behavior-based representation learning module that denoises and learns from user behavior data, and (3) a hierarchical representation aggregation mechanism that integrates item representations at both the semantic and task levels. Additionally, we leverage LLMs to generate augmented training data, further enhancing the denoising process during training. We conduct extensive experiments on five real-world datasets, showing that MMSC outperforms existing baselines by 26.1% for substitutable recommendation and 39.2% for complementary recommendation. In addition, we empirically show that MMSC is effective in modeling cold-start items.
☆ Promoting Online Safety by Simulating Unsafe Conversations with LLMs
Generative AI, including large language models (LLMs) have the potential -- and already are being used -- to increase the speed, scale, and types of unsafe conversations online. LLMs lower the barrier for entry for bad actors to create unsafe conversations in particular because of their ability to generate persuasive and human-like text. In our current work, we explore ways to promote online safety by teaching people about unsafe conversations that can occur online with and without LLMs. We build on prior work that shows that LLMs can successfully simulate scam conversations. We also leverage research in the learning sciences that shows that providing feedback on one's hypothetical actions can promote learning. In particular, we focus on simulating scam conversations using LLMs. Our work incorporates two LLMs that converse with each other to simulate realistic, unsafe conversations that people may encounter online between a scammer LLM and a target LLM but users of our system are asked provide feedback to the target LLM.
☆ SmartCLIP: Modular Vision-language Alignment with Identification Guarantees CVPR2025
Contrastive Language-Image Pre-training (CLIP)~\citep{radford2021learning} has emerged as a pivotal model in computer vision and multimodal learning, achieving state-of-the-art performance at aligning visual and textual representations through contrastive learning. However, CLIP struggles with potential information misalignment in many image-text datasets and suffers from entangled representation. On the one hand, short captions for a single image in datasets like MSCOCO may describe disjoint regions in the image, leaving the model uncertain about which visual features to retain or disregard. On the other hand, directly aligning long captions with images can lead to the retention of entangled details, preventing the model from learning disentangled, atomic concepts -- ultimately limiting its generalization on certain downstream tasks involving short prompts. In this paper, we establish theoretical conditions that enable flexible alignment between textual and visual representations across varying levels of granularity. Specifically, our framework ensures that a model can not only \emph{preserve} cross-modal semantic information in its entirety but also \emph{disentangle} visual representations to capture fine-grained textual concepts. Building on this foundation, we introduce \ours, a novel approach that identifies and aligns the most relevant visual and textual representations in a modular manner. Superior performance across various tasks demonstrates its capability to handle information misalignment and supports our identification theory. The code is available at https://github.com/Mid-Push/SmartCLIP.
comment: CVPR2025
☆ Agent-centric learning: from external reward maximization to internal knowledge curation
The pursuit of general intelligence has traditionally centered on external objectives: an agent's control over its environments or mastery of specific tasks. This external focus, however, can produce specialized agents that lack adaptability. We propose representational empowerment, a new perspective towards a truly agent-centric learning paradigm by moving the locus of control inward. This objective measures an agent's ability to controllably maintain and diversify its own knowledge structures. We posit that the capacity -- to shape one's own understanding -- is an element for achieving better ``preparedness'' distinct from direct environmental influence. Focusing on internal representations as the main substrate for computing empowerment offers a new lens through which to design adaptable intelligent systems.
comment: RLC Finding the Frame Workshop 2025
☆ Using Scaling Laws for Data Source Utility Estimation in Domain-Specific Pre-Training
We introduce a framework for optimizing domain-specific dataset construction in foundation model training. Specifically, we seek a cost-efficient way to estimate the quality of data sources (e.g. synthetically generated or filtered web data, etc.) in order to make optimal decisions about resource allocation for data sourcing from these sources for the stage two pre-training phase, aka annealing, with the goal of specializing a generalist pre-trained model to specific domains. Our approach extends the usual point estimate approaches, aka micro-annealing, to estimating scaling laws by performing multiple annealing runs of varying compute spent on data curation and training. This addresses a key limitation in prior work, where reliance on point estimates for data scaling decisions can be misleading due to the lack of rank invariance across compute scales -- a phenomenon we confirm in our experiments. By systematically analyzing performance gains relative to acquisition costs, we find that scaling curves can be estimated for different data sources. Such scaling laws can inform cost effective resource allocation across different data acquisition methods (e.g. synthetic data), data sources (e.g. user or web data) and available compute resources. We validate our approach through experiments on a pre-trained model with 7 billion parameters. We adapt it to: a domain well-represented in the pre-training data -- the medical domain, and a domain underrepresented in the pretraining corpora -- the math domain. We show that one can efficiently estimate the scaling behaviors of a data source by running multiple annealing runs, which can lead to different conclusions, had one used point estimates using the usual micro-annealing technique instead. This enables data-driven decision-making for selecting and optimizing data sources.
☆ Large Language Model-Based Framework for Explainable Cyberattack Detection in Automatic Generation Control Systems
The increasing digitization of smart grids has improved operational efficiency but also introduced new cybersecurity vulnerabilities, such as False Data Injection Attacks (FDIAs) targeting Automatic Generation Control (AGC) systems. While machine learning (ML) and deep learning (DL) models have shown promise in detecting such attacks, their opaque decision-making limits operator trust and real-world applicability. This paper proposes a hybrid framework that integrates lightweight ML-based attack detection with natural language explanations generated by Large Language Models (LLMs). Classifiers such as LightGBM achieve up to 95.13% attack detection accuracy with only 0.004 s inference latency. Upon detecting a cyberattack, the system invokes LLMs, including GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o mini, to generate human-readable explanation of the event. Evaluated on 100 test samples, GPT-4o mini with 20-shot prompting achieved 93% accuracy in identifying the attack target, a mean absolute error of 0.075 pu in estimating attack magnitude, and 2.19 seconds mean absolute error (MAE) in estimating attack onset. These results demonstrate that the proposed framework effectively balances real-time detection with interpretable, high-fidelity explanations, addressing a critical need for actionable AI in smart grid cybersecurity.
comment: Accepted Publication
☆ RL from Teacher-Model Refinement: Gradual Imitation Learning for Machine Translation
Preference-learning methods for machine translation (MT)--such as Direct Preference Optimization (DPO)--have achieved impressive gains but depend heavily on large, carefully curated triplet datasets and often struggle to generalize beyond their tuning domains. We propose Reinforcement Learning from Teacher-Model Refinement (RLfR), a novel framework that removes reliance on static triplets by leveraging continuous, high-quality feedback from an external teacher model (GPT-4o). RLfR frames each translation step as a micro-tutorial: the actor generates a hypothesis, the teacher refines it, and the actor is rewarded based on how closely it aligns with the teacher's refinement. Guided by two complementary signals--(i) negative edit distance, promoting lexical and structural fidelity, and (ii) COMET score, ensuring semantic adequacy--the actor progressively learns to emulate the teacher, mirroring a human learning process through incremental, iterative improvement. On the FLORES-200 benchmark (English to and from German, Spanish, Chinese, Korean, and Japanese), RLfR consistently outperforms both MT-SFT and preference-based baselines, significantly improving COMET (semantic adequacy) and M-ETA (entity preservation) scores.
☆ Quantum-Inspired Audio Unlearning: Towards Privacy-Preserving Voice Biometrics
The widespread adoption of voice-enabled authentication and audio biometric systems have significantly increased privacy vulnerabilities associated with sensitive speech data. Compliance with privacy regulations such as GDPR's right to be forgotten and India's DPDP Act necessitates targeted and efficient erasure of individual-specific voice signatures from already-trained biometric models. Existing unlearning methods designed for visual data inadequately handle the sequential, temporal, and high-dimensional nature of audio signals, leading to ineffective or incomplete speaker and accent erasure. To address this, we introduce QPAudioEraser, a quantum-inspired audio unlearning framework. Our our-phase approach involves: (1) weight initialization using destructive interference to nullify target features, (2) superposition-based label transformations that obscure class identity, (3) an uncertainty-maximizing quantum loss function, and (4) entanglement-inspired mixing of correlated weights to retain model knowledge. Comprehensive evaluations with ResNet18, ViT, and CNN architectures across AudioMNIST, Speech Commands, LibriSpeech, and Speech Accent Archive datasets validate QPAudioEraser's superior performance. The framework achieves complete erasure of target data (0% Forget Accuracy) while incurring minimal impact on model utility, with a performance degradation on retained data as low as 0.05%. QPAudioEraser consistently surpasses conventional baselines across single-class, multi-class, sequential, and accent-level erasure scenarios, establishing the proposed approach as a robust privacy-preserving solution.
comment: 9 pages, 2 figures, 5 tables, Accepted at IJCB 2025 (Osaka, Japan)
☆ Explainability Through Systematicity: The Hard Systematicity Challenge for Artificial Intelligence
This paper argues that explainability is only one facet of a broader ideal that shapes our expectations towards artificial intelligence (AI). Fundamentally, the issue is to what extent AI exhibits systematicity--not merely in being sensitive to how thoughts are composed of recombinable constituents, but in striving towards an integrated body of thought that is consistent, coherent, comprehensive, and parsimoniously principled. This richer conception of systematicity has been obscured by the long shadow of the "systematicity challenge" to connectionism, according to which network architectures are fundamentally at odds with what Fodor and colleagues termed "the systematicity of thought." I offer a conceptual framework for thinking about "the systematicity of thought" that distinguishes four senses of the phrase. I use these distinctions to defuse the perceived tension between systematicity and connectionism and show that the conception of systematicity that historically shaped our sense of what makes thought rational, authoritative, and scientific is more demanding than the Fodorian notion. To determine whether we have reason to hold AI models to this ideal of systematicity, I then argue, we must look to the rationales for systematization and explore to what extent they transfer to AI models. I identify five such rationales and apply them to AI. This brings into view the "hard systematicity challenge." However, the demand for systematization itself needs to be regulated by the rationales for systematization. This yields a dynamic understanding of the need to systematize thought, which tells us how systematic we need AI models to be and when.
comment: 39 pages; final, published version
☆ Measuring Time-Series Dataset Similarity using Wasserstein Distance
The emergence of time-series foundation model research elevates the growing need to measure the (dis)similarity of time-series datasets. A time-series dataset similarity measure aids research in multiple ways, including model selection, finetuning, and visualization. In this paper, we propose a distribution-based method to measure time-series dataset similarity by leveraging the Wasserstein distance. We consider a time-series dataset an empirical instantiation of an underlying multivariate normal distribution (MVN). The similarity between two time-series datasets is thus computed as the Wasserstein distance between their corresponding MVNs. Comprehensive experiments and visualization show the effectiveness of our approach. Specifically, we show how the Wasserstein distance helps identify similar time-series datasets and facilitates inference performance estimation of foundation models in both out-of-distribution and transfer learning evaluation, with high correlations between our proposed measure and the inference loss (>0.60).
☆ A Scalable Pipeline for Estimating Verb Frame Frequencies Using Large Language Models
We present an automated pipeline for estimating Verb Frame Frequencies (VFFs), the frequency with which a verb appears in particular syntactic frames. VFFs provide a powerful window into syntax in both human and machine language systems, but existing tools for calculating them are limited in scale, accuracy, or accessibility. We use large language models (LLMs) to generate a corpus of sentences containing 476 English verbs. Next, by instructing an LLM to behave like an expert linguist, we had it analyze the syntactic structure of the sentences in this corpus. This pipeline outperforms two widely used syntactic parsers across multiple evaluation datasets. Furthermore, it requires far fewer resources than manual parsing (the gold-standard), thereby enabling rapid, scalable VFF estimation. Using the LLM parser, we produce a new VFF database with broader verb coverage, finer-grained syntactic distinctions, and explicit estimates of the relative frequencies of structural alternates commonly studied in psycholinguistics. The pipeline is easily customizable and extensible to new verbs, syntactic frames, and even other languages. We present this work as a proof of concept for automated frame frequency estimation, and release all code and data to support future research.
☆ SourceSplice: Source Selection for Machine Learning Tasks
Data quality plays a pivotal role in the predictive performance of machine learning (ML) tasks - a challenge amplified by the deluge of data sources available in modern organizations.Prior work in data discovery largely focus on metadata matching, semantic similarity or identifying tables that should be joined to answer a particular query, but do not consider source quality for high performance of the downstream ML task.This paper addresses the problem of determining the best subset of data sources that must be combined to construct the underlying training dataset for a given ML task.We propose SourceGrasp and SourceSplice, frameworks designed to efficiently select a suitable subset of sources that maximizes the utility of the downstream ML model.Both the algorithms rely on the core idea that sources (or their combinations) contribute differently to the task utility, and must be judiciously chosen.While SourceGrasp utilizes a metaheuristic based on a greediness criterion and randomization, the SourceSplice framework presents a source selection mechanism inspired from gene splicing - a core concept used in protein synthesis.We empirically evaluate our algorithms on three real-world datasets and synthetic datasets and show that, with significantly fewer subset explorations, SourceSplice effectively identifies subsets of data sources leading to high task utility.We also conduct studies reporting the sensitivity of SourceSplice to the decision choices under several settings.
☆ Persona-Augmented Benchmarking: Evaluating LLMs Across Diverse Writing Styles
Current benchmarks for evaluating Large Language Models (LLMs) often do not exhibit enough writing style diversity, with many adhering primarily to standardized conventions. Such benchmarks do not fully capture the rich variety of communication patterns exhibited by humans. Thus, it is possible that LLMs, which are optimized on these benchmarks, may demonstrate brittle performance when faced with "non-standard" input. In this work, we test this hypothesis by rewriting evaluation prompts using persona-based LLM prompting, a low-cost method to emulate diverse writing styles. Our results show that, even with identical semantic content, variations in writing style and prompt formatting significantly impact the estimated performance of the LLM under evaluation. Notably, we identify distinct writing styles that consistently trigger either low or high performance across a range of models and tasks, irrespective of model family, size, and recency. Our work offers a scalable approach to augment existing benchmarks, improving the external validity of the assessments they provide for measuring LLM performance across linguistic variations.
☆ Strategic Deflection: Defending LLMs from Logit Manipulation
With the growing adoption of Large Language Models (LLMs) in critical areas, ensuring their security against jailbreaking attacks is paramount. While traditional defenses primarily rely on refusing malicious prompts, recent logit-level attacks have demonstrated the ability to bypass these safeguards by directly manipulating the token-selection process during generation. We introduce Strategic Deflection (SDeflection), a defense that redefines the LLM's response to such advanced attacks. Instead of outright refusal, the model produces an answer that is semantically adjacent to the user's request yet strips away the harmful intent, thereby neutralizing the attacker's harmful intent. Our experiments demonstrate that SDeflection significantly lowers Attack Success Rate (ASR) while maintaining model performance on benign queries. This work presents a critical shift in defensive strategies, moving from simple refusal to strategic content redirection to neutralize advanced threats.
comment: 20 pages
☆ IndoPref: A Multi-Domain Pairwise Preference Dataset for Indonesian
Over 200 million people speak Indonesian, yet the language remains significantly underrepresented in preference-based research for large language models (LLMs). Most existing multilingual datasets are derived from English translations, often resulting in content that lacks cultural and linguistic authenticity. To address this gap, we introduce IndoPref, the first fully human-authored and multi-domain Indonesian preference dataset specifically designed to evaluate the naturalness and quality of LLM-generated text. All annotations are natively written in Indonesian and evaluated using Krippendorff's alpha, demonstrating strong inter-annotator agreement. Additionally, we benchmark the dataset across multiple LLMs and assess the output quality of each model.
comment: Preprint
☆ Tiny Noise-Robust Voice Activity Detector for Voice Assistants
Voice Activity Detection (VAD) in the presence of background noise remains a challenging problem in speech processing. Accurate VAD is essential in automatic speech recognition, voice-to-text, conversational agents, etc, where noise can severely degrade the performance. A modern application includes the voice assistant, specially mounted on Artificial Intelligence of Things (AIoT) devices such as cell phones, smart glasses, earbuds, etc, where the voice signal includes background noise. Therefore, VAD modules must remain light-weight due to their practical on-device limitation. The existing models often struggle with low signal-to-noise ratios across diverse acoustic environments. A simple VAD often detects human voice in a clean environment, but struggles to detect the human voice in noisy conditions. We propose a noise-robust VAD that comprises a light-weight VAD, with data pre-processing and post-processing added modules to handle the background noise. This approach significantly enhances the VAD accuracy in noisy environments and requires neither a larger model, nor fine-tuning. Experimental results demonstrate that our approach achieves a notable improvement compared to baselines, particularly in environments with high background noise interference. This modified VAD additionally improving clean speech detection.
comment: Hamed Jafarzadeh Asl and Mahsa Ghazvini Nejad contributed equally to this work
☆ When Truthful Representations Flip Under Deceptive Instructions?
Large language models (LLMs) tend to follow maliciously crafted instructions to generate deceptive responses, posing safety challenges. How deceptive instructions alter the internal representations of LLM compared to truthful ones remains poorly understood beyond output analysis. To bridge this gap, we investigate when and how these representations ``flip'', such as from truthful to deceptive, under deceptive versus truthful/neutral instructions. Analyzing the internal representations of Llama-3.1-8B-Instruct and Gemma-2-9B-Instruct on a factual verification task, we find the model's instructed True/False output is predictable via linear probes across all conditions based on the internal representation. Further, we use Sparse Autoencoders (SAEs) to show that the Deceptive instructions induce significant representational shifts compared to Truthful/Neutral representations (which are similar), concentrated in early-to-mid layers and detectable even on complex datasets. We also identify specific SAE features highly sensitive to deceptive instruction and use targeted visualizations to confirm distinct truthful/deceptive representational subspaces. % Our analysis pinpoints layer-wise and feature-level correlates of instructed dishonesty, offering insights for LLM detection and control. Our findings expose feature- and layer-level signatures of deception, offering new insights for detecting and mitigating instructed dishonesty in LLMs.
☆ Runtime Failure Hunting for Physics Engine Based Software Systems: How Far Can We Go?
Physics Engines (PEs) are fundamental software frameworks that simulate physical interactions in applications ranging from entertainment to safety-critical systems. Despite their importance, PEs suffer from physics failures, deviations from expected physical behaviors that can compromise software reliability, degrade user experience, and potentially cause critical failures in autonomous vehicles or medical robotics. Current testing approaches for PE-based software are inadequate, typically requiring white-box access and focusing on crash detection rather than semantically complex physics failures. This paper presents the first large-scale empirical study characterizing physics failures in PE-based software. We investigate three research questions addressing the manifestations of physics failures, the effectiveness of detection techniques, and developer perceptions of current detection practices. Our contributions include: (1) a taxonomy of physics failure manifestations; (2) a comprehensive evaluation of detection methods including deep learning, prompt-based techniques, and large multimodal models; and (3) actionable insights from developer experiences for improving detection approaches. To support future research, we release PhysiXFails, code, and other materials at https://sites.google.com/view/physics-failure-detection.
☆ Scaling and Distilling Transformer Models for sEMG
Surface electromyography (sEMG) signals offer a promising avenue for developing innovative human-computer interfaces by providing insights into muscular activity. However, the limited volume of training data and computational constraints during deployment have restricted the investigation of scaling up the model size for solving sEMG tasks. In this paper, we demonstrate that vanilla transformer models can be effectively scaled up on sEMG data and yield improved cross-user performance up to 110M parameters, surpassing the model size regime investigated in other sEMG research (usually <10M parameters). We show that >100M-parameter models can be effectively distilled into models 50x smaller with minimal loss of performance (<1.5% absolute). This results in efficient and expressive models suitable for complex real-time sEMG tasks in real-world environments.
comment: Accepted at TMLR 2025 (https://openreview.net/forum?id=hFPWThwUiZ), 11 pages
☆ Pathology Foundation Models are Scanner Sensitive: Benchmark and Mitigation with Contrastive ScanGen Loss MICCAI
Computational pathology (CPath) has shown great potential in mining actionable insights from Whole Slide Images (WSIs). Deep Learning (DL) has been at the center of modern CPath, and while it delivers unprecedented performance, it is also known that DL may be affected by irrelevant details, such as those introduced during scanning by different commercially available scanners. This may lead to scanner bias, where the model outputs for the same tissue acquired by different scanners may vary. In turn, it hinders the trust of clinicians in CPath-based tools and their deployment in real-world clinical practices. Recent pathology Foundation Models (FMs) promise to provide better domain generalization capabilities. In this paper, we benchmark FMs using a multi-scanner dataset and show that FMs still suffer from scanner bias. Following this observation, we propose ScanGen, a contrastive loss function applied during task-specific fine-tuning that mitigates scanner bias, thereby enhancing the models' robustness to scanner variations. Our approach is applied to the Multiple Instance Learning task of Epidermal Growth Factor Receptor (EGFR) mutation prediction from H\&E-stained WSIs in lung cancer. We observe that ScanGen notably enhances the ability to generalize across scanners, while retaining or improving the performance of EGFR mutation prediction.
comment: Accepted (Oral) in MedAGI 2025 International Workshop at MICCAI Conference
☆ Hybrid activation functions for deep neural networks: S3 and S4 -- a novel approach to gradient flow optimization
Activation functions are critical components in deep neural networks, directly influencing gradient flow, training stability, and model performance. Traditional functions like ReLU suffer from dead neuron problems, while sigmoid and tanh exhibit vanishing gradient issues. We introduce two novel hybrid activation functions: S3 (Sigmoid-Softsign) and its improved version S4 (smoothed S3). S3 combines sigmoid for negative inputs with softsign for positive inputs, while S4 employs a smooth transition mechanism controlled by a steepness parameter k. We conducted comprehensive experiments across binary classification, multi-class classification, and regression tasks using three different neural network architectures. S4 demonstrated superior performance compared to nine baseline activation functions, achieving 97.4% accuracy on MNIST, 96.0% on Iris classification, and 18.7 MSE on Boston Housing regression. The function exhibited faster convergence (-19 for ReLU) and maintained stable gradient flow across network depths. Comparative analysis revealed S4's gradient range of [0.24, 0.59] compared to ReLU's 18% dead neurons in deep networks. The S4 activation function addresses key limitations of existing functions through its hybrid design and smooth transition mechanism. The tunable parameter k allows adaptation to different tasks and network depths, making S4 a versatile choice for deep learning applications. These findings suggest that hybrid activation functions represent a promising direction for improving neural network training dynamics.
comment: 15 pages, 2 figures, 5 tables
☆ Principled Curriculum Learning using Parameter Continuation Methods
In this work, we propose a parameter continuation method for the optimization of neural networks. There is a close connection between parameter continuation, homotopies, and curriculum learning. The methods we propose here are theoretically justified and practically effective for several problems in deep neural networks. In particular, we demonstrate better generalization performance than state-of-the-art optimization techniques such as ADAM for supervised and unsupervised learning tasks.
☆ CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
This paper introduces a novel benchmark, EGE-Math Solutions Assessment Benchmark, for evaluating Vision-Language Models (VLMs) on their ability to assess hand-written mathematical solutions. Unlike existing benchmarks that focus on problem solving, our approach centres on understanding student solutions, identifying mistakes, and assigning grades according to fixed criteria. We compile 122 scanned solutions from the Russian Unified State Exam (EGE) together with official expert grades, and evaluate seven modern VLMs from Google, OpenAI, Arcee AI, and Alibaba Cloud in three inference modes. The results reveal current limitations in mathematical reasoning and human-rubric alignment, opening new research avenues in AI-assisted assessment. You can find code in https://github.com/Karifannaa/Auto-check-EGE-math
comment: 15 pages, 3 figures, 10 tables. Code is available at: https://github.com/Karifannaa/Auto-check-EGE-math
♻ ☆ Back Home: A Computer Vision Solution to Seashell Identification for Ecological Restoration ICCV 2025
Illegal souvenir collection strips an estimated five tonnes of seashells from Costa Rica's beaches each year. Yet, once these specimens are seized, their coastal origin -- Pacific or Caribbean -- cannot be verified easily due to the lack of information, preventing their return when confiscated by local authorities. To solve this issue, we introduce BackHome19K, the first large-scale image corpus (19,058 photographs, 516 species) annotated with coast-level labels, and propose a lightweight pipeline that infers provenance in real time on a mobile-grade CPU. A trained anomaly filter pre-screens uploads, increasing robustness to user-generated noise. On a held-out test set, the classifier attains 86.3% balanced accuracy, while the filter rejects 93% of 180 out-of-domain objects with zero false negatives. Deployed as a web application, the system has already processed 70,000 shells for wildlife officers in under three seconds per image, enabling confiscated specimens to be safely repatriated to their native ecosystems. The dataset is available at https://huggingface.co/datasets/FIFCO/BackHome19K
comment: ICCV 2025 (CV4E Workshop)
♻ ☆ JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1 ICCV 2025
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.
comment: WiCV @ ICCV 2025
♻ ☆ LIMO: Less is More for Reasoning
We challenge the prevailing assumption that complex reasoning in large language models (LLMs) necessitates massive training data. We demonstrate that sophisticated mathematical reasoning can emerge with only a few examples. Specifically, through simple supervised fine-tuning, our model, LIMO, achieves 63.3\% accuracy on AIME24 and 95.6\% on MATH500, surpassing previous fine-tuned models (6.5\% on AIME24, 59.2\% on MATH500) while using only 1\% of the training data required by prior approaches. Furthermore, LIMO exhibits strong out-of-distribution generalization, achieving a 45.8\% absolute improvement across diverse benchmarks, outperforming models trained on 100x more data. Synthesizing these findings, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning can emerge through minimal but strategically designed demonstrations of cognitive processes. This hypothesis suggests that the threshold for eliciting complex reasoning is not dictated by task complexity but rather by two key factors: (1) the completeness of the model's pre-trained knowledge base and (2) the effectiveness of post-training examples in serving as "cognitive templates" that guide reasoning.
comment: COLM 2025
♻ ☆ T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation ICCV 2025
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.
comment: ICCV 2025
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ The Xeno Sutra: Can Meaning and Value be Ascribed to an AI-Generated "Sacred" Text?
This paper presents a case study in the use of a large language model to generate a fictional Buddhist "sutra"', and offers a detailed analysis of the resulting text from a philosophical and literary point of view. The conceptual subtlety, rich imagery, and density of allusion found in the text make it hard to causally dismiss on account of its mechanistic origin. This raises questions about how we, as a society, should come to terms with the potentially unsettling possibility of a technology that encroaches on human meaning-making. We suggest that Buddhist philosophy, by its very nature, is well placed to adapt.
♻ ☆ A Multi-Agent System Enables Versatile Information Extraction from the Chemical Literature
To fully expedite AI-powered chemical research, high-quality chemical databases are the cornerstone. Automatic extraction of chemical information from the literature is essential for constructing reaction databases, but it is currently limited by the multimodality and style variability of chemical information. In this work, we developed a multimodal large language model (MLLM)-based multi-agent system for robust and automated chemical information extraction. It utilizes the MLLM's strong reasoning capability to understand the structure of diverse chemical graphics, decompose the extraction task into sub-tasks, and coordinate a set of specialized agents, each combining the capabilities of the MLLM with the precise, domain-specific strengths of dedicated tools, to solve them accurately and integrate the results into a unified output. Our system achieved an F1 score of 80.8% on a benchmark dataset of sophisticated multimodal chemical reaction graphics from the literature, surpassing the previous state-of-the-art model (F1 score of 35.6%) by a significant margin. Additionally, it demonstrated consistent improvements in key sub-tasks, including molecular image recognition, reaction image parsing, named entity recognition and text-based reaction extraction. This work is a critical step toward automated chemical information extraction into structured datasets, which will be a strong promoter of AI-driven chemical research.
♻ ☆ Humanoid Occupancy: Enabling A Generalized Multimodal Occupancy Perception System on Humanoid Robots
Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse heterogeneous visual perception modules tailored to specific scenarios. Among various perception paradigms, occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding. In this work, we present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline. Our framework employs advanced multi-modal fusion techniques to generate grid-based occupancy outputs encoding both occupancy status and semantic labels, thereby enabling holistic environmental understanding for downstream tasks such as task planning and navigation. To address the unique challenges of humanoid robots, we overcome issues such as kinematic interference and occlusion, and establish an effective sensor layout strategy. Furthermore, we have developed the first panoramic occupancy dataset specifically for humanoid robots, offering a valuable benchmark and resource for future research and development in this domain. The network architecture incorporates multi-modal feature fusion and temporal information integration to ensure robust perception. Overall, Humanoid Occupancy delivers effective environmental perception for humanoid robots and establishes a technical foundation for standardizing universal visual modules, paving the way for the widespread deployment of humanoid robots in complex real-world scenarios.
comment: Tech Report
♻ ☆ Sem-DPO: Mitigating Semantic Inconsistency in Preference Optimization for Prompt Engineering
Generative AI can now synthesize strikingly realistic images from text, yet output quality remains highly sensitive to how prompts are phrased. Direct Preference Optimization (DPO) offers a lightweight, off-policy alternative to RL for automatic prompt engineering, but its token-level regularization leaves semantic inconsistency unchecked as prompts that win higher preference scores can still drift away from the user's intended meaning. We introduce Sem-DPO, a variant of DPO that preserves semantic consistency yet retains its simplicity and efficiency. Sem-DPO adjusts the DPO loss using a weight based on how different the winning prompt is from the original, reducing the impact of training examples that are semantically misaligned. We provide the first analytical bound on semantic drift for preference-tuned prompt generators, showing that Sem-DPO keeps learned prompts within a provably bounded neighborhood of the original text. On three standard text-to-image prompt-optimization benchmarks and two language models, Sem-DPO achieves 8-12% higher CLIP similarity and 5-9% higher human-preference scores (HPSv2.1, PickScore) than DPO, while also outperforming state-of-the-art baselines. These findings suggest that strong flat baselines augmented with semantic weighting should become the new standard for prompt-optimization studies and lay the groundwork for broader, semantics-aware preference optimization in language models.
♻ ☆ The Carbon Cost of Conversation, Sustainability in the Age of Language Models
Large language models (LLMs) like GPT-3 and BERT have revolutionized natural language processing (NLP), yet their environmental costs remain dangerously overlooked. This article critiques the sustainability of LLMs, quantifying their carbon footprint, water usage, and contribution to e-waste through case studies of models such as GPT-4 and energy-efficient alternatives like Mistral 7B. Training a single LLM can emit carbon dioxide equivalent to hundreds of cars driven annually, while data centre cooling exacerbates water scarcity in vulnerable regions. Systemic challenges corporate greenwashing, redundant model development, and regulatory voids perpetuate harm, disproportionately burdening marginalized communities in the Global South. However, pathways exist for sustainable NLP: technical innovations (e.g., model pruning, quantum computing), policy reforms (carbon taxes, mandatory emissions reporting), and cultural shifts prioritizing necessity over novelty. By analysing industry leaders (Google, Microsoft) and laggards (Amazon), this work underscores the urgency of ethical accountability and global cooperation. Without immediate action, AIs ecological toll risks outpacing its societal benefits. The article concludes with a call to align technological progress with planetary boundaries, advocating for equitable, transparent, and regenerative AI systems that prioritize both human and environmental well-being.
comment: 22 Pages, 5 Tables
♻ ☆ What Does 'Human-Centred AI' Mean?
While it seems sensible that human-centred artificial intelligence (AI) means centring "human behaviour and experience," it cannot be any other way. AI, I argue, is usefully seen as a relationship between technology and humans where it appears that artifacts can perform, to a greater or lesser extent, human cognitive labour. This is evinced using examples that juxtapose technology with cognition, inter alia: abacus versus mental arithmetic; alarm clock versus knocker-upper; camera versus vision; and sweatshop versus tailor. Using novel definitions and analyses, sociotechnical relationships can be analysed into varying types of: displacement (harmful), enhancement (beneficial), and/or replacement (neutral) of human cognitive labour. Ultimately, all AI implicates human cognition; no matter what. Obfuscation of cognition in the AI context -- from clocks to artificial neural networks -- results in distortion, in slowing critical engagement, perverting cognitive science, and indeed in limiting our ability to truly centre humans and humanity in the engineering of AI systems. To even begin to de-fetishise AI, we must look the human-in-the-loop in the eyes.
♻ ☆ GLIMPSE: Holistic Cross-Modal Explainability for Large Vision-Language Models
Recent large vision-language models (LVLMs) have advanced capabilities in visual question answering (VQA). However, interpreting where LVLMs direct their visual attention remains a significant challenge, yet is essential for understanding model behavior. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals that support open-ended generation. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps for interpreting cross-modal reasoning, outperforming prior methods in faithfulness and pushing the state-of-the-art in human-attention alignment. We demonstrate an analytic approach to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic misalignment, diagnose hallucination and bias, and ensure transparency.
comment: Keywords: Explainable Computer Vision, Large Vision-Language Models, AI Interpretability, Explainable AI, Visual Saliency, Attribution Maps, Cross-Modal Attribution, Human Attention Alignment, AI Transparency
♻ ☆ SAKE: Steering Activations for Knowledge Editing
As Large Langue Models have been shown to memorize real-world facts, the need to update this knowledge in a controlled and efficient manner arises. Designed with these constraints in mind, Knowledge Editing (KE) approaches propose to alter specific facts in pretrained models. However, they have been shown to suffer from several limitations, including their lack of contextual robustness and their failure to generalize to logical implications related to the fact. To overcome these issues, we propose SAKE, a steering activation method that models a fact to be edited as a distribution rather than a single prompt. Leveraging Optimal Transport, SAKE alters the LLM behavior over a whole fact-related distribution, defined as paraphrases and logical implications. Several numerical experiments demonstrate the effectiveness of this method: SAKE is thus able to perform more robust edits than its existing counterparts.
♻ ☆ IRASim: A Fine-Grained World Model for Robot Manipulation
World models allow autonomous agents to plan and explore by predicting the visual outcomes of different actions. However, for robot manipulation, it is challenging to accurately model the fine-grained robot-object interaction within the visual space using existing methods which overlooks precise alignment between each action and the corresponding frame. In this paper, we present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details, conditioned on historical observations and robot action trajectories. We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment. Extensive experiments show that: (1) the quality of the videos generated by our method surpasses all the baseline methods and scales effectively with increased model size and computation; (2) policy evaluations using IRASim exhibit a strong correlation with those using the ground-truth simulator, highlighting its potential to accelerate real-world policy evaluation; (3) testing-time scaling through model-based planning with IRASim significantly enhances policy performance, as evidenced by an improvement in the IoU metric on the Push-T benchmark from 0.637 to 0.961; (4) IRASim provides flexible action controllability, allowing virtual robotic arms in datasets to be controlled via a keyboard or VR controller.
comment: Opensource, project website: https://gen-irasim.github.io
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Ensuring Medical AI Safety: Interpretability-Driven Detection and Mitigation of Spurious Model Behavior and Associated Data
Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.
♻ ☆ SmoothRot: Combining Channel-Wise Scaling and Rotation for Quantization-Friendly LLMs
We present SmoothRot, a novel post-training quantization technique to enhance the efficiency of 4-bit quantization in Large Language Models (LLMs). SmoothRot addresses the critical challenge of massive activation outliers, by integrating channel-wise scaling with Hadamard transformations. Our technique effectively transforms extreme outliers into quantization-friendly activations, significantly improving quantization accuracy. Experiments conducted on popular LLMs (LLaMA2 7B, LLaMA3.1 8B, and Mistral 7B) demonstrate that SmoothRot consistently reduces the performance gap between quantized and FP16 models by approximately 10-30\% across language generation and zero-shot reasoning tasks, without introducing additional inference latency. Code is available at https://github.com/czakop/smoothrot.
comment: 6 pages, 3 figures, 5 tables. Accepted to IEEE SMC 2025 conference proceedings
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems
This paper formalizes Hamiltonian-Informed Optimal Neural (Hion) controllers, a novel class of neural network-based controllers for dynamical systems and explicit non-linear model-predictive control. Hion controllers estimate future states and develop an optimal control strategy using Pontryagin's Maximum Principle. The proposed framework, along with our Taylored Multi-Faceted Approach for Neural ODE and Optimal Control (T-mano) architecture, allows for custom transient behavior, predictive control, and closed-loop feedback, addressing limitations of existing methods. Comparative analyses with established model-predictive controllers revealed Hion controllers' superior optimality and tracking capabilities. Optimal control strategies are also demonstrated for both linear and non-linear dynamical systems.
comment: 27 pages. Source code: https://github.com/wzjoriv/Hion
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (cross-reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new cross-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the training views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate cross-reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
Context-Aware Probabilistic Modeling with LLM for Multimodal Time Series Forecasting
Time series forecasting is important for applications spanning energy markets, climate analysis, and traffic management. However, existing methods struggle to effectively integrate exogenous texts and align them with the probabilistic nature of large language models (LLMs). Current approaches either employ shallow text-time series fusion via basic prompts or rely on deterministic numerical decoding that conflict with LLMs' token-generation paradigm, which limits contextual awareness and distribution modeling. To address these limitations, we propose CAPTime, a context-aware probabilistic multimodal time series forecasting method that leverages text-informed abstraction and autoregressive LLM decoding. Our method first encodes temporal patterns using a pretrained time series encoder, then aligns them with textual contexts via learnable interactions to produce joint multimodal representations. By combining a mixture of distribution experts with frozen LLMs, we enable context-aware probabilistic forecasting while preserving LLMs' inherent distribution modeling capabilities. Experiments on diverse time series forecasting tasks demonstrate the superior accuracy and generalization of CAPTime, particularly in multimodal scenarios. Additional analysis highlights its robustness in data-scarce scenarios through hybrid probabilistic decoding.
comment: 13 pages, 2 figures
♻ ☆ DIVE: Taming DINO for Subject-Driven Video Editing ICCV 2025
Building on the success of diffusion models in image generation and editing, video editing has recently gained substantial attention. However, maintaining temporal consistency and motion alignment still remains challenging. To address these issues, this paper proposes DINO-guided Video Editing (DIVE), a framework designed to facilitate subject-driven editing in source videos conditioned on either target text prompts or reference images with specific identities. The core of DIVE lies in leveraging the powerful semantic features extracted from a pretrained DINOv2 model as implicit correspondences to guide the editing process. Specifically, to ensure temporal motion consistency, DIVE employs DINO features to align with the motion trajectory of the source video. For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model to learn Low-Rank Adaptations (LoRAs), effectively registering the target subject's identity. Extensive experiments on diverse real-world videos demonstrate that our framework can achieve high-quality editing results with robust motion consistency, highlighting the potential of DINO to contribute to video editing. Project page: https://dino-video-editing.github.io
comment: Accepted by ICCV 2025
♻ ☆ FB-RAG: Improving RAG with Forward and Backward Lookup
Traditional Retrieval-Augmented Generation (RAG) struggles with complex queries that lack strong signals to retrieve the most relevant context, forcing a trade-off between choosing a small context that misses key information and a large context that confuses the LLM. To address this, we propose Forward-Backward RAG (FB-RAG), a new training-free framework based on a simple yet powerful forward-looking strategy. FB-RAG employs a light-weight LLM to peek into potential future generations, using evidence from multiple sampled outputs to precisely identify the most relevant context for a final, more powerful generator. This improves performance without complex finetuning or Reinforcement Learning common in prior work. Across 9 datasets, FB-RAG consistently delivers strong results. Further, the performance gains can be achieved with reduced latency due to a shorter, more focused prompt for the powerful generator. On EN.QA dataset, FB-RAG matches the leading baseline with over 48% latency reduction or achieves an 8% performance improvement with a 10% latency reduction. Our analysis finds cases where even when the forward-looking LLM fails to generate correct answers, its attempts are sufficient to guide the final model to an accurate response, demonstrating how smaller LLMs can systematically improve the performance and efficiency of larger ones.
♻ ☆ Enhancing Student Learning with LLM-Generated Retrieval Practice Questions: An Empirical Study in Data Science Courses
Retrieval practice is a well-established pedagogical technique known to significantly enhance student learning and knowledge retention. However, generating high-quality retrieval practice questions is often time-consuming and labor intensive for instructors, especially in rapidly evolving technical subjects. Large Language Models (LLMs) offer the potential to automate this process by generating questions in response to prompts, yet the effectiveness of LLM-generated retrieval practice on student learning remains to be established. In this study, we conducted an empirical study involving two college-level data science courses, with approximately 60 students. We compared learning outcomes during one week in which students received LLM-generated multiple-choice retrieval practice questions to those from a week in which no such questions were provided. Results indicate that students exposed to LLM-generated retrieval practice achieved significantly higher knowledge retention, with an average accuracy of 89%, compared to 73% in the week without such practice. These findings suggest that LLM-generated retrieval questions can effectively support student learning and may provide a scalable solution for integrating retrieval practice into real-time teaching. However, despite these encouraging outcomes and the potential time-saving benefits, cautions must be taken, as the quality of LLM-generated questions can vary. Instructors must still manually verify and revise the generated questions before releasing them to students.
♻ ☆ Task Arithmetic for Language Expansion in Speech Translation
Recent progress in large language models (LLMs) has gained interest in speech-text multimodal foundation models, achieving strong performance on instruction-tuned speech translation (ST). However, expanding language pairs is costly due to re-training on combined new and previous datasets. To address this, we aim to build a one-to-many ST system from existing one-to-one ST systems using task arithmetic without re-training. Direct application of task arithmetic in ST leads to language confusion; therefore, we introduce an augmented task arithmetic method incorporating a language control model to ensure correct target language generation. Our experiments on MuST-C and CoVoST-2 show BLEU score improvements of up to 4.66 and 4.92, with COMET gains of 8.87 and 11.83. In addition, we demonstrate our framework can extend to language pairs lacking paired ST training data or pre-trained ST models by synthesizing ST models based on existing machine translation (MT) and ST models via task analogies.
♻ ☆ Conceptualizing Uncertainty: A Concept-based Approach to Explaining Uncertainty
Uncertainty in machine learning refers to the degree of confidence or lack thereof in a model's predictions. While uncertainty quantification methods exist, explanations of uncertainty, especially in high-dimensional settings, remain an open challenge. Existing work focuses on feature attribution approaches which are restricted to local explanations. Understanding uncertainty, its origins, and characteristics on a global scale is crucial for enhancing interpretability and trust in a model's predictions. In this work, we propose to explain the uncertainty in high-dimensional data classification settings by means of concept activation vectors which give rise to local and global explanations of uncertainty. We demonstrate the utility of the generated explanations by leveraging them to refine and improve our model.
♻ ☆ GSON: A Group-based Social Navigation Framework with Large Multimodal Model
With the increasing presence of service robots and autonomous vehicles in human environments, navigation systems need to evolve beyond simple destination reach to incorporate social awareness. This paper introduces GSON, a novel group-based social navigation framework that leverages Large Multimodal Models (LMMs) to enhance robots' social perception capabilities. Our approach uses visual prompting to enable zero-shot extraction of social relationships among pedestrians and integrates these results with robust pedestrian detection and tracking pipelines to overcome the inherent inference speed limitations of LMMs. The planning system incorporates a mid-level planner that sits between global path planning and local motion planning, effectively preserving both global context and reactive responsiveness while avoiding disruption of the predicted social group. We validate GSON through extensive real-world mobile robot navigation experiments involving complex social scenarios such as queuing, conversations, and photo sessions. Comparative results show that our system significantly outperforms existing navigation approaches in minimizing social perturbations while maintaining comparable performance on traditional navigation metrics.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ A finite time analysis of distributed Q-learning
Multi-agent reinforcement learning (MARL) has witnessed a remarkable surge in interest, fueled by the empirical success achieved in applications of single-agent reinforcement learning (RL). In this study, we consider a distributed Q-learning scenario, wherein a number of agents cooperatively solve a sequential decision making problem without access to the central reward function which is an average of the local rewards. In particular, we study finite-time analysis of a distributed Q-learning algorithm, and provide a new sample complexity result of $\tilde{\mathcal{O}}\left( \min\left\{\frac{1}{\epsilon^2}\frac{t_{\text{mix}}}{(1-\gamma)^6 d_{\min}^4 } ,\frac{1}{\epsilon}\frac{\sqrt{|\gS||\gA|}}{(1-\sigma_2(\boldsymbol{W}))(1-\gamma)^4 d_{\min}^3} \right\}\right)$ under tabular lookup
comment: Published at RLC2025
♻ ☆ Multi-Modal Hypergraph Enhanced LLM Learning for Recommendation
The burgeoning presence of Large Language Models (LLM) is propelling the development of personalized recommender systems. Most existing LLM-based methods fail to sufficiently explore the multi-view graph structure correlations inherent in recommendation scenarios. To this end, we propose a novel framework, Hypergraph Enhanced LLM Learning for multimodal Recommendation (HeLLM), designed to equip LLMs with the capability to capture intricate higher-order semantic correlations by fusing graph-level contextual signals with sequence-level behavioral patterns. In the recommender pre-training phase, we design a user hypergraph to uncover shared interest preferences among users and an item hypergraph to capture correlations within multimodal similarities among items. The hypergraph convolution and synergistic contrastive learning mechanism are introduced to enhance the distinguishability of learned representations. In the LLM fine-tuning phase, we inject the learned graph-structured embeddings directly into the LLM's architecture and integrate sequential features capturing each user's chronological behavior. This process enables hypergraphs to leverage graph-structured information as global context, enhancing the LLM's ability to perceive complex relational patterns and integrate multimodal information, while also modeling local temporal dynamics. Extensive experiments demonstrate the superiority of our proposed method over state-of-the-art baselines, confirming the advantages of fusing hypergraph-based context with sequential user behavior in LLMs for recommendation.
comment: 12 pages, 4 figures, submitted to IEEE Transactions on Knowledge and Data Engineering
♻ ☆ Fuse Before Transfer: Knowledge Fusion for Heterogeneous Distillation ICCV2025
Most knowledge distillation (KD) methodologies predominantly focus on teacher-student pairs with similar architectures, such as both being convolutional neural networks (CNNs). However, the potential and flexibility of KD can be greatly improved by expanding it to novel Cross-Architecture KD (CAKD), where the knowledge of homogeneous and heterogeneous teachers can be transferred flexibly to a given student. The primary challenge in CAKD lies in the substantial feature gaps between heterogeneous models, originating from the distinction of their inherent inductive biases and module functions. To this end, we introduce an assistant model as a bridge to facilitate smooth feature knowledge transfer between heterogeneous teachers and students. More importantly, within our proposed design principle, the assistant model combines the advantages of cross-architecture inductive biases and module functions by merging convolution and attention modules derived from both student and teacher module functions. Furthermore, we observe that heterogeneous features exhibit diverse spatial distributions in CAKD, hindering the effectiveness of conventional pixel-wise mean squared error (MSE) loss. Therefore, we leverage a spatial-agnostic InfoNCE loss to align features after spatial smoothing, thereby improving the feature alignments in CAKD. Our proposed method is evaluated across some homogeneous model pairs and arbitrary heterogeneous combinations of CNNs, ViTs, and MLPs, achieving state-of-the-art performance for distilled models with a maximum gain of 11.47% on CIFAR-100 and 3.67% on ImageNet-1K. Our code and models will be released.
comment: Accepted by ICCV2025
♻ ☆ iPanda: An LLM-based Agent for Automated Conformance Testing of Communication Protocols
Conformance testing is essential for ensuring that protocol implementations comply with their specifications. However, traditional testing approaches involve manually creating numerous test cases and scripts, making the process labor-intensive and inefficient. Recently, Large Language Models (LLMs) have demonstrated impressive text comprehension and code generation abilities, providing promising opportunities for automation. In this paper, we propose iPanda, the first framework that leverages LLMs to automate protocol conformance testing. Given a protocol specification document and its implementation, iPanda first employs a keyword-based method to automatically generate comprehensive test cases. Then, it utilizes retrieval-augmented generation and customized CoT strategy to effectively interpret the implementation and produce executable test programs. To further enhance programs' quality, iPanda incorporates an iterative optimization mechanism to refine generated test scripts interactively. Finally, by executing and analyzing the generated tests, iPanda systematically verifies compliance between implementations and protocol specifications. Comprehensive experiments on various protocols show that iPanda significantly outperforms pure LLM-based approaches, improving the success rate (Pass@1) of test-program generation by factors ranging from 4.675 times to 10.751 times.
comment: 10 pages, 4 figures
♻ ☆ Intrinsic Barriers and Practical Pathways for Human-AI Alignment: An Agreement-Based Complexity Analysis
We formalize AI alignment as a multi-objective optimization problem called $\langle M,N,\varepsilon,\delta\rangle$-agreement that generalizes prior approaches with fewer assumptions, in which a set of $N$ agents (including humans) must reach approximate ($\varepsilon$) agreement across $M$ candidate objectives with probability at least $1-\delta$. Using communication complexity, we prove an information-theoretic lower bound demonstrating that once either $M$ or $N$ is large enough, no interaction or rationality can avoid intrinsic alignment overheads. This barrier establishes rigorous intrinsic limits to alignment \emph{itself}, not merely to specific methods, clarifying a crucial ``no free lunch'' principle: encoding ``all human values'' inevitably leads to misalignment, requiring future methods to explicitly manage complexity through consensus-driven reduction or prioritization of objectives. Complementing this impossibility result, we provide explicit algorithms achieving alignment under both computationally unbounded and bounded rationality with noisy messages. Even in these best-case scenarios where alignment to arbitrary precision is theoretically guaranteed, our analysis identifies three critical scalability barriers: the number of tasks ($M$), agents ($N$), and task state space size ($D$); thereby highlighting fundamental complexity-theoretic constraints and providing guidelines for safer, scalable human-AI collaboration.
comment: 20 pages, improved lower bounds and added clarifications
♻ ☆ Differential-UMamba: Rethinking Tumor Segmentation Under Limited Data Scenarios
In data-scarce scenarios, deep learning models often overfit to noise and irrelevant patterns, which limits their ability to generalize to unseen samples. To address these challenges in medical image segmentation, we introduce Diff-UMamba, a novel architecture that combines the UNet framework with the mamba mechanism to model long-range dependencies. At the heart of Diff-UMamba is a noise reduction module, which employs a signal differencing strategy to suppress noisy or irrelevant activations within the encoder. This encourages the model to filter out spurious features and enhance task-relevant representations, thereby improving its focus on clinically significant regions. As a result, the architecture achieves improved segmentation accuracy and robustness, particularly in low-data settings. Diff-UMamba is evaluated on multiple public datasets, including medical segmentation decathalon dataset (lung and pancreas) and AIIB23, demonstrating consistent performance gains of 1-3% over baseline methods in various segmentation tasks. To further assess performance under limited data conditions, additional experiments are conducted on the BraTS-21 dataset by varying the proportion of available training samples. The approach is also validated on a small internal non-small cell lung cancer dataset for the segmentation of gross tumor volume in cone beam CT, where it achieves a 4-5% improvement over baseline.
♻ ☆ Machine learning-based multimodal prognostic models integrating pathology images and high-throughput omic data for overall survival prediction in cancer: a systematic review
Multimodal machine learning integrating histopathology and molecular data shows promise for cancer prognostication. We systematically reviewed studies combining whole slide images (WSIs) and high-throughput omics to predict overall survival. Searches of EMBASE, PubMed, and Cochrane CENTRAL (12/08/2024), plus citation screening, identified eligible studies. Data extraction used CHARMS; bias was assessed with PROBAST+AI; synthesis followed SWiM and PRISMA 2020. Protocol: PROSPERO (CRD42024594745). Forty-eight studies (all since 2017) across 19 cancer types met criteria; all used The Cancer Genome Atlas. Approaches included regularised Cox regression (n=4), classical ML (n=13), and deep learning (n=31). Reported c-indices ranged 0.550-0.857; multimodal models typically outperformed unimodal ones. However, all studies showed unclear/high bias, limited external validation, and little focus on clinical utility. Multimodal WSI-omics survival prediction is a fast-growing field with promising results but needs improved methodological rigor, broader datasets, and clinical evaluation. Funded by NPIC, Leeds Teaching Hospitals NHS Trust, UK (Project 104687), supported by UKRI Industrial Strategy Challenge Fund.
comment: Main article (50 pages, inc 3 tables, 4 figures). Supplementary material included with additional methodological information and data
♻ ☆ Geometric Algebra Meets Large Language Models: Instruction-Based Transformations of Separate Meshes in 3D, Interactive and Controllable Scenes
This paper introduces a novel integration of Large Language Models (LLMs) with Conformal Geometric Algebra (CGA) to revolutionize controllable 3D scene editing, particularly for object repositioning tasks, which traditionally requires intricate manual processes and specialized expertise. These conventional methods typically suffer from reliance on large training datasets or lack a formalized language for precise edits. Utilizing CGA as a robust formal language, our system, Shenlong, precisely models spatial transformations necessary for accurate object repositioning. Leveraging the zero-shot learning capabilities of pre-trained LLMs, Shenlong translates natural language instructions into CGA operations which are then applied to the scene, facilitating exact spatial transformations within 3D scenes without the need for specialized pre-training. Implemented in a realistic simulation environment, Shenlong ensures compatibility with existing graphics pipelines. To accurately assess the impact of CGA, we benchmark against robust Euclidean Space baselines, evaluating both latency and accuracy. Comparative performance evaluations indicate that Shenlong significantly reduces LLM response times by 16% and boosts success rates by 9.6% on average compared to the traditional methods. Notably, Shenlong achieves a 100% perfect success rate in common practical queries, a benchmark where other systems fall short. These advancements underscore Shenlong's potential to democratize 3D scene editing, enhancing accessibility and fostering innovation across sectors such as education, digital entertainment, and virtual reality.
comment: 10 pages, 4 figures
♻ ☆ Implementing Large Quantum Boltzmann Machines as Generative AI Models for Dataset Balancing
This study explores the implementation of large Quantum Restricted Boltzmann Machines (QRBMs), a key advancement in Quantum Machine Learning (QML), as generative models on D-Wave's Pegasus quantum hardware to address dataset imbalance in Intrusion Detection Systems (IDS). By leveraging Pegasus's enhanced connectivity and computational capabilities, a QRBM with 120 visible and 120 hidden units was successfully embedded, surpassing the limitations of default embedding tools. The QRBM synthesized over 1.6 million attack samples, achieving a balanced dataset of over 4.2 million records. Comparative evaluations with traditional balancing methods, such as SMOTE and RandomOversampler, revealed that QRBMs produced higher-quality synthetic samples, significantly improving detection rates, precision, recall, and F1 score across diverse classifiers. The study underscores the scalability and efficiency of QRBMs, completing balancing tasks in milliseconds. These findings highlight the transformative potential of QML and QRBMs as next-generation tools in data preprocessing, offering robust solutions for complex computational challenges in modern information systems.
comment: S. Sinno, M. Bertl, A. Sahoo, B. Bhalgamiya, T. Gro{\ss} and N. Chancellor, "Implementing Large Quantum Boltzmann Machines as Generative AI Models for Dataset Balancing," 2025 International Conference on Next Generation Information System Engineering (NGISE), Ghaziabad, Delhi (NCR), India, 2025, pp. 1-8, doi: 10.1109/NGISE64126.2025.11085158
♻ ☆ My Life in Artificial Intelligence: People, anecdotes, and some lessons learnt
In this very personal workography, I relate my 40-year experiences as a researcher and educator in and around Artificial Intelligence (AI), more specifically Natural Language Processing. I describe how curiosity, and the circumstances of the day, led me to work in both industry and academia, and in various countries, including The Netherlands (Amsterdam, Eindhoven, and Utrecht), the USA (Stanford), England (Brighton), Scotland (Aberdeen), and China (Beijing and Harbin). People and anecdotes play a large role in my story; the history of AI forms its backdrop. I focus on things that might be of interest to (even) younger colleagues, given the choices they face in their own work and life at a time when AI is finally emerging from the shadows.
comment: 34 pages
♻ ☆ Defending Against Unforeseen Failure Modes with Latent Adversarial Training
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them. LAT makes use of the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. Here, we use it to defend against failure modes without examples that elicit them. Specifically, we use LAT to remove backdoors and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness to novel attacks and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
comment: See also followup work at arXiv:2407.15549
♻ ☆ Strategist: Self-improvement of LLM Decision Making via Bi-Level Tree Search
Traditional reinforcement learning and planning typically requires vast amounts of data and training to develop effective policies. In contrast, large language models (LLMs) exhibit strong generalization and zero-shot capabilities, but struggle with tasks that require detailed planning and decision-making in complex action spaces. We introduce STRATEGIST, a novel approach that integrates the strengths of both methods. Our approach leverages LLMs to search and update high-level strategies (as text), which are then refined and executed by low-level Monte Carlo Tree Search (MCTS). STRATEGIST is a generalizable framework to optimize the strategy through population-based self-play simulations without the need for any training data. We demonstrate the effectiveness of STRATEGIST in learning optimal strategies for competitive, multi-turn games with partial information, including Game of Pure Strategy (GOPS) and multi-agent, hidden-identity discussion games like The Resistance: Avalon. Our results show that agents equipped with STRATEGIST outperform those trained with traditional RL methods, other LLM-based skill acquisition techniques, pre-existing LLM agents across both game environments and achieves comparable performance against human players.
comment: website: https://llm-strategist.github.io
♻ ☆ Latent Adversarial Training Improves Robustness to Persistent Harmful Behaviors in LLMs
Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of 'jailbreaking' techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.
comment: Code at https://github.com/aengusl/latent-adversarial-training. Models at https://huggingface.co/LLM-LAT
♻ ☆ A calibration test for evaluating set-based epistemic uncertainty representations
The accurate representation of epistemic uncertainty is a challenging yet essential task in machine learning. A widely used representation corresponds to convex sets of probabilistic predictors, also known as credal sets. One popular way of constructing these credal sets is via ensembling or specialized supervised learning methods, where the epistemic uncertainty can be quantified through measures such as the set size or the disagreement among members. In principle, these sets should contain the true data-generating distribution. As a necessary condition for this validity, we adopt the strongest notion of calibration as a proxy. Concretely, we propose a novel statistical test to determine whether there is a convex combination of the set's predictions that is calibrated in distribution. In contrast to previous methods, our framework allows the convex combination to be instance dependent, recognizing that different ensemble members may be better calibrated in different regions of the input space. Moreover, we learn this combination via proper scoring rules, which inherently optimize for calibration. Building on differentiable, kernel-based estimators of calibration errors, we introduce a nonparametric testing procedure and demonstrate the benefits of capturing instance-level variability on of synthetic and real-world experiments.
♻ ☆ 2D-Curri-DPO: Two-Dimensional Curriculum Learning for Direct Preference Optimization
Aligning large language models with human preferences is crucial for their safe deployment. While Direct Preference Optimization (DPO) offers an efficient alternative to reinforcement learning from human feedback, traditional DPO methods are limited by their reliance on single preference pairs. Recent work like Curriculum-DPO integrates multiple pairs using a one-dimensional difficulty curriculum based on pairwise distinguishability (PD), but overlooks the complexity of the input prompt itself. To address this, we propose 2D-Curri-DPO, a novel framework employing a two-dimensional curriculum that jointly models Prompt Complexity (PC) and Pairwise Distinguishability. This framework introduces dual difficulty metrics to quantify prompt semantic complexity and response preference clarity, defines a curriculum strategy space encompassing multiple selectable strategies for task adaptation, and incorporates a KL-divergence-based adaptive mechanism for dynamic reference model updates to enhance training stability. Comprehensive experiments demonstrate that 2D-Curri-DPO significantly outperforms standard DPO and prior curriculum methods across multiple benchmarks, including MT-Bench, Vicuna Bench, and WizardLM. Our approach achieves state-of-the-art performance on challenging test sets like UltraFeedback. Ablation studies confirm the benefits of the 2D structure and adaptive mechanisms, while analysis provides guidance for strategy selection. These findings demonstrate that effective alignment requires modeling both prompt complexity and pairwise distinguishability, establishing adaptive, multi-dimensional curriculum learning as a powerful and interpretable new paradigm for preference-based language model optimization.
comment: We found a critical flaw in the prompt complexity metric, which affects the 2D curriculum grid construction and leads to potentially invalid comparisons. Since this undermines our main conclusions, we are withdrawing the paper and will revise the methodology before resubmission
♻ ☆ Multi-branch of Attention Yields Accurate Results for Tabular Data
Tabular data inherently exhibits significant feature heterogeneity, but existing transformer-based methods lack specialized mechanisms to handle this property. To bridge the gap, we propose MAYA, an encoder-decoder transformer-based framework. In the encoder, we design a Multi-Branch of Attention (MBA) that constructs multiple parallel attention branches and averages the features at each branch, effectively fusing heterogeneous features while limiting parameter growth. Additionally, we employ collaborative learning with a dynamic consistency weight constraint to produce more robust representations. In the decoder stage, cross-attention is utilized to seamlessly integrate tabular data with corresponding label features. This dual-attention mechanism effectively captures both intra-instance and inter-instance interactions. We evaluate the proposed method on a wide range of datasets and compare it with other state-of-the-art transformer-based methods. Extensive experiments demonstrate that our model achieves superior performance among transformer-based methods in both tabular classification and regression tasks.
comment: 19 pages, 3 figures
Demystifying Misconceptions in Social Bots Research
Research on social bots aims at advancing knowledge and providing solutions to one of the most debated forms of online manipulation. Yet, social bot research is plagued by widespread biases, hyped results, and misconceptions that set the stage for ambiguities, unrealistic expectations, and seemingly irreconcilable findings. Overcoming such issues is instrumental towards ensuring reliable solutions and reaffirming the validity of the scientific method. Here, we discuss a broad set of consequential methodological and conceptual issues that affect current social bots research, illustrating each with examples drawn from recent studies. More importantly, we demystify common misconceptions, addressing fundamental points on how social bots research is discussed. Our analysis surfaces the need to discuss research about online disinformation and manipulation in a rigorous, unbiased, and responsible way. This article bolsters such effort by identifying and refuting common fallacious arguments used by both proponents and opponents of social bots research, as well as providing directions toward sound methodologies for future research.
♻ ☆ A Survey on Memory-Efficient Transformer-Based Model Training in AI for Science
Scientific research faces high costs and inefficiencies with traditional methods, but the rise of deep learning and large language models (LLMs) offers innovative solutions. This survey reviews transformer-based LLM applications across scientific fields such as biology, medicine, chemistry, and meteorology, underscoring their role in advancing research. However, the continuous expansion of model size has led to significant memory demands, hindering further development and application of LLMs for science. This survey systematically reviews and categorizes memory-efficient pre-training techniques for large-scale transformers, including algorithm-level, system-level, and hardware-software co-optimization. Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy. By bridging model efficiency and scientific application needs, we hope to provide insights for scalable and cost-effective LLM training in AI for science.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-50302-6}
♻ ☆ A Scalable Approach to Probabilistic Neuro-Symbolic Robustness Verification
Neuro-Symbolic Artificial Intelligence (NeSy AI) has emerged as a promising direction for integrating neural learning with symbolic reasoning. Typically, in the probabilistic variant of such systems, a neural network first extracts a set of symbols from sub-symbolic input, which are then used by a symbolic component to reason in a probabilistic manner towards answering a query. In this work, we address the problem of formally verifying the robustness of such NeSy probabilistic reasoning systems, therefore paving the way for their safe deployment in critical domains. We analyze the complexity of solving this problem exactly, and show that a decision version of the core computation is $\mathrm{NP}^{\mathrm{PP}}$-complete. In the face of this result, we propose the first approach for approximate, relaxation-based verification of probabilistic NeSy systems. We demonstrate experimentally on a standard NeSy benchmark that the proposed method scales exponentially better than solver-based solutions and apply our technique to a real-world autonomous driving domain, where we verify a safety property under large input dimensionalities.
comment: 19th Conference on Neurosymbolic Learning and Reasoning
♻ ☆ Not someone, but something: Rethinking trust in the age of medical AI
As artificial intelligence (AI) becomes embedded in healthcare, trust in medical decision-making is changing fast. Nowhere is this shift more visible than in radiology, where AI tools are increasingly embedded across the imaging workflow - from scheduling and acquisition to interpretation, reporting, and communication with referrers and patients. This opinion paper argues that trust in AI isn't a simple transfer from humans to machines - it is a dynamic, evolving relationship that must be built and maintained. Rather than debating whether AI belongs in medicine, it asks: what kind of trust must AI earn, and how? Drawing from philosophy, bioethics, and system design, it explores the key differences between human trust and machine reliability - emphasizing transparency, accountability, and alignment with the values of good care. It argues that trust in AI should not be built on mimicking empathy or intuition, but on thoughtful design, responsible deployment, and clear moral responsibility. The goal is a balanced view - one that avoids blind optimism and reflexive fear. Trust in AI must be treated not as a given, but as something to be earned over time.
♻ ☆ Machine Learning Risk Intelligence for Green Hydrogen Investment: Insights for Duqm R3 Auction
As green hydrogen emerges as a major component of global decarbonisation, Oman has positioned itself strategically through national auctions and international partnerships. Following two successful green hydrogen project rounds, the country launched its third auction (R3) in the Duqm region. While this area exhibits relative geospatial homogeneity, it is still vulnerable to environmental fluctuations that pose inherent risks to productivity. Despite growing global investment in green hydrogen, operational data remains scarce, with major projects like Saudi Arabia's NEOM facility not expected to commence production until 2026, and Oman's ACME Duqm project scheduled for 2028. This absence of historical maintenance and performance data from large-scale hydrogen facilities in desert environments creates a major knowledge gap for accurate risk assessment for infrastructure planning and auction decisions. Given this data void, environmental conditions emerge as accessible and reliable proxy for predicting infrastructure maintenance pressures, because harsh desert conditions such as dust storms, extreme temperatures, and humidity fluctuations are well-documented drivers of equipment degradation in renewable energy systems. To address this challenge, this paper proposes an Artificial Intelligence decision support system that leverages publicly available meteorological data to develop a predictive Maintenance Pressure Index (MPI), which predicts risk levels and future maintenance demands on hydrogen infrastructure. This tool strengthens regulatory foresight and operational decision-making by enabling temporal benchmarking to assess and validate performance claims over time. It can be used to incorporate temporal risk intelligence into auction evaluation criteria despite the absence of historical operational benchmarks.
comment: Updated version
AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning ICCV 2025
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that our method substantially reduces computation load (e.g., a $\textbf{7-fold}$ reduction in FLOPs) while preserving the performance of video and image LLMs. Further, at a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., $\textbf{+4.6}$ on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code is available at https://github.com/LaVi-Lab/AIM.
comment: Accepted to ICCV 2025
♻ ☆ Generating Heterogeneous Multi-dimensional Data : A Comparative Study
Allocation of personnel and material resources is highly sensible in the case of firefighter interventions. This allocation relies on simulations to experiment with various scenarios. The main objective of this allocation is the global optimization of the firefighters response. Data generation is then mandatory to study various scenarios In this study, we propose to compare different data generation methods. Methods such as Random Sampling, Tabular Variational Autoencoders, standard Generative Adversarial Networks, Conditional Tabular Generative Adversarial Networks and Diffusion Probabilistic Models are examined to ascertain their efficacy in capturing the intricacies of firefighter interventions. Traditional evaluation metrics often fall short in capturing the nuanced requirements of synthetic datasets for real-world scenarios. To address this gap, an evaluation of synthetic data quality is conducted using a combination of domain-specific metrics tailored to the firefighting domain and standard measures such as the Wasserstein distance. Domain-specific metrics include response time distribution, spatial-temporal distribution of interventions, and accidents representation. These metrics are designed to assess data variability, the preservation of fine and complex correlations and anomalies such as event with a very low occurrence, the conformity with the initial statistical distribution and the operational relevance of the synthetic data. The distribution has the particularity of being highly unbalanced, none of the variables following a Gaussian distribution, adding complexity to the data generation process.
comment: accepted at IEEE SMC 2025 Vienna
♻ ☆ Linguistic and Embedding-Based Profiling of Texts generated by Humans and Large Language Models
The rapid advancements in large language models (LLMs) have significantly improved their ability to generate natural language, making texts generated by LLMs increasingly indistinguishable from human-written texts. While recent research has primarily focused on using LLMs to classify text as either human-written and machine-generated texts, our study focus on characterizing these texts using a set of linguistic features across different linguistic levels such as morphology, syntax, and semantics. We select a dataset of human-written and machine-generated texts spanning 8 domains and produced by 11 different LLMs. We calculate different linguistic features such as dependency length and emotionality and we use them for characterizing human-written and machine-generated texts along with different sampling strategies, repetition controls and model release date. Our statistical analysis reveals that human-written texts tend to exhibit simpler syntactic structures and more diverse semantic content. Furthermore, we calculate the variability of our set of features across models and domains. Both human and machine texts show stylistic diversity across domains, with humans displaying greater variation in our features. Finally, we apply style embeddings to further test variability among human-written and machine-generated texts. Notably, newer models output text that is similarly variable, pointing to an homogenization of machine-generated texts.
comment: arXiv admin note: text overlap with arXiv:2412.03025
♻ ☆ Latent Swap Joint Diffusion for 2D Long-Form Latent Generation
This paper introduces Swap Forward (SaFa), a modality-agnostic and efficient method to generate seamless and coherence long spectrum and panorama through latent swap joint diffusion across multi-views. We first investigate the spectrum aliasing problem in spectrum-based audio generation caused by existing joint diffusion methods. Through a comparative analysis of the VAE latent representation of Mel-spectra and RGB images, we identify that the failure arises from excessive suppression of high-frequency components during the spectrum denoising process due to the averaging operator. To address this issue, we propose Self-Loop Latent Swap, a frame-level bidirectional swap applied to the overlapping region of adjacent views. Leveraging stepwise differentiated trajectories of adjacent subviews, this swap operator adaptively enhances high-frequency components and avoid spectrum distortion. Furthermore, to improve global cross-view consistency in non-overlapping regions, we introduce Reference-Guided Latent Swap, a unidirectional latent swap operator that provides a centralized reference trajectory to synchronize subview diffusions. By refining swap timing and intervals, we can achieve a cross-view similarity-diversity balance in a forward-only manner. Quantitative and qualitative experiments demonstrate that SaFa significantly outperforms existing joint diffusion methods and even training-based methods in audio generation using both U-Net and DiT models, along with effective longer length adaptation. It also adapts well to panorama generation, achieving comparable performance with 2 $\sim$ 20 $\times$ faster speed and greater model generalizability. More generation demos are available at https://swapforward.github.io/
♻ ☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ AI-ming backwards: Vanishing archaeological landscapes in Mesopotamia and automatic detection of sites on CORONA imagery
By upgrading an existing deep learning model with the knowledge provided by one of the oldest sets of grayscale satellite imagery, known as CORONA, we improved the AI model attitude towards the automatic identification of archaeological sites in an environment which has been completely transformed in the last five decades, including the complete destruction of many of those same sites. The initial Bing based convolutional network model was retrained using CORONA satellite imagery for the district of Abu Ghraib, west of Baghdad, central Mesopotamian floodplain. The results were twofold and surprising. First, the detection precision obtained on the area of interest increased sensibly: in particular, the Intersection over Union (IoU) values, at the image segmentation level, surpassed 85 percent, while the general accuracy in detecting archeological sites reached 90 percent. Second, our retrained model allowed the identification of four new sites of archaeological interest (confirmed through field verification), previously not identified by archaeologists with traditional techniques. This has confirmed the efficacy of using AI techniques and the CORONA imagery from the 1960 to discover archaeological sites currently no longer visible, a concrete breakthrough with significant consequences for the study of landscapes with vanishing archaeological evidence induced by anthropization
comment: 25 pages, 9 Figures
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advancements in Deep Learning and its application on the edge hold great potential for the revolution of routine screenings for skin cancers like Melanoma. Along with the anticipated benefits of this technology, potential dangers arise from unforseen and inherent biases. Thus, assessing and improving the fairness of such systems is of utmost importance. A key challenge in fairness assessment is to ensure that the evaluation dataset is sufficiently representative of different Personal Identifiable Information (PII) (sex, age, and race) and other minority groups. Against the backdrop of this challenge, this study leverages the state-of-the-art Generative AI (GenAI) LightningDiT model to assess the fairness of publicly available melanoma classifiers. The results suggest that fairness assessment using highly realistic synthetic data is a promising direction. Yet, our findings indicate that verifying fairness becomes difficult when the melanoma-detection model used for evaluation is trained on data that differ from the dataset underpinning the synthetic images. Nonetheless, we propose that our approach offers a valuable new avenue for employing synthetic data to gauge and enhance fairness in medical-imaging GenAI systems.
♻ ☆ HIRAG: Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has become a fundamental paradigm for addressing the challenges faced by large language models in handling real-time information and domain-specific problems. Traditional RAG systems primarily rely on the in-context learning (ICL) capabilities of the large language model itself. Still, in-depth research on the specific capabilities needed by the RAG generation model is lacking, leading to challenges with inconsistent document quality and retrieval system imperfections. Even the limited studies that fine-tune RAG generative models often \textit{lack a granular focus on RAG task} or \textit{a deeper utilization of chain-of-thought processes}. To address this, we propose that RAG models should possess three progressively hierarchical abilities (1) Filtering: the ability to select relevant information; (2) Combination: the ability to combine semantic information across paragraphs; and (3) RAG-specific reasoning: the ability to further process external knowledge using internal knowledge. Thus, we introduce our new RAG instruction fine-tuning method, Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation (HIRAG) incorporates a "think before answering" strategy. This method enhances the model's open-book examination capability by utilizing multi-level progressive chain-of-thought. Experiments show that the HIRAG training strategy significantly improves the model's performance on datasets such as RGB, PopQA, MuSiQue, HotpotQA, and PubmedQA.
♻ ☆ TolerantECG: A Foundation Model for Imperfect Electrocardiogram ACM MM 2025
The electrocardiogram (ECG) is an essential and effective tool for diagnosing heart diseases. However, its effectiveness can be compromised by noise or unavailability of one or more leads of the standard 12-lead recordings, resulting in diagnostic errors or uncertainty. To address these challenges, we propose TolerantECG, a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG. TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations alongside their corresponding knowledge-retrieval-based text report descriptions and corrupted or lead-missing signals. Comprehensive benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions and class levels in the PTB-XL dataset, and achieves the highest performance on the MIT-BIH Arrhythmia Database.
comment: Accepted at ACM MM 2025
♻ ☆ Simulated patient systems are intelligent when powered by large language model-based AI agents
Simulated patient systems play an important role in modern medical education and research, providing safe, integrative medical training environments and supporting clinical decision-making simulations. We developed AIPatient, an intelligent simulated patient system powered by large language model-based AI agents. The system incorporates the Retrieval Augmented Generation (RAG) framework, powered by six task-specific LLM-based AI agents for complex reasoning. For simulation reality, the system is also powered by the AIPatient KG (Knowledge Graph), built with de-identified real patient data from the Medical Information Mart for Intensive Care (MIMIC)-III database. Primary outcomes showcase the system's intelligence, including the system's accuracy in Electronic Record (EHR)-based medical Question Answering (QA), readability, robustness, and stability. The system achieved a QA accuracy of 94.15% when all six AI agents present, surpassing benchmarks with partial or no agent integration. Its knowledgebase demonstrated high validity (F1 score=0.89). Readability scores showed median Flesch Reading Ease at 77.23 and median Flesch Kincaid Grade at 5.6, indicating accessibility to all medical professionals. Robustness and stability were confirmed with non-significant variance (ANOVA F-value=0.6126, p > 0.1; F-value=0.782, p > 0.1). A user study with medical students further demonstrated that AIPatient offers high fidelity, strong usability, and effective educational value, performing comparably or better than human-simulated patients in medical history-taking scenarios. The promising intelligence of the AIPatient system highlights its potential to support a wide range of applications, including medical education, model evaluation, and system integration.
comment: 64 pages, 14 figures, 16 tables
♻ ☆ Long-Term Fairness Inquiries and Pursuits in Machine Learning: A Survey of Notions, Methods, and Challenges
The widespread integration of Machine Learning systems in daily life, particularly in high-stakes domains, has raised concerns about the fairness implications. While prior works have investigated static fairness measures, recent studies reveal that automated decision-making has long-term implications and that off-the-shelf fairness approaches may not serve the purpose of achieving long-term fairness. Additionally, the existence of feedback loops and the interaction between models and the environment introduces additional complexities that may deviate from the initial fairness goals. In this survey, we review existing literature on long-term fairness from different perspectives and present a taxonomy for long-term fairness studies. We highlight key challenges and consider future research directions, analyzing both current issues and potential further explorations.
comment: Accepted in TMLR
♻ ☆ AMix-1: A Pathway to Test-Time Scalable Protein Foundation Model
We introduce AMix-1, a powerful protein foundation model built on Bayesian Flow Networks and empowered by a systematic training methodology, encompassing pretraining scaling laws, emergent capability analysis, in-context learning mechanism, and test-time scaling algorithm. To guarantee robust scalability, we establish a predictive scaling law and reveal the progressive emergence of structural understanding via loss perspective, culminating in a strong 1.7-billion model. Building on this foundation, we devise a multiple sequence alignment (MSA)-based in-context learning strategy to unify protein design into a general framework, where AMix-1 recognizes deep evolutionary signals among MSAs and consistently generates structurally and functionally coherent proteins. This framework enables the successful design of a dramatically improved AmeR variant with an up to $50\times$ activity increase over its wild type. Pushing the boundaries of protein engineering, we further empower AMix-1 with an evolutionary test-time scaling algorithm for in silico directed evolution that delivers substantial, scalable performance gains as verification budgets are intensified, laying the groundwork for next-generation lab-in-the-loop protein design.
♻ ☆ Towards Reliable Proof Generation with LLMs: A Neuro-Symbolic Approach
Large language models (LLMs) struggle with formal domains that require rigorous logical deduction and symbolic reasoning, such as mathematical proof generation. We propose a neuro-symbolic approach that combines LLMs' generative strengths with structured components to overcome this challenge. As a proof-of-concept, we focus on geometry problems. Our approach is two-fold: (1) we retrieve analogous problems and use their proofs to guide the LLM, and (2) a formal verifier evaluates the generated proofs and provides feedback, helping the model fix incorrect proofs. We demonstrate that our method significantly improves proof accuracy for OpenAI's o1 model (58%-70% improvement); both analogous problems and the verifier's feedback contribute to these gains. More broadly, shifting to LLMs that generate provably correct conclusions could dramatically improve their reliability, accuracy and consistency, unlocking complex tasks and critical real-world applications that require trustworthiness.
comment: long paper
♻ ☆ Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Large Language Models (LLMs) have improved code generation and software automation, but remain limited by inference-time context and lack structured reasoning over code. Debugging remains unsolved despite these advances. While Claude Opus 4 and GPT-4.1 achieve >70% on code synthesis benchmarks, they perform <15% on real debugging tasks. We introduce Kodezi Chronos, a language model built specifically for debugging. Chronos combines Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines using multi-hop traversal (92% precision, 85% recall), Persistent Debug Memory trained on 15M+ sessions, and a 7-layer architecture for iterative fix-test-refine loops. On 5,000 real-world scenarios, Chronos achieves 67.3% fix accuracy, compared to 14.2% and 13.8% for Claude and GPT-4.1 respectively. Chronos reduces debugging time by 40% and iteration count by 65%. It resolves complex multi-file bugs involving cross-repository context and temporal reasoning. Key limitations include 23.4% success on hardware-dependent issues and 41.2% on dynamic language errors. Theoretical analysis shows O(k log d) retrieval complexity with convergence guarantees. In a human evaluation (N=50), 89% of participants preferred Chronos over baseline models. Chronos will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.
comment: 27 pages, 21 figures, 37 tables, 2 algorithms. Extended technical report. Introduces Chronos, an autonomous debugging system achieving 87.1% success rate on real-world bugs. Code and data available at https://github.com/Kodezi/chronos
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ Low-Confidence Gold: Refining Low-Confidence Samples for Efficient Instruction Tuning
The effectiveness of instruction fine-tuning for Large Language Models is fundamentally constrained by the quality and efficiency of training datasets. This work introduces Low-Confidence Gold (LCG), a novel filtering framework that employs centroid-based clustering and confidence-guided selection for identifying valuable instruction pairs. Through a semi-supervised approach using a lightweight classifier trained on representative samples, LCG curates high-quality subsets while preserving data diversity. Experimental evaluation demonstrates that models fine-tuned on LCG-filtered subsets of 6K samples achieve superior performance compared to existing methods, with substantial improvements on MT-bench and consistent gains across comprehensive evaluation metrics. The framework's efficacy while maintaining model performance establishes a promising direction for efficient instruction tuning.
comment: 8 pages
♻ ☆ End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning
We develop a rotation-invariant neural network that provides the global minimum-variance portfolio by jointly learning how to lag-transform historical returns and how to regularise both the eigenvalues and the marginal volatilities of large equity covariance matrices. This explicit mathematical mapping offers clear interpretability of each module's role, so the model cannot be regarded as a pure black-box. The architecture mirrors the analytical form of the global minimum-variance solution yet remains agnostic to dimension, so a single model can be calibrated on panels of a few hundred stocks and applied, without retraining, to one thousand US equities-a cross-sectional jump that demonstrates robust out-of-sample generalisation. The loss function is the future realized minimum portfolio variance and is optimized end-to-end on real daily returns. In out-of-sample tests from January 2000 to December 2024 the estimator delivers systematically lower realised volatility, smaller maximum drawdowns, and higher Sharpe ratios than the best analytical competitors, including state-of-the-art non-linear shrinkage. Furthermore, although the model is trained end-to-end to produce an unconstrained (long-short) minimum-variance portfolio, we show that its learned covariance representation can be used in general optimizers under long-only constraints with virtually no loss in its performance advantage over competing estimators. These gains persist when the strategy is executed under a highly realistic implementation framework that models market orders at the auctions, empirical slippage, exchange fees, and financing charges for leverage, and they remain stable during episodes of acute market stress.
♻ ☆ LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
♻ ☆ The pitfalls of next-token prediction ICML 2024
Can a mere next-token predictor faithfully model human intelligence? We crystallize this emerging concern and correct popular misconceptions surrounding it, and advocate a simple multi-token objective. As a starting point, we argue that the two often-conflated phases of next-token prediction -- autoregressive inference and teacher-forced training -- must be treated distinctly. The popular criticism that errors can compound during autoregressive inference, crucially assumes that teacher-forcing has learned an accurate next-token predictor. This assumption sidesteps a more deep-rooted problem we expose: in certain classes of tasks, teacher-forcing can simply fail to learn an accurate next-token predictor in the first place. We describe a general mechanism of how teacher-forcing can fail, and design a minimal planning task where both the Transformer and the Mamba architecture empirically fail in that manner -- remarkably, despite the task being straightforward to learn. Finally, we provide preliminary evidence that this failure can be resolved using _teacherless_ training, a simple modification using dummy tokens that predicts multiple tokens in advance. We hope this finding can ground future debates and inspire explorations beyond the next-token prediction paradigm. We make our code available under https://github.com/gregorbachmann/Next-Token-Failures
comment: ICML 2024
♻ ☆ Adversarial bandit optimization for approximately linear functions
We consider a bandit optimization problem for nonconvex and non-smooth functions, where in each trial the loss function is the sum of a linear function and a small but arbitrary perturbation chosen after observing the player's choice. We give both expected and high probability regret bounds for the problem. Our result also implies an improved high-probability regret bound for the bandit linear optimization, a special case with no perturbation. We also give a lower bound on the expected regret.
♻ ☆ SurgiSR4K: A High-Resolution Endoscopic Video Dataset for Robotic-Assisted Minimally Invasive Procedures
High-resolution imaging is crucial for enhancing visual clarity and enabling precise computer-assisted guidance in minimally invasive surgery (MIS). Despite the increasing adoption of 4K endoscopic systems, there remains a significant gap in publicly available native 4K datasets tailored specifically for robotic-assisted MIS. We introduce SurgiSR4K, the first publicly accessible surgical imaging and video dataset captured at a native 4K resolution, representing realistic conditions of robotic-assisted procedures. SurgiSR4K comprises diverse visual scenarios including specular reflections, tool occlusions, bleeding, and soft tissue deformations, meticulously designed to reflect common challenges faced during laparoscopic and robotic surgeries. This dataset opens up possibilities for a broad range of computer vision tasks that might benefit from high resolution data, such as super resolution (SR), smoke removal, surgical instrument detection, 3D tissue reconstruction, monocular depth estimation, instance segmentation, novel view synthesis, and vision-language model (VLM) development. SurgiSR4K provides a robust foundation for advancing research in high-resolution surgical imaging and fosters the development of intelligent imaging technologies aimed at enhancing performance, safety, and usability in image-guided robotic surgeries.
♻ ☆ SegQuant: A Semantics-Aware and Generalizable Quantization Framework for Diffusion Models
Diffusion models have demonstrated exceptional generative capabilities but are computationally intensive, posing significant challenges for deployment in resource-constrained or latency-sensitive environments. Quantization offers an effective means to reduce model size and computational cost, with post-training quantization (PTQ) being particularly appealing due to its compatibility with pre-trained models without requiring retraining or training data. However, existing PTQ methods for diffusion models often rely on architecture-specific heuristics that limit their generalizability and hinder integration with industrial deployment pipelines. To address these limitations, we propose SegQuant, a unified quantization framework that adaptively combines complementary techniques to enhance cross-model versatility. SegQuant consists of a segment-aware, graph-based quantization strategy (SegLinear) that captures structural semantics and spatial heterogeneity, along with a dual-scale quantization scheme (DualScale) that preserves polarity-asymmetric activations, which is crucial for maintaining visual fidelity in generated outputs. SegQuant is broadly applicable beyond Transformer-based diffusion models, achieving strong performance while ensuring seamless compatibility with mainstream deployment tools.
♻ ☆ PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN ECML-PKDD 2025
Deep neural networks have demonstrated remarkable performance across various domains. However, they are vulnerable to adversarial examples, which can lead to erroneous predictions. Generative Adversarial Networks (GANs) can leverage the generators and discriminators model to quickly produce high-quality adversarial examples. Since both modules train in a competitive and simultaneous manner, GAN-based algorithms like AdvGAN can generate adversarial examples with better transferability compared to traditional methods. However, the generation of perturbations is usually limited to a single iteration, preventing these examples from fully exploiting the potential of the methods. To tackle this issue, we introduce a novel approach named Progressive Auto-Regression AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration mechanism within a progressive generation network to craft adversarial examples with enhanced attack capability. We thoroughly evaluate our PAR-AdvGAN method with a large-scale experiment, demonstrating its superior performance over various state-of-the-art black-box adversarial attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN significantly accelerates the adversarial example generation, i.e., achieving the speeds of up to 335.5 frames per second on Inception-v3 model, outperforming the gradient-based transferable attack algorithms. Our code is available at: https://github.com/LMBTough/PAR
comment: Best paper award of ECML-PKDD 2025
♻ ☆ Mining Intrinsic Rewards from LLM Hidden States for Efficient Best-of-N Sampling
Enhancing Large Language Model (LLM)'s performance with best-of-N sampling is effective and has attracted significant attention. However, it is computationally prohibitive due to massive, data-hungry text-based reward models. By changing the data source from text to hidden states, we introduce SWIFT (Simple Weighted Intrinsic Feedback Technique), a novel, lightweight technique that leverages the rich information embedded in LLM hidden states to address these issues, which operates on token-level and consists of only linear layers. Extensive experiments show that SWIFT outperforms baselines with less than 0.005% of the parameters of baselines, requiring only a few samples for training, demonstrating significant efficiency improvement. SWIFT's robust scalability, applicability to some closed-source models via logits, and ability to be combined with traditional reward models to yield further performance gains underscore its practical value.
♻ ☆ OPAL: Encoding Causal Understanding of Physical Systems for Robot Learning
We present OPAL (Operant Physical Agent with Language), a novel vision-language-action architecture that introduces topological constraints to flow matching for robotic control. To do so, we further introduce topological attention. Our approach models action sequences as topologically-structured representations with non-trivial constraints. Experimental results across 10 complex manipulation tasks demonstrate OPAL's superior performance compared to previous approaches, including Octo, OpenVLA, and ${\pi}$0. Our architecture achieves significant improvements in zero-shot performance without requiring task-specific fine-tuning, while reducing inference computational requirements by 42%. The theoretical guarantees provided by our topological approach result in more coherent long-horizon action sequences. Our results highlight the potential of constraining the search space of learning problems in robotics by deriving from fundamental physical laws, and the possibility of using topological attention to embed causal understanding into transformer architectures.
comment: We withdraw our submission following peer review feedback that identified methodological limitations: specifically, our experimental design does not adequately support the causal claims made in the submission. The work was preliminary undergraduate research that requires substantial additional experimental validation to properly establish the proposed causal relationships
♻ ☆ Automated Generation of Diverse Courses of Actions for Multi-Agent Operations using Binary Optimization and Graph Learning
Operations in disaster response, search \& rescue, and military missions that involve multiple agents demand automated processes to support the planning of the courses of action (COA). Moreover, traverse-affecting changes in the environment (rain, snow, blockades, etc.) may impact the expected performance of a COA, making it desirable to have a pool of COAs that are diverse in task distributions across agents. Further, variations in agent capabilities, which could be human crews and/or autonomous systems, present practical opportunities and computational challenges to the planning process. This paper presents a new theoretical formulation and computational framework to generate such diverse pools of COAs for operations with soft variations in agent-task compatibility. Key to the problem formulation is a graph abstraction of the task space and the pool of COAs itself to quantify its diversity. Formulating the COAs as a centralized multi-robot task allocation problem, a genetic algorithm is used for (order-ignoring) allocations of tasks to each agent that jointly maximize diversity within the COA pool and overall compatibility of the agent-task mappings. A graph neural network is trained using a policy gradient approach to then perform single agent task sequencing in each COA, which maximizes completion rates adaptive to task features. Our tests of the COA generation process in a simulated environment demonstrate significant performance gain over a random walk baseline, small optimality gap in task sequencing, and execution time of about 50 minutes to plan up to 20 COAs for 5 agent/100 task operations.
comment: Accepted for presentation in proceedings of IEEE CASE 2025
♻ ☆ Automated Prompt Engineering for Cost-Effective Code Generation Using Evolutionary Algorithm
Large Language Models have seen increasing use in various software development tasks, especially in code generation. The most advanced recent methods attempt to incorporate feedback from code execution into prompts to help guide LLMs in generating correct code in an iterative process. While effective, these methods could be costly due to numerous interactions with the LLM and extensive token usage. To address this issue, we propose an alternative approach named Evolutionary Prompt Engineering for Code (EPiC), which leverages a lightweight evolutionary algorithm to refine the original prompts into improved versions that generate high quality code, with minimal interactions with the LLM. Our evaluation against state-of-the-art (SOTA) LLM based code generation agents shows that EPiC not only achieves up to 6% improvement in pass@k but is also 2-10 times more cost-effective than the baselines.
♻ ☆ Subgoal-Guided Policy Heuristic Search with Learned Subgoals ICML-25
Policy tree search is a family of tree search algorithms that use a policy to guide the search. These algorithms provide guarantees on the number of expansions required to solve a given problem that are based on the quality of the policy. While these algorithms have shown promising results, the process in which they are trained requires complete solution trajectories to train the policy. Search trajectories are obtained during a trial-and-error search process. When the training problem instances are hard, learning can be prohibitively costly, especially when starting from a randomly initialized policy. As a result, search samples are wasted in failed attempts to solve these hard instances. This paper introduces a novel method for learning subgoal-based policies for policy tree search algorithms. The subgoals and policies conditioned on subgoals are learned from the trees that the search expands while attempting to solve problems, including the search trees of failed attempts. We empirically show that our policy formulation and training method improve the sample efficiency of learning a policy and heuristic function in this online setting.
comment: Accepted to ICML-25
♻ ☆ CollabLLM: From Passive Responders to Active Collaborators ICML 2025
Large Language Models are typically trained with next-turn rewards, limiting their ability to optimize for long-term interaction. As a result, they often respond passively to ambiguous or open-ended user requests, failing to help users reach their ultimate intents and leading to inefficient conversations. To address these limitations, we introduce CollabLLM, a novel and general training framework that enhances multiturn human-LLM collaboration. Its key innovation is a collaborative simulation that estimates the long-term contribution of responses using Multiturn-aware Rewards. By reinforcement fine-tuning these rewards, CollabLLM goes beyond responding to user requests, and actively uncovers user intent and offers insightful suggestions-a key step towards more human-centered AI. We also devise a multiturn interaction benchmark with three challenging tasks such as document creation. CollabLLM significantly outperforms our baselines with averages of 18.5% higher task performance and 46.3% improved interactivity by LLM judges. Finally, we conduct a large user study with 201 judges, where CollabLLM increases user satisfaction by 17.6% and reduces user spent time by 10.4%.
comment: Outstanding Paper Award at ICML 2025
♻ ☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
♻ ☆ Multi-Agent Reinforcement Learning for Dynamic Mobility Resource Allocation with Hierarchical Adaptive Grouping
Allocating mobility resources (e.g., shared bikes/e-scooters, ride-sharing vehicles) is crucial for rebalancing the mobility demand and supply in the urban environments. We propose in this work a novel multi-agent reinforcement learning named Hierarchical Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic mobility resource allocation. HAG-PS aims to address two important research challenges regarding multi-agent reinforcement learning for mobility resource allocation: (1) how to dynamically and adaptively share the mobility resource allocation policy (i.e., how to distribute mobility resources) across agents (i.e., representing the regional coordinators of mobility resources); and (2) how to achieve memory-efficient parameter sharing in an urban-scale setting. To address the above challenges, we have provided following novel designs within HAG-PS. To enable dynamic and adaptive parameter sharing, we have designed a hierarchical approach that consists of global and local information of the mobility resource states (e.g., distribution of mobility resources). We have developed an adaptive agent grouping approach in order to split or merge the groups of agents based on their relative closeness of encoded trajectories (i.e., states, actions, and rewards). We have designed a learnable identity (ID) embeddings to enable agent specialization beyond simple parameter copy. We have performed extensive experimental studies based on real-world NYC bike sharing data (a total of more than 1.2 million trips), and demonstrated the superior performance (e.g., improved bike availability) of HAG-PS compared with other baseline approaches.
comment: 5 pages, UrbComp 2025
♻ ☆ Toward Automated Validation of Language Model Synthesized Test Cases using Semantic Entropy
Modern Large Language Model (LLM)-based programming agents often rely on test execution feedback to refine their generated code. These tests are synthetically generated by LLMs. However, LLMs may produce invalid or hallucinated test cases, which can mislead feedback loops and degrade the performance of agents in refining and improving code. This paper introduces VALTEST, a novel framework that leverages semantic entropy to automatically validate test cases generated by LLMs. Analyzing the semantic structure of test cases and computing entropy-based uncertainty measures, VALTEST trains a machine learning model to classify test cases as valid or invalid and filters out invalid test cases. Experiments on multiple benchmark datasets and various LLMs show that VALTEST not only boosts test validity by up to 29% but also improves code generation performance, as evidenced by significant increases in pass@1 scores. Our extensive experiments also reveal that semantic entropy is a reliable indicator to distinguish between valid and invalid test cases, which provides a robust solution for improving the correctness of LLM-generated test cases used in software testing and code generation.
♻ ☆ Denoising Concept Vectors with Sparse Autoencoders for Improved Language Model Steering
Linear concept vectors effectively steer LLMs, but existing methods suffer from noisy features in diverse datasets that undermine steering robustness. We propose Sparse Autoencoder-Denoised Concept Vectors (SDCV), which selectively keep the most discriminative SAE latents while reconstructing hidden representations. Our key insight is that concept-relevant signals can be explicitly separated from dataset noise by scaling up activations of top-k latents that best differentiate positive and negative samples. Applied to linear probing and difference-in-mean, SDCV consistently improves steering success rates by 4-16\% across six challenging concepts, while maintaining topic relevance.
comment: 12 pages, 4 figures, 4 tables
♻ ☆ Modeling Story Expectations to Understand Engagement: A Generative Framework Using LLMs
Understanding when and why consumers engage with stories is crucial for content creators and platforms. While existing theories suggest that audience beliefs of what is going to happen should play an important role in engagement decisions, empirical work has mostly focused on developing techniques to directly extract features from actual content, rather than capturing forward-looking beliefs, due to the lack of a principled way to model such beliefs in unstructured narrative data. To complement existing feature extraction techniques, this paper introduces a novel framework that leverages large language models to model audience forward-looking beliefs about how stories might unfold. Our method generates multiple potential continuations for each story and extracts features related to expectations, uncertainty, and surprise using established content analysis techniques. Applying our method to over 30,000 book chapters, we demonstrate that our framework complements existing feature engineering techniques by amplifying their marginal explanatory power on average by 31%. The results reveal that different types of engagement-continuing to read, commenting, and voting-are driven by distinct combinations of current and anticipated content features. Our framework provides a novel way to study and explore how audience forward-looking beliefs shape their engagement with narrative media, with implications for marketing strategy in content-focused industries.
♻ ☆ GneissWeb: Preparing High Quality Data for LLMs at Scale
Data quantity and quality play a vital role in determining the performance of Large Language Models (LLMs). High-quality data, in particular, can significantly boost the LLM's ability to generalize on a wide range of downstream tasks. Large pre-training datasets for leading LLMs remain inaccessible to the public, whereas many open datasets are small in size (less than 5 trillion tokens), limiting their suitability for training large models. In this paper, we introduce GneissWeb, a large dataset yielding around 10 trillion tokens that caters to the data quality and quantity requirements of training LLMs. Our GneissWeb recipe that produced the dataset consists of sharded exact sub-string deduplication and a judiciously constructed ensemble of quality filters. GneissWeb achieves a favorable trade-off between data quality and quantity, producing models that outperform models trained on state-of-the-art open large datasets (5+ trillion tokens). We show that models trained using GneissWeb dataset outperform those trained on FineWeb-V1.1.0 by 2.73 percentage points in terms of average score computed on a set of 11 commonly used benchmarks (both zero-shot and few-shot) for pre-training dataset evaluation. When the evaluation set is extended to 20 benchmarks (both zero-shot and few-shot), models trained using GneissWeb still achieve a 1.75 percentage points advantage over those trained on FineWeb-V1.1.0.
♻ ☆ LLM-as-a-qualitative-judge: automating error analysis in natural language generation
Prompting large language models (LLMs) to evaluate generated text, known as LLM-as-a-judge, has become a standard evaluation approach in natural language generation (NLG), but is primarily used as a quantitative tool, i.e. with numerical scores as main outputs. In this work, we propose LLM-as-a-qualitative-judge, an LLM-based evaluation approach with the main output being a structured report of common issue types in the NLG system outputs. Our approach is targeted at providing developers with meaningful insights on what improvements can be done to a given NLG system and consists of two main steps, namely open-ended per-instance issue analysis and clustering of the discovered issues using an intuitive cumulative algorithm. We also introduce a strategy for evaluating the proposed approach, coupled with ~300 annotations of issues in instances from 12 NLG datasets. Our results show that LLM-as-a-qualitative-judge correctly recognizes instance-specific issues in 2/3 cases and is capable of producing error type reports resembling the reports composed by human annotators. Our code and data are publicly available at https://github.com/tunde-ajayi/llm-as-a-qualitative-judge.
♻ ☆ Will AI Take My Job? Evolving Perceptions of Automation and Labor Risk in Latin America
As artificial intelligence and robotics increasingly reshape the global labor market, understanding public perceptions of these technologies becomes critical. We examine how these perceptions have evolved across Latin America, using survey data from the 2017, 2018, 2020, and 2023 waves of the Latinobar\'ometro. Drawing on responses from over 48,000 individuals across 16 countries, we analyze fear of job loss due to artificial intelligence and robotics. Using statistical modeling and latent class analysis, we identify key structural and ideological predictors of concern, with education level and political orientation emerging as the most consistent drivers. Our findings reveal substantial temporal and cross-country variation, with a notable peak in fear during 2018 and distinct attitudinal profiles emerging from latent segmentation. These results offer new insights into the social and structural dimensions of AI anxiety in emerging economies and contribute to a broader understanding of public attitudes toward automation beyond the Global North.
♻ ☆ Can adversarial attacks by large language models be attributed?
Attributing outputs from Large Language Models (LLMs) in adversarial settings-such as cyberattacks and disinformation campaigns-presents significant challenges that are likely to grow in importance. We approach this attribution problem from both a theoretical and an empirical perspective, drawing on formal language theory (identification in the limit) and data-driven analysis of the expanding LLM ecosystem. By modeling an LLM's set of possible outputs as a formal language, we analyze whether finite samples of text can uniquely pinpoint the originating model. Our results show that, under mild assumptions of overlapping capabilities among models, certain classes of LLMs are fundamentally non-identifiable from their outputs alone. We delineate four regimes of theoretical identifiability: (1) an infinite class of deterministic (discrete) LLM languages is not identifiable (Gold's classical result from 1967); (2) an infinite class of probabilistic LLMs is also not identifiable (by extension of the deterministic case); (3) a finite class of deterministic LLMs is identifiable (consistent with Angluin's tell-tale criterion); and (4) even a finite class of probabilistic LLMs can be non-identifiable (we provide a new counterexample establishing this negative result). Complementing these theoretical insights, we quantify the explosion in the number of plausible model origins (hypothesis space) for a given output in recent years. Even under conservative assumptions-each open-source model fine-tuned on at most one new dataset-the count of distinct candidate models doubles approximately every 0.5 years, and allowing multi-dataset fine-tuning combinations yields doubling times as short as 0.28 years. This combinatorial growth, alongside the extraordinary computational cost of brute-force likelihood attribution across all models and potential users, renders exhaustive attribution infeasible in practice.
comment: 22 pages, 5 figures, 2 tables
♻ ☆ KIX: A Knowledge and Interaction-Centric Metacognitive Framework for Task Generalization
People aptly exhibit general intelligence behaviors through flexible problem-solving and the ability to adapt to novel situations by reusing and applying high-level knowledge acquired over time. In contrast, artificial agents tend to be specialists, lacking such generalist behaviors. To bridge this gap, artificial agents will require understanding and exploiting critical structured knowledge representations. We introduce a metacognitive reasoning framework, Knowledge-Interaction-eXecution (KIX), and argue that interactions with objects, by leveraging a type space, facilitate the learning of transferable interaction concepts and promote generalization. This framework offers a principled approach for integrating knowledge into reinforcement learning and holds promise as an enabler for generalist behaviors in artificial intelligence, robotics, and autonomous systems.
♻ ☆ Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis ICCV 2025
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 27 pages, 10 figures, 20 tables. Accepted by ICCV 2025
♻ ☆ Clustering via Self-Supervised Diffusion
Diffusion models, widely recognized for their success in generative tasks, have not yet been applied to clustering. We introduce Clustering via Diffusion (CLUDI), a self-supervised framework that combines the generative power of diffusion models with pre-trained Vision Transformer features to achieve robust and accurate clustering. CLUDI is trained via a teacher-student paradigm: the teacher uses stochastic diffusion-based sampling to produce diverse cluster assignments, which the student refines into stable predictions. This stochasticity acts as a novel data augmentation strategy, enabling CLUDI to uncover intricate structures in high-dimensional data. Extensive evaluations on challenging datasets demonstrate that CLUDI achieves state-of-the-art performance in unsupervised classification, setting new benchmarks in clustering robustness and adaptability to complex data distributions. Our code is available at https://github.com/BGU-CS-VIL/CLUDI.
♻ ☆ Positive-Augmented Contrastive Learning for Vision-and-Language Evaluation and Training
Despite significant advancements in caption generation, existing evaluation metrics often fail to capture the full quality or fine-grained details of captions. This is mainly due to their reliance on non-specific human-written references or noisy pre-training data. Still, finding an effective metric is crucial not only for captions evaluation but also for the generation phase. Metrics can indeed play a key role in the fine-tuning stage of captioning models, ultimately enhancing the quality of the generated captions. In this paper, we propose PAC-S++, a learnable metric that leverages the CLIP model, pre-trained on both web-collected and cleaned data and regularized through additional pairs of generated visual and textual positive samples. Exploiting this stronger and curated pre-training, we also apply PAC-S++ as a reward in the Self-Critical Sequence Training (SCST) stage typically employed to fine-tune captioning models. Extensive experiments on different image and video datasets highlight the effectiveness of PAC-S++ compared to popular metrics for the task, including its sensitivity to object hallucinations. Furthermore, we show that integrating PAC-S++ into the fine-tuning stage of a captioning model results in semantically richer captions with fewer repetitions and grammatical errors. Evaluations on out-of-domain benchmarks further demonstrate the efficacy of our fine-tuning approach in enhancing model capabilities. Source code and trained models are publicly available at: https://github.com/aimagelab/pacscore.
comment: International Journal of Computer Vision (2025)
♻ ☆ RecPS: Privacy Risk Scoring for Recommender Systems
Recommender systems (RecSys) have become an essential component of many web applications. The core of the system is a recommendation model trained on highly sensitive user-item interaction data. While privacy-enhancing techniques are actively studied in the research community, the real-world model development still depends on minimal privacy protection, e.g., via controlled access. Users of such systems should have the right to choose \emph{not} to share highly sensitive interactions. However, there is no method allowing the user to know which interactions are more sensitive than others. Thus, quantifying the privacy risk of RecSys training data is a critical step to enabling privacy-aware RecSys model development and deployment. We propose a membership-inference attack (MIA)- based privacy scoring method, RecPS, to measure privacy risks at both the interaction and user levels. The RecPS interaction-level score definition is motivated and derived from differential privacy, which is then extended to the user-level scoring method. A critical component is the interaction-level MIA method RecLiRA, which gives high-quality membership estimation. We have conducted extensive experiments on well-known benchmark datasets and RecSys models to show the unique features and benefits of RecPS scoring in risk assessment and RecSys model unlearning.
Machine Learning 147
☆ Foundation Models for Demand Forecasting via Dual-Strategy Ensembling
Accurate demand forecasting is critical for supply chain optimization, yet remains difficult in practice due to hierarchical complexity, domain shifts, and evolving external factors. While recent foundation models offer strong potential for time series forecasting, they often suffer from architectural rigidity and limited robustness under distributional change. In this paper, we propose a unified ensemble framework that enhances the performance of foundation models for sales forecasting in real-world supply chains. Our method combines two complementary strategies: (1) Hierarchical Ensemble (HE), which partitions training and inference by semantic levels (e.g., store, category, department) to capture localized patterns; and (2) Architectural Ensemble (AE), which integrates predictions from diverse model backbones to mitigate bias and improve stability. We conduct extensive experiments on the M5 benchmark and three external sales datasets, covering both in-domain and zero-shot forecasting. Results show that our approach consistently outperforms strong baselines, improves accuracy across hierarchical levels, and provides a simple yet effective mechanism for boosting generalization in complex forecasting environments.
☆ Weight-Parameterization in Continuous Time Deep Neural Networks for Surrogate Modeling
Continuous-time deep learning models, such as neural ordinary differential equations (ODEs), offer a promising framework for surrogate modeling of complex physical systems. A central challenge in training these models lies in learning expressive yet stable time-varying weights, particularly under computational constraints. This work investigates weight parameterization strategies that constrain the temporal evolution of weights to a low-dimensional subspace spanned by polynomial basis functions. We evaluate both monomial and Legendre polynomial bases within neural ODE and residual network (ResNet) architectures under discretize-then-optimize and optimize-then-discretize training paradigms. Experimental results across three high-dimensional benchmark problems show that Legendre parameterizations yield more stable training dynamics, reduce computational cost, and achieve accuracy comparable to or better than both monomial parameterizations and unconstrained weight models. These findings elucidate the role of basis choice in time-dependent weight parameterization and demonstrate that using orthogonal polynomial bases offers a favorable tradeoff between model expressivity and training efficiency.
comment: 34 pages, 6 figures, submitted to the MoRE24 special issue of Computational Science and Engineering
☆ Structure-Informed Deep Reinforcement Learning for Inventory Management
This paper investigates the application of Deep Reinforcement Learning (DRL) to classical inventory management problems, with a focus on practical implementation considerations. We apply a DRL algorithm based on DirectBackprop to several fundamental inventory management scenarios including multi-period systems with lost sales (with and without lead times), perishable inventory management, dual sourcing, and joint inventory procurement and removal. The DRL approach learns policies across products using only historical information that would be available in practice, avoiding unrealistic assumptions about demand distributions or access to distribution parameters. We demonstrate that our generic DRL implementation performs competitively against or outperforms established benchmarks and heuristics across these diverse settings, while requiring minimal parameter tuning. Through examination of the learned policies, we show that the DRL approach naturally captures many known structural properties of optimal policies derived from traditional operations research methods. To further improve policy performance and interpretability, we propose a Structure-Informed Policy Network technique that explicitly incorporates analytically-derived characteristics of optimal policies into the learning process. This approach can help interpretability and add robustness to the policy in out-of-sample performance, as we demonstrate in an example with realistic demand data. Finally, we provide an illustrative application of DRL in a non-stationary setting. Our work bridges the gap between data-driven learning and analytical insights in inventory management while maintaining practical applicability.
☆ Supervised Quantum Image Processing
In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI performs a higher compression of image information than TNR, NEQR, and QPIE. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
comment: 13 pages, 11 figures
☆ UserBench: An Interactive Gym Environment for User-Centric Agents
Large Language Models (LLMs)-based agents have made impressive progress in reasoning and tool use, enabling them to solve complex tasks. However, their ability to proactively collaborate with users, especially when goals are vague, evolving, or indirectly expressed, remains underexplored. To address this gap, we introduce UserBench, a user-centric benchmark designed to evaluate agents in multi-turn, preference-driven interactions. UserBench features simulated users who start with underspecified goals and reveal preferences incrementally, requiring agents to proactively clarify intent and make grounded decisions with tools. Our evaluation of leading open- and closed-source LLMs reveals a significant disconnect between task completion and user alignment. For instance, models provide answers that fully align with all user intents only 20% of the time on average, and even the most advanced models uncover fewer than 30% of all user preferences through active interaction. These results highlight the challenges of building agents that are not just capable task executors, but true collaborative partners. UserBench offers an interactive environment to measure and advance this critical capability.
comment: 25 Pages, 17 Figures, 6 Tables
☆ Classification of Honey Botanical and Geographical Sources using Mineral Profiles and Machine Learning
This paper proposes a machine learning-based approach for identifying honey floral and geographical sources using mineral element profiles. The proposed method comprises two steps: preprocessing and classification. The preprocessing phase involves missing-value treatment and data normalization. In the classification phase, we employ various supervised classification models for discriminating between six botanical sources and 13 geographical origins of honey. We test the classifiers' performance on a publicly available honey mineral element dataset. The dataset contains mineral element profiles of honeys from various floral and geographical origins. Results show that mineral element content in honey provides discriminative information useful for classifying honey botanical and geographical sources. Results also show that the Random Forests (RF) classifier obtains the best performance on this dataset, achieving a cross-validation accuracy of 99.30% for classifying honey botanical origins and 98.01% for classifying honey geographical origins.
comment: 13 pages, 7 figures, conference paper
☆ Exploring the Stratified Space Structure of an RL Game with the Volume Growth Transform
In this work, we explore the structure of the embedding space of a transformer model trained for playing a particular reinforcement learning (RL) game. Specifically, we investigate how a transformer-based Proximal Policy Optimization (PPO) model embeds visual inputs in a simple environment where an agent must collect "coins" while avoiding dynamic obstacles consisting of "spotlights." By adapting Robinson et al.'s study of the volume growth transform for LLMs to the RL setting, we find that the token embedding space for our visual coin collecting game is also not a manifold, and is better modeled as a stratified space, where local dimension can vary from point to point. We further strengthen Robinson's method by proving that fairly general volume growth curves can be realized by stratified spaces. Finally, we carry out an analysis that suggests that as an RL agent acts, its latent representation alternates between periods of low local dimension, while following a fixed sub-strategy, and bursts of high local dimension, where the agent achieves a sub-goal (e.g., collecting an object) or where the environmental complexity increases (e.g., more obstacles appear). Consequently, our work suggests that the distribution of dimensions in a stratified latent space may provide a new geometric indicator of complexity for RL games.
comment: 17 pages and 8 figures. Preliminary report. Feedback welcome!
☆ Staining and locking computer vision models without retraining
We introduce new methods of staining and locking computer vision models, to protect their owners' intellectual property. Staining, also known as watermarking, embeds secret behaviour into a model which can later be used to identify it, while locking aims to make a model unusable unless a secret trigger is inserted into input images. Unlike existing methods, our algorithms can be used to stain and lock pre-trained models without requiring fine-tuning or retraining, and come with provable, computable guarantees bounding their worst-case false positive rates. The stain and lock are implemented by directly modifying a small number of the model's weights and have minimal impact on the (unlocked) model's performance. Locked models are unlocked by inserting a small `trigger patch' into the corner of the input image. We present experimental results showing the efficacy of our methods and demonstrating their practical performance on a variety of computer vision models.
comment: 10 pages, 9 pages of appendices, 10 figures
☆ Teach Me to Trick: Exploring Adversarial Transferability via Knowledge Distillation
We investigate whether knowledge distillation (KD) from multiple heterogeneous teacher models can enhance the generation of transferable adversarial examples. A lightweight student model is trained using two KD strategies: curriculum-based switching and joint optimization, with ResNet50 and DenseNet-161 as teachers. The trained student is then used to generate adversarial examples using FG, FGS, and PGD attacks, which are evaluated against a black-box target model (GoogLeNet). Our results show that student models distilled from multiple teachers achieve attack success rates comparable to ensemble-based baselines, while reducing adversarial example generation time by up to a factor of six. An ablation study further reveals that lower temperature settings and the inclusion of hard-label supervision significantly enhance transferability. These findings suggest that KD can serve not only as a model compression technique but also as a powerful tool for improving the efficiency and effectiveness of black-box adversarial attacks.
comment: 10 pages, 4 figures
☆ Higher-Order Kuramoto Oscillator Network for Dense Associative Memory
Networks of phase oscillators can serve as dense associative memories if they incorporate higher-order coupling beyond the classical Kuramoto model's pairwise interactions. Here we introduce a generalized Kuramoto model with combined second-harmonic (pairwise) and fourth-harmonic (quartic) coupling, inspired by dense Hopfield memory theory. Using mean-field theory and its dynamical approximation, we obtain a phase diagram for dense associative memory model that exhibits a tricritical point at which the continuous onset of memory retrieval is supplanted by a discontinuous, hysteretic transition. In the quartic-dominated regime, the system supports bistable phase-locked states corresponding to stored memory patterns, with a sizable energy barrier between memory and incoherent states. We analytically determine this bistable region and show that the escape time from a memory state (due to noise) grows exponentially with network size, indicating robust storage. Extending the theory to finite memory load, we show that higher-order couplings achieve superlinear scaling of memory capacity with system size, far exceeding the limit of pairwise-only oscillators. Large-scale simulations of the oscillator network confirm our theoretical predictions, demonstrating rapid pattern retrieval and robust storage of many phase patterns. These results bridge the Kuramoto synchronization with modern Hopfield memories, pointing toward experimental realization of high-capacity, analog associative memory in oscillator systems.
comment: 13 pages, 7 figures
☆ Improving Generative Ad Text on Facebook using Reinforcement Learning
Generative artificial intelligence (AI), in particular large language models (LLMs), is poised to drive transformative economic change. LLMs are pre-trained on vast text data to learn general language patterns, but a subsequent post-training phase is critical to align them for specific real-world tasks. Reinforcement learning (RL) is the leading post-training technique, yet its economic impact remains largely underexplored and unquantified. We examine this question through the lens of the first deployment of an RL-trained LLM for generative advertising on Facebook. Integrated into Meta's Text Generation feature, our model, "AdLlama," powers an AI tool that helps advertisers create new variations of human-written ad text. To train this model, we introduce reinforcement learning with performance feedback (RLPF), a post-training method that uses historical ad performance data as a reward signal. In a large-scale 10-week A/B test on Facebook spanning nearly 35,000 advertisers and 640,000 ad variations, we find that AdLlama improves click-through rates by 6.7% (p=0.0296) compared to a supervised imitation model trained on curated ads. This represents a substantial improvement in advertiser return on investment on Facebook. We also find that advertisers who used AdLlama generated more ad variations, indicating higher satisfaction with the model's outputs. To our knowledge, this is the largest study to date on the use of generative AI in an ecologically valid setting, offering an important data point quantifying the tangible impact of RL post-training. Furthermore, the results show that RLPF is a promising and generalizable approach for metric-driven post-training that bridges the gap between highly capable language models and tangible outcomes.
comment: D.J. and A.N. contributed equally, 41 pages, 6 figures
☆ Thou Shalt Not Prompt: Zero-Shot Human Activity Recognition in Smart Homes via Language Modeling of Sensor Data & Activities
Developing zero-shot human activity recognition (HAR) methods is a critical direction in smart home research -- considering its impact on making HAR systems work across smart homes having diverse sensing modalities, layouts, and activities of interest. The state-of-the-art solutions along this direction are based on generating natural language descriptions of the sensor data and feeding it via a carefully crafted prompt to the LLM to perform classification. Despite their performance guarantees, such ``prompt-the-LLM'' approaches carry several risks, including privacy invasion, reliance on an external service, and inconsistent predictions due to version changes, making a case for alternative zero-shot HAR methods that do not require prompting the LLMs. In this paper, we propose one such solution that models sensor data and activities using natural language, leveraging its embeddings to perform zero-shot classification and thereby bypassing the need to prompt the LLMs for activity predictions. The impact of our work lies in presenting a detailed case study on six datasets, highlighting how language modeling can bolster HAR systems in zero-shot recognition.
☆ SLA-Centric Automated Algorithm Selection Framework for Cloud Environments
Cloud computing offers on-demand resource access, regulated by Service-Level Agreements (SLAs) between consumers and Cloud Service Providers (CSPs). SLA violations can impact efficiency and CSP profitability. In this work, we propose an SLA-aware automated algorithm-selection framework for combinatorial optimization problems in resource-constrained cloud environments. The framework uses an ensemble of machine learning models to predict performance and rank algorithm-hardware pairs based on SLA constraints. We also apply our framework to the 0-1 knapsack problem. We curate a dataset comprising instance specific features along with memory usage, runtime, and optimality gap for 6 algorithms. As an empirical benchmark, we evaluate the framework on both classification and regression tasks. Our ablation study explores the impact of hyperparameters, learning approaches, and large language models effectiveness in regression, and SHAP-based interpretability.
☆ DeepGo: Predictive Directed Greybox Fuzzing
The state-of-the-art DGF techniques redefine and optimize the fitness metric to reach the target sites precisely and quickly. However, optimizations for fitness metrics are mainly based on heuristic algorithms, which usually rely on historical execution information and lack foresight on paths that have not been exercised yet. Thus, those hard-to-execute paths with complex constraints would hinder DGF from reaching the targets, making DGF less efficient. In this paper, we propose DeepGo, a predictive directed grey-box fuzzer that can combine historical and predicted information to steer DGF to reach the target site via an optimal path. We first propose the path transition model, which models DGF as a process of reaching the target site through specific path transition sequences. The new seed generated by mutation would cause the path transition, and the path corresponding to the high-reward path transition sequence indicates a high likelihood of reaching the target site through it. Then, to predict the path transitions and the corresponding rewards, we use deep neural networks to construct a Virtual Ensemble Environment (VEE), which gradually imitates the path transition model and predicts the rewards of path transitions that have not been taken yet. To determine the optimal path, we develop a Reinforcement Learning for Fuzzing (RLF) model to generate the transition sequences with the highest sequence rewards. The RLF model can combine historical and predicted path transitions to generate the optimal path transition sequences, along with the policy to guide the mutation strategy of fuzzing. Finally, to exercise the high-reward path transition sequence, we propose the concept of an action group, which comprehensively optimizes the critical steps of fuzzing to realize the optimal path to reach the target efficiently.
☆ Multi-state Protein Design with DynamicMPNN ICML 2025
Structural biology has long been dominated by the one sequence, one structure, one function paradigm, yet many critical biological processes - from enzyme catalysis to membrane transport - depend on proteins that adopt multiple conformational states. Existing multi-state design approaches rely on post-hoc aggregation of single-state predictions, achieving poor experimental success rates compared to single-state design. We introduce DynamicMPNN, an inverse folding model explicitly trained to generate sequences compatible with multiple conformations through joint learning across conformational ensembles. Trained on 46,033 conformational pairs covering 75% of CATH superfamilies and evaluated using AlphaFold initial guess, DynamicMPNN outperforms ProteinMPNN by up to 13% on structure-normalized RMSD across our challenging multi-state protein benchmark.
comment: ICML 2025 GenBio Workshop
☆ Evaluating Deepfake Detectors in the Wild ICML 2025
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/messlav/Deepfake-Detectors-in-the-Wild.
comment: Accepted to the ICML 2025 Workshop 'DataWorld: Unifying Data Curation Frameworks Across Domains'
☆ Reducing Data Requirements for Sequence-Property Prediction in Copolymer Compatibilizers via Deep Neural Network Tuning
Synthetic sequence-controlled polymers promise to transform polymer science by combining the chemical versatility of synthetic polymers with the precise sequence-mediated functionality of biological proteins. However, design of these materials has proven extraordinarily challenging, because they lack the massive datasets of closely related evolved molecules that accelerate design of proteins. Here we report on a new Artifical Intelligence strategy to dramatically reduce the amount of data necessary to accelerate these materials' design. We focus on data connecting the repeat-unit-sequence of a \emph{compatibilizer} molecule to its ability to reduce the interfacial tension between distinct polymer domains. The optimal sequence of these molecules, which are essential for applications such as mixed-waste polymer recycling, depends strongly on variables such as concentration and chemical details of the polymer. With current methods, this would demand an entirely distinct dataset to enable design at each condition. Here we show that a deep neural network trained on low-fidelity data for sequence/interfacial tension relations at one set of conditions can be rapidly tuned to make higher-fidelity predictions at a distinct set of conditions, requiring far less data that would ordinarily be needed. This priming-and-tuning approach should allow a single low-fidelity parent dataset to dramatically accelerate prediction and design in an entire constellation of related systems. In the long run, it may also provide an approach to bootstrapping quantitative atomistic design with AI insights from fast, coarse simulations.
comment: 23 pages, 6 figures
☆ LLM-based Content Classification Approach for GitHub Repositories by the README Files
GitHub is the world's most popular platform for storing, sharing, and managing code. Every GitHub repository has a README file associated with it. The README files should contain project-related information as per the recommendations of GitHub to support the usage and improvement of repositories. However, GitHub repository owners sometimes neglected these recommendations. This prevents a GitHub repository from reaching its full potential. This research posits that the comprehensiveness of a GitHub repository's README file significantly influences its adoption and utilization, with a lack of detail potentially hindering its full potential for widespread engagement and impact within the research community. Large Language Models (LLMs) have shown great performance in many text-based tasks including text classification, text generation, text summarization and text translation. In this study, an approach is developed to fine-tune LLMs for automatically classifying different sections of GitHub README files. Three encoder-only LLMs are utilized, including BERT, DistilBERT and RoBERTa. These pre-trained models are then fine-tuned based on a gold-standard dataset consisting of 4226 README file sections. This approach outperforms current state-of-the-art methods and has achieved an overall F1 score of 0.98. Moreover, we have also investigated the use of Parameter-Efficient Fine-Tuning (PEFT) techniques like Low-Rank Adaptation (LoRA) and shown an economical alternative to full fine-tuning without compromising much performance. The results demonstrate the potential of using LLMs in designing an automatic classifier for categorizing the content of GitHub README files. Consequently, this study contributes to the development of automated tools for GitHub repositories to improve their identifications and potential usages.
comment: 8 pages, 4 Figures
☆ Cardiovascular Disease Prediction using Machine Learning: A Comparative Analysis
Cardiovascular diseases (CVDs) are a main cause of mortality globally, accounting for 31% of all deaths. This study involves a cardiovascular disease (CVD) dataset comprising 68,119 records to explore the influence of numerical (age, height, weight, blood pressure, BMI) and categorical gender, cholesterol, glucose, smoking, alcohol, activity) factors on CVD occurrence. We have performed statistical analyses, including t-tests, Chi-square tests, and ANOVA, to identify strong associations between CVD and elderly people, hypertension, higher weight, and abnormal cholesterol levels, while physical activity (a protective factor). A logistic regression model highlights age, blood pressure, and cholesterol as primary risk factors, with unexpected negative associations for smoking and alcohol, suggesting potential data issues. Model performance comparisons reveal CatBoost as the top performer with an accuracy of 0.734 and an ECE of 0.0064 and excels in probabilistic prediction (Brier score = 0.1824). Data challenges, including outliers and skewed distributions, indicate a need for improved preprocessing to enhance predictive reliability.
☆ Data-driven quantum Koopman method for simulating nonlinear dynamics
Quantum computation offers potential exponential speedups for simulating certain physical systems, but its application to nonlinear dynamics is inherently constrained by the requirement of unitary evolution. We propose the quantum Koopman method (QKM), a data-driven framework that bridges this gap through transforming nonlinear dynamics into linear unitary evolution in higher-dimensional observable spaces. Leveraging the Koopman operator theory to achieve a global linearization, our approach maps system states into a hierarchy of Hilbert spaces using a deep autoencoder. Within the linearized embedding spaces, the state representation is decomposed into modulus and phase components, and the evolution is governed by a set of unitary Koopman operators that act exclusively on the phase. These operators are constructed from diagonal Hamiltonians with coefficients learned from data, a structure designed for efficient implementation on quantum hardware. This architecture enables direct multi-step prediction, and the operator's computational complexity scales logarithmically with the observable space dimension. The QKM is validated across diverse nonlinear systems. Its predictions maintain relative errors below 6% for reaction-diffusion systems and shear flows, and capture key statistics in 2D turbulence. This work establishes a practical pathway for quantum-accelerated simulation of nonlinear phenomena, exploring a framework built on the synergy between deep learning for global linearization and quantum algorithms for unitary dynamics evolution.
☆ Representations in vision and language converge in a shared, multidimensional space of perceived similarities
Humans can effortlessly describe what they see, yet establishing a shared representational format between vision and language remains a significant challenge. Emerging evidence suggests that human brain representations in both vision and language are well predicted by semantic feature spaces obtained from large language models (LLMs). This raises the possibility that sensory systems converge in their inherent ability to transform their inputs onto shared, embedding-like representational space. However, it remains unclear how such a space manifests in human behaviour. To investigate this, sixty-three participants performed behavioural similarity judgements separately on 100 natural scene images and 100 corresponding sentence captions from the Natural Scenes Dataset. We found that visual and linguistic similarity judgements not only converge at the behavioural level but also predict a remarkably similar network of fMRI brain responses evoked by viewing the natural scene images. Furthermore, computational models trained to map images onto LLM-embeddings outperformed both category-trained and AlexNet controls in explaining the behavioural similarity structure. These findings demonstrate that human visual and linguistic similarity judgements are grounded in a shared, modality-agnostic representational structure that mirrors how the visual system encodes experience. The convergence between sensory and artificial systems suggests a common capacity of how conceptual representations are formed-not as arbitrary products of first order, modality-specific input, but as structured representations that reflect the stable, relational properties of the external world.
comment: 51 pages, 15 figures
☆ Discovering Interpretable Ordinary Differential Equations from Noisy Data
The data-driven discovery of interpretable models approximating the underlying dynamics of a physical system has gained attraction in the past decade. Current approaches employ pre-specified functional forms or basis functions and often result in models that lack physical meaning and interpretability, let alone represent the true physics of the system. We propose an unsupervised parameter estimation methodology that first finds an approximate general solution, followed by a spline transformation to linearly estimate the coefficients of the governing ordinary differential equation (ODE). The approximate general solution is postulated using the same functional form as the analytical solution of a general homogeneous, linear, constant-coefficient ODE. An added advantage is its ability to produce a high-fidelity, smooth functional form even in the presence of noisy data. The spline approximation obtains gradient information from the functional form which are linearly independent and creates the basis of the gradient matrix. This gradient matrix is used in a linear system to find the coefficients of the ODEs. From the case studies, we observed that our modeling approach discovers ODEs with high accuracy and also promotes sparsity in the solution without using any regularization techniques. The methodology is also robust to noisy data and thus allows the integration of data-driven techniques into real experimental setting for data-driven learning of physical phenomena.
comment: 20 pages, 11 figures, 7 tables
☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for high-dimensional partial-differential equations, yet their stability, generalization and frequency behavior lack a principled explanation. We present the first systematic effective-field-theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high-frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks we obtain explicit criticality conditions on the weight-initialization ensemble that keep small input perturbations to have uniform scale across depth, and empirical tests validate these predictions. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyper-parameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs.
comment: 37 pages, 10 figures
☆ Introducing HALC: A general pipeline for finding optimal prompting strategies for automated coding with LLMs in the computational social sciences
LLMs are seeing widespread use for task automation, including automated coding in the social sciences. However, even though researchers have proposed different prompting strategies, their effectiveness varies across LLMs and tasks. Often trial and error practices are still widespread. We propose HALC$-$a general pipeline that allows for the systematic and reliable construction of optimal prompts for any given coding task and model, permitting the integration of any prompting strategy deemed relevant. To investigate LLM coding and validate our pipeline, we sent a total of 1,512 individual prompts to our local LLMs in over two million requests. We test prompting strategies and LLM task performance based on few expert codings (ground truth). When compared to these expert codings, we find prompts that code reliably for single variables (${\alpha}$climate = .76; ${\alpha}$movement = .78) and across two variables (${\alpha}$climate = .71; ${\alpha}$movement = .74) using the LLM Mistral NeMo. Our prompting strategies are set up in a way that aligns the LLM to our codebook$-$we are not optimizing our codebook for LLM friendliness. Our paper provides insights into the effectiveness of different prompting strategies, crucial influencing factors, and the identification of reliable prompts for each coding task and model.
comment: 48 pages, 9 figures and 8 tables
☆ MIBoost: A Gradient Boosting Algorithm for Variable Selection After Multiple Imputation
Statistical learning methods for automated variable selection, such as LASSO, elastic nets, or gradient boosting, have become increasingly popular tools for building powerful prediction models. Yet, in practice, analyses are often complicated by missing data. The most widely used approach to address missingness is multiple imputation, which creates several completed datasets. However, there is an ongoing debate on how to perform model selection in the presence of multiple imputed datasets. Simple strategies, such as pooling models across datasets, have been shown to have suboptimal properties. Although more sophisticated methods exist, they are often difficult to implement and therefore not widely applied. In contrast, two recent approaches modify the regularization methods LASSO and elastic nets by defining a single loss function, resulting in a unified set of coefficients across imputations. Our key contribution is to extend this principle to the framework of component-wise gradient boosting by proposing MIBoost, a novel algorithm that employs a uniform variable-selection mechanism across imputed datasets. Simulation studies suggest that our approach yields prediction performance comparable to that of these recently proposed methods.
comment: 21 pages, 2 algorithms, includes a simulation study
☆ Bayesian Neural Network Surrogates for Bayesian Optimization of Carbon Capture and Storage Operations
Carbon Capture and Storage (CCS) stands as a pivotal technology for fostering a sustainable future. The process, which involves injecting supercritical CO$_2$ into underground formations, a method already widely used for Enhanced Oil Recovery, serves a dual purpose: it not only curbs CO$_2$ emissions and addresses climate change but also extends the operational lifespan and sustainability of oil fields and platforms, easing the shift toward greener practices. This paper delivers a thorough comparative evaluation of strategies for optimizing decision variables in CCS project development, employing a derivative-free technique known as Bayesian Optimization. In addition to Gaussian Processes, which usually serve as the gold standard in BO, various novel stochastic models were examined and compared within a BO framework. This research investigates the effectiveness of utilizing more exotic stochastic models than GPs for BO in environments where GPs have been shown to underperform, such as in cases with a large number of decision variables or multiple objective functions that are not similarly scaled. By incorporating Net Present Value (NPV) as a key objective function, the proposed framework demonstrates its potential to improve economic viability while ensuring the sustainable deployment of CCS technologies. Ultimately, this study represents the first application in the reservoir engineering industry of the growing body of BO research, specifically in the search for more appropriate stochastic models, highlighting its potential as a preferred method for enhancing sustainability in the energy sector.
☆ Unlocking Interpretability for RF Sensing: A Complex-Valued White-Box Transformer
The empirical success of deep learning has spurred its application to the radio-frequency (RF) domain, leading to significant advances in Deep Wireless Sensing (DWS). However, most existing DWS models function as black boxes with limited interpretability, which hampers their generalizability and raises concerns in security-sensitive physical applications. In this work, inspired by the remarkable advances of white-box transformers, we present RF-CRATE, the first mathematically interpretable deep network architecture for RF sensing, grounded in the principles of complex sparse rate reduction. To accommodate the unique RF signals, we conduct non-trivial theoretical derivations that extend the original real-valued white-box transformer to the complex domain. By leveraging the CR-Calculus framework, we successfully construct a fully complex-valued white-box transformer with theoretically derived self-attention and residual multi-layer perceptron modules. Furthermore, to improve the model's ability to extract discriminative features from limited wireless data, we introduce Subspace Regularization, a novel regularization strategy that enhances feature diversity, resulting in an average performance improvement of 19.98% across multiple sensing tasks. We extensively evaluate RF-CRATE against seven baselines with multiple public and self-collected datasets involving different RF signals. The results show that RF-CRATE achieves performance on par with thoroughly engineered black-box models, while offering full mathematical interpretability. More importantly, by extending CRATE to the complex domain, RF-CRATE yields substantial improvements, achieving an average classification gain of 5.08% and reducing regression error by 10.34% across diverse sensing tasks compared to CRATE. RF-CRATE is fully open-sourced at: https://github.com/rfcrate/RF_CRATE.
☆ Domain Generalization and Adaptation in Intensive Care with Anchor Regression
The performance of predictive models in clinical settings often degrades when deployed in new hospitals due to distribution shifts. This paper presents a large-scale study of causality-inspired domain generalization on heterogeneous multi-center intensive care unit (ICU) data. We apply anchor regression and introduce anchor boosting, a novel, tree-based nonlinear extension, to a large dataset comprising 400,000 patients from nine distinct ICU databases. The anchor regularization consistently improves out-of-distribution performance, particularly for the most dissimilar target domains. The methods appear robust to violations of theoretical assumptions, such as anchor exogeneity. Furthermore, we propose a novel conceptual framework to quantify the utility of large external data datasets. By evaluating performance as a function of available target-domain data, we identify three regimes: (i) a domain generalization regime, where only the external model should be used, (ii) a domain adaptation regime, where refitting the external model is optimal, and (iii) a data-rich regime, where external data provides no additional value.
☆ Learning Kinetic Monte Carlo stochastic dynamics with Deep Generative Adversarial Networks
We show that Generative Adversarial Networks (GANs) may be fruitfully exploited to learn stochastic dynamics, surrogating traditional models while capturing thermal fluctuations. Specifically, we showcase the application to a two-dimensional, many-particle system, focusing on surface-step fluctuations and on the related time-dependent roughness. After the construction of a dataset based on Kinetic Monte Carlo simulations, a conditional GAN is trained to propagate stochastically the state of the system in time, allowing the generation of new sequences with a reduced computational cost. Modifications with respect to standard GANs, which facilitate convergence and increase accuracy, are discussed. The trained network is demonstrated to quantitatively reproduce equilibrium and kinetic properties, including scaling laws, with deviations of a few percent from the exact value. Extrapolation limits and future perspectives are critically discussed.
comment: 15 pages, 8 figures, 2 appendices
☆ Unified machine-learning framework for property prediction and time-evolution simulation of strained alloy microstructure
We introduce a unified machine-learning framework designed to conveniently tackle the temporal evolution of alloy microstructures under the influence of an elastic field. This approach allows for the simultaneous extraction of elastic parameters from a short trajectory and for the prediction of further microstructure evolution under their influence. This is demonstrated by focusing on spinodal decomposition in the presence of a lattice mismatch eta, and by carrying out an extensive comparison between the ground-truth evolution supplied by phase field simulations and the predictions of suitable convolutional recurrent neural network architectures. The two tasks may then be performed subsequently into a cascade framework. Under a wide spectrum of misfit conditions, the here-presented cascade model accurately predicts eta and the full corresponding microstructure evolution, also when approaching critical conditions for spinodal decomposition. Scalability to larger computational domain sizes and mild extrapolation errors in time (for time sequences five times longer than the sampled ones during training) are demonstrated. The proposed framework is general and can be applied beyond the specific, prototypical system considered here as an example. Intriguingly, experimental videos could be used to infer unknown external parameters, prior to simulating further temporal evolution.
comment: 19 pages, 9 figures
☆ Improving Neural Network Training using Dynamic Learning Rate Schedule for PINNs and Image Classification
Training neural networks can be challenging, especially as the complexity of the problem increases. Despite using wider or deeper networks, training them can be a tedious process, especially if a wrong choice of the hyperparameter is made. The learning rate is one of such crucial hyperparameters, which is usually kept static during the training process. Learning dynamics in complex systems often requires a more adaptive approach to the learning rate. This adaptability becomes crucial to effectively navigate varying gradients and optimize the learning process during the training process. In this paper, a dynamic learning rate scheduler (DLRS) algorithm is presented that adapts the learning rate based on the loss values calculated during the training process. Experiments are conducted on problems related to physics-informed neural networks (PINNs) and image classification using multilayer perceptrons and convolutional neural networks, respectively. The results demonstrate that the proposed DLRS accelerates training and improves stability.
comment: 10 pages
☆ evoxels: A differentiable physics framework for voxel-based microstructure simulations
Materials science inherently spans disciplines: experimentalists use advanced microscopy to uncover micro- and nanoscale structure, while theorists and computational scientists develop models that link processing, structure, and properties. Bridging these domains is essential for inverse material design where you start from desired performance and work backwards to optimal microstructures and manufacturing routes. Integrating high-resolution imaging with predictive simulations and data-driven optimization accelerates discovery and deepens understanding of process-structure-property relationships. The differentiable physics framework evoxels is based on a fully Pythonic, unified voxel-based approach that integrates segmented 3D microscopy data, physical simulations, inverse modeling, and machine learning.
comment: 9 pages, 3 figures, structure following JOSS style
☆ Zero-Shot Machine Unlearning with Proxy Adversarial Data Generation IJCAI 2025
Machine unlearning aims to remove the influence of specific samples from a trained model. A key challenge in this process is over-unlearning, where the model's performance on the remaining data significantly drops due to the change in the model's parameters. Existing unlearning algorithms depend on the remaining data to prevent this issue. As such, these methods are inapplicable in a more practical scenario, where only the unlearning samples are available (i.e., zero-shot unlearning). This paper presents a novel framework, ZS-PAG, to fill this gap. Our approach offers three key innovations: (1) we approximate the inaccessible remaining data by generating adversarial samples; (2) leveraging the generated samples, we pinpoint a specific subspace to perform the unlearning process, therefore preventing over-unlearning in the challenging zero-shot scenario; and (3) we consider the influence of the unlearning process on the remaining samples and design an influence-based pseudo-labeling strategy. As a result, our method further improves the model's performance after unlearning. The proposed method holds a theoretical guarantee, and experiments on various benchmarks validate the effectiveness and superiority of our proposed method over several baselines.
comment: Accepted by IJCAI 2025
☆ Generalized few-shot transfer learning architecture for modeling the EDFA gain spectrum
Accurate modeling of the gain spectrum in Erbium-Doped Fiber Amplifiers (EDFAs) is essential for optimizing optical network performance, particularly as networks evolve toward multi-vendor solutions. In this work, we propose a generalized few-shot transfer learning architecture based on a Semi-Supervised Self-Normalizing Neural Network (SS-NN) that leverages internal EDFA features - such as VOA input or output power and attenuation, to improve gain spectrum prediction. Our SS-NN model employs a two-phase training strategy comprising unsupervised pre-training with noise-augmented measurements and supervised fine-tuning with a custom weighted MSE loss. Furthermore, we extend the framework with transfer learning (TL) techniques that enable both homogeneous (same-feature space) and heterogeneous (different-feature sets) model adaptation across booster, preamplifier, and ILA EDFAs. To address feature mismatches in heterogeneous TL, we incorporate a covariance matching loss to align second-order feature statistics between source and target domains. Extensive experiments conducted across 26 EDFAs in the COSMOS and Open Ireland testbeds demonstrate that the proposed approach significantly reduces the number of measurements requirements on the system while achieving lower mean absolute errors and improved error distributions compared to benchmark methods.
comment: This is a preprint of a paper accepted and published in the Journal of Optical Communications and Networking (JOCN). The final published version is available at: https://doi.org/10.1364/JOCN.560987
☆ Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
Tree tensor networks (TTNs) are widely used in low-rank approximation and quantum many-body simulation. In this work, we present a formal analysis of the differential geometry underlying TTNs. Building on this foundation, we develop efficient first- and second-order optimization algorithms that exploit the intrinsic quotient structure of TTNs. Additionally, we devise a backpropagation algorithm for training TTNs in a kernel learning setting. We validate our methods through numerical experiments on a representative machine learning task.
comment: 24 pages, 6 figures, 4 pseudo-code algorithms, 1 table
☆ Data-Driven Extended Corresponding State Approach for Residual Property Prediction of Hydrofluoroolefins
Hydrofluoroolefins are considered the most promising next-generation refrigerants due to their extremely low global warming potential values, which can effectively mitigate the global warming effect. However, the lack of reliable thermodynamic data hinders the discovery and application of newer and superior hydrofluoroolefin refrigerants. In this work, integrating the strengths of theoretical method and data-driven method, we proposed a neural network extended corresponding state model to predict the residual thermodynamic properties of hydrofluoroolefin refrigerants. The innovation is that the fluids are characterized through their microscopic molecular structures by the inclusion of graph neural network module and the specialized design of model architecture to enhance its generalization ability. The proposed model is trained using the highly accurate data of available known fluids, and evaluated via the leave-one-out cross-validation method. Compared to conventional extended corresponding state models or cubic equation of state, the proposed model shows significantly improved accuracy for density and energy properties in liquid and supercritical regions, with average absolute deviation of 1.49% (liquid) and 2.42% (supercritical) for density, 3.37% and 2.50% for residual entropy, 1.85% and 1.34% for residual enthalpy. These results demonstrate the effectiveness of embedding physics knowledge into the machine learning model. The proposed neural network extended corresponding state model is expected to significantly accelerate the discovery of novel hydrofluoroolefin refrigerants.
☆ An Equal-Probability Partition of the Sample Space: A Non-parametric Inference from Finite Samples
This paper investigates what can be inferred about an arbitrary continuous probability distribution from a finite sample of $N$ observations drawn from it. The central finding is that the $N$ sorted sample points partition the real line into $N+1$ segments, each carrying an expected probability mass of exactly $1/(N+1)$. This non-parametric result, which follows from fundamental properties of order statistics, holds regardless of the underlying distribution's shape. This equal-probability partition yields a discrete entropy of $\log_2(N+1)$ bits, which quantifies the information gained from the sample and contrasts with Shannon's results for continuous variables. I compare this partition-based framework to the conventional ECDF and discuss its implications for robust non-parametric inference, particularly in density and tail estimation.
☆ PREIG: Physics-informed and Reinforcement-driven Interpretable GRU for Commodity Demand Forecasting
Accurately forecasting commodity demand remains a critical challenge due to volatile market dynamics, nonlinear dependencies, and the need for economically consistent predictions. This paper introduces PREIG, a novel deep learning framework tailored for commodity demand forecasting. The model uniquely integrates a Gated Recurrent Unit (GRU) architecture with physics-informed neural network (PINN) principles by embedding a domain-specific economic constraint: the negative elasticity between price and demand. This constraint is enforced through a customized loss function that penalizes violations of the physical rule, ensuring that model predictions remain interpretable and aligned with economic theory. To further enhance predictive performance and stability, PREIG incorporates a hybrid optimization strategy that couples NAdam and L-BFGS with Population-Based Training (POP). Experiments across multiple commodities datasets demonstrate that PREIG significantly outperforms traditional econometric models (ARIMA,GARCH) and deep learning baselines (BPNN,RNN) in both RMSE and MAPE. When compared with GRU,PREIG maintains good explainability while still performing well in prediction. By bridging domain knowledge, optimization theory and deep learning, PREIG provides a robust, interpretable, and scalable solution for high-dimensional nonlinear time series forecasting in economy.
☆ diffSPH: Differentiable Smoothed Particle Hydrodynamics for Adjoint Optimization and Machine Learning
We present diffSPH, a novel open-source differentiable Smoothed Particle Hydrodynamics (SPH) framework developed entirely in PyTorch with GPU acceleration. diffSPH is designed centrally around differentiation to facilitate optimization and machine learning (ML) applications in Computational Fluid Dynamics~(CFD), including training neural networks and the development of hybrid models. Its differentiable SPH core, and schemes for compressible (with shock capturing and multi-phase flows), weakly compressible (with boundary handling and free-surface flows), and incompressible physics, enable a broad range of application areas. We demonstrate the framework's unique capabilities through several applications, including addressing particle shifting via a novel, target-oriented approach by minimizing physical and regularization loss terms, a task often intractable in traditional solvers. Further examples include optimizing initial conditions and physical parameters to match target trajectories, shape optimization, implementing a solver-in-the-loop setup to emulate higher-order integration, and demonstrating gradient propagation through hundreds of full simulation steps. Prioritizing readability, usability, and extensibility, this work offers a foundational platform for the CFD community to develop and deploy novel neural networks and adjoint optimization applications.
☆ Probabilistic Consistency in Machine Learning and Its Connection to Uncertainty Quantification
Machine learning (ML) is often viewed as a powerful data analysis tool that is easy to learn because of its black-box nature. Yet this very nature also makes it difficult to quantify confidence in predictions extracted from ML models, and more fundamentally, to understand how such models are mathematical abstractions of training data. The goal of this paper is to unravel these issues and their connections to uncertainty quantification (UQ) by pursuing a line of reasoning motivated by diagnostics. In such settings, prevalence - i.e. the fraction of elements in class - is often of inherent interest. Here we analyze the many interpretations of prevalence to derive a level-set theory of classification, which shows that certain types of self-consistent ML models are equivalent to class-conditional probability distributions. We begin by studying the properties of binary Bayes optimal classifiers, recognizing that their boundary sets can be reinterpreted as level-sets of pairwise density ratios. By parameterizing Bayes classifiers in terms of the prevalence, we then show that they satisfy important monotonicity and class-switching properties that can be used to deduce the density ratios without direct access to the boundary sets. Moreover, this information is sufficient for tasks such as constructing the multiclass Bayes-optimal classifier and estimating inherent uncertainty in the class assignments. In the multiclass case, we use these results to deduce normalization and self-consistency conditions, the latter being equivalent to the law of total probability for classifiers. We also show that these are necessary conditions for arbitrary ML models to have valid probabilistic interpretations. Throughout we demonstrate how this analysis informs the broader task of UQ for ML via an uncertainty propagation framework.
☆ DGP: A Dual-Granularity Prompting Framework for Fraud Detection with Graph-Enhanced LLMs
Real-world fraud detection applications benefit from graph learning techniques that jointly exploit node features, often rich in textual data, and graph structural information. Recently, Graph-Enhanced LLMs emerge as a promising graph learning approach that converts graph information into prompts, exploiting LLMs' ability to reason over both textual and structural information. Among them, text-only prompting, which converts graph information to prompts consisting solely of text tokens, offers a solution that relies only on LLM tuning without requiring additional graph-specific encoders. However, text-only prompting struggles on heterogeneous fraud-detection graphs: multi-hop relations expand exponentially with each additional hop, leading to rapidly growing neighborhoods associated with dense textual information. These neighborhoods may overwhelm the model with long, irrelevant content in the prompt and suppress key signals from the target node, thereby degrading performance. To address this challenge, we propose Dual Granularity Prompting (DGP), which mitigates information overload by preserving fine-grained textual details for the target node while summarizing neighbor information into coarse-grained text prompts. DGP introduces tailored summarization strategies for different data modalities, bi-level semantic abstraction for textual fields and statistical aggregation for numerical features, enabling effective compression of verbose neighbor content into concise, informative prompts. Experiments across public and industrial datasets demonstrate that DGP operates within a manageable token budget while improving fraud detection performance by up to 6.8% (AUPRC) over state-of-the-art methods, showing the potential of Graph-Enhanced LLMs for fraud detection.
☆ Hyperbolic Genome Embeddings ICLR 2025
Current approaches to genomic sequence modeling often struggle to align the inductive biases of machine learning models with the evolutionarily-informed structure of biological systems. To this end, we formulate a novel application of hyperbolic CNNs that exploits this structure, enabling more expressive DNA sequence representations. Our strategy circumvents the need for explicit phylogenetic mapping while discerning key properties of sequences pertaining to core functional and regulatory behavior. Across 37 out of 42 genome interpretation benchmark datasets, our hyperbolic models outperform their Euclidean equivalents. Notably, our approach even surpasses state-of-the-art performance on seven GUE benchmark datasets, consistently outperforming many DNA language models while using orders of magnitude fewer parameters and avoiding pretraining. Our results include a novel set of benchmark datasets--the Transposable Elements Benchmark--which explores a major but understudied component of the genome with deep evolutionary significance. We further motivate our work by exploring how our hyperbolic models recognize genomic signal under various data-generating conditions and by constructing an empirical method for interpreting the hyperbolicity of dataset embeddings. Throughout these assessments, we find persistent evidence highlighting the potential of our hyperbolic framework as a robust paradigm for genome representation learning. Our code and benchmark datasets are available at https://github.com/rrkhan/HGE.
comment: 30 pages, 16 figures, 10 tables. Camera-ready version for ICLR 2025
☆ Whilter: A Whisper-based Data Filter for "In-the-Wild" Speech Corpora Using Utterance-level Multi-Task Classification
Large-scale in-the-wild speech datasets have become more prevalent in recent years due to increased interest in models that can learn useful features from unlabelled data for tasks such as speech recognition or synthesis. These datasets often contain undesirable features, such as multiple speakers, non-target languages, and music, which may impact model learning. The Whilter model is proposed as a multitask solution to identify these undesirable samples. Whilter uses a Whisper encoder with an attention-based classifier to solve five diverse classification problems at once. In addition, an annotated dataset is published for a subset of two popular in-the-wild corpora. Whilter achieves F1 scores above 85% and equal error rates of 6.5% to 7.8% for three of five subtasks, outperforming a state-of-the-art BEATs classifier on speech-specific classes, with a notable decrease in processing time compared to a combination of single-task alternatives.
comment: Accepted for Interspeech 2025
☆ Assistax: A Hardware-Accelerated Reinforcement Learning Benchmark for Assistive Robotics
The development of reinforcement learning (RL) algorithms has been largely driven by ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks because they present relevant challenges, are inexpensive to run and easy to understand. While games such as Go and Atari have led to many breakthroughs, they often do not directly translate to real-world embodied applications. In recognising the need to diversify RL benchmarks and addressing complexities that arise in embodied interaction scenarios, we introduce Assistax: an open-source benchmark designed to address challenges arising in assistive robotics tasks. Assistax uses JAX's hardware acceleration for significant speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock time, Assistax runs up to $370\times$ faster when vectorising training runs compared to CPU-based alternatives. Assistax conceptualises the interaction between an assistive robot and an active human patient using multi-agent RL to train a population of diverse partner agents against which an embodied robotic agent's zero-shot coordination capabilities can be tested. Extensive evaluation and hyperparameter tuning for popular continuous control RL and MARL algorithms provide reliable baselines and establish Assistax as a practical benchmark for advancing RL research for assistive robotics. The code is available at: https://github.com/assistive-autonomy/assistax.
comment: Accepted for the Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop at the Reinforcement Learning Conference 2025
☆ Categorical Distributions are Effective Neural Network Outputs for Event Prediction
We demonstrate the effectiveness of using a simple neural network output, a categorical probability distribution, for the task of next spike prediction. This case study motivates an investigation into why this simple output structure is not commonly used with neural temporal point process models. We find evidence that many existing datasets for evaluating temporal point process models do not reveal much information about the underlying event generating processes, and many existing models perform well due to regularization effects of model size and constraints on output structure. We extend existing datasets and create new ones in order to explore outside of this information limited regime and find that outputting a simple categorical distribution is competitive across a wide range of datasets.
comment: 32 pages, 26 figures
☆ An em algorithm for quantum Boltzmann machines
We develop a quantum version of the em algorithm for training quantum Boltzmann machines. The em algorithm is an information-geometric extension of the well-known expectation-maximization (EM) algorithm, offering a structured alternative to gradient-based methods with potential advantages in stability and convergence. We implement the algorithm on a semi-quantum restricted Boltzmann machine, where quantum effects are confined to the hidden layer. This structure enables analytical update rules while preserving quantum expressivity. Numerical experiments on benchmark datasets show that the proposed method achieves stable learning and outperforms gradient-based training in several cases. These results demonstrate the potential of information-geometric optimization for quantum machine learning, particularly in settings where standard methods struggle due to non-commutativity or vanishing gradients.
comment: Main text: 10 pages, 2 figures. Appendix: 3 pages, 1 figure
☆ Enhancing Graph-based Recommendations with Majority-Voting LLM-Rerank Augmentation
Recommendation systems often suffer from data sparsity caused by limited user-item interactions, which degrade their performance and amplify popularity bias in real-world scenarios. This paper proposes a novel data augmentation framework that leverages Large Language Models (LLMs) and item textual descriptions to enrich interaction data. By few-shot prompting LLMs multiple times to rerank items and aggregating the results via majority voting, we generate high-confidence synthetic user-item interactions, supported by theoretical guarantees based on the concentration of measure. To effectively leverage the augmented data in the context of a graph recommendation system, we integrate it into a graph contrastive learning framework to mitigate distributional shift and alleviate popularity bias. Extensive experiments show that our method improves accuracy and reduces popularity bias, outperforming strong baselines.
☆ On Policy Stochasticity in Mutual Information Optimal Control of Linear Systems
In recent years, mutual information optimal control has been proposed as an extension of maximum entropy optimal control. Both approaches introduce regularization terms to render the policy stochastic, and it is important to theoretically clarify the relationship between the temperature parameter (i.e., the coefficient of the regularization term) and the stochasticity of the policy. Unlike in maximum entropy optimal control, this relationship remains unexplored in mutual information optimal control. In this paper, we investigate this relationship for a mutual information optimal control problem (MIOCP) of discrete-time linear systems. After extending the result of a previous study of the MIOCP, we establish the existence of an optimal policy of the MIOCP, and then derive the respective conditions on the temperature parameter under which the optimal policy becomes stochastic and deterministic. Furthermore, we also derive the respective conditions on the temperature parameter under which the policy obtained by an alternating optimization algorithm becomes stochastic and deterministic. The validity of the theoretical results is demonstrated through numerical experiments.
comment: 17 pages
☆ Automatic Classification of User Requirements from Online Feedback -- A Replication Study
Natural language processing (NLP) techniques have been widely applied in the requirements engineering (RE) field to support tasks such as classification and ambiguity detection. Although RE research is rooted in empirical investigation, it has paid limited attention to replicating NLP for RE (NLP4RE) studies. The rapidly advancing realm of NLP is creating new opportunities for efficient, machine-assisted workflows, which can bring new perspectives and results to the forefront. Thus, we replicate and extend a previous NLP4RE study (baseline), "Classifying User Requirements from Online Feedback in Small Dataset Environments using Deep Learning", which evaluated different deep learning models for requirement classification from user reviews. We reproduced the original results using publicly released source code, thereby helping to strengthen the external validity of the baseline study. We then extended the setup by evaluating model performance on an external dataset and comparing results to a GPT-4o zero-shot classifier. Furthermore, we prepared the replication study ID-card for the baseline study, important for evaluating replication readiness. Results showed diverse reproducibility levels across different models, with Naive Bayes demonstrating perfect reproducibility. In contrast, BERT and other models showed mixed results. Our findings revealed that baseline deep learning models, BERT and ELMo, exhibited good generalization capabilities on an external dataset, and GPT-4o showed performance comparable to traditional baseline machine learning models. Additionally, our assessment confirmed the baseline study's replication readiness; however missing environment setup files would have further enhanced readiness. We include this missing information in our replication package and provide the replication study ID-card for our study to further encourage and support the replication of our study.
comment: 10 pages, 3 figures, Replication package available at https://zenodo.org/records/15626782, Accepted at AIRE 2025 (12th International Workshop on Artificial Intelligence and Requirements Engineering)
☆ Hierarchical Stochastic Differential Equation Models for Latent Manifold Learning in Neural Time Series
The manifold hypothesis suggests that high-dimensional neural time series lie on a low-dimensional manifold shaped by simpler underlying dynamics. To uncover this structure, latent dynamical variable models such as state-space models, recurrent neural networks, neural ordinary differential equations, and Gaussian Process Latent Variable Models are widely used. We propose a novel hierarchical stochastic differential equation (SDE) model that balances computational efficiency and interpretability, addressing key limitations of existing methods. Our model assumes the trajectory of a manifold can be reconstructed from a sparse set of samples from the manifold trajectory. The latent space is modeled using Brownian bridge SDEs, with points - specified in both time and value - sampled from a multivariate marked point process. These Brownian bridges define the drift of a second set of SDEs, which are then mapped to the observed data. This yields a continuous, differentiable latent process capable of modeling arbitrarily complex time series as the number of manifold points increases. We derive training and inference procedures and show that the computational cost of inference scales linearly with the length of the observation data. We then validate our model on both synthetic data and neural recordings to demonstrate that it accurately recovers the underlying manifold structure and scales effectively with data dimensionality.
☆ Persona Vectors: Monitoring and Controlling Character Traits in Language Models
Large language models interact with users through a simulated 'Assistant' persona. While the Assistant is typically trained to be helpful, harmless, and honest, it sometimes deviates from these ideals. In this paper, we identify directions in the model's activation space-persona vectors-underlying several traits, such as evil, sycophancy, and propensity to hallucinate. We confirm that these vectors can be used to monitor fluctuations in the Assistant's personality at deployment time. We then apply persona vectors to predict and control personality shifts that occur during training. We find that both intended and unintended personality changes after finetuning are strongly correlated with shifts along the relevant persona vectors. These shifts can be mitigated through post-hoc intervention, or avoided in the first place with a new preventative steering method. Moreover, persona vectors can be used to flag training data that will produce undesirable personality changes, both at the dataset level and the individual sample level. Our method for extracting persona vectors is automated and can be applied to any personality trait of interest, given only a natural-language description.
☆ Evaluation and Benchmarking of LLM Agents: A Survey
The rise of LLM-based agents has opened new frontiers in AI applications, yet evaluating these agents remains a complex and underdeveloped area. This survey provides an in-depth overview of the emerging field of LLM agent evaluation, introducing a two-dimensional taxonomy that organizes existing work along (1) evaluation objectives -- what to evaluate, such as agent behavior, capabilities, reliability, and safety -- and (2) evaluation process -- how to evaluate, including interaction modes, datasets and benchmarks, metric computation methods, and tooling. In addition to taxonomy, we highlight enterprise-specific challenges, such as role-based access to data, the need for reliability guarantees, dynamic and long-horizon interactions, and compliance, which are often overlooked in current research. We also identify future research directions, including holistic, more realistic, and scalable evaluation. This work aims to bring clarity to the fragmented landscape of agent evaluation and provide a framework for systematic assessment, enabling researchers and practitioners to evaluate LLM agents for real-world deployment.
☆ Multifunctional physical reservoir computing in soft tensegrity robots
Recent studies have demonstrated that the dynamics of physical systems can be utilized for the desired information processing under the framework of physical reservoir computing (PRC). Robots with soft bodies are examples of such physical systems, and their nonlinear body-environment dynamics can be used to compute and generate the motor signals necessary for the control of their own behavior. In this simulation study, we extend this approach to control and embed not only one but also multiple behaviors into a type of soft robot called a tensegrity robot. The resulting system, consisting of the robot and the environment, is a multistable dynamical system that converges to different attractors from varying initial conditions. Furthermore, attractor analysis reveals that there exist "untrained attractors" in the state space of the system outside the training data. These untrained attractors reflect the intrinsic properties and structures of the tensegrity robot and its interactions with the environment. The impacts of these recent findings in PRC remain unexplored in embodied AI research. We here illustrate their potential to understand various features of embodied cognition that have not been fully addressed to date.
comment: 25 pages, 12 figures. The following article has been accepted by Chaos: An Interdisciplinary Journal of Nonlinear Science
☆ Latte: Collaborative Test-Time Adaptation of Vision-Language Models in Federated Learning ICCV 2025
Test-time adaptation with pre-trained vision-language models has gained increasing attention for addressing distribution shifts during testing. Among these approaches, memory-based algorithms stand out due to their training-free nature and ability to leverage historical test data. However, existing test-time adaptation methods are typically designed for a single domain with abundant data. In decentralized settings such as federated learning, applying these methods individually to each client suffers from limited test data, while directly sharing a single global memory via the server prevents proper personalization to each client's unique distribution. To address this, we propose Latte, a novel framework where each client maintains a local memory to store embeddings from its own historical test data and an external memory to store class prototypes from other relevant clients. During communication, each client retrieves prototypes from similar clients under the server's coordination to expand its memory. For local adaptation, Latte utilizes both embedding similarity and uncertainty to enhance model performance. Our theoretical analysis shows that Latte effectively leverages in-distribution clients while remaining robust to out-of-distribution clients. Extensive experiments on domain adaptation and corruption benchmarks validate that Latte achieves superior performance in decentralized settings, while introducing only negligible communication and computation costs. Our code is available at https://github.com/baowenxuan/Latte .
comment: Accepted by ICCV 2025
☆ Stochastic forest transition model dynamics and parameter estimation via deep learning
Forest transitions, characterized by dynamic shifts between forest, agricultural, and abandoned lands, are complex phenomena. This study developed a stochastic differential equation model to capture the intricate dynamics of these transitions. We established the existence of global positive solutions for the model and conducted numerical analyses to assess the impact of model parameters on deforestation incentives. To address the challenge of parameter estimation, we proposed a novel deep learning approach that estimates all model parameters from a single sample containing time-series observations of forest and agricultural land proportions. This innovative approach enables us to understand forest transition dynamics and deforestation trends at any future time.
☆ Capacity-Constrained Continual Learning
Any agents we can possibly build are subject to capacity constraints, as memory and compute resources are inherently finite. However, comparatively little attention has been dedicated to understanding how agents with limited capacity should allocate their resources for optimal performance. The goal of this paper is to shed some light on this question by studying a simple yet relevant continual learning problem: the capacity-constrained linear-quadratic-Gaussian (LQG) sequential prediction problem. We derive a solution to this problem under appropriate technical conditions. Moreover, for problems that can be decomposed into a set of sub-problems, we also demonstrate how to optimally allocate capacity across these sub-problems in the steady state. We view the results of this paper as a first step in the systematic theoretical study of learning under capacity constraints.
☆ Hebbian Memory-Augmented Recurrent Networks: Engram Neurons in Deep Learning
Despite success across diverse tasks, current artificial recurrent network architectures rely primarily on implicit hidden-state memories, limiting their interpretability and ability to model long-range dependencies. In contrast, biological neural systems employ explicit, associative memory traces (i.e., engrams) strengthened through Hebbian synaptic plasticity and activated sparsely during recall. Motivated by these neurobiological insights, we introduce the Engram Neural Network (ENN), a novel recurrent architecture incorporating an explicit, differentiable memory matrix with Hebbian plasticity and sparse, attention-driven retrieval mechanisms. The ENN explicitly models memory formation and recall through dynamic Hebbian traces, improving transparency and interpretability compared to conventional RNN variants. We evaluate the ENN architecture on three canonical benchmarks: MNIST digit classification, CIFAR-10 image sequence modeling, and WikiText-103 language modeling. Our empirical results demonstrate that the ENN achieves accuracy and generalization performance broadly comparable to classical RNN, GRU, and LSTM architectures, with all models converging to similar accuracy and perplexity on the large-scale WikiText-103 task. At the same time, the ENN offers significant enhancements in interpretability through observable memory dynamics. Hebbian trace visualizations further reveal biologically plausible, structured memory formation processes, validating the potential of neuroscience-inspired mechanisms to inform the development of more interpretable and robust deep learning models.
comment: 20 pages, 11 figures, 4 tables
☆ Retrieve-Augmented Generation for Speeding up Diffusion Policy without Additional Training
Diffusion Policies (DPs) have attracted attention for their ability to achieve significant accuracy improvements in various imitation learning tasks. However, DPs depend on Diffusion Models, which require multiple noise removal steps to generate a single action, resulting in long generation times. To solve this problem, knowledge distillation-based methods such as Consistency Policy (CP) have been proposed. However, these methods require a significant amount of training time, especially for difficult tasks. In this study, we propose RAGDP (Retrieve-Augmented Generation for Diffusion Policies) as a novel framework that eliminates the need for additional training using a knowledge base to expedite the inference of pre-trained DPs. In concrete, RAGDP encodes observation-action pairs through the DP encoder to construct a vector database of expert demonstrations. During inference, the current observation is embedded, and the most similar expert action is extracted. This extracted action is combined with an intermediate noise removal step to reduce the number of steps required compared to the original diffusion step. We show that by using RAGDP with the base model and existing acceleration methods, we improve the accuracy and speed trade-off with no additional training. Even when accelerating the models 20 times, RAGDP maintains an advantage in accuracy, with a 7% increase over distillation models such as CP.
☆ From Global to Local: A Scalable Benchmark for Local Posterior Sampling
Degeneracy is an inherent feature of the loss landscape of neural networks, but it is not well understood how stochastic gradient MCMC (SGMCMC) algorithms interact with this degeneracy. In particular, current global convergence guarantees for common SGMCMC algorithms rely on assumptions which are likely incompatible with degenerate loss landscapes. In this paper, we argue that this gap requires a shift in focus from global to local posterior sampling, and, as a first step, we introduce a novel scalable benchmark for evaluating the local sampling performance of SGMCMC algorithms. We evaluate a number of common algorithms, and find that RMSProp-preconditioned SGLD is most effective at faithfully representing the local geometry of the posterior distribution. Although we lack theoretical guarantees about global sampler convergence, our empirical results show that we are able to extract non-trivial local information in models with up to O(100M) parameters.
comment: 25 pages
☆ Real-Time Audio-Visual Speech Enhancement Using Pre-trained Visual Representations
Speech enhancement in audio-only settings remains challenging, particularly in the presence of interfering speakers. This paper presents a simple yet effective real-time audio-visual speech enhancement (AVSE) system, RAVEN, which isolates and enhances the on-screen target speaker while suppressing interfering speakers and background noise. We investigate how visual embeddings learned from audio-visual speech recognition (AVSR) and active speaker detection (ASD) contribute to AVSE across different SNR conditions and numbers of interfering speakers. Our results show concatenating embeddings from AVSR and ASD models provides the greatest improvement in low-SNR, multi-speaker environments, while AVSR embeddings alone perform best in noise-only scenarios. In addition, we develop a real-time streaming system that operates on a computer CPU and we provide a video demonstration and code repository. To our knowledge, this is the first open-source implementation of a real-time AVSE system.
comment: Accepted into Interspeech 2025
☆ PVD-ONet: A Multi-scale Neural Operator Method for Singularly Perturbed Boundary Layer Problems
Physics-informed neural networks and Physics-informed DeepONet excel in solving partial differential equations; however, they often fail to converge for singularly perturbed problems. To address this, we propose two novel frameworks, Prandtl-Van Dyke neural network (PVD-Net) and its operator learning extension Prandtl-Van Dyke Deep Operator Network (PVD-ONet), which rely solely on governing equations without data. To address varying task-specific requirements, both PVD-Net and PVD-ONet are developed in two distinct versions, tailored respectively for stability-focused and high-accuracy modeling. The leading-order PVD-Net adopts a two-network architecture combined with Prandtl's matching condition, targeting stability-prioritized scenarios. The high-order PVD-Net employs a five-network design with Van Dyke's matching principle to capture fine-scale boundary layer structures, making it ideal for high-accuracy scenarios. PVD-ONet generalizes PVD-Net to the operator learning setting by assembling multiple DeepONet modules, directly mapping initial conditions to solution operators and enabling instant predictions for an entire family of boundary layer problems without retraining. Numerical experiments on various models show that our proposed methods consistently outperform existing baselines under various error metrics, thereby offering a powerful new approach for multi-scale problems.
comment: 34pages,14figures
☆ Measuring Sample Quality with Copula Discrepancies
The scalable Markov chain Monte Carlo (MCMC) algorithms that underpin modern Bayesian machine learning, such as Stochastic Gradient Langevin Dynamics (SGLD), sacrifice asymptotic exactness for computational speed, creating a critical diagnostic gap: traditional sample quality measures fail catastrophically when applied to biased samplers. While powerful Stein-based diagnostics can detect distributional mismatches, they provide no direct assessment of dependence structure, often the primary inferential target in multivariate problems. We introduce the Copula Discrepancy (CD), a principled and computationally efficient diagnostic that leverages Sklar's theorem to isolate and quantify the fidelity of a sample's dependence structure independent of its marginals. Our theoretical framework provides the first structure-aware diagnostic specifically designed for the era of approximate inference. Empirically, we demonstrate that a moment-based CD dramatically outperforms standard diagnostics like effective sample size for hyperparameter selection in biased MCMC, correctly identifying optimal configurations where traditional methods fail. Furthermore, our robust MLE-based variant can detect subtle but critical mismatches in tail dependence that remain invisible to rank correlation-based approaches, distinguishing between samples with identical Kendall's tau but fundamentally different extreme-event behavior. With computational overhead orders of magnitude lower than existing Stein discrepancies, the CD provides both immediate practical value for MCMC practitioners and a theoretical foundation for the next generation of structure-aware sample quality assessment.
☆ MemShare: Memory Efficient Inference for Large Reasoning Models through KV Cache Reuse AAAI 2026
Large Reasoning Models (LRMs) have achieved significant advances in mathematical reasoning and formal logic tasks. However, their tendency to generate lengthy chain-of-thought sequences leads to substantial memory overhead during inference. We observe that LRMs frequently produce highly similar intermediate reasoning steps, which correspond to similar KV cache states across layers. Motivated by this observation, we propose MemShare, a novel KV cache management approach that effectively reduces memory overhead. MemShare employs a collaborative filtering algorithm to efficiently identify reusable KV cache blocks and enables zero copy cache reuse to significantly reduce memory overhead, improve throughput while maintaining accuracy. Experimental results demonstrate that MemShare delivers up to 84.79\% improvement in throughput while maintaining better accuracy compared to existing KV cache management methods.
comment: 11 pages, 7 figures, submitted to AAAI 2026
☆ From Sublinear to Linear: Fast Convergence in Deep Networks via Locally Polyak-Lojasiewicz Regions
The convergence of gradient descent (GD) on the non-convex loss landscapes of deep neural networks (DNNs) presents a fundamental theoretical challenge. While recent work has established that GD converges to a stationary point at a sublinear rate within locally quasi-convex regions (LQCRs), this fails to explain the exponential convergence rates consistently observed in practice. In this paper, we resolve this discrepancy by proving that under a mild assumption on Neural Tangent Kernel (NTK) stability, these same regions satisfy a local Polyak-Lojasiewicz (PL) condition. We introduce the concept of a Locally Polyak-Lojasiewicz Region (LPLR), where the squared gradient norm lower-bounds the suboptimality gap, prove that properly initialized finite-width networks admit such regions around initialization, and establish that GD achieves linear convergence within an LPLR, providing the first finite-width guarantee that matches empirically observed rates. We validate our theory across diverse settings, from controlled experiments on fully-connected networks to modern ResNet architectures trained with stochastic methods, demonstrating that LPLR structure emerges robustly in practical deep learning scenarios. By rigorously connecting local landscape geometry to fast optimization through the NTK framework, our work provides a definitive theoretical explanation for the remarkable efficiency of gradient-based optimization in deep learning.
☆ MapDiffusion: Generative Diffusion for Vectorized Online HD Map Construction and Uncertainty Estimation in Autonomous Driving IROS 2025
Autonomous driving requires an understanding of the static environment from sensor data. Learned Bird's-Eye View (BEV) encoders are commonly used to fuse multiple inputs, and a vector decoder predicts a vectorized map representation from the latent BEV grid. However, traditional map construction models provide deterministic point estimates, failing to capture uncertainty and the inherent ambiguities of real-world environments, such as occlusions and missing lane markings. We propose MapDiffusion, a novel generative approach that leverages the diffusion paradigm to learn the full distribution of possible vectorized maps. Instead of predicting a single deterministic output from learned queries, MapDiffusion iteratively refines randomly initialized queries, conditioned on a BEV latent grid, to generate multiple plausible map samples. This allows aggregating samples to improve prediction accuracy and deriving uncertainty estimates that directly correlate with scene ambiguity. Extensive experiments on the nuScenes dataset demonstrate that MapDiffusion achieves state-of-the-art performance in online map construction, surpassing the baseline by 5% in single-sample performance. We further show that aggregating multiple samples consistently improves performance along the ROC curve, validating the benefit of distribution modeling. Additionally, our uncertainty estimates are significantly higher in occluded areas, reinforcing their value in identifying regions with ambiguous sensor input. By modeling the full map distribution, MapDiffusion enhances the robustness and reliability of online vectorized HD map construction, enabling uncertainty-aware decision-making for autonomous vehicles in complex environments.
comment: Accepted for 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Torque-based Graph Surgery:Enhancing Graph Neural Networks with Hierarchical Rewiring
Graph Neural Networks (GNNs) have emerged as powerful tools for learning from graph-structured data, leveraging message passing to diffuse information and update node representations. However, most efforts have suggested that native interactions encoded in the graph may not be friendly for this process, motivating the development of graph rewiring methods. In this work, we propose a torque-driven hierarchical rewiring strategy, inspired by the notion of torque in classical mechanics, dynamically modulating message passing to improve representation learning in heterophilous graphs and enhance robustness against noisy graphs. Specifically, we define an interference-aware torque metric that integrates structural distance and energy scores to quantify the perturbation induced by edges, thereby encouraging each node to aggregate information from its nearest low-energy neighbors. We use the metric to hierarchically reconfigure the receptive field of each layer by judiciously pruning high-torque edges and adding low-torque links, suppressing propagation noise and boosting pertinent signals. Extensive evaluations on benchmark datasets show that our approach surpasses state-of-the-art methods on both heterophilous and homophilous graphs, and maintains high accuracy on noisy graph.
☆ Cascading and Proxy Membership Inference Attacks
A Membership Inference Attack (MIA) assesses how much a trained machine learning model reveals about its training data by determining whether specific query instances were included in the dataset. We classify existing MIAs into adaptive or non-adaptive, depending on whether the adversary is allowed to train shadow models on membership queries. In the adaptive setting, where the adversary can train shadow models after accessing query instances, we highlight the importance of exploiting membership dependencies between instances and propose an attack-agnostic framework called Cascading Membership Inference Attack (CMIA), which incorporates membership dependencies via conditional shadow training to boost membership inference performance. In the non-adaptive setting, where the adversary is restricted to training shadow models before obtaining membership queries, we introduce Proxy Membership Inference Attack (PMIA). PMIA employs a proxy selection strategy that identifies samples with similar behaviors to the query instance and uses their behaviors in shadow models to perform a membership posterior odds test for membership inference. We provide theoretical analyses for both attacks, and extensive experimental results demonstrate that CMIA and PMIA substantially outperform existing MIAs in both settings, particularly in the low false-positive regime, which is crucial for evaluating privacy risks.
comment: Our code is available at: https://github.com/zealscott/MIA
☆ Data Leakage and Redundancy in the LIT-PCBA Benchmark
LIT-PCBA is a widely used benchmark for virtual screening, but our audit reveals it is fundamentally compromised. The dataset suffers from egregious data leakage, rampant duplication, and pervasive analog redundancy -- flaws that invalidate its use for fair model evaluation. Notably, we identify 2,491 inactives duplicated across training and validation sets, and thousands more repeated within individual data splits (2,945 in training, 789 in validation). Critically, three ligands in the query set -- meant to represent unseen test cases -- are leaked: two appear in the training set, one in validation. Structural redundancy compounds these issues: for some targets, over 80% of query ligands are near duplicates, with Tanimoto similarity >= 0.9. In ALDH1 alone, we find 323 highly similar active pairs between training and validation sets, invalidating claims of chemical diversity. These and other flaws collectively cause models trained on LIT-PCBA to memorize rather than generalize. To demonstrate the consequences of these data integrity failures, we implement a trivial memorization-based baseline -- using no learning, no physics, and no modeling -- that outperforms state-of-the-art models, including deep neural networks like CHEESE, on LIT-PCBA simply by exploiting these artifacts. Our findings render the benchmark unfit for its intended purpose and call into question previous results based on its use. We share this audit to raise awareness and provide tooling to help the community develop more rigorous and reliable datasets going forward. All scripts necessary to reproduce our audit and the baseline implementation are available at: https://github.com/sievestack/LIT-PCBA-audit
☆ Enabling Pareto-Stationarity Exploration in Multi-Objective Reinforcement Learning: A Multi-Objective Weighted-Chebyshev Actor-Critic Approach
In many multi-objective reinforcement learning (MORL) applications, being able to systematically explore the Pareto-stationary solutions under multiple non-convex reward objectives with theoretical finite-time sample complexity guarantee is an important and yet under-explored problem. This motivates us to take the first step and fill the important gap in MORL. Specifically, in this paper, we propose a \uline{M}ulti-\uline{O}bjective weighted-\uline{CH}ebyshev \uline{A}ctor-critic (MOCHA) algorithm for MORL, which judiciously integrates the weighted-Chebychev (WC) and actor-critic framework to enable Pareto-stationarity exploration systematically with finite-time sample complexity guarantee. Sample complexity result of MOCHA algorithm reveals an interesting dependency on $p_{\min}$ in finding an $\epsilon$-Pareto-stationary solution, where $p_{\min}$ denotes the minimum entry of a given weight vector $\mathbf{p}$ in WC-scarlarization. By carefully choosing learning rates, the sample complexity for each exploration can be $\tilde{\mathcal{O}}(\epsilon^{-2})$. Furthermore, simulation studies on a large KuaiRand offline dataset, show that the performance of MOCHA algorithm significantly outperforms other baseline MORL approaches.
☆ Systolic Array-based Accelerator for State-Space Models
Sequence modeling is crucial for AI to understand temporal data and detect complex time-dependent patterns. While recurrent neural networks (RNNs), convolutional neural networks (CNNs), and Transformers have advanced in capturing long-range dependencies, they struggle with achieving high accuracy with very long sequences due to limited memory retention (fixed context window). State-Space Models (SSMs) leverage exponentially decaying memory enabling lengthy context window and so they process very long data sequences more efficiently than recurrent and Transformer-based models. Unlike traditional neural models like CNNs and RNNs, SSM-based models require solving differential equations through continuous integration, making training and inference both compute- and memory-intensive on conventional CPUs and GPUs. In this paper we introduce a specialized hardware accelerator, EpochCore, for accelerating SSMs. EpochCore is based on systolic arrays (SAs) and is designed to enhance the energy efficiency and throughput of inference of SSM-based models for long-range sequence tasks. Within the SA, we propose a versatile processing element (PE) called LIMA-PE to perform traditional and specialized MAC operations to support traditional DNNs and SSMs. To complement the EpochCore microarchitecture, we propose a novel dataflow, ProDF, which enables highly efficient execution of SSM-based models. By leveraging the LIMA-PE microarchitecture and ProDF, EpochCore achieves on average 250x gains in performance and 45x improvement in energy efficiency, at the expense of 2x increase in area cost over traditional SA-based accelerators, and around ~2,000x improvement in latency/inference on LRA datasets compared to GPU kernel operations.
♻ ☆ Back Home: A Computer Vision Solution to Seashell Identification for Ecological Restoration ICCV 2025
Illegal souvenir collection strips an estimated five tonnes of seashells from Costa Rica's beaches each year. Yet, once these specimens are seized, their coastal origin -- Pacific or Caribbean -- cannot be verified easily due to the lack of information, preventing their return when confiscated by local authorities. To solve this issue, we introduce BackHome19K, the first large-scale image corpus (19,058 photographs, 516 species) annotated with coast-level labels, and propose a lightweight pipeline that infers provenance in real time on a mobile-grade CPU. A trained anomaly filter pre-screens uploads, increasing robustness to user-generated noise. On a held-out test set, the classifier attains 86.3% balanced accuracy, while the filter rejects 93% of 180 out-of-domain objects with zero false negatives. Deployed as a web application, the system has already processed 70,000 shells for wildlife officers in under three seconds per image, enabling confiscated specimens to be safely repatriated to their native ecosystems. The dataset is available at https://huggingface.co/datasets/FIFCO/BackHome19K
comment: ICCV 2025 (CV4E Workshop)
♻ ☆ Persistent Backdoor Attacks in Continual Learning
Backdoor attacks pose a significant threat to neural networks, enabling adversaries to manipulate model outputs on specific inputs, often with devastating consequences, especially in critical applications. While backdoor attacks have been studied in various contexts, little attention has been given to their practicality and persistence in continual learning, particularly in understanding how the continual updates to model parameters, as new data distributions are learned and integrated, impact the effectiveness of these attacks over time. To address this gap, we introduce two persistent backdoor attacks-Blind Task Backdoor and Latent Task Backdoor-each leveraging minimal adversarial influence. Our blind task backdoor subtly alters the loss computation without direct control over the training process, while the latent task backdoor influences only a single task's training, with all other tasks trained benignly. We evaluate these attacks under various configurations, demonstrating their efficacy with static, dynamic, physical, and semantic triggers. Our results show that both attacks consistently achieve high success rates across different continual learning algorithms, while effectively evading state-of-the-art defenses, such as SentiNet and I-BAU.
comment: 19 pages, 20 figures, 6 tables
♻ ☆ Sem-DPO: Mitigating Semantic Inconsistency in Preference Optimization for Prompt Engineering
Generative AI can now synthesize strikingly realistic images from text, yet output quality remains highly sensitive to how prompts are phrased. Direct Preference Optimization (DPO) offers a lightweight, off-policy alternative to RL for automatic prompt engineering, but its token-level regularization leaves semantic inconsistency unchecked as prompts that win higher preference scores can still drift away from the user's intended meaning. We introduce Sem-DPO, a variant of DPO that preserves semantic consistency yet retains its simplicity and efficiency. Sem-DPO adjusts the DPO loss using a weight based on how different the winning prompt is from the original, reducing the impact of training examples that are semantically misaligned. We provide the first analytical bound on semantic drift for preference-tuned prompt generators, showing that Sem-DPO keeps learned prompts within a provably bounded neighborhood of the original text. On three standard text-to-image prompt-optimization benchmarks and two language models, Sem-DPO achieves 8-12% higher CLIP similarity and 5-9% higher human-preference scores (HPSv2.1, PickScore) than DPO, while also outperforming state-of-the-art baselines. These findings suggest that strong flat baselines augmented with semantic weighting should become the new standard for prompt-optimization studies and lay the groundwork for broader, semantics-aware preference optimization in language models.
♻ ☆ Inducing Causal World Models in LLMs for Zero-Shot Physical Reasoning
Large Language Models (LLMs), despite their advanced linguistic capabilities, fundamentally lack an intuitive understanding of physical dynamics, which limits their effectiveness in real-world scenarios that require causal reasoning. In this paper, we introduce Causal World Model Induction (CWMI), a novel framework designed to embed an explicit model of causal physics within an LLM. Our approach incorporates a dedicated Causal Physics Module (CPM) and a new training objective called Causal Intervention Loss, encouraging the model to learn cause-and-effect relationships from multimodal data. By training the model to predict the outcomes of hypothetical interventions instead of merely capturing statistical correlations, CWMI develops a robust internal representation of physical laws. Experimental results show that CWMI significantly outperforms state-of-the-art LLMs on zero-shot physical reasoning tasks, including the PIQA benchmark and our newly proposed PhysiCa-Bench dataset. These findings demonstrate that inducing a causal world model is a critical step toward more reliable and generalizable AI systems.
comment: 12 pages, 4 figures,
♻ ☆ A Scalable and High Availability Solution for Recommending Resolutions to Problem Tickets
Resolution of incidents or problem tickets is a common theme in service industries in any sector, including billing and charging systems in telecom domain. Machine learning can help to identify patterns and suggest resolutions for the problem tickets, based on patterns in the historical data of the tickets. However, this process may be complicated due to a variety of phenomena such as data drift and issues such as missing data, lack of data pertaining to resolutions of past incidents, too many similar sounding resolutions due to free text and similar sounding text. This paper proposes a robust ML-driven solution employing clustering, supervised learning, and advanced NLP models to tackle these challenges effectively. Building on previous work, we demonstrate clustering-based resolution identification, supervised classification with LDA, Siamese networks, and One-shot learning, Index embedding. Additionally, we present a real-time dashboard and a highly available Kubernetes-based production deployment. Our experiments with both the open-source Bitext customer-support dataset and proprietary telecom datasets demonstrate high prediction accuracy.
comment: 9 pages, 7 figures
♻ ☆ Extracting Interpretable Models from Tree Ensembles: Computational and Statistical Perspectives
Tree ensembles are non-parametric methods widely recognized for their accuracy and ability to capture complex interactions. While these models excel at prediction, they are difficult to interpret and may fail to uncover useful relationships in the data. We propose an estimator to extract compact sets of decision rules from tree ensembles. The extracted models are accurate and can be manually examined to reveal relationships between the predictors and the response. A key novelty of our estimator is the flexibility to jointly control the number of rules extracted and the interaction depth of each rule, which improves accuracy. We develop a tailored exact algorithm to efficiently solve optimization problems underlying our estimator and an approximate algorithm for computing regularization paths, sequences of solutions that correspond to varying model sizes. We also establish novel non-asymptotic prediction error bounds for our proposed approach, comparing it to an oracle that chooses the best data-dependent linear combination of the rules in the ensemble subject to the same complexity constraint as our estimator. The bounds illustrate that the large-sample predictive performance of our estimator is on par with that of the oracle. Through experiments, we demonstrate that our estimator outperforms existing algorithms for rule extraction.
♻ ☆ Compton Form Factor Extraction using Quantum Deep Neural Networks
We present an extraction of Compton Form Factors (CFFs) from Deeply Virtual Compton Scattering (DVCS) experiments conducted at Thomas Jefferson National Accelerator Facility, utilizing Quantum Deep Neural Networks (QDNNs). The analysis employs the standard Belitsky, Kirchner, and M\"uller formalism at twist-two, complemented by a fitting procedure designed to minimize model dependence in a manner analogous to conventional local fits. A pseudodata extraction test of the CFFs is performed using both Classical Deep Neural Networks (CDNNs) and QDNNs, with a detailed comparative analysis. Results indicate that QDNNs can outperform CDNNs in particular cases, offering enhanced predictive accuracy and precision even with limited model complexity. Motivated by this, we develop a metric to quantify the extent of the quantum advantage based on characteristics of DVCS experimental data. These findings underscore the promising role of QDNNs in advancing future investigations into multidimensional parton distributions and hadronic physics.
comment: 36 pages, 17 figures. v2: major revisions
♻ ☆ SAKE: Steering Activations for Knowledge Editing
As Large Langue Models have been shown to memorize real-world facts, the need to update this knowledge in a controlled and efficient manner arises. Designed with these constraints in mind, Knowledge Editing (KE) approaches propose to alter specific facts in pretrained models. However, they have been shown to suffer from several limitations, including their lack of contextual robustness and their failure to generalize to logical implications related to the fact. To overcome these issues, we propose SAKE, a steering activation method that models a fact to be edited as a distribution rather than a single prompt. Leveraging Optimal Transport, SAKE alters the LLM behavior over a whole fact-related distribution, defined as paraphrases and logical implications. Several numerical experiments demonstrate the effectiveness of this method: SAKE is thus able to perform more robust edits than its existing counterparts.
♻ ☆ An $\tilde{O}$ptimal Differentially Private Learner for Concept Classes with VC Dimension 1
We present the first nearly optimal differentially private PAC learner for any concept class with VC dimension 1 and Littlestone dimension $d$. Our algorithm achieves the sample complexity of $\tilde{O}_{\varepsilon,\delta,\alpha,\delta}(\log^* d)$, nearly matching the lower bound of $\Omega(\log^* d)$ proved by Alon et al. [STOC19]. Prior to our work, the best known upper bound is $\tilde{O}(VC\cdot d^5)$ for general VC classes, as shown by Ghazi et al. [STOC21].
comment: Add proper learner
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Ensuring Medical AI Safety: Interpretability-Driven Detection and Mitigation of Spurious Model Behavior and Associated Data
Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.
♻ ☆ Linear Stability Analysis of Physics-Informed Random Projection Neural Networks for ODEs
We present a linear stability analysis of physics-informed random projection neural networks (PI-RPNNs), for the numerical solution of {the initial value problem (IVP)} of (stiff) ODEs. We begin by proving that PI-RPNNs are uniform approximators of the solution to ODEs. We then provide a constructive proof demonstrating that PI-RPNNs offer consistent and asymptotically stable numerical schemes, thus convergent schemes. In particular, we prove that multi-collocation PI-RPNNs guarantee asymptotic stability. Our theoretical results are illustrated via numerical solutions of benchmark examples including indicative comparisons with the backward Euler method, the midpoint method, the trapezoidal rule, the 2-stage Gauss scheme, and the 2- and 3-stage Radau schemes.
comment: 17 pages, 3 figures
♻ ☆ SmoothRot: Combining Channel-Wise Scaling and Rotation for Quantization-Friendly LLMs
We present SmoothRot, a novel post-training quantization technique to enhance the efficiency of 4-bit quantization in Large Language Models (LLMs). SmoothRot addresses the critical challenge of massive activation outliers, by integrating channel-wise scaling with Hadamard transformations. Our technique effectively transforms extreme outliers into quantization-friendly activations, significantly improving quantization accuracy. Experiments conducted on popular LLMs (LLaMA2 7B, LLaMA3.1 8B, and Mistral 7B) demonstrate that SmoothRot consistently reduces the performance gap between quantized and FP16 models by approximately 10-30\% across language generation and zero-shot reasoning tasks, without introducing additional inference latency. Code is available at https://github.com/czakop/smoothrot.
comment: 6 pages, 3 figures, 5 tables. Accepted to IEEE SMC 2025 conference proceedings
♻ ☆ SLR: Automated Synthesis for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR automatically synthesizes (i) an instruction prompt for an inductive reasoning task, (ii) a validation program, executable on model outputs to provide verifiable rewards, and (iii) the latent ground-truth rule. This process is fully automated, scalable, requires no human annotations, and offers precise control over task difficulty. Using SLR, we create SLR-Bench, a benchmark comprising 19k prompts organized into 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs demonstrate improved performance but incur very high test-time computation, with costs exceeding $300 for just 1,000 prompts. Finally, curriculum learning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. Moreover, these reasoning capabilities generalize to a wide range of established benchmarks, underscoring the effectiveness of SLR for downstream reasoning.
♻ ☆ HiPreNets: High-Precision Neural Networks through Progressive Training
Deep neural networks are powerful tools for solving nonlinear problems in science and engineering, but training highly accurate models becomes challenging as problem complexity increases. Non-convex optimization and numerous hyperparameters to tune make performance improvement difficult, and traditional approaches often prioritize minimizing mean squared error (MSE) while overlooking $L^{\infty}$ error, which is the critical focus in many applications. To address these challenges, we present a progressive framework for training and tuning high-precision neural networks (HiPreNets). Our approach refines a previously explored staged training technique for neural networks that improves an existing fully connected neural network by sequentially learning its prediction residuals using additional networks, leading to improved overall accuracy. We discuss how to take advantage of the structure of the residuals to guide the choice of loss function, number of parameters to use, and ways to introduce adaptive data sampling techniques. We validate our framework's effectiveness through several benchmark problems.
♻ ☆ Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks
Although large language models (LLMs) have shown promise in biomolecule optimization problems, they incur heavy computational costs and struggle to satisfy precise constraints. On the other hand, specialized solvers like LaMBO-2 offer efficiency and fine-grained control but require more domain expertise. Comparing these approaches is challenging due to expensive laboratory validation and inadequate synthetic benchmarks. We address this by introducing Ehrlich functions, a synthetic test suite that captures the geometric structure of biophysical sequence optimization problems. With prompting alone, off-the-shelf LLMs struggle to optimize Ehrlich functions. In response, we propose LLOME (Language Model Optimization with Margin Expectation), a bilevel optimization routine for online black-box optimization. When combined with a novel preference learning loss, we find LLOME can not only learn to solve some Ehrlich functions, but can even perform as well as or better than LaMBO-2 on moderately difficult Ehrlich variants. However, LLMs also exhibit some likelihood-reward miscalibration and struggle without explicit rewards. Our results indicate LLMs can occasionally provide significant benefits, but specialized solvers are still competitive and incur less overhead.
comment: Supercedes arXiv:2407.00236v1. arXiv admin note: text overlap with arXiv:2407.00236
♻ ☆ TESSERA: Temporal Embeddings of Surface Spectra for Earth Representation and Analysis
Satellite remote sensing from repeated observations and multiple sensors enables a wide range of downstream applications, including climate modeling, carbon accounting, and strategies for conservation and sustainable land use. However, satellite time series are voluminous, often corrupted by sensor noise, clouds, and atmospheric conditions, and unevenly spaced in time, making them challenging to use. We present TESSERA, an open, global, land-oriented remote sensing foundation model that uses self-supervised learning to generate `ready-to-use' embeddings at 10~m scale from pixel-level satellite time series data. TESSERA uses two parallel Transformer-based encoders to combine optical data from ten Sentinel-2 spectral bands at 10-60~m spatial resolution and two Sentinel-1 synthetic aperture radar backscatter coefficients at 10~m resolution to create embeddings that are subsequently fused with a multilayer perceptron to create annual global embedding maps. We compare our work with state-of-the-art task-specific models and other foundation models in five diverse downstream tasks and find that TESSERA closely matches or outperforms these baselines. We believe that TESSERA's ease of use, openness, computation-, label-, and data-efficiency, and high performance will prove transformative in a wide range of vegetation-oriented ecological and agricultural applications.
♻ ☆ Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems
This paper formalizes Hamiltonian-Informed Optimal Neural (Hion) controllers, a novel class of neural network-based controllers for dynamical systems and explicit non-linear model-predictive control. Hion controllers estimate future states and develop an optimal control strategy using Pontryagin's Maximum Principle. The proposed framework, along with our Taylored Multi-Faceted Approach for Neural ODE and Optimal Control (T-mano) architecture, allows for custom transient behavior, predictive control, and closed-loop feedback, addressing limitations of existing methods. Comparative analyses with established model-predictive controllers revealed Hion controllers' superior optimality and tracking capabilities. Optimal control strategies are also demonstrated for both linear and non-linear dynamical systems.
comment: 27 pages. Source code: https://github.com/wzjoriv/Hion
♻ ☆ Can sparse autoencoders make sense of gene expression latent variable models?
Sparse autoencoders (SAEs) have lately been used to uncover interpretable latent features in large language models. By projecting dense embeddings into a much higher-dimensional and sparse space, learned features become disentangled and easier to interpret. This work explores the potential of SAEs for decomposing embeddings in complex and high-dimensional biological data. Using simulated data, it outlines the efficacy, hyperparameter landscape, and limitations of SAEs when it comes to extracting ground truth generative variables from latent space. The application to embeddings from pretrained single-cell models shows that SAEs can find and steer key biological processes and even uncover subtle biological signals that might otherwise be missed. This work further introduces scFeatureLens, an automated interpretability approach for linking SAE features and biological concepts from gene sets to enable large-scale analysis and hypothesis generation in single-cell gene expression models.
comment: 8 pages, 3 figures
♻ ☆ A Review on Self-Supervised Learning for Time Series Anomaly Detection: Recent Advances and Open Challenges
Time series anomaly detection presents various challenges due to the sequential and dynamic nature of time-dependent data. Traditional unsupervised methods frequently encounter difficulties in generalization, often overfitting to known normal patterns observed during training and struggling to adapt to unseen normality. In response to this limitation, self-supervised techniques for time series have garnered attention as a potential solution to undertake this obstacle and enhance the performance of anomaly detectors. This paper presents a comprehensive review of the recent methods that make use of self-supervised learning for time series anomaly detection. A taxonomy is proposed to categorize these methods based on their primary characteristics, facilitating a clear understanding of their diversity within this field. The information contained in this survey, along with additional details that will be periodically updated, is available on the following GitHub repository: https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection.
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (cross-reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new cross-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the training views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate cross-reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
♻ ☆ Prediction accuracy versus rescheduling flexibility in elective surgery management
The availability of downstream resources plays is critical in planning the admission of elective surgery patients. The most crucial one is inpatient beds. To ensure bed availability, hospitals may use machine learning (ML) models to predict patients' length-of-stay (LOS) in the admission planning stage. However, the real value of the LOS for each patient may differ from the predicted one, potentially making the schedule infeasible. To address such infeasibilities, it is possible to implement rescheduling strategies that take advantage of operational flexibility. For example, planners may postpone admission dates, relocate patients to different wards, or even transfer patients who are already admitted among wards. A straightforward assumption is that better LOS predictions can help reduce the impact of rescheduling. However, the training process of ML models that can make such accurate predictions can be very costly. Building on previous work that proposed simulated ML for evaluating data-driven approaches, this paper explores the relationship between LOS prediction accuracy and rescheduling flexibility across various corrective policies. Specifically, we examine the most effective patient rescheduling strategies under LOS prediction errors to prevent bed overflows while optimizing resource utilization
Context-Aware Probabilistic Modeling with LLM for Multimodal Time Series Forecasting
Time series forecasting is important for applications spanning energy markets, climate analysis, and traffic management. However, existing methods struggle to effectively integrate exogenous texts and align them with the probabilistic nature of large language models (LLMs). Current approaches either employ shallow text-time series fusion via basic prompts or rely on deterministic numerical decoding that conflict with LLMs' token-generation paradigm, which limits contextual awareness and distribution modeling. To address these limitations, we propose CAPTime, a context-aware probabilistic multimodal time series forecasting method that leverages text-informed abstraction and autoregressive LLM decoding. Our method first encodes temporal patterns using a pretrained time series encoder, then aligns them with textual contexts via learnable interactions to produce joint multimodal representations. By combining a mixture of distribution experts with frozen LLMs, we enable context-aware probabilistic forecasting while preserving LLMs' inherent distribution modeling capabilities. Experiments on diverse time series forecasting tasks demonstrate the superior accuracy and generalization of CAPTime, particularly in multimodal scenarios. Additional analysis highlights its robustness in data-scarce scenarios through hybrid probabilistic decoding.
comment: 13 pages, 2 figures
♻ ☆ EEG-CLIP : Learning EEG representations from natural language descriptions
Deep networks for electroencephalogram (EEG) decoding are often only trained to solve one specific task, such as pathology or age decoding. A more general task-agnostic approach is to train deep networks to match a (clinical) EEG recording to its corresponding textual medical report and vice versa. This approach was pioneered in the computer vision domain matching images and their text captions and subsequently allowed to do successful zero-shot decoding using textual class prompts. In this work, we follow this approach and develop a contrastive learning framework, EEG-CLIP, that aligns the EEG time series and the descriptions of the corresponding clinical text in a shared embedding space. We investigated its potential for versatile EEG decoding, evaluating performance in a range of few-shot and zero-shot settings. Overall, we show that EEG-CLIP manages to non-trivially align text and EEG representations. Our work presents a promising approach to learn general EEG representations, which could enable easier analyses of diverse decoding questions through zero-shot decoding or training task-specific models from fewer training examples. The code for reproducing our results is available at https://github.com/tidiane-camaret/EEGClip
♻ ☆ Conceptualizing Uncertainty: A Concept-based Approach to Explaining Uncertainty
Uncertainty in machine learning refers to the degree of confidence or lack thereof in a model's predictions. While uncertainty quantification methods exist, explanations of uncertainty, especially in high-dimensional settings, remain an open challenge. Existing work focuses on feature attribution approaches which are restricted to local explanations. Understanding uncertainty, its origins, and characteristics on a global scale is crucial for enhancing interpretability and trust in a model's predictions. In this work, we propose to explain the uncertainty in high-dimensional data classification settings by means of concept activation vectors which give rise to local and global explanations of uncertainty. We demonstrate the utility of the generated explanations by leveraging them to refine and improve our model.
♻ ☆ A finite time analysis of distributed Q-learning
Multi-agent reinforcement learning (MARL) has witnessed a remarkable surge in interest, fueled by the empirical success achieved in applications of single-agent reinforcement learning (RL). In this study, we consider a distributed Q-learning scenario, wherein a number of agents cooperatively solve a sequential decision making problem without access to the central reward function which is an average of the local rewards. In particular, we study finite-time analysis of a distributed Q-learning algorithm, and provide a new sample complexity result of $\tilde{\mathcal{O}}\left( \min\left\{\frac{1}{\epsilon^2}\frac{t_{\text{mix}}}{(1-\gamma)^6 d_{\min}^4 } ,\frac{1}{\epsilon}\frac{\sqrt{|\gS||\gA|}}{(1-\sigma_2(\boldsymbol{W}))(1-\gamma)^4 d_{\min}^3} \right\}\right)$ under tabular lookup
comment: Published at RLC2025
♻ ☆ VLA-Touch: Enhancing Vision-Language-Action Models with Dual-Level Tactile Feedback
Tactile feedback is generally recognized to be crucial for effective interaction with the physical world. However, state-of-the-art Vision-Language-Action (VLA) models lack the ability to interpret and use tactile signals, limiting their effectiveness in contact-rich tasks. Incorporating tactile feedback into these systems is challenging due to the absence of large multi-modal datasets. We present VLA-Touch, an approach that enhances generalist robot policies with tactile sensing \emph{without fine-tuning} the base VLA. Our method introduces two key innovations: (1) a pipeline that leverages a pretrained tactile-language model that provides semantic tactile feedback for high-level task planning, and (2) a diffusion-based controller that refines VLA-generated actions with tactile signals for contact-rich manipulation. Through real-world experiments, we demonstrate that our dual-level integration of tactile feedback improves task planning efficiency while enhancing execution precision. Code is open-sourced at \href{https://github.com/jxbi1010/VLA-Touch}{this URL}.
comment: 19 pages, 5 figures
♻ ☆ Quantize Once, Train Fast: Allreduce-Compatible Compression with Provable Guarantees
Distributed training enables large-scale deep learning, but suffers from high communication overhead, especially as models and datasets grow. Gradient compression, particularly quantization, is a promising approach to mitigate this bottleneck. However, existing quantization schemes are often incompatible with Allreduce, the dominant communication primitive in distributed deep learning, and many prior solutions rely on heuristics without theoretical guarantees. We introduce Global-QSGD, an Allreduce-compatible gradient quantization method that leverages global norm scaling to reduce communication overhead while preserving accuracy. Global-QSGD is backed by rigorous theoretical analysis, extending standard unbiased compressor frameworks to establish formal convergence guarantees. Additionally, we develop a performance model to evaluate its impact across different hardware configurations. Extensive experiments on NVLink, PCIe, and large-scale cloud environments show that Global-QSGD accelerates distributed training by up to 3.51% over baseline quantization methods, making it a practical and efficient solution for large-scale deep learning workloads.
comment: ECAI'25
♻ ☆ Motion Diffusion Autoencoders: Enabling Attribute Manipulation in Human Motion Demonstrated on Karate Techniques
Attribute manipulation deals with the problem of changing individual attributes of a data point or a time series, while leaving all other aspects unaffected. This work focuses on the domain of human motion, more precisely karate movement patterns. To the best of our knowledge, it presents the first success at manipulating attributes of human motion data. One of the key requirements for achieving attribute manipulation on human motion is a suitable pose representation. Therefore, we design a novel continuous, rotation-based pose representation that enables the disentanglement of the human skeleton and the motion trajectory, while still allowing an accurate reconstruction of the original anatomy. The core idea of the manipulation approach is to use a transformer encoder for discovering high-level semantics, and a diffusion probabilistic model for modeling the remaining stochastic variations. We show that the embedding space obtained from the transformer encoder is semantically meaningful and linear. This enables the manipulation of high-level attributes, by discovering their linear direction of change in the semantic embedding space and moving the embedding along said direction. All code and data is made publicly available.
comment: 9 pages, 7 figures
♻ ☆ Intrinsic Barriers and Practical Pathways for Human-AI Alignment: An Agreement-Based Complexity Analysis
We formalize AI alignment as a multi-objective optimization problem called $\langle M,N,\varepsilon,\delta\rangle$-agreement that generalizes prior approaches with fewer assumptions, in which a set of $N$ agents (including humans) must reach approximate ($\varepsilon$) agreement across $M$ candidate objectives with probability at least $1-\delta$. Using communication complexity, we prove an information-theoretic lower bound demonstrating that once either $M$ or $N$ is large enough, no interaction or rationality can avoid intrinsic alignment overheads. This barrier establishes rigorous intrinsic limits to alignment \emph{itself}, not merely to specific methods, clarifying a crucial ``no free lunch'' principle: encoding ``all human values'' inevitably leads to misalignment, requiring future methods to explicitly manage complexity through consensus-driven reduction or prioritization of objectives. Complementing this impossibility result, we provide explicit algorithms achieving alignment under both computationally unbounded and bounded rationality with noisy messages. Even in these best-case scenarios where alignment to arbitrary precision is theoretically guaranteed, our analysis identifies three critical scalability barriers: the number of tasks ($M$), agents ($N$), and task state space size ($D$); thereby highlighting fundamental complexity-theoretic constraints and providing guidelines for safer, scalable human-AI collaboration.
comment: 20 pages, improved lower bounds and added clarifications
♻ ☆ Robust Matrix Completion for Discrete Rating-Scale Data: Coping with Fake Profiles in Recommender Systems
Recommender systems are essential tools in the digital landscape for connecting users with content that more closely aligns with their preferences. Matrix completion is a widely used statistical framework for such systems, aiming to predict a user's preferences for items they have not yet rated by leveraging the observed ratings in a partially filled user-item rating matrix. Realistic applications of matrix completion in recommender systems must address several challenges that are too often neglected: (i) the discrete nature of rating-scale data, (ii) the presence of malicious users who manipulate the system to their advantage through the creation of fake profiles, and (iii) missing-not-at-random patterns, where users are more likely to rate items they expect to enjoy. Our goal in this paper is twofold. First, we propose a novel matrix completion method, robust discrete matrix completion (RDMC), designed specifically to handle the discrete nature of sparse rating-scale data and to remain reliable in the presence of adversarial manipulation. We evaluate RDMC through carefully designed experiments and realistic case studies. Our work therefore, secondly, offers a statistically-sound blueprint for future studies on how to evaluate matrix completion methods for recommender systems under realistic scenarios.
♻ ☆ Quantum enhanced stratification of Breast Cancer: exploring quantum expressivity for real omics data
Quantum Machine Learning (QML) is considered one of the most promising applications of Quantum Computing in the Noisy Intermediate Scale Quantum (NISQ) era for the impact it is thought to have in the near future. Although promising theoretical assumptions, the exploration of how QML could foster new discoveries in Medicine and Biology fields is still in its infancy with few examples. In this study, we aimed to assess whether Quantum Kernels (QK) could effectively classify subtypes of Breast Cancer (BC) patients on the basis of molecular characteristics. We performed an heuristic exploration of encoding configurations with different entanglement levels to determine a trade-off between kernel expressivity and performances. Our results show that QKs yield comparable clustering results with classical methods while using fewer data points, and are able to fit the data with a higher number of clusters. Additionally, we conducted the experiments on the Quantum Processing Unit (QPU) to evaluate the effect of noise on the outcome. We found that less expressive encodings showed a higher resilience to noise, indicating that the computational pipeline can be reliably implemented on the NISQ devices. Our findings suggest that QK methods show promises for application in Precision Oncology, especially in scenarios where the dataset is limited in size and a granular non-trivial stratification of complex molecular data cannot be achieved classically.
comment: 10 pages, 6 figures
♻ ☆ Local Attention Mechanism: Boosting the Transformer Architecture for Long-Sequence Time Series Forecasting
Transformers have become the leading choice in natural language processing over other deep learning architectures. This trend has also permeated the field of time series analysis, especially for long-horizon forecasting, showcasing promising results both in performance and running time. In this paper, we introduce Local Attention Mechanism (LAM), an efficient attention mechanism tailored for time series analysis. This mechanism exploits the continuity properties of time series to reduce the number of attention scores computed. We present an algorithm for implementing LAM in tensor algebra that runs in time and memory O(nlogn), significantly improving upon the O(n^2) time and memory complexity of traditional attention mechanisms. We also note the lack of proper datasets to evaluate long-horizon forecast models. Thus, we propose a novel set of datasets to improve the evaluation of models addressing long-horizon forecasting challenges. Our experimental analysis demonstrates that the vanilla transformer architecture magnified with LAM surpasses state-of-the-art models, including the vanilla attention mechanism. These results confirm the effectiveness of our approach and highlight a range of future challenges in long-sequence time series forecasting.
♻ ☆ Machine learning-based multimodal prognostic models integrating pathology images and high-throughput omic data for overall survival prediction in cancer: a systematic review
Multimodal machine learning integrating histopathology and molecular data shows promise for cancer prognostication. We systematically reviewed studies combining whole slide images (WSIs) and high-throughput omics to predict overall survival. Searches of EMBASE, PubMed, and Cochrane CENTRAL (12/08/2024), plus citation screening, identified eligible studies. Data extraction used CHARMS; bias was assessed with PROBAST+AI; synthesis followed SWiM and PRISMA 2020. Protocol: PROSPERO (CRD42024594745). Forty-eight studies (all since 2017) across 19 cancer types met criteria; all used The Cancer Genome Atlas. Approaches included regularised Cox regression (n=4), classical ML (n=13), and deep learning (n=31). Reported c-indices ranged 0.550-0.857; multimodal models typically outperformed unimodal ones. However, all studies showed unclear/high bias, limited external validation, and little focus on clinical utility. Multimodal WSI-omics survival prediction is a fast-growing field with promising results but needs improved methodological rigor, broader datasets, and clinical evaluation. Funded by NPIC, Leeds Teaching Hospitals NHS Trust, UK (Project 104687), supported by UKRI Industrial Strategy Challenge Fund.
comment: Main article (50 pages, inc 3 tables, 4 figures). Supplementary material included with additional methodological information and data
♻ ☆ Hierarchical mixtures of Gaussians for combined dimensionality reduction and clustering
We introduce hierarchical mixtures of Gaussians (HMoGs), which unify dimensionality reduction and clustering into a single probabilistic model. HMoGs provide closed-form expressions for the model likelihood, exact inference over latent states and cluster membership, and exact algorithms for maximum-likelihood optimization. The novel exponential family parameterization of HMoGs greatly reduces their computational complexity relative to similar model-based methods, allowing them to efficiently model hundreds of latent dimensions, and thereby capture additional structure in high-dimensional data. We demonstrate HMoGs on synthetic experiments and MNIST, and show how joint optimization of dimensionality reduction and clustering facilitates increased model performance. We also explore how sparsity-constrained dimensionality reduction can further improve clustering performance while encouraging interpretability. By bridging classical statistical modelling with the scale of modern data and compute, HMoGs offer a practical approach to high-dimensional clustering that preserves statistical rigour, interpretability, and uncertainty quantification that is often missing from embedding-based, variational, and self-supervised methods.
♻ ☆ Unsupervised risk factor identification across cancer types and data modalities via explainable artificial intelligence
Risk stratification is a key tool in clinical decision-making, yet current approaches often fail to translate sophisticated survival analysis into actionable clinical criteria. We present a novel method for unsupervised machine learning that directly optimizes for survival heterogeneity across patient clusters through a differentiable adaptation of the multivariate logrank statistic. Unlike most existing methods that rely on proxy metrics, our approach represents novel methodology for training any neural network architecture on any data modality to identify prognostically distinct patient groups. We thoroughly evaluate the method in simulation experiments and demonstrate its utility in practice by applying it to two distinct cancer types: analyzing laboratory parameters from multiple myeloma patients and computed tomography images from non-small cell lung cancer patients, identifying prognostically distinct patient subgroups with significantly different survival outcomes in both cases. Post-hoc explainability analyses uncover clinically meaningful features determining the group assignments which align well with established risk factors and thus lend strong weight to the methods utility. This pan-cancer, model-agnostic approach represents a valuable advancement in clinical risk stratification, enabling the discovery of novel prognostic signatures across diverse data types while providing interpretable results that promise to complement treatment personalization and clinical decision-making in oncology and beyond.
♻ ☆ Implementing Large Quantum Boltzmann Machines as Generative AI Models for Dataset Balancing
This study explores the implementation of large Quantum Restricted Boltzmann Machines (QRBMs), a key advancement in Quantum Machine Learning (QML), as generative models on D-Wave's Pegasus quantum hardware to address dataset imbalance in Intrusion Detection Systems (IDS). By leveraging Pegasus's enhanced connectivity and computational capabilities, a QRBM with 120 visible and 120 hidden units was successfully embedded, surpassing the limitations of default embedding tools. The QRBM synthesized over 1.6 million attack samples, achieving a balanced dataset of over 4.2 million records. Comparative evaluations with traditional balancing methods, such as SMOTE and RandomOversampler, revealed that QRBMs produced higher-quality synthetic samples, significantly improving detection rates, precision, recall, and F1 score across diverse classifiers. The study underscores the scalability and efficiency of QRBMs, completing balancing tasks in milliseconds. These findings highlight the transformative potential of QML and QRBMs as next-generation tools in data preprocessing, offering robust solutions for complex computational challenges in modern information systems.
comment: S. Sinno, M. Bertl, A. Sahoo, B. Bhalgamiya, T. Gro{\ss} and N. Chancellor, "Implementing Large Quantum Boltzmann Machines as Generative AI Models for Dataset Balancing," 2025 International Conference on Next Generation Information System Engineering (NGISE), Ghaziabad, Delhi (NCR), India, 2025, pp. 1-8, doi: 10.1109/NGISE64126.2025.11085158
♻ ☆ Quantum Boltzmann Machines using Parallel Annealing for Medical Image Classification
Exploiting the fact that samples drawn from a quantum annealer inherently follow a Boltzmann-like distribution, annealing-based Quantum Boltzmann Machines (QBMs) have gained increasing popularity in the quantum research community. While they harbor great promises for quantum speed-up, their usage currently stays a costly endeavor, as large amounts of QPU time are required to train them. This limits their applicability in the NISQ era. Following the idea of No\`e et al. (2024), who tried to alleviate this cost by incorporating parallel quantum annealing into their unsupervised training of QBMs, this paper presents an improved version of parallel quantum annealing that we employ to train QBMs in a supervised setting. Saving qubits to encode the inputs, the latter setting allows us to test our approach on medical images from the MedMNIST data set (Yang et al., 2023), thereby moving closer to real-world applicability of the technology. Our experiments show that QBMs using our approach already achieve reasonable results, comparable to those of similarly-sized Convolutional Neural Networks (CNNs), with markedly smaller numbers of epochs than these classical models. Our parallel annealing technique leads to a speed-up of almost 70 % compared to regular annealing-based BM executions.
comment: 12 pages, 5 figures (10 if counting subfigures), 2 tables. To be published in the proceedings of the 2025 IEEE International Conference on Quantum Computing and Engineering (QCE)
♻ ☆ Defending Against Unforeseen Failure Modes with Latent Adversarial Training
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them. LAT makes use of the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. Here, we use it to defend against failure modes without examples that elicit them. Specifically, we use LAT to remove backdoors and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness to novel attacks and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
comment: See also followup work at arXiv:2407.15549
♻ ☆ Latent Adversarial Training Improves Robustness to Persistent Harmful Behaviors in LLMs
Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of 'jailbreaking' techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.
comment: Code at https://github.com/aengusl/latent-adversarial-training. Models at https://huggingface.co/LLM-LAT
♻ ☆ A calibration test for evaluating set-based epistemic uncertainty representations
The accurate representation of epistemic uncertainty is a challenging yet essential task in machine learning. A widely used representation corresponds to convex sets of probabilistic predictors, also known as credal sets. One popular way of constructing these credal sets is via ensembling or specialized supervised learning methods, where the epistemic uncertainty can be quantified through measures such as the set size or the disagreement among members. In principle, these sets should contain the true data-generating distribution. As a necessary condition for this validity, we adopt the strongest notion of calibration as a proxy. Concretely, we propose a novel statistical test to determine whether there is a convex combination of the set's predictions that is calibrated in distribution. In contrast to previous methods, our framework allows the convex combination to be instance dependent, recognizing that different ensemble members may be better calibrated in different regions of the input space. Moreover, we learn this combination via proper scoring rules, which inherently optimize for calibration. Building on differentiable, kernel-based estimators of calibration errors, we introduce a nonparametric testing procedure and demonstrate the benefits of capturing instance-level variability on of synthetic and real-world experiments.
♻ ☆ Collaborative filtering based on nonnegative/binary matrix factorization
Collaborative filtering generates recommendations by exploiting user-item similarities based on rating data, which often contains numerous unrated items. To predict scores for unrated items, matrix factorization techniques such as nonnegative matrix factorization (NMF) are often employed. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. While previous studies have applied NBMF primarily to dense data such as images, this paper proposes a modified NBMF algorithm tailored for collaborative filtering with sparse data. In the modified method, unrated entries in the rating matrix are masked, enhancing prediction accuracy. Furthermore, utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial.
comment: 12 pages, 8 figures
♻ ☆ Multi-branch of Attention Yields Accurate Results for Tabular Data
Tabular data inherently exhibits significant feature heterogeneity, but existing transformer-based methods lack specialized mechanisms to handle this property. To bridge the gap, we propose MAYA, an encoder-decoder transformer-based framework. In the encoder, we design a Multi-Branch of Attention (MBA) that constructs multiple parallel attention branches and averages the features at each branch, effectively fusing heterogeneous features while limiting parameter growth. Additionally, we employ collaborative learning with a dynamic consistency weight constraint to produce more robust representations. In the decoder stage, cross-attention is utilized to seamlessly integrate tabular data with corresponding label features. This dual-attention mechanism effectively captures both intra-instance and inter-instance interactions. We evaluate the proposed method on a wide range of datasets and compare it with other state-of-the-art transformer-based methods. Extensive experiments demonstrate that our model achieves superior performance among transformer-based methods in both tabular classification and regression tasks.
comment: 19 pages, 3 figures
Demystifying Misconceptions in Social Bots Research
Research on social bots aims at advancing knowledge and providing solutions to one of the most debated forms of online manipulation. Yet, social bot research is plagued by widespread biases, hyped results, and misconceptions that set the stage for ambiguities, unrealistic expectations, and seemingly irreconcilable findings. Overcoming such issues is instrumental towards ensuring reliable solutions and reaffirming the validity of the scientific method. Here, we discuss a broad set of consequential methodological and conceptual issues that affect current social bots research, illustrating each with examples drawn from recent studies. More importantly, we demystify common misconceptions, addressing fundamental points on how social bots research is discussed. Our analysis surfaces the need to discuss research about online disinformation and manipulation in a rigorous, unbiased, and responsible way. This article bolsters such effort by identifying and refuting common fallacious arguments used by both proponents and opponents of social bots research, as well as providing directions toward sound methodologies for future research.
♻ ☆ A Survey on Memory-Efficient Transformer-Based Model Training in AI for Science
Scientific research faces high costs and inefficiencies with traditional methods, but the rise of deep learning and large language models (LLMs) offers innovative solutions. This survey reviews transformer-based LLM applications across scientific fields such as biology, medicine, chemistry, and meteorology, underscoring their role in advancing research. However, the continuous expansion of model size has led to significant memory demands, hindering further development and application of LLMs for science. This survey systematically reviews and categorizes memory-efficient pre-training techniques for large-scale transformers, including algorithm-level, system-level, and hardware-software co-optimization. Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy. By bridging model efficiency and scientific application needs, we hope to provide insights for scalable and cost-effective LLM training in AI for science.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-50302-6}
♻ ☆ A Detailed Factor Analysis for the Political Compass Test: Navigating Ideologies of Large Language Models
Political Compass Test (PCT) or similar questionnaires have been used to quantify LLM's political leanings. Building on a recent line of work that examines the validity of PCT tests, we demonstrate that variation in standard generation parameters does not significantly impact the models' PCT scores. However, external factors such as prompt variations and fine-tuning individually and in combination affect the same. Finally, we demonstrate that when models are fine-tuned on text datasets with higher political content than others, the PCT scores are not differentially affected. This calls for a thorough investigation into the validity of PCT and similar tests, as well as the mechanism by which political leanings are encoded in LLMs.
♻ ☆ Machine Learning Risk Intelligence for Green Hydrogen Investment: Insights for Duqm R3 Auction
As green hydrogen emerges as a major component of global decarbonisation, Oman has positioned itself strategically through national auctions and international partnerships. Following two successful green hydrogen project rounds, the country launched its third auction (R3) in the Duqm region. While this area exhibits relative geospatial homogeneity, it is still vulnerable to environmental fluctuations that pose inherent risks to productivity. Despite growing global investment in green hydrogen, operational data remains scarce, with major projects like Saudi Arabia's NEOM facility not expected to commence production until 2026, and Oman's ACME Duqm project scheduled for 2028. This absence of historical maintenance and performance data from large-scale hydrogen facilities in desert environments creates a major knowledge gap for accurate risk assessment for infrastructure planning and auction decisions. Given this data void, environmental conditions emerge as accessible and reliable proxy for predicting infrastructure maintenance pressures, because harsh desert conditions such as dust storms, extreme temperatures, and humidity fluctuations are well-documented drivers of equipment degradation in renewable energy systems. To address this challenge, this paper proposes an Artificial Intelligence decision support system that leverages publicly available meteorological data to develop a predictive Maintenance Pressure Index (MPI), which predicts risk levels and future maintenance demands on hydrogen infrastructure. This tool strengthens regulatory foresight and operational decision-making by enabling temporal benchmarking to assess and validate performance claims over time. It can be used to incorporate temporal risk intelligence into auction evaluation criteria despite the absence of historical operational benchmarks.
comment: Updated version
♻ ☆ Meta-Designing Quantum Experiments with Language Models
Artificial Intelligence (AI) can solve complex scientific problems beyond human capabilities, but the resulting solutions offer little insight into the underlying physical principles. One prominent example is quantum physics, where computers can discover experiments for the generation of specific quantum states, but it is unclear how finding general design concepts can be automated. Here, we address this challenge by training a transformer-based language model to create human-readable Python code, which solves an entire class of problems in a single pass. This strategy, which we call meta-design, enables scientists to gain a deeper understanding and extrapolate to larger experiments without additional optimization. To demonstrate the effectiveness of our approach, we uncover previously unknown experimental generalizations of important quantum states, e.g. from condensed matter physics. The underlying methodology of meta-design can naturally be extended to fields such as materials science or engineering.
comment: 8+23 pages, 5 figures
♻ ☆ "So, Tell Me About Your Policy...": Distillation of interpretable policies from Deep Reinforcement Learning agents
Recent advances in Reinforcement Learning (RL) largely benefit from the inclusion of Deep Neural Networks, boosting the number of novel approaches proposed in the field of Deep Reinforcement Learning (DRL). These techniques demonstrate the ability to tackle complex games such as Atari, Go, and other real-world applications, including financial trading. Nevertheless, a significant challenge emerges from the lack of interpretability, particularly when attempting to comprehend the underlying patterns learned, the relative importance of the state features, and how they are integrated to generate the policy's output. For this reason, in mission-critical and real-world settings, it is often preferred to deploy a simpler and more interpretable algorithm, although at the cost of performance. In this paper, we propose a novel algorithm, supported by theoretical guarantees, that can extract an interpretable policy (e.g., a linear policy) without disregarding the peculiarities of expert behavior. This result is obtained by considering the advantage function, which includes information about why an action is superior to the others. In contrast to previous works, our approach enables the training of an interpretable policy using previously collected experience. The proposed algorithm is empirically evaluated on classic control environments and on a financial trading scenario, demonstrating its ability to extract meaningful information from complex expert policies.
comment: Accepted at ECAI 2025
♻ ☆ Generating Heterogeneous Multi-dimensional Data : A Comparative Study
Allocation of personnel and material resources is highly sensible in the case of firefighter interventions. This allocation relies on simulations to experiment with various scenarios. The main objective of this allocation is the global optimization of the firefighters response. Data generation is then mandatory to study various scenarios In this study, we propose to compare different data generation methods. Methods such as Random Sampling, Tabular Variational Autoencoders, standard Generative Adversarial Networks, Conditional Tabular Generative Adversarial Networks and Diffusion Probabilistic Models are examined to ascertain their efficacy in capturing the intricacies of firefighter interventions. Traditional evaluation metrics often fall short in capturing the nuanced requirements of synthetic datasets for real-world scenarios. To address this gap, an evaluation of synthetic data quality is conducted using a combination of domain-specific metrics tailored to the firefighting domain and standard measures such as the Wasserstein distance. Domain-specific metrics include response time distribution, spatial-temporal distribution of interventions, and accidents representation. These metrics are designed to assess data variability, the preservation of fine and complex correlations and anomalies such as event with a very low occurrence, the conformity with the initial statistical distribution and the operational relevance of the synthetic data. The distribution has the particularity of being highly unbalanced, none of the variables following a Gaussian distribution, adding complexity to the data generation process.
comment: accepted at IEEE SMC 2025 Vienna
♻ ☆ PEVLM: Parallel Encoding for Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong capabilities in multimodal understanding and generation tasks. However, their application to long video understanding remains hindered by the quadratic complexity of standard attention mechanisms. In this work, we introduce \textbf{PEVLM}, a fine-tuning-free parallel encoding method designed to enhance the prefilling efficiency of VLMs in long video scenarios. PEVLM partitions the input video into context blocks with a shared sink block, while preserving sequential position embeddings to align the attention weight distribution with that of Full-Attention. This design reduces attention complexity from $O((T \times N)^2)$ to $O(T \times N)$ where $T$ is the number of frames and $N$ the number of tokens per frame, without sacrificing accuracy. Extensive experiments across multiple state-of-the-art models and benchmarks demonstrate that PEVLM consistently outperforms existing parallel encoding approaches, achieving up to \textbf{7.47x} speedup in attention computation and reducing end-to-end latency by \textbf{40\%}. Remarkably, PEVLM not only maintains high accuracy, but in some settings even surpasses Full-Attention performance. Under strict latency constraints, it achieves substantial gains, improving accuracy from \textbf{23.26\%} to \textbf{61.03\%}. These results underscore the effectiveness of PEVLM for low-latency, long-context video understanding, making it a promising solution for real-world applications.
♻ ☆ C2-Evo: Co-Evolving Multimodal Data and Model for Self-Improving Reasoning
Recent advances in multimodal large language models (MLLMs) have shown impressive reasoning capabilities. However, further enhancing existing MLLMs necessitates high-quality vision-language datasets with carefully curated task complexities, which are both costly and challenging to scale. Although recent self-improving models that iteratively refine themselves offer a feasible solution, they still suffer from two core challenges: (i) most existing methods augment visual or textual data separately, resulting in discrepancies in data complexity (e.g., over-simplified diagrams paired with redundant textual descriptions); and (ii) the evolution of data and models is also separated, leading to scenarios where models are exposed to tasks with mismatched difficulty levels. To address these issues, we propose C2-Evo, an automatic, closed-loop self-improving framework that jointly evolves both training data and model capabilities. Specifically, given a base dataset and a base model, C2-Evo enhances them by a cross-modal data evolution loop and a data-model evolution loop. The former loop expands the base dataset by generating complex multimodal problems that combine structured textual sub-problems with iteratively specified geometric diagrams, while the latter loop adaptively selects the generated problems based on the performance of the base model, to conduct supervised fine-tuning and reinforcement learning alternately. Consequently, our method continuously refines its model and training data, and consistently obtains considerable performance gains across multiple mathematical reasoning benchmarks. Our code, models, and datasets will be released.
♻ ☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ AI-ming backwards: Vanishing archaeological landscapes in Mesopotamia and automatic detection of sites on CORONA imagery
By upgrading an existing deep learning model with the knowledge provided by one of the oldest sets of grayscale satellite imagery, known as CORONA, we improved the AI model attitude towards the automatic identification of archaeological sites in an environment which has been completely transformed in the last five decades, including the complete destruction of many of those same sites. The initial Bing based convolutional network model was retrained using CORONA satellite imagery for the district of Abu Ghraib, west of Baghdad, central Mesopotamian floodplain. The results were twofold and surprising. First, the detection precision obtained on the area of interest increased sensibly: in particular, the Intersection over Union (IoU) values, at the image segmentation level, surpassed 85 percent, while the general accuracy in detecting archeological sites reached 90 percent. Second, our retrained model allowed the identification of four new sites of archaeological interest (confirmed through field verification), previously not identified by archaeologists with traditional techniques. This has confirmed the efficacy of using AI techniques and the CORONA imagery from the 1960 to discover archaeological sites currently no longer visible, a concrete breakthrough with significant consequences for the study of landscapes with vanishing archaeological evidence induced by anthropization
comment: 25 pages, 9 Figures
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advancements in Deep Learning and its application on the edge hold great potential for the revolution of routine screenings for skin cancers like Melanoma. Along with the anticipated benefits of this technology, potential dangers arise from unforseen and inherent biases. Thus, assessing and improving the fairness of such systems is of utmost importance. A key challenge in fairness assessment is to ensure that the evaluation dataset is sufficiently representative of different Personal Identifiable Information (PII) (sex, age, and race) and other minority groups. Against the backdrop of this challenge, this study leverages the state-of-the-art Generative AI (GenAI) LightningDiT model to assess the fairness of publicly available melanoma classifiers. The results suggest that fairness assessment using highly realistic synthetic data is a promising direction. Yet, our findings indicate that verifying fairness becomes difficult when the melanoma-detection model used for evaluation is trained on data that differ from the dataset underpinning the synthetic images. Nonetheless, we propose that our approach offers a valuable new avenue for employing synthetic data to gauge and enhance fairness in medical-imaging GenAI systems.
♻ ☆ Nonconvex Optimization Framework for Group-Sparse Feedback Linear-Quadratic Optimal Control. I: Penalty Approach
This paper develops a unified nonconvex optimization framework for the design of group-sparse feedback controllers in infinite-horizon linear-quadratic (LQ) problems. We address two prominent extensions of the classical LQ problem: the distributed LQ problem with fixed communication topology (DFT-LQ) and the sparse feedback LQ problem (SF-LQ), both of which are motivated by the need for scalable and structure-aware control in large-scale systems. Unlike existing approaches that rely on convex relaxations or are limited to block-diagonal structures, we directly formulate the controller synthesis as a finite-dimensional nonconvex optimization problem with group $\ell_0$-norm regularization, capturing general sparsity patterns. We establish a connection between DFT-LQ and SF-LQ problems, showing that both can be addressed within our unified framework. Furthermore, we propose a penalty-based proximal alternating linearized minimization (PALM) algorithm and provide a rigorous convergence analysis under mild assumptions, overcoming the lack of coercivity in the objective function. The proposed method admits efficient solvers for all subproblems and guarantees global convergence to critical points. Our results fill a key gap in the literature by enabling the direct design of group-sparse feedback gains with theoretical guarantees, without resorting to convex surrogates or restrictive structural assumptions.
♻ ☆ TolerantECG: A Foundation Model for Imperfect Electrocardiogram ACM MM 2025
The electrocardiogram (ECG) is an essential and effective tool for diagnosing heart diseases. However, its effectiveness can be compromised by noise or unavailability of one or more leads of the standard 12-lead recordings, resulting in diagnostic errors or uncertainty. To address these challenges, we propose TolerantECG, a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG. TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations alongside their corresponding knowledge-retrieval-based text report descriptions and corrupted or lead-missing signals. Comprehensive benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions and class levels in the PTB-XL dataset, and achieves the highest performance on the MIT-BIH Arrhythmia Database.
comment: Accepted at ACM MM 2025
♻ ☆ Posture-Driven Action Intent Inference for Playing style and Fatigue Assessment
Posture-based mental state inference has significant potential in diagnosing fatigue, preventing injury, and enhancing performance across various domains. Such tools must be research-validated with large datasets before being translated into practice. Unfortunately, such vision diagnosis faces serious challenges due to the sensitivity of human subject data. To address this, we identify sports settings as a viable alternative for accumulating data from human subjects experiencing diverse emotional states. We test our hypothesis in the game of cricket and present a posture-based solution to identify human intent from activity videos. Our method achieves over 75\% F1 score and over 80\% AUC-ROC in discriminating aggressive and defensive shot intent through motion analysis. These findings indicate that posture leaks out strong signals for intent inference, even with inherent noise in the data pipeline. Furthermore, we utilize existing data statistics as weak supervision to validate our findings, offering a potential solution for overcoming data labelling limitations. This research contributes to generalizable techniques for sports analytics and also opens possibilities for applying human behavior analysis across various fields.
♻ ☆ Long-Term Fairness Inquiries and Pursuits in Machine Learning: A Survey of Notions, Methods, and Challenges
The widespread integration of Machine Learning systems in daily life, particularly in high-stakes domains, has raised concerns about the fairness implications. While prior works have investigated static fairness measures, recent studies reveal that automated decision-making has long-term implications and that off-the-shelf fairness approaches may not serve the purpose of achieving long-term fairness. Additionally, the existence of feedback loops and the interaction between models and the environment introduces additional complexities that may deviate from the initial fairness goals. In this survey, we review existing literature on long-term fairness from different perspectives and present a taxonomy for long-term fairness studies. We highlight key challenges and consider future research directions, analyzing both current issues and potential further explorations.
comment: Accepted in TMLR
♻ ☆ Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Large Language Models (LLMs) have improved code generation and software automation, but remain limited by inference-time context and lack structured reasoning over code. Debugging remains unsolved despite these advances. While Claude Opus 4 and GPT-4.1 achieve >70% on code synthesis benchmarks, they perform <15% on real debugging tasks. We introduce Kodezi Chronos, a language model built specifically for debugging. Chronos combines Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines using multi-hop traversal (92% precision, 85% recall), Persistent Debug Memory trained on 15M+ sessions, and a 7-layer architecture for iterative fix-test-refine loops. On 5,000 real-world scenarios, Chronos achieves 67.3% fix accuracy, compared to 14.2% and 13.8% for Claude and GPT-4.1 respectively. Chronos reduces debugging time by 40% and iteration count by 65%. It resolves complex multi-file bugs involving cross-repository context and temporal reasoning. Key limitations include 23.4% success on hardware-dependent issues and 41.2% on dynamic language errors. Theoretical analysis shows O(k log d) retrieval complexity with convergence guarantees. In a human evaluation (N=50), 89% of participants preferred Chronos over baseline models. Chronos will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.
comment: 27 pages, 21 figures, 37 tables, 2 algorithms. Extended technical report. Introduces Chronos, an autonomous debugging system achieving 87.1% success rate on real-world bugs. Code and data available at https://github.com/Kodezi/chronos
♻ ☆ Probabilistic Directed Distance Fields for Ray-Based Shape Representations
In modern computer vision, the optimal representation of 3D shape continues to be task-dependent. One fundamental operation applied to such representations is differentiable rendering, as it enables inverse graphics approaches in learning frameworks. Standard explicit shape representations (voxels, point clouds, or meshes) are often easily rendered, but can suffer from limited geometric fidelity, among other issues. On the other hand, implicit representations (occupancy, distance, or radiance fields) preserve greater fidelity, but suffer from complex or inefficient rendering processes, limiting scalability. In this work, we devise Directed Distance Fields (DDFs), a novel neural shape representation that builds upon classical distance fields. The fundamental operation in a DDF maps an oriented point (position and direction) to surface visibility and depth. This enables efficient differentiable rendering, obtaining depth with a single forward pass per pixel, as well as differential geometric quantity extraction (e.g., surface normals), with only additional backward passes. Using probabilistic DDFs (PDDFs), we show how to model inherent discontinuities in the underlying field. We then apply DDFs to several applications, including single-shape fitting, generative modelling, and single-image 3D reconstruction, showcasing strong performance with simple architectural components via the versatility of our representation. Finally, since the dimensionality of DDFs permits view-dependent geometric artifacts, we conduct a theoretical investigation of the constraints necessary for view consistency. We find a small set of field properties that are sufficient to guarantee a DDF is consistent, without knowing, for instance, which shape the field is expressing.
comment: Extension of arXiv:2112.05300. Accepted to TPAMI
♻ ☆ Semantic segmentation of SEM images of lower bainitic and tempered martensitic steels
This study employs deep learning techniques to segment scanning electron microscope images, enabling a quantitative analysis of carbide precipitates in lower bainite and tempered martensite steels with comparable strength. Following segmentation, carbides are investigated, and their volume percentage, size distribution, and orientations are probed within the image dataset. Our findings reveal that lower bainite and tempered martensite exhibit comparable volume percentages of carbides, albeit with a more uniform distribution of carbides in tempered martensite. Carbides in lower bainite demonstrate a tendency for better alignment than those in tempered martensite, aligning with the observations of other researchers. However, both microstructures display a scattered carbide orientation, devoid of any discernible pattern. Comparative analysis of aspect ratios and sizes of carbides in lower bainite and tempered martensite unveils striking similarities. The deep learning model achieves an impressive pixelwise accuracy of 98.0% in classifying carbide/iron matrix at the individual pixel level. The semantic segmentation derived from deep learning extends its applicability to the analysis of secondary phases in various materials, offering a time-efficient, versatile AI-powered workflow for quantitative microstructure analysis.
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
Visual defect detection in industrial glass manufacturing remains a critical challenge due to the low frequency of defective products, leading to imbalanced datasets that limit the performance of deep learning models and computer vision systems. This paper presents a novel approach using Denoising Diffusion Probabilistic Models (DDPMs) to generate synthetic defective glass product images for data augmentation, effectively addressing class imbalance issues in manufacturing quality control and automated visual inspection. The methodology significantly enhances image classification performance of standard CNN architectures (ResNet50V2, EfficientNetB0, and MobileNetV2) in detecting anomalies by increasing the minority class representation. Experimental results demonstrate substantial improvements in key machine learning metrics, particularly in recall for defective samples across all tested deep neural network architectures while maintaining perfect precision on the validation set. The most dramatic improvement was observed in ResNet50V2's overall classification accuracy, which increased from 78\% to 93\% when trained with the augmented data. This work provides a scalable, cost-effective approach to enhancing automated defect detection in glass manufacturing that can potentially be extended to other industrial quality assurance systems and industries with similar class imbalance challenges.
comment: 12 pages, 7 figures, published in Computer and Decision Making - An International Journal (COMDEM)
♻ ☆ Image Super-resolution Inspired Electron Density Prediction
Drawing inspiration from the domain of image super-resolution, we view the electron density as a 3D grayscale image and use a convolutional residual network to transform a crude and trivially generated guess of the molecular density into an accurate ground-state quantum mechanical density. We find that this model outperforms all prior density prediction approaches. Because the input is itself a real-space density, the predictions are equivariant to molecular symmetry transformations even though the model is not constructed to be. Due to its simplicity, the model is directly applicable to unseen molecular conformations and chemical elements. We show that fine-tuning on limited new data provides high accuracy even in challenging cases of exotic elements and charge states. Our work suggests new routes to learning real-space physical quantities drawing from the established ideas of image processing.
♻ ☆ Testing the spin-bath view of self-attention: A Hamiltonian analysis of GPT-2 Transformer
The recently proposed physics-based framework by Huo and Johnson~\cite{huo2024capturing} models the attention mechanism of Large Language Models (LLMs) as an interacting two-body spin system, offering a first-principles explanation for phenomena like repetition and bias. Building on this hypothesis, we extract the complete Query-Key weight matrices from a production-grade GPT-2 model and derive the corresponding effective Hamiltonian for every attention head. From these Hamiltonians, we obtain analytic phase boundaries and logit gap criteria that predict which token should dominate the next-token distribution for a given context. A systematic evaluation on 144 heads across 20 factual-recall prompts reveals a strong negative correlation between the theoretical logit gaps and the model's empirical token rankings ($r\approx-0.70$, $p<10^{-3}$).Targeted ablations further show that suppressing the heads most aligned with the spin-bath predictions induces the anticipated shifts in output probabilities, confirming a causal link rather than a coincidental association. Taken together, our findings provide the first strong empirical evidence for the spin-bath analogy in a production-grade model. In this work, we utilize the context-field lens, which provides physics-grounded interpretability and motivates the development of novel generative models bridging theoretical condensed matter physics and artificial intelligence.
♻ ☆ The pitfalls of next-token prediction ICML 2024
Can a mere next-token predictor faithfully model human intelligence? We crystallize this emerging concern and correct popular misconceptions surrounding it, and advocate a simple multi-token objective. As a starting point, we argue that the two often-conflated phases of next-token prediction -- autoregressive inference and teacher-forced training -- must be treated distinctly. The popular criticism that errors can compound during autoregressive inference, crucially assumes that teacher-forcing has learned an accurate next-token predictor. This assumption sidesteps a more deep-rooted problem we expose: in certain classes of tasks, teacher-forcing can simply fail to learn an accurate next-token predictor in the first place. We describe a general mechanism of how teacher-forcing can fail, and design a minimal planning task where both the Transformer and the Mamba architecture empirically fail in that manner -- remarkably, despite the task being straightforward to learn. Finally, we provide preliminary evidence that this failure can be resolved using _teacherless_ training, a simple modification using dummy tokens that predicts multiple tokens in advance. We hope this finding can ground future debates and inspire explorations beyond the next-token prediction paradigm. We make our code available under https://github.com/gregorbachmann/Next-Token-Failures
comment: ICML 2024
♻ ☆ HI-PMK: A Data-Dependent Kernel for Incomplete Heterogeneous Data Representation
Handling incomplete and heterogeneous data remains a central challenge in real-world machine learning, where missing values may follow complex mechanisms (MCAR, MAR, MNAR) and features can be of mixed types (numerical and categorical). Existing methods often rely on imputation, which may introduce bias or privacy risks, or fail to jointly address data heterogeneity and structured missingness. We propose the \textbf{H}eterogeneous \textbf{I}ncomplete \textbf{P}robability \textbf{M}ass \textbf{K}ernel (\textbf{HI-PMK}), a novel data-dependent representation learning approach that eliminates the need for imputation. HI-PMK introduces two key innovations: (1) a probability mass-based dissimilarity measure that adapts to local data distributions across heterogeneous features (numerical, ordinal, nominal), and (2) a missingness-aware uncertainty strategy (MaxU) that conservatively handles all three missingness mechanisms by assigning maximal plausible dissimilarity to unobserved entries. Our approach is privacy-preserving, scalable, and readily applicable to downstream tasks such as classification and clustering. Extensive experiments on over 15 benchmark datasets demonstrate that HI-PMK consistently outperforms traditional imputation-based pipelines and kernel methods across a wide range of missing data settings. Code is available at: https://github.com/echoid/Incomplete-Heter-Kernel
♻ ☆ Adversarial bandit optimization for approximately linear functions
We consider a bandit optimization problem for nonconvex and non-smooth functions, where in each trial the loss function is the sum of a linear function and a small but arbitrary perturbation chosen after observing the player's choice. We give both expected and high probability regret bounds for the problem. Our result also implies an improved high-probability regret bound for the bandit linear optimization, a special case with no perturbation. We also give a lower bound on the expected regret.
♻ ☆ Nonparametric Sparse Online Learning of the Koopman Operator
The Koopman operator provides a powerful framework for representing the dynamics of general nonlinear dynamical systems. However, existing data-driven approaches to learning the Koopman operator rely on batch data. In this work, we present a sparse online learning algorithm that learns the Koopman operator iteratively via stochastic approximation, with explicit control over model complexity and provable convergence guarantees. Specifically, we study the Koopman operator via its action on the reproducing kernel Hilbert space (RKHS), and address the mis-specified scenario where the dynamics may escape the chosen RKHS. In this mis-specified setting, we relate the Koopman operator to the conditional mean embeddings (CME) operator. We further establish both asymptotic and finite-time convergence guarantees for our learning algorithm in mis-specified setting, with trajectory-based sampling where the data arrive sequentially over time. Numerical experiments demonstrate the algorithm's capability to learn unknown nonlinear dynamics.
comment: 47 pages, 6 figures
♻ ☆ LLAMAPIE: Proactive In-Ear Conversation Assistants ACL2025
We introduce LlamaPIE, the first real-time proactive assistant designed to enhance human conversations through discreet, concise guidance delivered via hearable devices. Unlike traditional language models that require explicit user invocation, this assistant operates in the background, anticipating user needs without interrupting conversations. We address several challenges, including determining when to respond, crafting concise responses that enhance conversations, leveraging knowledge of the user for context-aware assistance, and real-time, on-device processing. To achieve this, we construct a semi-synthetic dialogue dataset and propose a two-model pipeline: a small model that decides when to respond and a larger model that generates the response. We evaluate our approach on real-world datasets, demonstrating its effectiveness in providing helpful, unobtrusive assistance. User studies with our assistant, implemented on Apple Silicon M2 hardware, show a strong preference for the proactive assistant over both a baseline with no assistance and a reactive model, highlighting the potential of LlamaPie to enhance live conversations.
comment: Published by ACL2025 (Findings)
♻ ☆ InfiniteHBD: Building Datacenter-Scale High-Bandwidth Domain for LLM with Optical Circuit Switching Transceivers
Scaling Large Language Model (LLM) training relies on multi-dimensional parallelism, where High-Bandwidth Domains (HBDs) are critical for communication-intensive parallelism like Tensor Parallelism (TP) and Expert Parallelism (EP). However, existing HBD architectures face fundamental limitations in scalability, cost, and fault resiliency: switch-centric HBDs (e.g., NVL-72) incur prohibitive scaling costs, while GPU-centric HBDs (e.g., TPUv3/Dojo) suffer from severe fault propagation. Switch-GPU hybrid HBDs such as TPUv4 take a middle-ground approach, but the fault explosion radius remains large at the cube level (e.g., 64 TPUs). We propose InfiniteHBD, a novel transceiver-centric HBD architecture that unifies connectivity and dynamic switching at the transceiver level using Optical Circuit Switching (OCS). By embedding OCS within each transceiver, InfiniteHBD achieves reconfigurable point-to-multipoint connectivity, allowing the topology to adapt to variable-size rings. This design provides: i) datacenter-wide scalability without cost explosion; ii) fault resilience by isolating failures to a single node, and iii) full bandwidth utilization for fault-free GPUs. Key innovations include a Silicon Photonic (SiPh)-based low-cost OCS transceiver (OCSTrx), a reconfigurable k-hop ring topology co-designed with intra-/inter-node communication, and an HBD-DCN orchestration algorithm maximizing GPU utilization while minimizing cross-ToR datacenter network traffic. The evaluation demonstrates that InfiniteHBD achieves 31% of the cost of NVL-72, near-zero GPU waste ratio (over one order of magnitude lower than NVL-72 and TPUv4), near-zero cross-ToR traffic when node fault ratios are under 7%, and improves Model FLOPs Utilization by 3.37x compared to NVIDIA DGX (8 GPUs per Node).
♻ ☆ PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN ECML-PKDD 2025
Deep neural networks have demonstrated remarkable performance across various domains. However, they are vulnerable to adversarial examples, which can lead to erroneous predictions. Generative Adversarial Networks (GANs) can leverage the generators and discriminators model to quickly produce high-quality adversarial examples. Since both modules train in a competitive and simultaneous manner, GAN-based algorithms like AdvGAN can generate adversarial examples with better transferability compared to traditional methods. However, the generation of perturbations is usually limited to a single iteration, preventing these examples from fully exploiting the potential of the methods. To tackle this issue, we introduce a novel approach named Progressive Auto-Regression AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration mechanism within a progressive generation network to craft adversarial examples with enhanced attack capability. We thoroughly evaluate our PAR-AdvGAN method with a large-scale experiment, demonstrating its superior performance over various state-of-the-art black-box adversarial attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN significantly accelerates the adversarial example generation, i.e., achieving the speeds of up to 335.5 frames per second on Inception-v3 model, outperforming the gradient-based transferable attack algorithms. Our code is available at: https://github.com/LMBTough/PAR
comment: Best paper award of ECML-PKDD 2025
♻ ☆ Mining Intrinsic Rewards from LLM Hidden States for Efficient Best-of-N Sampling
Enhancing Large Language Model (LLM)'s performance with best-of-N sampling is effective and has attracted significant attention. However, it is computationally prohibitive due to massive, data-hungry text-based reward models. By changing the data source from text to hidden states, we introduce SWIFT (Simple Weighted Intrinsic Feedback Technique), a novel, lightweight technique that leverages the rich information embedded in LLM hidden states to address these issues, which operates on token-level and consists of only linear layers. Extensive experiments show that SWIFT outperforms baselines with less than 0.005% of the parameters of baselines, requiring only a few samples for training, demonstrating significant efficiency improvement. SWIFT's robust scalability, applicability to some closed-source models via logits, and ability to be combined with traditional reward models to yield further performance gains underscore its practical value.
♻ ☆ InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity ICCV 2025
Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.
comment: ICCV 2025 (Highlight). Project page: https://bytedance.github.io/InfiniteYou/ Code and model: https://github.com/bytedance/InfiniteYou
♻ ☆ Randomized Kaczmarz Methods with Beyond-Krylov Convergence
Randomized Kaczmarz methods form a family of linear system solvers which converge by repeatedly projecting their iterates onto randomly sampled equations. While effective in some contexts, such as highly over-determined least squares, Kaczmarz methods are traditionally deemed secondary to Krylov subspace methods, since this latter family of solvers can exploit outliers in the input's singular value distribution to attain fast convergence on ill-conditioned systems. In this paper, we introduce Kaczmarz++, an accelerated randomized block Kaczmarz algorithm that exploits outlying singular values in the input to attain a fast Krylov-style convergence. Moreover, we show that Kaczmarz++ captures large outlying singular values provably faster than popular Krylov methods, for both over- and under-determined systems. We also develop an optimized variant for positive semidefinite systems, called CD++, demonstrating empirically that it is competitive in arithmetic operations with both CG and GMRES on a collection of benchmark problems. To attain these results, we introduce several novel algorithmic improvements to the Kaczmarz framework, including adaptive momentum acceleration, Tikhonov-regularized projections, and a memoization scheme for reusing information from previously sampled equation blocks.
comment: SIMAX
♻ ☆ Automated Generation of Diverse Courses of Actions for Multi-Agent Operations using Binary Optimization and Graph Learning
Operations in disaster response, search \& rescue, and military missions that involve multiple agents demand automated processes to support the planning of the courses of action (COA). Moreover, traverse-affecting changes in the environment (rain, snow, blockades, etc.) may impact the expected performance of a COA, making it desirable to have a pool of COAs that are diverse in task distributions across agents. Further, variations in agent capabilities, which could be human crews and/or autonomous systems, present practical opportunities and computational challenges to the planning process. This paper presents a new theoretical formulation and computational framework to generate such diverse pools of COAs for operations with soft variations in agent-task compatibility. Key to the problem formulation is a graph abstraction of the task space and the pool of COAs itself to quantify its diversity. Formulating the COAs as a centralized multi-robot task allocation problem, a genetic algorithm is used for (order-ignoring) allocations of tasks to each agent that jointly maximize diversity within the COA pool and overall compatibility of the agent-task mappings. A graph neural network is trained using a policy gradient approach to then perform single agent task sequencing in each COA, which maximizes completion rates adaptive to task features. Our tests of the COA generation process in a simulated environment demonstrate significant performance gain over a random walk baseline, small optimality gap in task sequencing, and execution time of about 50 minutes to plan up to 20 COAs for 5 agent/100 task operations.
comment: Accepted for presentation in proceedings of IEEE CASE 2025
Graphics 12
☆ Solving Boundary Handling Analytically in Two Dimensions for Smoothed Particle Hydrodynamics
We present a fully analytic approach for evaluating boundary integrals in two dimensions for Smoothed Particle Hydrodynamics (SPH). Conventional methods often rely on boundary particles or wall re-normalization approaches derived from applying the divergence theorem, whereas our method directly evaluates the area integrals for SPH kernels and gradients over triangular boundaries. This direct integration strategy inherently accommodates higher-order boundary conditions, such as piecewise cubic fields defined via Finite Element stencils, enabling analytic and flexible coupling with mesh-based solvers. At the core of our approach is a general solution for compact polynomials of arbitrary degree over triangles by decomposing the boundary elements into elementary integrals that can be solved with closed-form solutions. We provide a complete, closed-form solution for these generalized integrals, derived by relating the angular components to Chebyshev polynomials and solving the resulting radial integral via a numerically stable evaluation of the Gaussian hypergeometric function $_2F_1$. Our solution is robust and adaptable and works regardless of triangle geometries and kernel functions. We validate the accuracy against high-precision numerical quadrature rules, as well as in problems with known exact solutions. We provide an open-source implementation of our general solution using differentiable programming to facilitate the adoption of our approach to SPH and other contexts that require analytic integration over polygonal domains. Our analytic solution outperforms existing numerical quadrature rules for this problem by up to five orders of magnitude, for integrals and their gradients, while providing a flexible framework to couple arbitrary triangular meshes analytically to Lagrangian schemes, building a strong foundation for addressing several grand challenges in SPH and beyond.
☆ BANG: Dividing 3D Assets via Generative Exploded Dynamics
3D creation has always been a unique human strength, driven by our ability to deconstruct and reassemble objects using our eyes, mind and hand. However, current 3D design tools struggle to replicate this natural process, requiring considerable artistic expertise and manual labor. This paper introduces BANG, a novel generative approach that bridges 3D generation and reasoning, allowing for intuitive and flexible part-level decomposition of 3D objects. At the heart of BANG is "Generative Exploded Dynamics", which creates a smooth sequence of exploded states for an input geometry, progressively separating parts while preserving their geometric and semantic coherence. BANG utilizes a pre-trained large-scale latent diffusion model, fine-tuned for exploded dynamics with a lightweight exploded view adapter, allowing precise control over the decomposition process. It also incorporates a temporal attention module to ensure smooth transitions and consistency across time. BANG enhances control with spatial prompts, such as bounding boxes and surface regions, enabling users to specify which parts to decompose and how. This interaction can be extended with multimodal models like GPT-4, enabling 2D-to-3D manipulations for more intuitive and creative workflows. The capabilities of BANG extend to generating detailed part-level geometry, associating parts with functional descriptions, and facilitating component-aware 3D creation and manufacturing workflows. Additionally, BANG offers applications in 3D printing, where separable parts are generated for easy printing and reassembly. In essence, BANG enables seamless transformation from imaginative concepts to detailed 3D assets, offering a new perspective on creation that resonates with human intuition.
comment: Homepage: https://sites.google.com/view/bang7355608
☆ InSituTale: Enhancing Augmented Data Storytelling with Physical Objects
Augmented data storytelling enhances narrative delivery by integrating visualizations with physical environments and presenter actions. Existing systems predominantly rely on body gestures or speech to control visualizations, leaving interactions with physical objects largely underexplored. We introduce augmented physical data storytelling, an approach enabling presenters to manipulate visualizations through physical object interactions. To inform this approach, we first conducted a survey of data-driven presentations to identify common visualization commands. We then conducted workshops with nine HCI/VIS researchers to collect mappings between physical manipulations and these commands. Guided by these insights, we developed InSituTale, a prototype that combines object tracking via a depth camera with Vision-LLM for detecting real-world events. Through physical manipulations, presenters can dynamically execute various visualization commands, delivering cohesive data storytelling experiences that blend physical and digital elements. A user study with 12 participants demonstrated that InSituTale enables intuitive interactions, offers high utility, and facilitates an engaging presentation experience.
♻ ☆ Signed Higher-Order Interactions for Brain Disorder Diagnosis via Multi-Channel Transformers
Accurately characterizing higher-order interactions of brain regions and extracting interpretable organizational patterns from Functional Magnetic Resonance Imaging data is crucial for brain disease diagnosis. Current graph-based deep learning models primarily focus on pairwise or triadic patterns while neglecting signed higher-order interactions, limiting comprehensive understanding of brain-wide communication. We propose HOI-Brain, a novel computational framework leveraging signed higher-order interactions and organizational patterns in fMRI data for brain disease diagnosis. First, we introduce a co-fluctuation measure based on Multiplication of Temporal Derivatives to detect higher-order interactions with temporal resolution. We then distinguish positive and negative synergistic interactions, encoding them in signed weighted simplicial complexes to reveal brain communication insights. Using Persistent Homology theory, we apply two filtration processes to these complexes to extract signed higher-dimensional neural organizations spatiotemporally. Finally, we propose a multi-channel brain Transformer to integrate heterogeneous topological features. Experiments on Alzheimer' s disease, Parkinson' s syndrome, and autism spectrum disorder datasets demonstrate our framework' s superiority, effectiveness, and interpretability. The identified key brain regions and higher-order patterns align with neuroscience literature, providing meaningful biological insights.
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of no-reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (cross-reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new cross-reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the training views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate cross-reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
♻ ☆ Geometric Algebra Meets Large Language Models: Instruction-Based Transformations of Separate Meshes in 3D, Interactive and Controllable Scenes
This paper introduces a novel integration of Large Language Models (LLMs) with Conformal Geometric Algebra (CGA) to revolutionize controllable 3D scene editing, particularly for object repositioning tasks, which traditionally requires intricate manual processes and specialized expertise. These conventional methods typically suffer from reliance on large training datasets or lack a formalized language for precise edits. Utilizing CGA as a robust formal language, our system, Shenlong, precisely models spatial transformations necessary for accurate object repositioning. Leveraging the zero-shot learning capabilities of pre-trained LLMs, Shenlong translates natural language instructions into CGA operations which are then applied to the scene, facilitating exact spatial transformations within 3D scenes without the need for specialized pre-training. Implemented in a realistic simulation environment, Shenlong ensures compatibility with existing graphics pipelines. To accurately assess the impact of CGA, we benchmark against robust Euclidean Space baselines, evaluating both latency and accuracy. Comparative performance evaluations indicate that Shenlong significantly reduces LLM response times by 16% and boosts success rates by 9.6% on average compared to the traditional methods. Notably, Shenlong achieves a 100% perfect success rate in common practical queries, a benchmark where other systems fall short. These advancements underscore Shenlong's potential to democratize 3D scene editing, enhancing accessibility and fostering innovation across sectors such as education, digital entertainment, and virtual reality.
comment: 10 pages, 4 figures
♻ ☆ Efficient Nearest Neighbor Search Using Dynamic Programming
Given a collection of points in R^3, KD-Tree and R-Tree are well-known nearest neighbor search (NNS) algorithms that rely on space partitioning and spatial indexing techniques. However, when the query point is far from the data points or the data points inherently represent a 2-manifold surface, their query performance may degrade. To address this, we propose a novel dynamic programming technique that precomputes a Directed Acyclic Graph (DAG) to encode the proximity structure between data points. More specifically, the DAG captures how the proximity structure evolves during the incremental construction of the Voronoi diagram of the data points. Experimental results demonstrate that our method achieves a 1x-10x speedup. Additionally, our algorithm demonstrates significant practical value across diverse applications. We validated its effectiveness through extensive testing in four key applications: Point to Mesh Distance Queries, Iterative Closest Point (ICP) Registration, Density Peak Clustering, and Point to Segments Distance Queries. A particularly notable feature of our approach is its unique ability to efficiently identify the nearest neighbor among the first k points in the point cloud a capability that enables substantial acceleration in low-dimensional applications like Density Peak Clustering. As a natural extension of our incremental construction process, our method can also be readily adapted for farthest point sampling tasks. These experimental results across multiple domains underscore the broad applicability and practical importance of our approach.
♻ ☆ V2M4: 4D Mesh Animation Reconstruction from a Single Monocular Video ICCV 2025
We present V2M4, a novel 4D reconstruction method that directly generates a usable 4D mesh animation asset from a single monocular video. Unlike existing approaches that rely on priors from multi-view image and video generation models, our method is based on native 3D mesh generation models. Naively applying 3D mesh generation models to generate a mesh for each frame in a 4D task can lead to issues such as incorrect mesh poses, misalignment of mesh appearance, and inconsistencies in mesh geometry and texture maps. To address these problems, we propose a structured workflow that includes camera search and mesh reposing, condition embedding optimization for mesh appearance refinement, pairwise mesh registration for topology consistency, and global texture map optimization for texture consistency. Our method outputs high-quality 4D animated assets that are compatible with mainstream graphics and game software. Experimental results across a variety of animation types and motion amplitudes demonstrate the generalization and effectiveness of our method. Project page: https://windvchen.github.io/V2M4/.
comment: Accepted by ICCV 2025. Project page: https://windvchen.github.io/V2M4/
♻ ☆ Fast Globally Optimal and Geometrically Consistent 3D Shape Matching
Geometric consistency, i.e. the preservation of neighbourhoods, is a natural and strong prior in 3D shape matching. Geometrically consistent matchings are crucial for many downstream applications, such as texture transfer or statistical shape modelling. Yet, in practice, geometric consistency is often overlooked, or only achieved under severely limiting assumptions (e.g. a good initialisation). In this work, we propose a novel formalism for computing globally optimal and geometrically consistent matchings between 3D shapes which is scalable in practice. Our key idea is to represent the surface of the source shape as a collection of cyclic paths, which are then consistently matched to the target shape. Mathematically, we construct a hyper product graph (between source and target shape), and then cast 3D shape matching as a minimum-cost circulation flow problem in this hyper graph, which yields global geometrically consistent matchings between both shapes. We empirically show that our formalism is efficiently solvable and that it leads to high-quality results.
comment: 8 pages main paper, 9 pages supplementary
♻ ☆ Multi-Prompt Style Interpolation for Fine-Grained Artistic Control
Text-driven image style transfer has seen remarkable progress with methods leveraging cross-modal embeddings for fast, high-quality stylization. However, most existing pipelines assume a \emph{single} textual style prompt, limiting the range of artistic control and expressiveness. In this paper, we propose a novel \emph{multi-prompt style interpolation} framework that extends the recently introduced \textbf{StyleMamba} approach. Our method supports blending or interpolating among multiple textual prompts (eg, ``cubism,'' ``impressionism,'' and ``cartoon''), allowing the creation of nuanced or hybrid artistic styles within a \emph{single} image. We introduce a \textit{Multi-Prompt Embedding Mixer} combined with \textit{Adaptive Blending Weights} to enable fine-grained control over the spatial and semantic influence of each style. Further, we propose a \emph{Hierarchical Masked Directional Loss} to refine region-specific style consistency. Experiments and user studies confirm our approach outperforms single-prompt baselines and naive linear combinations of styles, achieving superior style fidelity, text-image alignment, and artistic flexibility, all while maintaining the computational efficiency offered by the state-space formulation.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship and affiliation
♻ ☆ Controllable Segmentation-Based Text-Guided Style Editing
We present a novel approach for controllable, region-specific style editing driven by textual prompts. Building upon the state-space style alignment framework introduced by \emph{StyleMamba}, our method integrates a semantic segmentation model into the style transfer pipeline. This allows users to selectively apply text-driven style changes to specific segments (e.g., ``turn the building into a cyberpunk tower'') while leaving other regions (e.g., ``people'' or ``trees'') unchanged. By incorporating region-wise condition vectors and a region-specific directional loss, our method achieves high-fidelity transformations that respect both semantic boundaries and user-driven style descriptions. Extensive experiments demonstrate that our approach can flexibly handle complex scene stylizations in real-world scenarios, improving control and quality over purely global style transfer methods.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship and affiliation
♻ ☆ Text-Driven Video Style Transfer with State-Space Models: Extending StyleMamba for Temporal Coherence
StyleMamba has recently demonstrated efficient text-driven image style transfer by leveraging state-space models (SSMs) and masked directional losses. In this paper, we extend the StyleMamba framework to handle video sequences. We propose new temporal modules, including a \emph{Video State-Space Fusion Module} to model inter-frame dependencies and a novel \emph{Temporal Masked Directional Loss} that ensures style consistency while addressing scene changes and partial occlusions. Additionally, we introduce a \emph{Temporal Second-Order Loss} to suppress abrupt style variations across consecutive frames. Our experiments on DAVIS and UCF101 show that the proposed approach outperforms competing methods in terms of style consistency, smoothness, and computational efficiency. We believe our new framework paves the way for real-time text-driven video stylization with state-of-the-art perceptual results.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship and affiliation
Robotics 44
☆ Flow Matching Policy Gradients
Flow-based generative models, including diffusion models, excel at modeling continuous distributions in high-dimensional spaces. In this work, we introduce Flow Policy Optimization (FPO), a simple on-policy reinforcement learning algorithm that brings flow matching into the policy gradient framework. FPO casts policy optimization as maximizing an advantage-weighted ratio computed from the conditional flow matching loss, in a manner compatible with the popular PPO-clip framework. It sidesteps the need for exact likelihood computation while preserving the generative capabilities of flow-based models. Unlike prior approaches for diffusion-based reinforcement learning that bind training to a specific sampling method, FPO is agnostic to the choice of diffusion or flow integration at both training and inference time. We show that FPO can train diffusion-style policies from scratch in a variety of continuous control tasks. We find that flow-based models can capture multimodal action distributions and achieve higher performance than Gaussian policies, particularly in under-conditioned settings.
comment: See our blog post: https://flowreinforce.github.io
☆ Partially Observable Monte-Carlo Graph Search
Currently, large partially observable Markov decision processes (POMDPs) are often solved by sampling-based online methods which interleave planning and execution phases. However, a pre-computed offline policy is more desirable in POMDP applications with time or energy constraints. But previous offline algorithms are not able to scale up to large POMDPs. In this article, we propose a new sampling-based algorithm, the partially observable Monte-Carlo graph search (POMCGS) to solve large POMDPs offline. Different from many online POMDP methods, which progressively develop a tree while performing (Monte-Carlo) simulations, POMCGS folds this search tree on the fly to construct a policy graph, so that computations can be drastically reduced, and users can analyze and validate the policy prior to embedding and executing it. Moreover, POMCGS, together with action progressive widening and observation clustering methods provided in this article, is able to address certain continuous POMDPs. Through experiments, we demonstrate that POMCGS can generate policies on the most challenging POMDPs, which cannot be computed by previous offline algorithms, and these policies' values are competitive compared with the state-of-the-art online POMDP algorithms.
comment: To be published in Proceedings of ICAPS 2025
☆ PixelNav: Towards Model-based Vision-Only Navigation with Topological Graphs
This work proposes a novel hybrid approach for vision-only navigation of mobile robots, which combines advances of both deep learning approaches and classical model-based planning algorithms. Today, purely data-driven end-to-end models are dominant solutions to this problem. Despite advantages such as flexibility and adaptability, the requirement of a large amount of training data and limited interpretability are the main bottlenecks for their practical applications. To address these limitations, we propose a hierarchical system that utilizes recent advances in model predictive control, traversability estimation, visual place recognition, and pose estimation, employing topological graphs as a representation of the target environment. Using such a combination, we provide a scalable system with a higher level of interpretability compared to end-to-end approaches. Extensive real-world experiments show the efficiency of the proposed method.
☆ A Human-in-the-loop Approach to Robot Action Replanning through LLM Common-Sense Reasoning
To facilitate the wider adoption of robotics, accessible programming tools are required for non-experts. Observational learning enables intuitive human skills transfer through hands-on demonstrations, but relying solely on visual input can be inefficient in terms of scalability and failure mitigation, especially when based on a single demonstration. This paper presents a human-in-the-loop method for enhancing the robot execution plan, automatically generated based on a single RGB video, with natural language input to a Large Language Model (LLM). By including user-specified goals or critical task aspects and exploiting the LLM common-sense reasoning, the system adjusts the vision-based plan to prevent potential failures and adapts it based on the received instructions. Experiments demonstrated the framework intuitiveness and effectiveness in correcting vision-derived errors and adapting plans without requiring additional demonstrations. Moreover, interactive plan refinement and hallucination corrections promoted system robustness.
☆ Uncertainty-aware Planning with Inaccurate Models for Robotized Liquid Handling IROS 2025
Physics-based simulations and learning-based models are vital for complex robotics tasks like deformable object manipulation and liquid handling. However, these models often struggle with accuracy due to epistemic uncertainty or the sim-to-real gap. For instance, accurately pouring liquid from one container to another poses challenges, particularly when models are trained on limited demonstrations and may perform poorly in novel situations. This paper proposes an uncertainty-aware Monte Carlo Tree Search (MCTS) algorithm designed to mitigate these inaccuracies. By incorporating estimates of model uncertainty, the proposed MCTS strategy biases the search towards actions with lower predicted uncertainty. This approach enhances the reliability of planning under uncertain conditions. Applied to a liquid pouring task, our method demonstrates improved success rates even with models trained on minimal data, outperforming traditional methods and showcasing its potential for robust decision-making in robotics.
comment: Accepted at IEEE/RSJ IROS 2025
☆ Free Energy-Inspired Cognitive Risk Integration for AV Navigation in Pedestrian-Rich Environments
Recent advances in autonomous vehicle (AV) behavior planning have shown impressive social interaction capabilities when interacting with other road users. However, achieving human-like prediction and decision-making in interactions with vulnerable road users remains a key challenge in complex multi-agent interactive environments. Existing research focuses primarily on crowd navigation for small mobile robots, which cannot be directly applied to AVs due to inherent differences in their decision-making strategies and dynamic boundaries. Moreover, pedestrians in these multi-agent simulations follow fixed behavior patterns that cannot dynamically respond to AV actions. To overcome these limitations, this paper proposes a novel framework for modeling interactions between the AV and multiple pedestrians. In this framework, a cognitive process modeling approach inspired by the Free Energy Principle is integrated into both the AV and pedestrian models to simulate more realistic interaction dynamics. Specifically, the proposed pedestrian Cognitive-Risk Social Force Model adjusts goal-directed and repulsive forces using a fused measure of cognitive uncertainty and physical risk to produce human-like trajectories. Meanwhile, the AV leverages this fused risk to construct a dynamic, risk-aware adjacency matrix for a Graph Convolutional Network within a Soft Actor-Critic architecture, allowing it to make more reasonable and informed decisions. Simulation results indicate that our proposed framework effectively improves safety, efficiency, and smoothness of AV navigation compared to the state-of-the-art method.
comment: 14 pages, 5 figures
☆ Hanging Around: Cognitive Inspired Reasoning for Reactive Robotics
Situationally-aware artificial agents operating with competence in natural environments face several challenges: spatial awareness, object affordance detection, dynamic changes and unpredictability. A critical challenge is the agent's ability to identify and monitor environmental elements pertinent to its objectives. Our research introduces a neurosymbolic modular architecture for reactive robotics. Our system combines a neural component performing object recognition over the environment and image processing techniques such as optical flow, with symbolic representation and reasoning. The reasoning system is grounded in the embodied cognition paradigm, via integrating image schematic knowledge in an ontological structure. The ontology is operatively used to create queries for the perception system, decide on actions, and infer entities' capabilities derived from perceptual data. The combination of reasoning and image processing allows the agent to focus its perception for normal operation as well as discover new concepts for parts of objects involved in particular interactions. The discovered concepts allow the robot to autonomously acquire training data and adjust its subsymbolic perception to recognize the parts, as well as making planning for more complex tasks feasible by focusing search on those relevant object parts. We demonstrate our approach in a simulated world, in which an agent learns to recognize parts of objects involved in support relations. While the agent has no concept of handle initially, by observing examples of supported objects hanging from a hook it learns to recognize the parts involved in establishing support and becomes able to plan the establishment/destruction of the support relation. This underscores the agent's capability to expand its knowledge through observation in a systematic way, and illustrates the potential of combining deep reasoning [...].
comment: This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0)
☆ LanternNet: A Novel Hub-and-Spoke System to Seek and Suppress Spotted Lanternfly Populations
The invasive spotted lanternfly (SLF) poses a significant threat to agriculture and ecosystems, causing widespread damage. Current control methods, such as egg scraping, pesticides, and quarantines, prove labor-intensive, environmentally hazardous, and inadequate for long-term SLF suppression. This research introduces LanternNet, a novel autonomous robotic Hub-and-Spoke system designed for scalable detection and suppression of SLF populations. A central, tree-mimicking hub utilizes a YOLOv8 computer vision model for precise SLF identification. Three specialized robotic spokes perform targeted tasks: pest neutralization, environmental monitoring, and navigation/mapping. Field deployment across multiple infested sites over 5 weeks demonstrated LanternNet's efficacy. Quantitative analysis revealed significant reductions (p < 0.01, paired t-tests) in SLF populations and corresponding improvements in tree health indicators across the majority of test sites. Compared to conventional methods, LanternNet offers substantial cost advantages and improved scalability. Furthermore, the system's adaptability for enhanced autonomy and targeting of other invasive species presents significant potential for broader ecological impact. LanternNet demonstrates the transformative potential of integrating robotics and AI for advanced invasive species management and improved environmental outcomes.
☆ A Strawberry Harvesting Tool with Minimal Footprint
In this paper, a novel prototype for harvesting table-top grown strawberries is presented, that is minimalist in its footprint interacting with the fruit. In our methodology, a smooth trapper manipulates the stem into a precise groove location at which a distant laser beam is focused. The tool reaches temperatures as high as 188{\deg} Celsius and as such killing germs and preventing the spread of local plant diseases. The burnt stem wound preserves water content and in turn the fruit shelf life. Cycle and cut times achieved are 5.56 and 2.88 seconds respectively in successful in-door harvesting demonstration. Extensive experiments are performed to optimize the laser spot diameter and lateral speed against the cutting time.
☆ Beyond Line-of-Sight: Cooperative Localization Using Vision and V2X Communication SC 2025
Accurate and robust localization is critical for the safe operation of Connected and Automated Vehicles (CAVs), especially in complex urban environments where Global Navigation Satellite System (GNSS) signals are unreliable. This paper presents a novel vision-based cooperative localization algorithm that leverages onboard cameras and Vehicle-to-Everything (V2X) communication to enable CAVs to estimate their poses, even in occlusion-heavy scenarios such as busy intersections. In particular, we propose a novel decentralized observer for a group of connected agents that includes landmark agents (static or moving) in the environment with known positions and vehicle agents that need to estimate their poses (both positions and orientations). Assuming that (i) there are at least three landmark agents in the environment, (ii) each vehicle agent can measure its own angular and translational velocities as well as relative bearings to at least three neighboring landmarks or vehicles, and (iii) neighboring vehicles can communicate their pose estimates, each vehicle can estimate its own pose using the proposed decentralized observer. We prove that the origin of the estimation error is locally exponentially stable under the proposed observer, provided that the minimal observability conditions are satisfied. Moreover, we evaluate the proposed approach through experiments with real 1/10th-scale connected vehicles and large-scale simulations, demonstrating its scalability and validating the theoretical guarantees in practical scenarios.
comment: Accepted at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025)
☆ FMimic: Foundation Models are Fine-grained Action Learners from Human Videos IJRR
Visual imitation learning (VIL) provides an efficient and intuitive strategy for robotic systems to acquire novel skills. Recent advancements in foundation models, particularly Vision Language Models (VLMs), have demonstrated remarkable capabilities in visual and linguistic reasoning for VIL tasks. Despite this progress, existing approaches primarily utilize these models for learning high-level plans from human demonstrations, relying on pre-defined motion primitives for executing physical interactions, which remains a major bottleneck for robotic systems. In this work, we present FMimic, a novel paradigm that harnesses foundation models to directly learn generalizable skills at even fine-grained action levels, using only a limited number of human videos. Extensive experiments demonstrate that our FMimic delivers strong performance with a single human video, and significantly outperforms all other methods with five videos. Furthermore, our method exhibits significant improvements of over 39% and 29% in RLBench multi-task experiments and real-world manipulation tasks, respectively, and exceeds baselines by more than 34% in high-precision tasks and 47% in long-horizon tasks.
comment: accepted to International Journal of Robotics Research(IJRR)
☆ Methods for the Segmentation of Reticular Structures Using 3D LiDAR Data: A Comparative Evaluation
Reticular structures form the backbone of major infrastructure like bridges, pylons, and airports, but their inspection and maintenance are costly and hazardous, often requiring human intervention. While prior research has focused on fault detection via images or robotic platform design, the autonomous navigation of robots within these structures is less explored. This study addresses that gap by proposing methods to detect navigable surfaces in truss structures, enhancing the autonomy of climbing robots. The paper introduces several approaches for binary segmentation of navigable surfaces versus background from 3D point clouds of metallic trusses. These methods fall into two categories: analytical algorithms and deep learning models. The analytical approach features a custom algorithm that segments structures by analyzing the eigendecomposition of planar patches in the point cloud. In parallel, advanced deep learning models PointNet, PointNet++, MinkUNet34C, and PointTransformerV3 are trained and evaluated for the same task. Comparative analysis shows that the analytical algorithm offers easier parameter tuning and performance comparable to deep learning models, which, while more computationally intensive, excel in segmentation accuracy. Notably, PointTransformerV3 achieves a Mean Intersection Over Union (mIoU) of about 97%. The study demonstrates the promise of both analytical and deep learning methods for improving autonomous navigation in complex truss environments. The results highlight the trade-offs between computational efficiency and segmentation performance, providing valuable guidance for future research and practical applications in autonomous infrastructure inspection and maintenance.
☆ Uni-Mapper: Unified Mapping Framework for Multi-modal LiDARs in Complex and Dynamic Environments
The unification of disparate maps is crucial for enabling scalable robot operation across multiple sessions and collaborative multi-robot scenarios. However, achieving a unified map robust to sensor modalities and dynamic environments remains a challenging problem. Variations in LiDAR types and dynamic elements lead to differences in point cloud distribution and scene consistency, hindering reliable descriptor generation and loop closure detection essential for accurate map alignment. To address these challenges, this paper presents Uni-Mapper, a dynamic-aware 3D point cloud map merging framework for multi-modal LiDAR systems. It comprises dynamic object removal, dynamic-aware loop closure, and multi-modal LiDAR map merging modules. A voxel-wise free space hash map is built in a coarse-to-fine manner to identify and reject dynamic objects via temporal occupancy inconsistencies. The removal module is integrated with a LiDAR global descriptor, which encodes preserved static local features to ensure robust place recognition in dynamic environments. In the final stage, multiple pose graph optimizations are conducted for both intra-session and inter-map loop closures. We adopt a centralized anchor-node strategy to mitigate intra-session drift errors during map merging. In the final stage, centralized anchor-node-based pose graph optimization is performed to address intra- and inter-map loop closures for globally consistent map merging. Our framework is evaluated on diverse real-world datasets with dynamic objects and heterogeneous LiDARs, showing superior performance in loop detection across sensor modalities, robust mapping in dynamic environments, and accurate multi-map alignment over existing methods. Project Page: https://sparolab.github.io/research/uni_mapper.
comment: 18 pages, 14 figures
☆ AQUA: A Large Language Model for Aquaculture & Fisheries
Aquaculture plays a vital role in global food security and coastal economies by providing sustainable protein sources. As the industry expands to meet rising demand, it faces growing challenges such as disease outbreaks, inefficient feeding practices, rising labor costs, logistical inefficiencies, and critical hatchery issues, including high mortality rates and poor water quality control. Although artificial intelligence has made significant progress, existing machine learning methods fall short of addressing the domain-specific complexities of aquaculture. To bridge this gap, we introduce AQUA, the first large language model (LLM) tailored for aquaculture, designed to support farmers, researchers, and industry practitioners. Central to this effort is AQUADAPT (Data Acquisition, Processing and Tuning), an Agentic Framework for generating and refining high-quality synthetic data using a combination of expert knowledge, largescale language models, and automated evaluation techniques. Our work lays the foundation for LLM-driven innovations in aquaculture research, advisory systems, and decision-making tools.
☆ Large-Scale LiDAR-Inertial Dataset for Degradation-Robust High-Precision Mapping
This paper introduces a large-scale, high-precision LiDAR-Inertial Odometry (LIO) dataset, aiming to address the insufficient validation of LIO systems in complex real-world scenarios in existing research. The dataset covers four diverse real-world environments spanning 60,000 to 750,000 square meters, collected using a custom backpack-mounted platform equipped with multi-beam LiDAR, an industrial-grade IMU, and RTK-GNSS modules. The dataset includes long trajectories, complex scenes, and high-precision ground truth, generated by fusing SLAM-based optimization with RTK-GNSS anchoring, and validated for trajectory accuracy through the integration of oblique photogrammetry and RTK-GNSS. This dataset provides a comprehensive benchmark for evaluating the generalization ability of LIO systems in practical high-precision mapping scenarios.
comment: 9 pages,7 figures, 6 tables
☆ LLMs-guided adaptive compensator: Bringing Adaptivity to Automatic Control Systems with Large Language Models
With rapid advances in code generation, reasoning, and problem-solving, Large Language Models (LLMs) are increasingly applied in robotics. Most existing work focuses on high-level tasks such as task decomposition. A few studies have explored the use of LLMs in feedback controller design; however, these efforts are restricted to overly simplified systems, fixed-structure gain tuning, and lack real-world validation. To further investigate LLMs in automatic control, this work targets a key subfield: adaptive control. Inspired by the framework of model reference adaptive control (MRAC), we propose an LLM-guided adaptive compensator framework that avoids designing controllers from scratch. Instead, the LLMs are prompted using the discrepancies between an unknown system and a reference system to design a compensator that aligns the response of the unknown system with that of the reference, thereby achieving adaptivity. Experiments evaluate five methods: LLM-guided adaptive compensator, LLM-guided adaptive controller, indirect adaptive control, learning-based adaptive control, and MRAC, on soft and humanoid robots in both simulated and real-world environments. Results show that the LLM-guided adaptive compensator outperforms traditional adaptive controllers and significantly reduces reasoning complexity compared to the LLM-guided adaptive controller. The Lyapunov-based analysis and reasoning-path inspection demonstrate that the LLM-guided adaptive compensator enables a more structured design process by transforming mathematical derivation into a reasoning task, while exhibiting strong generalizability, adaptability, and robustness. This study opens a new direction for applying LLMs in the field of automatic control, offering greater deployability and practicality compared to vision-language models.
☆ Learning Physical Interaction Skills from Human Demonstrations
Learning physical interaction skills, such as dancing, handshaking, or sparring, remains a fundamental challenge for agents operating in human environments, particularly when the agent's morphology differs significantly from that of the demonstrator. Existing approaches often rely on handcrafted objectives or morphological similarity, limiting their capacity for generalization. Here, we introduce a framework that enables agents with diverse embodiments to learn wholebbody interaction behaviors directly from human demonstrations. The framework extracts a compact, transferable representation of interaction dynamics, called the Embedded Interaction Graph (EIG), which captures key spatiotemporal relationships between the interacting agents. This graph is then used as an imitation objective to train control policies in physics-based simulations, allowing the agent to generate motions that are both semantically meaningful and physically feasible. We demonstrate BuddyImitation on multiple agents, such as humans, quadrupedal robots with manipulators, or mobile manipulators and various interaction scenarios, including sparring, handshaking, rock-paper-scissors, or dancing. Our results demonstrate a promising path toward coordinated behaviors across morphologically distinct characters via cross embodiment interaction learning.
☆ Projecting the New Body: How Body Image Evolves During Learning to Walk with a Wearable Robot
Advances in wearable robotics challenge the traditional definition of human motor systems, as wearable robots redefine body structure, movement capability, and perception of their own bodies. We measured gait performance and perceived body images via Selected Coefficient of Perceived Motion, SCoMo, after each training session. Based on human motor learning theory extended to wearer-robot systems, we hypothesized that learning the perceived body image when walking with a robotic leg co-evolves with the actual gait improvement and becomes more certain and more accurate to the actual motion. Our result confirmed that motor learning improved both physical and perceived gait pattern towards normal, indicating that via practice the wearers incorporated the robotic leg into their sensorimotor systems to enable wearer-robot movement coordination. However, a persistent discrepancy between perceived and actual motion remained, likely due to the absence of direct sensation and control of the prosthesis from wearers. Additionally, the perceptual overestimation at the later training sessions might limit further motor improvement. These findings suggest that enhancing the human sense of wearable robots and frequent calibrating perception of body image are essential for effective training with lower limb wearable robots and for developing more embodied assistive technologies.
Autonomous Exploration with Terrestrial-Aerial Bimodal Vehicles
Terrestrial-aerial bimodal vehicles, which integrate the high mobility of aerial robots with the long endurance of ground robots, offer significant potential for autonomous exploration. Given the inherent energy and time constraints in practical exploration tasks, we present a hierarchical framework for the bimodal vehicle to utilize its flexible locomotion modalities for exploration. Beginning with extracting environmental information to identify informative regions, we generate a set of potential bimodal viewpoints. To adaptively manage energy and time constraints, we introduce an extended Monte Carlo Tree Search approach that strategically optimizes both modality selection and viewpoint sequencing. Combined with an improved bimodal vehicle motion planner, we present a complete bimodal energy- and time-aware exploration system. Extensive simulations and deployment on a customized real-world platform demonstrate the effectiveness of our system.
☆ NMPCM: Nonlinear Model Predictive Control on Resource-Constrained Microcontrollers
Nonlinear Model Predictive Control (NMPC) is a powerful approach for controlling highly dynamic robotic systems, as it accounts for system dynamics and optimizes control inputs at each step. However, its high computational complexity makes implementation on resource-constrained microcontrollers impractical. While recent studies have demonstrated the feasibility of Model Predictive Control (MPC) with linearized dynamics on microcontrollers, applying full NMPC remains a significant challenge. This work presents an efficient solution for generating and deploying NMPC on microcontrollers (NMPCM) to control quadrotor UAVs. The proposed method optimizes computational efficiency while maintaining high control accuracy. Simulations in Gazebo/ROS and real-world experiments validate the effectiveness of the approach, demonstrating its capability to achieve high-frequency NMPC execution in real-time systems. The code is available at: https://github.com/aralab-unr/NMPCM.
☆ Diffusion Denoiser-Aided Gyrocompassing
An accurate initial heading angle is essential for efficient and safe navigation across diverse domains. Unlike magnetometers, gyroscopes can provide accurate heading reference independent of the magnetic disturbances in a process known as gyrocompassing. Yet, accurate and timely gyrocompassing, using low-cost gyroscopes, remains a significant challenge in scenarios where external navigation aids are unavailable. Such challenges are commonly addressed in real-world applications such as autonomous vehicles, where size, weight, and power limitations restrict sensor quality, and noisy measurements severely degrade gyrocompassing performance. To cope with this challenge, we propose a novel diffusion denoiser-aided gyrocompass approach. It integrates a diffusion-based denoising framework with an enhanced learning-based heading estimation model. The diffusion denoiser processes raw inertial sensor signals before input to the deep learning model, resulting in accurate gyrocompassing. Experiments using both simulated and real sensor data demonstrate that our proposed approach improves gyrocompassing accuracy by 26% compared to model-based gyrocompassing and by 15% compared to other learning-driven approaches. This advancement holds particular significance for ensuring accurate and robust navigation in autonomous platforms that incorporate low-cost gyroscopes within their navigation systems.
comment: 8 pages, 8 figures
☆ Fluidically Innervated Lattices Make Versatile and Durable Tactile Sensors
Tactile sensing plays a fundamental role in enabling robots to navigate dynamic and unstructured environments, particularly in applications such as delicate object manipulation, surface exploration, and human-robot interaction. In this paper, we introduce a passive soft robotic fingertip with integrated tactile sensing, fabricated using a 3D-printed elastomer lattice with embedded air channels. This sensorization approach, termed fluidic innervation, transforms the lattice into a tactile sensor by detecting pressure changes within sealed air channels, providing a simple yet robust solution to tactile sensing in robotics. Unlike conventional methods that rely on complex materials or designs, fluidic innervation offers a simple, scalable, single-material fabrication process. We characterize the sensors' response, develop a geometric model to estimate tip displacement, and train a neural network to accurately predict contact location and contact force. Additionally, we integrate the fingertip with an admittance controller to emulate spring-like behavior, demonstrate its capability for environment exploration through tactile feedback, and validate its durability under high impact and cyclic loading conditions. This tactile sensing technique offers advantages in terms of simplicity, adaptability, and durability and opens up new opportunities for versatile robotic manipulation.
comment: Accepted for publication in the proceedings of the 2025 International Symposium on Experimental Robotics (ISER)
♻ ☆ Perpetua: Multi-Hypothesis Persistence Modeling for Semi-Static Environments IROS 2025
Many robotic systems require extended deployments in complex, dynamic environments. In such deployments, parts of the environment may change between subsequent robot observations. Most robotic mapping or environment modeling algorithms are incapable of representing dynamic features in a way that enables predicting their future state. Instead, they opt to filter certain state observations, either by removing them or some form of weighted averaging. This paper introduces Perpetua, a method for modeling the dynamics of semi-static features. Perpetua is able to: incorporate prior knowledge about the dynamics of the feature if it exists, track multiple hypotheses, and adapt over time to enable predicting of future feature states. Specifically, we chain together mixtures of "persistence" and "emergence" filters to model the probability that features will disappear or reappear in a formal Bayesian framework. The approach is an efficient, scalable, general, and robust method for estimating the states of features in an environment, both in the present as well as at arbitrary future times. Through experiments on simulated and real-world data, we find that Perpetua yields better accuracy than similar approaches while also being online adaptable and robust to missing observations.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025) Code available at https://github.com/montrealrobotics/perpetua-code. Webpage and additional videos at https://montrealrobotics.ca/perpetua/
♻ ☆ Eyes Will Shut: A Vision-Based Next GPS Location Prediction Model by Reinforcement Learning from Visual Map Feed Back
Next Location Prediction is a fundamental task in the study of human mobility, with wide-ranging applications in transportation planning, urban governance, and epidemic forecasting. In practice, when humans attempt to predict the next location in a trajectory, they often visualize the trajectory on a map and reason based on road connectivity and movement trends. However, the vast majority of existing next-location prediction models do not reason over maps \textbf{in the way that humans do}. Fortunately, the recent development of Vision-Language Models (VLMs) has demonstrated strong capabilities in visual perception and even visual reasoning. This opens up a new possibility: by rendering both the road network and trajectory onto an image and leveraging the reasoning abilities of VLMs, we can enable models to perform trajectory inference in a human-like manner. To explore this idea, we first propose a method called Vision-Guided Location Search (VGLS), which evaluates whether a general-purpose VLM is capable of trajectory-based reasoning without modifying any of its internal parameters. Based on insights from the VGLS results, we further propose our main approach: VLMLocPredictor, which is composed of two stages: In the first stage, we design two Supervised Fine-Tuning (SFT) tasks that help the VLM understand road network and trajectory structures and acquire basic reasoning ability on such visual inputs. In the second stage, we introduce Reinforcement Learning from Visual Map Feedback, enabling the model to self-improve its next-location prediction ability through interaction with the environment. Experiments conducted on datasets from four different cities show that our method achieves state-of-the-art (SOTA) performance and exhibits superior cross-city generalization compared to other LLM-based approaches.
REGRACE: A Robust and Efficient Graph-based Re-localization Algorithm using Consistency Evaluation IROS2025
Loop closures are essential for correcting odometry drift and creating consistent maps, especially in the context of large-scale navigation. Current methods using dense point clouds for accurate place recognition do not scale well due to computationally expensive scan-to-scan comparisons. Alternative object-centric approaches are more efficient but often struggle with sensitivity to viewpoint variation. In this work, we introduce REGRACE, a novel approach that addresses these challenges of scalability and perspective difference in re-localization by using LiDAR-based submaps. We introduce rotation-invariant features for each labeled object and enhance them with neighborhood context through a graph neural network. To identify potential revisits, we employ a scalable bag-of-words approach, pooling one learned global feature per submap. Additionally, we define a revisit with geometrical consistency cues rather than embedding distance, allowing us to recognize far-away loop closures. Our evaluations demonstrate that REGRACE achieves similar results compared to state-of-the-art place recognition and registration baselines while being twice as fast. Code and models are publicly available.
comment: Accepted to IROS2025
♻ ☆ Cooperative Payload Estimation by a Team of Mocobots
For high-performance autonomous manipulation of a payload by a mobile manipulator team, or for collaborative manipulation with the human, robots should be able to discover where other robots are attached to the payload, as well as the payload's mass and inertial properties. In this paper, we describe a method for the robots to autonomously discover this information. The robots cooperatively manipulate the payload, and the twist, twist derivative, and wrench data at their grasp frames are used to estimate the transformation matrices between the grasp frames, the location of the payload's center of mass, and the payload's inertia matrix. The method is validated experimentally with a team of three mobile cobots, or mocobots.
comment: 8 pages, 6 figures. Submitted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ ViewActive: Active viewpoint optimization from a single image
When observing objects, humans benefit from their spatial visualization and mental rotation ability to envision potential optimal viewpoints based on the current observation. This capability is crucial for enabling robots to achieve efficient and robust scene perception during operation, as optimal viewpoints provide essential and informative features for accurately representing scenes in 2D images, thereby enhancing downstream tasks. To endow robots with this human-like active viewpoint optimization capability, we propose ViewActive, a modernized machine learning approach drawing inspiration from aspect graph, which provides viewpoint optimization guidance based solely on the current 2D image input. Specifically, we introduce the 3D Viewpoint Quality Field (VQF), a compact and consistent representation of viewpoint quality distribution similar to an aspect graph, composed of three general-purpose viewpoint quality metrics: self-occlusion ratio, occupancy-aware surface normal entropy, and visual entropy. We utilize pre-trained image encoders to extract robust visual and semantic features, which are then decoded into the 3D VQF, allowing our model to generalize effectively across diverse objects, including unseen categories. The lightweight ViewActive network (72 FPS on a single GPU) significantly enhances the performance of state-of-the-art object recognition pipelines and can be integrated into real-time motion planning for robotic applications. Our code and dataset are available here: https://github.com/jiayi-wu-umd/ViewActive.
FlowNav: Combining Flow Matching and Depth Priors for Efficient Navigation IROS'25
Effective robot navigation in unseen environments is a challenging task that requires precise control actions at high frequencies. Recent advances have framed it as an image-goal-conditioned control problem, where the robot generates navigation actions using frontal RGB images. Current state-of-the-art methods in this area use diffusion policies to generate these control actions. Despite their promising results, these models are computationally expensive and suffer from weak perception. To address these limitations, we present FlowNav, a novel approach that uses a combination of CFM and depth priors from off-the-shelf foundation models to learn action policies for robot navigation. FlowNav is significantly more accurate and faster at navigation and exploration than state-of-the-art methods. We validate our contributions using real robot experiments in multiple environments, demonstrating improved navigation reliability and accuracy. Code and trained models are publicly available.
comment: Accepted to IROS'25. Previous version accepted at CoRL 2024 workshop on Learning Effective Abstractions for Planning (LEAP) and workshop on Differentiable Optimization Everywhere: Simulation, Estimation, Learning, and Control
♻ ☆ DiffOG: Differentiable Policy Trajectory Optimization with Generalizability
Imitation learning-based visuomotor policies excel at manipulation tasks but often produce suboptimal action trajectories compared to model-based methods. Directly mapping camera data to actions via neural networks can result in jerky motions and difficulties in meeting critical constraints, compromising safety and robustness in real-world deployment. For tasks that require high robustness or strict adherence to constraints, ensuring trajectory quality is crucial. However, the lack of interpretability in neural networks makes it challenging to generate constraint-compliant actions in a controlled manner. This paper introduces differentiable policy trajectory optimization with generalizability (DiffOG), a learning-based trajectory optimization framework designed to enhance visuomotor policies. By leveraging the proposed differentiable formulation of trajectory optimization with transformer, DiffOG seamlessly integrates policies with a generalizable optimization layer. DiffOG refines action trajectories to be smoother and more constraint-compliant while maintaining alignment with the original demonstration distribution, thus avoiding degradation in policy performance. We evaluated DiffOG across 11 simulated tasks and 2 real-world tasks. The results demonstrate that DiffOG significantly enhances the trajectory quality of visuomotor policies while having minimal impact on policy performance, outperforming trajectory processing baselines such as greedy constraint clipping and penalty-based trajectory optimization. Furthermore, DiffOG achieves superior performance compared to existing constrained visuomotor policy. For more details, please visit the project website: https://zhengtongxu.github.io/diffog-website/.
♻ ☆ SparseLoc: Sparse Open-Set Landmark-based Global Localization for Autonomous Navigation
Global localization is a critical problem in autonomous navigation, enabling precise positioning without reliance on GPS. Modern global localization techniques often depend on dense LiDAR maps, which, while precise, require extensive storage and computational resources. Recent approaches have explored alternative methods, such as sparse maps and learned features, but they suffer from poor robustness and generalization. We propose SparseLoc, a global localization framework that leverages vision-language foundation models to generate sparse, semantic-topometric maps in a zero-shot manner. It combines this map representation with a Monte Carlo localization scheme enhanced by a novel late optimization strategy, ensuring improved pose estimation. By constructing compact yet highly discriminative maps and refining localization through a carefully designed optimization schedule, SparseLoc overcomes the limitations of existing techniques, offering a more efficient and robust solution for global localization. Our system achieves over a 5X improvement in localization accuracy compared to existing sparse mapping techniques. Despite utilizing only 1/500th of the points of dense mapping methods, it achieves comparable performance, maintaining an average global localization error below 5m and 2 degrees on KITTI sequences.
♻ ☆ Physical simulation of Marsupial UAV-UGV Systems Connected by a Variable-Length Hanging Tether
This paper presents a simulation framework able of modeling the dynamics of a hanging tether with adjustable length, connecting a UAV to a UGV. The model incorporates the interaction between the UAV, UGV, and a winch, allowing for dynamic tether adjustments based on the relative motion of the robots. The accuracy and reliability of the simulator are assessed through extensive experiments, including comparisons with real-world experiment, to evaluate its ability to reproduce the complex tether dynamics observed in physical deployments. The results demonstrate that the simulation closely aligns with real-world behavior, particularly in constrained environments where tether effects are significant. This work provides a validated tool for studying tethered robotic systems, offering valuable insights into their motion dynamics and control strategies.
♻ ☆ Safe Expeditious Whole-Body Control of Mobile Manipulators for Collision Avoidance
Whole-body reactive obstacle avoidance for mobile manipulators (MM) remains an open research problem. Control Barrier Functions (CBF), combined with Quadratic Programming (QP), have become a popular approach for reactive control with safety guarantees. However, traditional CBF methods often face issues such as pseudo-equilibrium problems (PEP) and are ineffective in handling dynamic obstacles. To overcome these challenges, we introduce the Adaptive Cyclic Inequality (ACI) method. ACI takes into account both the obstacle's velocity and the robot's nominal control to define a directional safety constraint. When added to the CBF-QP, ACI helps avoid PEP and enables reliable collision avoidance in dynamic environments. We validate our approach on a MM that includes a low-dimensional mobile base and a high-dimensional manipulator, demonstrating the generality of the framework. In addition, we integrate a simple yet effective method for avoiding self-collisions, allowing the robot enabling comprehensive whole-body collision-free operation. Extensive benchmark comparisons and experiments demonstrate that our method performs well in unknown and dynamic scenarios, including difficult tasks like avoiding sticks swung by humans and rapidly thrown objects.
♻ ☆ SHINE: Social Homology Identification for Navigation in Crowded Environments
Navigating mobile robots in social environments remains a challenging task due to the intricacies of human-robot interactions. Most of the motion planners designed for crowded and dynamic environments focus on choosing the best velocity to reach the goal while avoiding collisions, but do not explicitly consider the high-level navigation behavior (avoiding through the left or right side, letting others pass or passing before others, etc.). In this work, we present a novel motion planner that incorporates topology distinct paths representing diverse navigation strategies around humans. The planner selects the topology class that imitates human behavior the best using a deep neural network model trained on real-world human motion data, ensuring socially intelligent and contextually aware navigation. Our system refines the chosen path through an optimization-based local planner in real time, ensuring seamless adherence to desired social behaviors. In this way, we decouple perception and local planning from the decision-making process. We evaluate the prediction accuracy of the network with real-world data. In addition, we assess the navigation capabilities in both simulation and a real-world platform, comparing it with other state-of-the-art planners. We demonstrate that our planner exhibits socially desirable behaviors and shows a smooth and remarkable performance.
comment: This paper has been accepted for publication at The International Journal of Robotics Research. Please, when citing the paper, refer to the official manuscript with the following DOI: 10.1177/02783649251344639
♻ ☆ Unlocking Constraints: Source-Free Occlusion-Aware Seamless Segmentation ICCV 2025
Panoramic image processing is essential for omni-context perception, yet faces constraints like distortions, perspective occlusions, and limited annotations. Previous unsupervised domain adaptation methods transfer knowledge from labeled pinhole data to unlabeled panoramic images, but they require access to source pinhole data. To address these, we introduce a more practical task, i.e., Source-Free Occlusion-Aware Seamless Segmentation (SFOASS), and propose its first solution, called UNconstrained Learning Omni-Context Knowledge (UNLOCK). Specifically, UNLOCK includes two key modules: Omni Pseudo-Labeling Learning and Amodal-Driven Context Learning. While adapting without relying on source data or target labels, this framework enhances models to achieve segmentation with 360{\deg} viewpoint coverage and occlusion-aware reasoning. Furthermore, we benchmark the proposed SFOASS task through both real-to-real and synthetic-to-real adaptation settings. Experimental results show that our source-free method achieves performance comparable to source-dependent methods, yielding state-of-the-art scores of 10.9 in mAAP and 11.6 in mAP, along with an absolute improvement of +4.3 in mAPQ over the source-only method. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK.
comment: Accepted to ICCV 2025. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK
♻ ☆ Free-form language-based robotic reasoning and grasping IROS 2025
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Accepted to IROS 2025. Project website: https://tev-fbk.github.io/FreeGrasp/
♻ ☆ LATMOS: Latent Automaton Task Model from Observation Sequences IROS
Robot task planning from high-level instructions is an important step towards deploying fully autonomous robot systems in the service sector. Three key aspects of robot task planning present challenges yet to be resolved simultaneously, namely, (i) factorization of complex tasks specifications into simpler executable subtasks, (ii) understanding of the current task state from raw observations, and (iii) planning and verification of task executions. To address these challenges, we propose LATMOS, an automata-inspired task model that, given observations from correct task executions, is able to factorize the task, while supporting verification and planning operations. LATMOS combines an observation encoder to extract the features from potentially high-dimensional observations with automata theory to learn a sequential model that encapsulates an automaton with symbols in the latent feature space. We conduct extensive evaluations in three task model learning setups: (i) abstract tasks described by logical formulas, (ii) real-world human tasks described by videos and natural language prompts and (iii) a robot task described by image and state observations. The results demonstrate the improved plan generation and verification capabilities of LATMOS across observation modalities and tasks.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ RESC: A Reinforcement Learning Based Search-to-Control Framework for Quadrotor Local Planning in Dense Environments RAL
Agile flight in complex environments poses significant challenges to current motion planning methods, as they often fail to fully leverage the quadrotor dynamic potential, leading to performance failures and reduced efficiency during aggressive maneuvers.Existing approaches frequently decouple trajectory optimization from control generation and neglect the dynamics, further limiting their ability to generate aggressive and feasible motions.To address these challenges, we introduce an enhanced Search-to-Control planning framework that integrates visibility path searching with reinforcement learning (RL) control generation, directly accounting for dynamics and bridging the gap between planning and control.Our method first extracts control points from collision-free paths using a proposed heuristic search, which are then refined by an RL policy to generate low-level control commands for the quadrotor controller, utilizing reduced-dimensional obstacle observations for efficient inference with lightweight neural networks.We validate the framework through simulations and real-world experiments, demonstrating improved time efficiency and dynamic maneuverability compared to existing methods, while confirming its robustness and applicability.
comment: This paper has been accepted for publication in IEEE Robotics and Automation Letters (RAL), 2025. The final authenticated version is available online at IEEE Xplore
♻ ☆ MRHaD: Mixed Reality-based Hand-Drawn Map Editing Interface for Mobile Robot Navigation
Mobile robot navigation systems are increasingly relied upon in dynamic and complex environments, yet they often struggle with map inaccuracies and the resulting inefficient path planning. This paper presents MRHaD, a Mixed Reality-based Hand-drawn Map Editing Interface that enables intuitive, real-time map modifications through natural hand gestures. By integrating the MR head-mounted display with the robotic navigation system, operators can directly create hand-drawn restricted zones (HRZ), thereby bridging the gap between 2D map representations and the real-world environment. Comparative experiments against conventional 2D editing methods demonstrate that MRHaD significantly improves editing efficiency, map accuracy, and overall usability, contributing to safer and more efficient mobile robot operations. The proposed approach provides a robust technical foundation for advancing human-robot collaboration and establishing innovative interaction models that enhance the hybrid future of robotics and human society. For additional material, please check: https://mertcookimg.github.io/mrhad/
♻ ☆ Bi-LAT: Bilateral Control-Based Imitation Learning via Natural Language and Action Chunking with Transformers
We present Bi-LAT, a novel imitation learning framework that unifies bilateral control with natural language processing to achieve precise force modulation in robotic manipulation. Bi-LAT leverages joint position, velocity, and torque data from leader-follower teleoperation while also integrating visual and linguistic cues to dynamically adjust applied force. By encoding human instructions such as "softly grasp the cup" or "strongly twist the sponge" through a multimodal Transformer-based model, Bi-LAT learns to distinguish nuanced force requirements in real-world tasks. We demonstrate Bi-LAT's performance in (1) unimanual cup-stacking scenario where the robot accurately modulates grasp force based on language commands, and (2) bimanual sponge-twisting task that requires coordinated force control. Experimental results show that Bi-LAT effectively reproduces the instructed force levels, particularly when incorporating SigLIP among tested language encoders. Our findings demonstrate the potential of integrating natural language cues into imitation learning, paving the way for more intuitive and adaptive human-robot interaction. For additional material, please visit: https://mertcookimg.github.io/bi-lat/
♻ ☆ Automated Brake Onset Detection in Naturalistic Driving Data
Response timing measures play a crucial role in the assessment of automated driving systems (ADS) in collision avoidance scenarios, including but not limited to establishing human benchmarks and comparing ADS to human driver response performance. For example, measuring the response time (of a human driver or ADS) to a conflict requires the determination of a stimulus onset and a response onset. In existing studies, response onset relies on manual annotation or vehicle control signals such as accelerator and brake pedal movements. These methods are not applicable when analyzing large scale data where vehicle control signals are not available. This holds in particular for the rapidly expanding sets of ADS log data where the behavior of surrounding road users is observed via onboard sensors. To advance evaluation techniques for ADS and enable measuring response timing when vehicle control signals are not available, we developed a simple and efficient algorithm, based on a piecewise linear acceleration model, to automatically estimate brake onset that can be applied to any type of driving data that includes vehicle longitudinal time series data. We also proposed a manual annotation method to identify brake onset and used it as ground truth for validation. R^2 was used as a confidence metric to measure the accuracy of the algorithm, and its classification performance was analyzed using naturalistic collision avoidance data of both ADS and humans, where our method was validated against human manual annotation. Although our algorithm is subject to certain limitations, it is efficient, generalizable, applicable to any road user and scenario types, and is highly configurable.
♻ ☆ Online Concurrent Multi-Robot Coverage Path Planning IROS 2025
Recently, centralized receding horizon online multi-robot coverage path planning algorithms have shown remarkable scalability in thoroughly exploring large, complex, unknown workspaces with many robots. In a horizon, the path planning and the path execution interleave, meaning when the path planning occurs for robots with no paths, the robots with outstanding paths do not execute, and subsequently, when the robots with new or outstanding paths execute to reach respective goals, path planning does not occur for those robots yet to get new paths, leading to wastage of both the robotic and the computation resources. As a remedy, we propose a centralized algorithm that is not horizon-based. It plans paths at any time for a subset of robots with no paths, i.e., who have reached their previously assigned goals, while the rest execute their outstanding paths, thereby enabling concurrent planning and execution. We formally prove that the proposed algorithm ensures complete coverage of an unknown workspace and analyze its time complexity. To demonstrate scalability, we evaluate our algorithm to cover eight large $2$D grid benchmark workspaces with up to 512 aerial and ground robots, respectively. A comparison with a state-of-the-art horizon-based algorithm shows its superiority in completing the coverage with up to 1.6x speedup. For validation, we perform ROS + Gazebo simulations in six 2D grid benchmark workspaces with 10 quadcopters and TurtleBots, respectively. We also successfully conducted one outdoor experiment with three quadcopters and one indoor with two TurtleBots.
comment: Accepted in IROS 2025
♻ ☆ Equivariant IMU Preintegration with Biases: a Galilean Group Approach
This letter proposes a new approach for Inertial Measurement Unit (IMU) preintegration, a fundamental building block that can be leveraged in different optimization-based Inertial Navigation System (INS) localization solutions. Inspired by recent advances in equivariant theory applied to biased INSs, we derive a discrete-time formulation of the IMU preintegration on ${\mathbf{Gal}(3) \ltimes \mathfrak{gal}(3)}$, the left-trivialization of the tangent group of the Galilean group $\mathbf{Gal}(3)$. We define a novel preintegration error that geometrically couples the navigation states and the bias leading to lower linearization error. Our method improves in consistency compared to existing preintegration approaches which treat IMU biases as a separate state-space. Extensive validation against state-of-the-art methods, both in simulation and with real-world IMU data, implementation in the Lie++ library, and open-source code are provided.
♻ ☆ A General Safety Framework for Autonomous Manipulation in Human Environments
Autonomous robots are projected to significantly augment the manual workforce, especially in repetitive and hazardous tasks. For a successful deployment of such robots in human environments, it is crucial to guarantee human safety. State-of-the-art approaches to ensure human safety are either too conservative to permit a natural human-robot collaboration or make strong assumptions that do not hold for autonomous robots, e.g., knowledge of a pre-defined trajectory. Therefore, we propose the shield for Safe Autonomous human-robot collaboration through Reachability Analysis (SARA shield). This novel power and force limiting framework provides formal safety guarantees for manipulation in human environments while realizing fast robot speeds. As unconstrained contacts allow for significantly higher contact forces than constrained contacts (also known as clamping), we use reachability analysis to classify potential contacts by their type in a formally correct way. For each contact type, we formally verify that the kinetic energy of the robot is below pain and injury thresholds for the respective human body part in contact. Our experiments show that SARA shield satisfies the contact safety constraints while significantly improving the robot performance in comparison to state-of-the-art approaches.
Computer Vision and Pattern Recognition 165
☆ Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning ICCV 2025
Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.
comment: ICCV 2025 (Highlight). Project page: https://jacky1128.github.io/RepMTL/
☆ Reconstructing 4D Spatial Intelligence: A Survey
Reconstructing 4D spatial intelligence from visual observations has long been a central yet challenging task in computer vision, with broad real-world applications. These range from entertainment domains like movies, where the focus is often on reconstructing fundamental visual elements, to embodied AI, which emphasizes interaction modeling and physical realism. Fueled by rapid advances in 3D representations and deep learning architectures, the field has evolved quickly, outpacing the scope of previous surveys. Additionally, existing surveys rarely offer a comprehensive analysis of the hierarchical structure of 4D scene reconstruction. To address this gap, we present a new perspective that organizes existing methods into five progressive levels of 4D spatial intelligence: (1) Level 1 -- reconstruction of low-level 3D attributes (e.g., depth, pose, and point maps); (2) Level 2 -- reconstruction of 3D scene components (e.g., objects, humans, structures); (3) Level 3 -- reconstruction of 4D dynamic scenes; (4) Level 4 -- modeling of interactions among scene components; and (5) Level 5 -- incorporation of physical laws and constraints. We conclude the survey by discussing the key challenges at each level and highlighting promising directions for advancing toward even richer levels of 4D spatial intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/yukangcao/Awesome-4D-Spatial-Intelligence.
comment: Project page: https://github.com/yukangcao/Awesome-4D-Spatial-Intelligence
☆ GPT-IMAGE-EDIT-1.5M: A Million-Scale, GPT-Generated Image Dataset
Recent advancements in large multimodal models like GPT-4o have set a new standard for high-fidelity, instruction-guided image editing. However, the proprietary nature of these models and their training data creates a significant barrier for open-source research. To bridge this gap, we introduce GPT-IMAGE-EDIT-1.5M, a publicly available, large-scale image-editing corpus containing more than 1.5 million high-quality triplets (instruction, source image, edited image). We systematically construct this dataset by leveraging the versatile capabilities of GPT-4o to unify and refine three popular image-editing datasets: OmniEdit, HQ-Edit, and UltraEdit. Specifically, our methodology involves 1) regenerating output images to enhance visual quality and instruction alignment, and 2) selectively rewriting prompts to improve semantic clarity. To validate the efficacy of our dataset, we fine-tune advanced open-source models on GPT-IMAGE-EDIT-1.5M. The empirical results are exciting, e.g., the fine-tuned FluxKontext achieves highly competitive performance across a comprehensive suite of benchmarks, including 7.24 on GEdit-EN, 3.80 on ImgEdit-Full, and 8.78 on Complex-Edit, showing stronger instruction following and higher perceptual quality while maintaining identity. These scores markedly exceed all previously published open-source methods and substantially narrow the gap to leading proprietary models. We hope the full release of GPT-IMAGE-EDIT-1.5M can help to catalyze further open research in instruction-guided image editing.
☆ Deep Learning for Skeleton Based Human Motion Rehabilitation Assessment: A Benchmark
Automated assessment of human motion plays a vital role in rehabilitation, enabling objective evaluation of patient performance and progress. Unlike general human activity recognition, rehabilitation motion assessment focuses on analyzing the quality of movement within the same action class, requiring the detection of subtle deviations from ideal motion. Recent advances in deep learning and video-based skeleton extraction have opened new possibilities for accessible, scalable motion assessment using affordable devices such as smartphones or webcams. However, the field lacks standardized benchmarks, consistent evaluation protocols, and reproducible methodologies, limiting progress and comparability across studies. In this work, we address these gaps by (i) aggregating existing rehabilitation datasets into a unified archive called Rehab-Pile, (ii) proposing a general benchmarking framework for evaluating deep learning methods in this domain, and (iii) conducting extensive benchmarking of multiple architectures across classification and regression tasks. All datasets and implementations are released to the community to support transparency and reproducibility. This paper aims to establish a solid foundation for future research in automated rehabilitation assessment and foster the development of reliable, accessible, and personalized rehabilitation solutions. The datasets, source-code and results of this article are all publicly available.
☆ Learning Transferable Facial Emotion Representations from Large-Scale Semantically Rich Captions
Current facial emotion recognition systems are predominately trained to predict a fixed set of predefined categories or abstract dimensional values. This constrained form of supervision hinders generalization and applicability, as it reduces the rich and nuanced spectrum of emotions into oversimplified labels or scales. In contrast, natural language provides a more flexible, expressive, and interpretable way to represent emotions, offering a much broader source of supervision. Yet, leveraging semantically rich natural language captions as supervisory signals for facial emotion representation learning remains relatively underexplored, primarily due to two key challenges: 1) the lack of large-scale caption datasets with rich emotional semantics, and 2) the absence of effective frameworks tailored to harness such rich supervision. To this end, we introduce EmoCap100K, a large-scale facial emotion caption dataset comprising over 100,000 samples, featuring rich and structured semantic descriptions that capture both global affective states and fine-grained local facial behaviors. Building upon this dataset, we further propose EmoCapCLIP, which incorporates a joint global-local contrastive learning framework enhanced by a cross-modal guided positive mining module. This design facilitates the comprehensive exploitation of multi-level caption information while accommodating semantic similarities between closely related expressions. Extensive evaluations on over 20 benchmarks covering five tasks demonstrate the superior performance of our method, highlighting the promise of learning facial emotion representations from large-scale semantically rich captions. The code and data will be available at https://github.com/sunlicai/EmoCapCLIP.
☆ Improving Adversarial Robustness Through Adaptive Learning-Driven Multi-Teacher Knowledge Distillation
Convolutional neural networks (CNNs) excel in computer vision but are susceptible to adversarial attacks, crafted perturbations designed to mislead predictions. Despite advances in adversarial training, a gap persists between model accuracy and robustness. To mitigate this issue, in this paper, we present a multi-teacher adversarial robustness distillation using an adaptive learning strategy. Specifically, our proposed method first trained multiple clones of a baseline CNN model using an adversarial training strategy on a pool of perturbed data acquired through different adversarial attacks. Once trained, these adversarially trained models are used as teacher models to supervise the learning of a student model on clean data using multi-teacher knowledge distillation. To ensure an effective robustness distillation, we design an adaptive learning strategy that controls the knowledge contribution of each model by assigning weights as per their prediction precision. Distilling knowledge from adversarially pre-trained teacher models not only enhances the learning capabilities of the student model but also empowers it with the capacity to withstand different adversarial attacks, despite having no exposure to adversarial data. To verify our claims, we extensively evaluated our proposed method on MNIST-Digits and Fashion-MNIST datasets across diverse experimental settings. The obtained results exhibit the efficacy of our multi-teacher adversarial distillation and adaptive learning strategy, enhancing CNNs' adversarial robustness against various adversarial attacks.
comment: 11 pages
☆ Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.
comment: Codes and data are available at https://github.com/listen0425/Security-Tensors
☆ LargeMvC-Net: Anchor-based Deep Unfolding Network for Large-scale Multi-view Clustering
Deep anchor-based multi-view clustering methods enhance the scalability of neural networks by utilizing representative anchors to reduce the computational complexity of large-scale clustering. Despite their scalability advantages, existing approaches often incorporate anchor structures in a heuristic or task-agnostic manner, either through post-hoc graph construction or as auxiliary components for message passing. Such designs overlook the core structural demands of anchor-based clustering, neglecting key optimization principles. To bridge this gap, we revisit the underlying optimization problem of large-scale anchor-based multi-view clustering and unfold its iterative solution into a novel deep network architecture, termed LargeMvC-Net. The proposed model decomposes the anchor-based clustering process into three modules: RepresentModule, NoiseModule, and AnchorModule, corresponding to representation learning, noise suppression, and anchor indicator estimation. Each module is derived by unfolding a step of the original optimization procedure into a dedicated network component, providing structural clarity and optimization traceability. In addition, an unsupervised reconstruction loss aligns each view with the anchor-induced latent space, encouraging consistent clustering structures across views. Extensive experiments on several large-scale multi-view benchmarks show that LargeMvC-Net consistently outperforms state-of-the-art methods in terms of both effectiveness and scalability.
comment: 10 pages, 7 figures
☆ Adapting Vehicle Detectors for Aerial Imagery to Unseen Domains with Weak Supervision ICCV 2025
Detecting vehicles in aerial imagery is a critical task with applications in traffic monitoring, urban planning, and defense intelligence. Deep learning methods have provided state-of-the-art (SOTA) results for this application. However, a significant challenge arises when models trained on data from one geographic region fail to generalize effectively to other areas. Variability in factors such as environmental conditions, urban layouts, road networks, vehicle types, and image acquisition parameters (e.g., resolution, lighting, and angle) leads to domain shifts that degrade model performance. This paper proposes a novel method that uses generative AI to synthesize high-quality aerial images and their labels, improving detector training through data augmentation. Our key contribution is the development of a multi-stage, multi-modal knowledge transfer framework utilizing fine-tuned latent diffusion models (LDMs) to mitigate the distribution gap between the source and target environments. Extensive experiments across diverse aerial imagery domains show consistent performance improvements in AP50 over supervised learning on source domain data, weakly supervised adaptation methods, unsupervised domain adaptation methods, and open-set object detectors by 4-23%, 6-10%, 7-40%, and more than 50%, respectively. Furthermore, we introduce two newly annotated aerial datasets from New Zealand and Utah to support further research in this field. Project page is available at: https://humansensinglab.github.io/AGenDA
comment: ICCV 2025
☆ Model-Agnostic Gender Bias Control for Text-to-Image Generation via Sparse Autoencoder
Text-to-image (T2I) diffusion models often exhibit gender bias, particularly by generating stereotypical associations between professions and gendered subjects. This paper presents SAE Debias, a lightweight and model-agnostic framework for mitigating such bias in T2I generation. Unlike prior approaches that rely on CLIP-based filtering or prompt engineering, which often require model-specific adjustments and offer limited control, SAE Debias operates directly within the feature space without retraining or architectural modifications. By leveraging a k-sparse autoencoder pre-trained on a gender bias dataset, the method identifies gender-relevant directions within the sparse latent space, capturing professional stereotypes. Specifically, a biased direction per profession is constructed from sparse latents and suppressed during inference to steer generations toward more gender-balanced outputs. Trained only once, the sparse autoencoder provides a reusable debiasing direction, offering effective control and interpretable insight into biased subspaces. Extensive evaluations across multiple T2I models, including Stable Diffusion 1.4, 1.5, 2.1, and SDXL, demonstrate that SAE Debias substantially reduces gender bias while preserving generation quality. To the best of our knowledge, this is the first work to apply sparse autoencoders for identifying and intervening in gender bias within T2I models. These findings contribute toward building socially responsible generative AI, providing an interpretable and model-agnostic tool to support fairness in text-to-image generation.
☆ GTAD: Global Temporal Aggregation Denoising Learning for 3D Semantic Occupancy Prediction
Accurately perceiving dynamic environments is a fundamental task for autonomous driving and robotic systems. Existing methods inadequately utilize temporal information, relying mainly on local temporal interactions between adjacent frames and failing to leverage global sequence information effectively. To address this limitation, we investigate how to effectively aggregate global temporal features from temporal sequences, aiming to achieve occupancy representations that efficiently utilize global temporal information from historical observations. For this purpose, we propose a global temporal aggregation denoising network named GTAD, introducing a global temporal information aggregation framework as a new paradigm for holistic 3D scene understanding. Our method employs an in-model latent denoising network to aggregate local temporal features from the current moment and global temporal features from historical sequences. This approach enables the effective perception of both fine-grained temporal information from adjacent frames and global temporal patterns from historical observations. As a result, it provides a more coherent and comprehensive understanding of the environment. Extensive experiments on the nuScenes and Occ3D-nuScenes benchmark and ablation studies demonstrate the superiority of our method.
☆ Mask-Free Audio-driven Talking Face Generation for Enhanced Visual Quality and Identity Preservation
Audio-Driven Talking Face Generation aims at generating realistic videos of talking faces, focusing on accurate audio-lip synchronization without deteriorating any identity-related visual details. Recent state-of-the-art methods are based on inpainting, meaning that the lower half of the input face is masked, and the model fills the masked region by generating lips aligned with the given audio. Hence, to preserve identity-related visual details from the lower half, these approaches additionally require an unmasked identity reference image randomly selected from the same video. However, this common masking strategy suffers from (1) information loss in the input faces, significantly affecting the networks' ability to preserve visual quality and identity details, (2) variation between identity reference and input image degrading reconstruction performance, and (3) the identity reference negatively impacting the model, causing unintended copying of elements unaligned with the audio. To address these issues, we propose a mask-free talking face generation approach while maintaining the 2D-based face editing task. Instead of masking the lower half, we transform the input images to have closed mouths, using a two-step landmark-based approach trained in an unpaired manner. Subsequently, we provide these edited but unmasked faces to a lip adaptation model alongside the audio to generate appropriate lip movements. Thus, our approach needs neither masked input images nor identity reference images. We conduct experiments on the benchmark LRS2 and HDTF datasets and perform various ablation studies to validate our contributions.
☆ ARC-Hunyuan-Video-7B: Structured Video Comprehension of Real-World Shorts
Real-world user-generated short videos, especially those distributed on platforms such as WeChat Channel and TikTok, dominate the mobile internet. However, current large multimodal models lack essential temporally-structured, detailed, and in-depth video comprehension capabilities, which are the cornerstone of effective video search and recommendation, as well as emerging video applications. Understanding real-world shorts is actually challenging due to their complex visual elements, high information density in both visuals and audio, and fast pacing that focuses on emotional expression and viewpoint delivery. This requires advanced reasoning to effectively integrate multimodal information, including visual, audio, and text. In this work, we introduce ARC-Hunyuan-Video, a multimodal model that processes visual, audio, and textual signals from raw video inputs end-to-end for structured comprehension. The model is capable of multi-granularity timestamped video captioning and summarization, open-ended video question answering, temporal video grounding, and video reasoning. Leveraging high-quality data from an automated annotation pipeline, our compact 7B-parameter model is trained through a comprehensive regimen: pre-training, instruction fine-tuning, cold start, reinforcement learning (RL) post-training, and final instruction fine-tuning. Quantitative evaluations on our introduced benchmark ShortVid-Bench and qualitative comparisons demonstrate its strong performance in real-world video comprehension, and it supports zero-shot or fine-tuning with a few samples for diverse downstream applications. The real-world production deployment of our model has yielded tangible and measurable improvements in user engagement and satisfaction, a success supported by its remarkable efficiency, with stress tests indicating an inference time of just 10 seconds for a one-minute video on H20 GPU.
comment: Project Page: https://tencentarc.github.io/posts/arc-video-announcement/
☆ Exploring text-to-image generation for historical document image retrieval SC
Attribute-based document image retrieval (ABDIR) was recently proposed as an alternative to query-by-example (QBE) searches, the dominant document image retrieval (DIR) paradigm. One drawback of QBE searches is that they require sample query documents on hand that may not be available. ABDIR aims to offer users a flexible way to retrieve document images based on memorable visual features of document contents, describing document images with combinations of visual attributes determined via convolutional neural network (CNN)-based binary classifiers. We present an exploratory study of the use of generative AI to bridge the gap between QBE and ABDIR, focusing on historical documents as a use case for their diversity and uniqueness in visual features. We hypothesize that text-to-image (T2I) generation can be leveraged to create query document images using text prompts based on ABDIR-like attributes. We propose T2I-QBE, which uses Leonardo.Ai as the T2I generator with prompts that include a rough description of the desired document type and a list of the desired ABDIR-style attributes. This creates query images that are then used within the traditional QBE paradigm, which compares CNN-extracted query features to those of the document images in the dataset to retrieve the most relevant documents. Experiments on the HisIR19 dataset of historical documents confirm our hypothesis and suggest that T2I-QBE is a viable option for historical document image retrieval. To the authors' knowledge, this is the first attempt at utilizing T2I generation for DIR.
comment: Accepted and presented as an extended abstract (double-blind review process) at the 2025 Scandinavian Conference on Image Analysis (SCIA). 4 pages
☆ RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation
Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.
☆ HAMLET-FFD: Hierarchical Adaptive Multi-modal Learning Embeddings Transformation for Face Forgery Detection
The rapid evolution of face manipulation techniques poses a critical challenge for face forgery detection: cross-domain generalization. Conventional methods, which rely on simple classification objectives, often fail to learn domain-invariant representations. We propose HAMLET-FFD, a cognitively inspired Hierarchical Adaptive Multi-modal Learning framework that tackles this challenge via bidirectional cross-modal reasoning. Building on contrastive vision-language models such as CLIP, HAMLET-FFD introduces a knowledge refinement loop that iteratively assesses authenticity by integrating visual evidence with conceptual cues, emulating expert forensic analysis. A key innovation is a bidirectional fusion mechanism in which textual authenticity embeddings guide the aggregation of hierarchical visual features, while modulated visual features refine text embeddings to generate image-adaptive prompts. This closed-loop process progressively aligns visual observations with semantic priors to enhance authenticity assessment. By design, HAMLET-FFD freezes all pretrained parameters, serving as an external plugin that preserves CLIP's original capabilities. Extensive experiments demonstrate its superior generalization to unseen manipulations across multiple benchmarks, and visual analyses reveal a division of labor among embeddings, with distinct representations specializing in fine-grained artifact recognition.
☆ SCORPION: Addressing Scanner-Induced Variability in Histopathology MICCAI
Ensuring reliable model performance across diverse domains is a critical challenge in computational pathology. A particular source of variability in Whole-Slide Images is introduced by differences in digital scanners, thus calling for better scanner generalization. This is critical for the real-world adoption of computational pathology, where the scanning devices may differ per institution or hospital, and the model should not be dependent on scanner-induced details, which can ultimately affect the patient's diagnosis and treatment planning. However, past efforts have primarily focused on standard domain generalization settings, evaluating on unseen scanners during training, without directly evaluating consistency across scanners for the same tissue. To overcome this limitation, we introduce SCORPION, a new dataset explicitly designed to evaluate model reliability under scanner variability. SCORPION includes 480 tissue samples, each scanned with 5 scanners, yielding 2,400 spatially aligned patches. This scanner-paired design allows for the isolation of scanner-induced variability, enabling a rigorous evaluation of model consistency while controlling for differences in tissue composition. Furthermore, we propose SimCons, a flexible framework that combines augmentation-based domain generalization techniques with a consistency loss to explicitly address scanner generalization. We empirically show that SimCons improves model consistency on varying scanners without compromising task-specific performance. By releasing the SCORPION dataset and proposing SimCons, we provide the research community with a crucial resource for evaluating and improving model consistency across diverse scanners, setting a new standard for reliability testing.
comment: Accepted in UNSURE 2025 workshop in MICCAI
☆ $A^2R^2$: Advancing Img2LaTeX Conversion via Visual Reasoning with Attention-Guided Refinement
Img2LaTeX is a practically significant task that involves converting mathematical expressions or tabular data from images into LaTeX code. In recent years, vision-language models (VLMs) have demonstrated strong performance across a variety of visual understanding tasks, owing to their generalization capabilities. While some studies have explored the use of VLMs for the Img2LaTeX task, their performance often falls short of expectations. Empirically, VLMs sometimes struggle with fine-grained visual elements, leading to inaccurate LaTeX predictions. To address this challenge, we propose $A^2R^2$: Advancing Img2LaTeX Conversion via Visual Reasoning with Attention-Guided Refinement, a framework that effectively integrates attention localization and iterative refinement within a visual reasoning framework, enabling VLMs to perform self-correction and progressively improve prediction quality. For effective evaluation, we introduce a new dataset, Img2LaTex-Hard-1K, consisting of 1,100 carefully curated and challenging examples designed to rigorously evaluate the capabilities of VLMs within this task domain. Extensive experimental results demonstrate that: (1) $A^2R^2$ significantly improves model performance across six evaluation metrics spanning both textual and visual levels, consistently outperforming other baseline methods; (2) Increasing the number of inference rounds yields notable performance gains, underscoring the potential of $A^2R^2$ in test-time scaling scenarios; (3) Ablation studies and human evaluations validate the practical effectiveness of our approach, as well as the strong synergy among its core components during inference.
☆ The Importance of Facial Features in Vision-based Sign Language Recognition: Eyes, Mouth or Full Face?
Non-manual facial features play a crucial role in sign language communication, yet their importance in automatic sign language recognition (ASLR) remains underexplored. While prior studies have shown that incorporating facial features can improve recognition, related work often relies on hand-crafted feature extraction and fails to go beyond the comparison of manual features versus the combination of manual and facial features. In this work, we systematically investigate the contribution of distinct facial regionseyes, mouth, and full faceusing two different deep learning models (a CNN-based model and a transformer-based model) trained on an SLR dataset of isolated signs with randomly selected classes. Through quantitative performance and qualitative saliency map evaluation, we reveal that the mouth is the most important non-manual facial feature, significantly improving accuracy. Our findings highlight the necessity of incorporating facial features in ASLR.
comment: Accepted at 9th International Workshop on Sign Language Translation and Avatar Technologies @ ACM IVA'25
☆ Endoscopic Depth Estimation Based on Deep Learning: A Survey
Endoscopic depth estimation is a critical technology for improving the safety and precision of minimally invasive surgery. It has attracted considerable attention from researchers in medical imaging, computer vision, and robotics. Over the past decade, a large number of methods have been developed. Despite the existence of several related surveys, a comprehensive overview focusing on recent deep learning-based techniques is still limited. This paper endeavors to bridge this gap by systematically reviewing the state-of-the-art literature. Specifically, we provide a thorough survey of the field from three key perspectives: data, methods, and applications, covering a range of methods including both monocular and stereo approaches. We describe common performance evaluation metrics and summarize publicly available datasets. Furthermore, this review analyzes the specific challenges of endoscopic scenes and categorizes representative techniques based on their supervision strategies and network architectures. The application of endoscopic depth estimation in the important area of robot-assisted surgery is also reviewed. Finally, we outline potential directions for future research, such as domain adaptation, real-time implementation, and enhanced model generalization, thereby providing a valuable starting point for researchers to engage with and advance the field.
DriveAgent-R1: Advancing VLM-based Autonomous Driving with Hybrid Thinking and Active Perception
Vision-Language Models (VLMs) are advancing autonomous driving, yet their potential is constrained by myopic decision-making and passive perception, limiting reliability in complex environments. We introduce DriveAgent-R1 to tackle these challenges in long-horizon, high-level behavioral decision-making. DriveAgent-R1 features two core innovations: a Hybrid-Thinking framework that adaptively switches between efficient text-based and in-depth tool-based reasoning, and an Active Perception mechanism with a vision toolkit to proactively resolve uncertainties, thereby balancing decision-making efficiency and reliability. The agent is trained using a novel, three-stage progressive reinforcement learning strategy designed to master these hybrid capabilities. Extensive experiments demonstrate that DriveAgent-R1 achieves state-of-the-art performance, outperforming even leading proprietary large multimodal models, such as Claude Sonnet 4. Ablation studies validate our approach and confirm that the agent's decisions are robustly grounded in actively perceived visual evidence, paving a path toward safer and more intelligent autonomous systems.
☆ Not Only Grey Matter: OmniBrain for Robust Multimodal Classification of Alzheimer's Disease ICCV 2025
Alzheimer's disease affects over 55 million people worldwide and is projected to more than double by 2050, necessitating rapid, accurate, and scalable diagnostics. However, existing approaches are limited because they cannot achieve clinically acceptable accuracy, generalization across datasets, robustness to missing modalities, and explainability all at the same time. This inability to satisfy all these requirements simultaneously undermines their reliability in clinical settings. We propose OmniBrain, a multimodal framework that integrates brain MRI, radiomics, gene expression, and clinical data using a unified model with cross-attention and modality dropout. OmniBrain achieves $92.2 \pm 2.4\%$accuracy on the ANMerge dataset and generalizes to the MRI-only ADNI dataset with $70.4 \pm 2.7\%$ accuracy, outperforming unimodal and prior multimodal approaches. Explainability analyses highlight neuropathologically relevant brain regions and genes, enhancing clinical trust. OmniBrain offers a robust, interpretable, and practical solution for real-world Alzheimer's diagnosis.
comment: Published in Third Workshop on Computer Vision for Automated Medical Diagnosis CVAMD 2025 in ICCV 2025
☆ Ensemble Foreground Management for Unsupervised Object Discovery ICCV2025
Unsupervised object discovery (UOD) aims to detect and segment objects in 2D images without handcrafted annotations. Recent progress in self-supervised representation learning has led to some success in UOD algorithms. However, the absence of ground truth provides existing UOD methods with two challenges: 1) determining if a discovered region is foreground or background, and 2) knowing how many objects remain undiscovered. To address these two problems, previous solutions rely on foreground priors to distinguish if the discovered region is foreground, and conduct one or fixed iterations of discovery. However, the existing foreground priors are heuristic and not always robust, and a fixed number of discoveries leads to under or over-segmentation, since the number of objects in images varies. This paper introduces UnionCut, a robust and well-grounded foreground prior based on min-cut and ensemble methods that detects the union of foreground areas of an image, allowing UOD algorithms to identify foreground objects and stop discovery once the majority of the foreground union in the image is segmented. In addition, we propose UnionSeg, a distilled transformer of UnionCut that outputs the foreground union more efficiently and accurately. Our experiments show that by combining with UnionCut or UnionSeg, previous state-of-the-art UOD methods witness an increase in the performance of single object discovery, saliency detection and self-supervised instance segmentation on various benchmarks. The code is available at https://github.com/YFaris/UnionCut.
comment: Accepted by ICCV2025 (Highlight)
☆ Compositional Video Synthesis by Temporal Object-Centric Learning
We present a novel framework for compositional video synthesis that leverages temporally consistent object-centric representations, extending our previous work, SlotAdapt, from images to video. While existing object-centric approaches either lack generative capabilities entirely or treat video sequences holistically, thus neglecting explicit object-level structure, our approach explicitly captures temporal dynamics by learning pose invariant object-centric slots and conditioning them on pretrained diffusion models. This design enables high-quality, pixel-level video synthesis with superior temporal coherence, and offers intuitive compositional editing capabilities such as object insertion, deletion, or replacement, maintaining consistent object identities across frames. Extensive experiments demonstrate that our method sets new benchmarks in video generation quality and temporal consistency, outperforming previous object-centric generative methods. Although our segmentation performance closely matches state-of-the-art methods, our approach uniquely integrates this capability with robust generative performance, significantly advancing interactive and controllable video generation and opening new possibilities for advanced content creation, semantic editing, and dynamic scene understanding.
comment: 12+21 pages, submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), currently under review
☆ $S^3$LAM: Surfel Splatting SLAM for Geometrically Accurate Tracking and Mapping
We propose $S^3$LAM, a novel RGB-D SLAM system that leverages 2D surfel splatting to achieve highly accurate geometric representations for simultaneous tracking and mapping. Unlike existing 3DGS-based SLAM approaches that rely on 3D Gaussian ellipsoids, we utilize 2D Gaussian surfels as primitives for more efficient scene representation. By focusing on the surfaces of objects in the scene, this design enables $S^3$LAM to reconstruct high-quality geometry, benefiting both mapping and tracking. To address inherent SLAM challenges including real-time optimization under limited viewpoints, we introduce a novel adaptive surface rendering strategy that improves mapping accuracy while maintaining computational efficiency. We further derive camera pose Jacobians directly from 2D surfel splatting formulation, highlighting the importance of our geometrically accurate representation that improves tracking convergence. Extensive experiments on both synthetic and real-world datasets validate that $S^3$LAM achieves state-of-the-art performance. Code will be made publicly available.
comment: 7 pages, 7 figures
☆ METEOR: Multi-Encoder Collaborative Token Pruning for Efficient Vision Language Models ICCV 2025
Vision encoders serve as the cornerstone of multimodal understanding. Single-encoder architectures like CLIP exhibit inherent constraints in generalizing across diverse multimodal tasks, while recent multi-encoder fusion methods introduce prohibitive computational overhead to achieve superior performance using complementary visual representations from multiple vision encoders. To address this, we propose a progressive pruning framework, namely Multi-Encoder collaboraTivE tOken pRuning (METEOR), that eliminates redundant visual tokens across the encoding, fusion, and decoding stages for multi-encoder MLLMs. For multi-vision encoding, we discard redundant tokens within each encoder via a rank guided collaborative token assignment strategy. Subsequently, for multi-vision fusion, we combine the visual features from different encoders while reducing cross-encoder redundancy with cooperative pruning. Finally, we propose an adaptive token pruning method in the LLM decoding stage to further discard irrelevant tokens based on the text prompts with dynamically adjusting pruning ratios for specific task demands. To our best knowledge, this is the first successful attempt that achieves an efficient multi-encoder based vision language model with multi-stage pruning strategies. Extensive experiments on 11 benchmarks demonstrate the effectiveness of our proposed approach. Compared with EAGLE, a typical multi-encoder MLLMs, METEOR reduces 76% visual tokens with only 0.3% performance drop in average. The code is available at https://github.com/YuchenLiu98/METEOR.
comment: Accepted by ICCV 2025
☆ Rethinking Few Shot CLIP Benchmarks: A Critical Analysis in the Inductive Setting
CLIP is a foundational model with transferable classification performance in the few-shot setting. Several methods have shown improved performance of CLIP using few-shot examples. However, so far, all these techniques have been benchmarked using standard few-shot datasets. We argue that this mode of evaluation does not provide a true indication of the inductive generalization ability using few-shot examples. As most datasets have been seen by the CLIP model, the resultant setting can be termed as partially transductive. To solve this, we propose a pipeline that uses an unlearning technique to obtain true inductive baselines. In this new inductive setting, the methods show a significant drop in performance (-55% on average among 13 baselines with multiple datasets). We validate the unlearning technique using oracle baselines. An improved few-shot classification technique is proposed that consistently obtains state-of-the-art performance over 13 other recent baseline methods on a comprehensive analysis with 5880 experiments - varying the datasets, differing number of few-shot examples, unlearning setting, and with different seeds. Thus, we identify the issue with the evaluation of CLIP-based few-shot classification, provide a solution using unlearning, propose new benchmarks, and provide an improved method.
☆ SCANet: Split Coordinate Attention Network for Building Footprint Extraction ICONIP'24
Building footprint extraction holds immense significance in remote sensing image analysis and has great value in urban planning, land use, environmental protection and disaster assessment. Despite the progress made by conventional and deep learning approaches in this field, they continue to encounter significant challenges. This paper introduces a novel plug-and-play attention module, Split Coordinate Attention (SCA), which ingeniously captures spatially remote interactions by employing two spatial range of pooling kernels, strategically encoding each channel along x and y planes, and separately performs a series of split operations for each feature group, thus enabling more efficient semantic feature extraction. By inserting into a 2D CNN to form an effective SCANet, our SCANet outperforms recent SOTA methods on the public Wuhan University (WHU) Building Dataset and Massachusetts Building Dataset in terms of various metrics. Particularly SCANet achieves the best IoU, 91.61% and 75.49% for the two datasets. Our code is available at https://github.com/AiEson/SCANet
comment: Accepted by ICONIP'24
☆ FantasyID: A dataset for detecting digital manipulations of ID-documents
Advancements in image generation led to the availability of easy-to-use tools for malicious actors to create forged images. These tools pose a serious threat to the widespread Know Your Customer (KYC) applications, requiring robust systems for detection of the forged Identity Documents (IDs). To facilitate the development of the detection algorithms, in this paper, we propose a novel publicly available (including commercial use) dataset, FantasyID, which mimics real-world IDs but without tampering with legal documents and, compared to previous public datasets, it does not contain generated faces or specimen watermarks. FantasyID contains ID cards with diverse design styles, languages, and faces of real people. To simulate a realistic KYC scenario, the cards from FantasyID were printed and captured with three different devices, constituting the bonafide class. We have emulated digital forgery/injection attacks that could be performed by a malicious actor to tamper the IDs using the existing generative tools. The current state-of-the-art forgery detection algorithms, such as TruFor, MMFusion, UniFD, and FatFormer, are challenged by FantasyID dataset. It especially evident, in the evaluation conditions close to practical, with the operational threshold set on validation set so that false positive rate is at 10%, leading to false negative rates close to 50% across the board on the test set. The evaluation experiments demonstrate that FantasyID dataset is complex enough to be used as an evaluation benchmark for detection algorithms.
comment: Accepted to IJCB 2025; for project page, see https://www.idiap.ch/paper/fantasyid
☆ LanternNet: A Novel Hub-and-Spoke System to Seek and Suppress Spotted Lanternfly Populations
The invasive spotted lanternfly (SLF) poses a significant threat to agriculture and ecosystems, causing widespread damage. Current control methods, such as egg scraping, pesticides, and quarantines, prove labor-intensive, environmentally hazardous, and inadequate for long-term SLF suppression. This research introduces LanternNet, a novel autonomous robotic Hub-and-Spoke system designed for scalable detection and suppression of SLF populations. A central, tree-mimicking hub utilizes a YOLOv8 computer vision model for precise SLF identification. Three specialized robotic spokes perform targeted tasks: pest neutralization, environmental monitoring, and navigation/mapping. Field deployment across multiple infested sites over 5 weeks demonstrated LanternNet's efficacy. Quantitative analysis revealed significant reductions (p < 0.01, paired t-tests) in SLF populations and corresponding improvements in tree health indicators across the majority of test sites. Compared to conventional methods, LanternNet offers substantial cost advantages and improved scalability. Furthermore, the system's adaptability for enhanced autonomy and targeting of other invasive species presents significant potential for broader ecological impact. LanternNet demonstrates the transformative potential of integrating robotics and AI for advanced invasive species management and improved environmental outcomes.
☆ An Efficient Machine Learning Framework for Forest Height Estimation from Multi-Polarimetric Multi-Baseline SAR data
Accurate forest height estimation is crucial for climate change monitoring and carbon cycle assessment. Synthetic Aperture Radar (SAR), particularly in multi-channel configurations, has provided support for a long time in 3D forest structure reconstruction through model-based techniques. More recently, data-driven approaches using Machine Learning (ML) and Deep Learning (DL) have enabled new opportunities for forest parameter retrieval. This paper introduces FGump, a forest height estimation framework by gradient boosting using multi-channel SAR processing with LiDAR profiles as Ground Truth(GT). Unlike typical ML and DL approaches that require large datasets and complex architectures, FGump ensures a strong balance between accuracy and computational efficiency, using a limited set of hand-designed features and avoiding heavy preprocessing (e.g., calibration and/or quantization). Evaluated under both classification and regression paradigms, the proposed framework demonstrates that the regression formulation enables fine-grained, continuous estimations and avoids quantization artifacts by resulting in more precise measurements without rounding. Experimental results confirm that FGump outperforms State-of-the-Art (SOTA) AI-based and classical methods, achieving higher accuracy and significantly lower training and inference times, as demonstrated in our results.
comment: 13 pages, 12 figures, This paper has been submitted to IEEE TGRS. At the moment is under review
☆ Investigation of Accuracy and Bias in Face Recognition Trained with Synthetic Data
Synthetic data has emerged as a promising alternative for training face recognition (FR) models, offering advantages in scalability, privacy compliance, and potential for bias mitigation. However, critical questions remain on whether both high accuracy and fairness can be achieved with synthetic data. In this work, we evaluate the impact of synthetic data on bias and performance of FR systems. We generate balanced face dataset, FairFaceGen, using two state of the art text-to-image generators, Flux.1-dev and Stable Diffusion v3.5 (SD35), and combine them with several identity augmentation methods, including Arc2Face and four IP-Adapters. By maintaining equal identity count across synthetic and real datasets, we ensure fair comparisons when evaluating FR performance on standard (LFW, AgeDB-30, etc.) and challenging IJB-B/C benchmarks and FR bias on Racial Faces in-the-Wild (RFW) dataset. Our results demonstrate that although synthetic data still lags behind the real datasets in the generalization on IJB-B/C, demographically balanced synthetic datasets, especially those generated with SD35, show potential for bias mitigation. We also observe that the number and quality of intra-class augmentations significantly affect FR accuracy and fairness. These findings provide practical guidelines for constructing fairer FR systems using synthetic data.
comment: Accepted for publication in IEEE International Joint Conference on Biometrics (IJCB), 2025
☆ RingMo-Agent: A Unified Remote Sensing Foundation Model for Multi-Platform and Multi-Modal Reasoning
Remote sensing (RS) images from multiple modalities and platforms exhibit diverse details due to differences in sensor characteristics and imaging perspectives. Existing vision-language research in RS largely relies on relatively homogeneous data sources. Moreover, they still remain limited to conventional visual perception tasks such as classification or captioning. As a result, these methods fail to serve as a unified and standalone framework capable of effectively handling RS imagery from diverse sources in real-world applications. To address these issues, we propose RingMo-Agent, a model designed to handle multi-modal and multi-platform data that performs perception and reasoning tasks based on user textual instructions. Compared with existing models, RingMo-Agent 1) is supported by a large-scale vision-language dataset named RS-VL3M, comprising over 3 million image-text pairs, spanning optical, SAR, and infrared (IR) modalities collected from both satellite and UAV platforms, covering perception and challenging reasoning tasks; 2) learns modality adaptive representations by incorporating separated embedding layers to construct isolated features for heterogeneous modalities and reduce cross-modal interference; 3) unifies task modeling by introducing task-specific tokens and employing a token-based high-dimensional hidden state decoding mechanism designed for long-horizon spatial tasks. Extensive experiments on various RS vision-language tasks demonstrate that RingMo-Agent not only proves effective in both visual understanding and sophisticated analytical tasks, but also exhibits strong generalizability across different platforms and sensing modalities.
comment: 21 pages, 6 figures, 20 tables
☆ Learning Only with Images: Visual Reinforcement Learning with Reasoning, Rendering, and Visual Feedback
Multimodal Large Language Models (MLLMs) have exhibited impressive performance across various visual tasks. Subsequent investigations into enhancing their visual reasoning abilities have significantly expanded their performance envelope. However, a critical bottleneck in the advancement of MLLMs toward deep visual reasoning is their heavy reliance on curated image-text supervision. To solve this problem, we introduce a novel framework termed ``Reasoning-Rendering-Visual-Feedback'' (RRVF), which enables MLLMs to learn complex visual reasoning from only raw images. This framework builds on the ``Asymmetry of Verification'' principle to train MLLMs, i.e., verifying the rendered output against a source image is easier than generating it. We demonstrate that this relative ease provides an ideal reward signal for optimization via Reinforcement Learning (RL) training, reducing the reliance on the image-text supervision. Guided by the above principle, RRVF implements a closed-loop iterative process encompassing reasoning, rendering, and visual feedback components, enabling the model to perform self-correction through multi-turn interactions and tool invocation, while this pipeline can be optimized by the GRPO algorithm in an end-to-end manner. Extensive experiments on image-to-code generation for data charts and web interfaces show that RRVF substantially outperforms existing open-source MLLMs and surpasses supervised fine-tuning baselines. Our findings demonstrate that systems driven by purely visual feedback present a viable path toward more robust and generalizable reasoning models without requiring explicit supervision. Code will be available at https://github.com/L-O-I/RRVF.
☆ Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
Hyperspectral imagers on satellites obtain the fine spectral signatures essential for distinguishing one material from another at the expense of limited spatial resolution. Enhancing the latter is thus a desirable preprocessing step in order to further improve the detection capabilities offered by hyperspectral images on downstream tasks. At the same time, there is a growing interest towards deploying inference methods directly onboard of satellites, which calls for lightweight image super-resolution methods that can be run on the payload in real time. In this paper, we present a novel neural network design, called Deep Pushbroom Super-Resolution (DPSR) that matches the pushbroom acquisition of hyperspectral sensors by processing an image line by line in the along-track direction with a causal memory mechanism to exploit previously acquired lines. This design greatly limits memory requirements and computational complexity, achieving onboard real-time performance, i.e., the ability to super-resolve a line in the time it takes to acquire the next one, on low-power hardware. Experiments show that the quality of the super-resolved images is competitive or even outperforms state-of-the-art methods that are significantly more complex.
☆ ATR-UMMIM: A Benchmark Dataset for UAV-Based Multimodal Image Registration under Complex Imaging Conditions
Multimodal fusion has become a key enabler for UAV-based object detection, as each modality provides complementary cues for robust feature extraction. However, due to significant differences in resolution, field of view, and sensing characteristics across modalities, accurate registration is a prerequisite before fusion. Despite its importance, there is currently no publicly available benchmark specifically designed for multimodal registration in UAV-based aerial scenarios, which severely limits the development and evaluation of advanced registration methods under real-world conditions. To bridge this gap, we present ATR-UMMIM, the first benchmark dataset specifically tailored for multimodal image registration in UAV-based applications. This dataset includes 7,969 triplets of raw visible, infrared, and precisely registered visible images captured covers diverse scenarios including flight altitudes from 80m to 300m, camera angles from 0{\deg} to 75{\deg}, and all-day, all-year temporal variations under rich weather and illumination conditions. To ensure high registration quality, we design a semi-automated annotation pipeline to introduce reliable pixel-level ground truth to each triplet. In addition, each triplet is annotated with six imaging condition attributes, enabling benchmarking of registration robustness under real-world deployment settings. To further support downstream tasks, we provide object-level annotations on all registered images, covering 11 object categories with 77,753 visible and 78,409 infrared bounding boxes. We believe ATR-UMMIM will serve as a foundational benchmark for advancing multimodal registration, fusion, and perception in real-world UAV scenarios. The datatset can be download from https://github.com/supercpy/ATR-UMMIM
☆ KASportsFormer: Kinematic Anatomy Enhanced Transformer for 3D Human Pose Estimation on Short Sports Scene Video
Recent transformer based approaches have demonstrated impressive performance in solving real-world 3D human pose estimation problems. Albeit these approaches achieve fruitful results on benchmark datasets, they tend to fall short of sports scenarios where human movements are more complicated than daily life actions, as being hindered by motion blur, occlusions, and domain shifts. Moreover, due to the fact that critical motions in a sports game often finish in moments of time (e.g., shooting), the ability to focus on momentary actions is becoming a crucial factor in sports analysis, where current methods appear to struggle with instantaneous scenarios. To overcome these limitations, we introduce KASportsFormer, a novel transformer based 3D pose estimation framework for sports that incorporates a kinematic anatomy-informed feature representation and integration module. In which the inherent kinematic motion information is extracted with the Bone Extractor (BoneExt) and Limb Fuser (LimbFus) modules and encoded in a multimodal manner. This improved the capability of comprehending sports poses in short videos. We evaluate our method through two representative sports scene datasets: SportsPose and WorldPose. Experimental results show that our proposed method achieves state-of-the-art results with MPJPE errors of 58.0mm and 34.3mm, respectively. Our code and models are available at: https://github.com/jw0r1n/KASportsFormer
comment: 10 pages, 3 figures
☆ Learning to See Inside Opaque Liquid Containers using Speckle Vibrometry ICCV 2025
Computer vision seeks to infer a wide range of information about objects and events. However, vision systems based on conventional imaging are limited to extracting information only from the visible surfaces of scene objects. For instance, a vision system can detect and identify a Coke can in the scene, but it cannot determine whether the can is full or empty. In this paper, we aim to expand the scope of computer vision to include the novel task of inferring the hidden liquid levels of opaque containers by sensing the tiny vibrations on their surfaces. Our method provides a first-of-a-kind way to inspect the fill level of multiple sealed containers remotely, at once, without needing physical manipulation and manual weighing. First, we propose a novel speckle-based vibration sensing system for simultaneously capturing scene vibrations on a 2D grid of points. We use our system to efficiently and remotely capture a dataset of vibration responses for a variety of everyday liquid containers. Then, we develop a transformer-based approach for analyzing the captured vibrations and classifying the container type and its hidden liquid level at the time of measurement. Our architecture is invariant to the vibration source, yielding correct liquid level estimates for controlled and ambient scene sound sources. Moreover, our model generalizes to unseen container instances within known classes (e.g., training on five Coke cans of a six-pack, testing on a sixth) and fluid levels. We demonstrate our method by recovering liquid levels from various everyday containers.
comment: ICCV 2025
☆ Investigating Structural Pruning and Recovery Techniques for Compressing Multimodal Large Language Models: An Empirical Study
While Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities, their substantial computational and memory requirements pose significant barriers to practical deployment. Current parameter reduction techniques primarily involve training MLLMs from Small Language Models (SLMs), but these methods offer limited flexibility and remain computationally intensive. To address this gap, we propose to directly compress existing MLLMs through structural pruning combined with efficient recovery training. Specifically, we investigate two structural pruning paradigms--layerwise and widthwise pruning--applied to the language model backbone of MLLMs, alongside supervised finetuning and knowledge distillation. Additionally, we assess the feasibility of conducting recovery training with only a small fraction of the available data. Our results show that widthwise pruning generally maintains better performance in low-resource scenarios with limited computational resources or insufficient finetuning data. As for the recovery training, finetuning only the multimodal projector is sufficient at small compression levels (< 20%). Furthermore, a combination of supervised finetuning and hidden-state distillation yields optimal recovery across various pruning levels. Notably, effective recovery can be achieved with as little as 5% of the original training data, while retaining over 95% of the original performance. Through empirical study on two representative MLLMs, i.e., LLaVA-v1.5-7B and Bunny-v1.0-3B, this study offers actionable insights for practitioners aiming to compress MLLMs effectively without extensive computation resources or sufficient data.
comment: Accepted at GCPR 2025
☆ AR-LIF: Adaptive reset leaky-integrate and fire neuron for spiking neural networks
Spiking neural networks possess the advantage of low energy consumption due to their event-driven nature. Compared with binary spike outputs, their inherent floating-point dynamics are more worthy of attention. The threshold level and reset mode of neurons play a crucial role in determining the number and timing of spikes. The existing hard reset method causes information loss, while the improved soft reset method adopts a uniform treatment for neurons. In response to this, this paper designs an adaptive reset neuron, establishing the correlation between input, output and reset, and integrating a simple yet effective threshold adjustment strategy. It achieves excellent performance on various datasets while maintaining the advantage of low energy consumption.
☆ Regularizing Subspace Redundancy of Low-Rank Adaptation
Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.
comment: 10 pages, 4 figures, Accepted by ACMMM2025
☆ Implicit Counterfactual Learning for Audio-Visual Segmentation ICCV 2025
Audio-visual segmentation (AVS) aims to segment objects in videos based on audio cues. Existing AVS methods are primarily designed to enhance interaction efficiency but pay limited attention to modality representation discrepancies and imbalances. To overcome this, we propose the implicit counterfactual framework (ICF) to achieve unbiased cross-modal understanding. Due to the lack of semantics, heterogeneous representations may lead to erroneous matches, especially in complex scenes with ambiguous visual content or interference from multiple audio sources. We introduce the multi-granularity implicit text (MIT) involving video-, segment- and frame-level as the bridge to establish the modality-shared space, reducing modality gaps and providing prior guidance. Visual content carries more information and typically dominates, thereby marginalizing audio features in the decision-making. To mitigate knowledge preference, we propose the semantic counterfactual (SC) to learn orthogonal representations in the latent space, generating diverse counterfactual samples, thus avoiding biases introduced by complex functional designs and explicit modifications of text structures or attributes. We further formulate the collaborative distribution-aware contrastive learning (CDCL), incorporating factual-counterfactual and inter-modality contrasts to align representations, promoting cohesion and decoupling. Extensive experiments on three public datasets validate that the proposed method achieves state-of-the-art performance.
comment: Accepted by ICCV 2025
☆ Multi-Masked Querying Network for Robust Emotion Recognition from Incomplete Multi-Modal Physiological Signals MICCAI2025
Emotion recognition from physiological data is crucial for mental health assessment, yet it faces two significant challenges: incomplete multi-modal signals and interference from body movements and artifacts. This paper presents a novel Multi-Masked Querying Network (MMQ-Net) to address these issues by integrating multiple querying mechanisms into a unified framework. Specifically, it uses modality queries to reconstruct missing data from incomplete signals, category queries to focus on emotional state features, and interference queries to separate relevant information from noise. Extensive experiment results demonstrate the superior emotion recognition performance of MMQ-Net compared to existing approaches, particularly under high levels of data incompleteness.
comment: MICCAI2025
☆ Style-Aware Blending and Prototype-Based Cross-Contrast Consistency for Semi-Supervised Medical Image Segmentation
Weak-strong consistency learning strategies are widely employed in semi-supervised medical image segmentation to train models by leveraging limited labeled data and enforcing weak-to-strong consistency. However, existing methods primarily focus on designing and combining various perturbation schemes, overlooking the inherent potential and limitations within the framework itself. In this paper, we first identify two critical deficiencies: (1) separated training data streams, which lead to confirmation bias dominated by the labeled stream; and (2) incomplete utilization of supervisory information, which limits exploration of strong-to-weak consistency. To tackle these challenges, we propose a style-aware blending and prototype-based cross-contrast consistency learning framework. Specifically, inspired by the empirical observation that the distribution mismatch between labeled and unlabeled data can be characterized by statistical moments, we design a style-guided distribution blending module to break the independent training data streams. Meanwhile, considering the potential noise in strong pseudo-labels, we introduce a prototype-based cross-contrast strategy to encourage the model to learn informative supervisory signals from both weak-to-strong and strong-to-weak predictions, while mitigating the adverse effects of noise. Experimental results demonstrate the effectiveness and superiority of our framework across multiple medical segmentation benchmarks under various semi-supervised settings.
☆ AIComposer: Any Style and Content Image Composition via Feature Integration
Image composition has advanced significantly with large-scale pre-trained T2I diffusion models. Despite progress in same-domain composition, cross-domain composition remains under-explored. The main challenges are the stochastic nature of diffusion models and the style gap between input images, leading to failures and artifacts. Additionally, heavy reliance on text prompts limits practical applications. This paper presents the first cross-domain image composition method that does not require text prompts, allowing natural stylization and seamless compositions. Our method is efficient and robust, preserving the diffusion prior, as it involves minor steps for backward inversion and forward denoising without training the diffuser. Our method also uses a simple multilayer perceptron network to integrate CLIP features from foreground and background, manipulating diffusion with a local cross-attention strategy. It effectively preserves foreground content while enabling stable stylization without a pre-stylization network. Finally, we create a benchmark dataset with diverse contents and styles for fair evaluation, addressing the lack of testing datasets for cross-domain image composition. Our method outperforms state-of-the-art techniques in both qualitative and quantitative evaluations, significantly improving the LPIPS score by 30.5% and the CSD metric by 18.1%. We believe our method will advance future research and applications. Code and benchmark at https://github.com/sherlhw/AIComposer.
☆ Automatic camera orientation estimation for a partially calibrated camera above a plane with a line at known planar distance
We present a derivation for estimating the roll and pitch orientation of a partially calibrated camera mounted above a planar surface, using minimal scene information. Specifically, we assume known intrinsic parameters and a fixed height between the camera and the observed plane. By detecting a single straight reference line at a known planar distance -- such as the edge between a floor and a wall -- we estimate the roll and pitch angles via inverse projection geometry. The method leverages geometric constraints and the camera model, including lens distortion correction. This approach is suitable for scenarios where full calibration is impractical and offers a lightweight alternative for multi-camera systems operating in constrained environments.
☆ Lightweight Transformer-Driven Segmentation of Hotspots and Snail Trails in Solar PV Thermal Imagery
Accurate detection of defects such as hotspots and snail trails in photovoltaic modules is essential for maintaining energy efficiency and system reliablility. This work presents a supervised deep learning framework for segmenting thermal infrared images of PV panels, using a dataset of 277 aerial thermographic images captured by zenmuse XT infrared camera mounted on a DJI Matrice 100 drone. The preprocessing pipeline includes image resizing, CLAHE based contrast enhancement, denoising, and normalisation. A lightweight semantic segmentation model based on SegFormer is developed, featuring a customised Transformwer encoder and streamlined decoder, and fine-tuned on annotated images with manually labeled defect regions. To evaluate performance, we benchmark our model against U-Net, DeepLabV3, PSPNet, and Mask2Former using consistent preprocessing and augmentation. Evaluation metrices includes per-class Dice score, F1-score, Cohen's kappa, mean IoU, and pixel accuracy. The SegFormer-based model outperforms baselines in accuracy and efficiency, particularly for segmenting small and irregular defects. Its lightweight design real-time deployment on edge devices and seamless integration with drone-based systems for automated inspection of large-scale solar farms.
comment: 31 pages, 6 figures
☆ A Multimodal Architecture for Endpoint Position Prediction in Team-based Multiplayer Games
Understanding and predicting player movement in multiplayer games is crucial for achieving use cases such as player-mimicking bot navigation, preemptive bot control, strategy recommendation, and real-time player behavior analytics. However, the complex environments allow for a high degree of navigational freedom, and the interactions and team-play between players require models that make effective use of the available heterogeneous input data. This paper presents a multimodal architecture for predicting future player locations on a dynamic time horizon, using a U-Net-based approach for calculating endpoint location probability heatmaps, conditioned using a multimodal feature encoder. The application of a multi-head attention mechanism for different groups of features allows for communication between agents. In doing so, the architecture makes efficient use of the multimodal game state including image inputs, numerical and categorical features, as well as dynamic game data. Consequently, the presented technique lays the foundation for various downstream tasks that rely on future player positions such as the creation of player-predictive bot behavior or player anomaly detection.
Self-Supervised Continuous Colormap Recovery from a 2D Scalar Field Visualization without a Legend IEEE VIS 2025
Recovering a continuous colormap from a single 2D scalar field visualization can be quite challenging, especially in the absence of a corresponding color legend. In this paper, we propose a novel colormap recovery approach that extracts the colormap from a color-encoded 2D scalar field visualization by simultaneously predicting the colormap and underlying data using a decoupling-and-reconstruction strategy. Our approach first separates the input visualization into colormap and data using a decoupling module, then reconstructs the visualization with a differentiable color-mapping module. To guide this process, we design a reconstruction loss between the input and reconstructed visualizations, which serves both as a constraint to ensure strong correlation between colormap and data during training, and as a self-supervised optimizer for fine-tuning the predicted colormap of unseen visualizations during inferencing. To ensure smoothness and correct color ordering in the extracted colormap, we introduce a compact colormap representation using cubic B-spline curves and an associated color order loss. We evaluate our method quantitatively and qualitatively on a synthetic dataset and a collection of real-world visualizations from the VIS30K dataset. Additionally, we demonstrate its utility in two prototype applications -- colormap adjustment and colormap transfer -- and explore its generalization to visualizations with color legends and ones encoded using discrete color palettes.
comment: Submitted to IEEE VIS 2025
☆ TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
☆ DAMS:Dual-Branch Adaptive Multiscale Spatiotemporal Framework for Video Anomaly Detection
The goal of video anomaly detection is tantamount to performing spatio-temporal localization of abnormal events in the video. The multiscale temporal dependencies, visual-semantic heterogeneity, and the scarcity of labeled data exhibited by video anomalies collectively present a challenging research problem in computer vision. This study offers a dual-path architecture called the Dual-Branch Adaptive Multiscale Spatiotemporal Framework (DAMS), which is based on multilevel feature decoupling and fusion, enabling efficient anomaly detection modeling by integrating hierarchical feature learning and complementary information. The main processing path of this framework integrates the Adaptive Multiscale Time Pyramid Network (AMTPN) with the Convolutional Block Attention Mechanism (CBAM). AMTPN enables multigrained representation and dynamically weighted reconstruction of temporal features through a three-level cascade structure (time pyramid pooling, adaptive feature fusion, and temporal context enhancement). CBAM maximizes the entropy distribution of feature channels and spatial dimensions through dual attention mapping. Simultaneously, the parallel path driven by CLIP introduces a contrastive language-visual pre-training paradigm. Cross-modal semantic alignment and a multiscale instance selection mechanism provide high-order semantic guidance for spatio-temporal features. This creates a complete inference chain from the underlying spatio-temporal features to high-level semantic concepts. The orthogonal complementarity of the two paths and the information fusion mechanism jointly construct a comprehensive representation and identification capability for anomalous events. Extensive experimental results on the UCF-Crime and XD-Violence benchmarks establish the effectiveness of the DAMS framework.
comment: 13 pages,7 figures
☆ Lightweight Remote Sensing Scene Classification on Edge Devices via Knowledge Distillation and Early-exit
As the development of lightweight deep learning algorithms, various deep neural network (DNN) models have been proposed for the remote sensing scene classification (RSSC) application. However, it is still challenging for these RSSC models to achieve optimal performance among model accuracy, inference latency, and energy consumption on resource-constrained edge devices. In this paper, we propose a lightweight RSSC framework, which includes a distilled global filter network (GFNet) model and an early-exit mechanism designed for edge devices to achieve state-of-the-art performance. Specifically, we first apply frequency domain distillation on the GFNet model to reduce model size. Then we design a dynamic early-exit model tailored for DNN models on edge devices to further improve model inference efficiency. We evaluate our E3C model on three edge devices across four datasets. Extensive experimental results show that it achieves an average of 1.3x speedup on model inference and over 40% improvement on energy efficiency, while maintaining high classification accuracy.
comment: 9 pages, 5 figures, to be published in ACM Multimedia 2025
☆ Complementarity-driven Representation Learning for Multi-modal Knowledge Graph Completion
Multi-modal Knowledge Graph Completion (MMKGC) aims to uncover hidden world knowledge in multimodal knowledge graphs by leveraging both multimodal and structural entity information. However, the inherent imbalance in multimodal knowledge graphs, where modality distributions vary across entities, poses challenges in utilizing additional modality data for robust entity representation. Existing MMKGC methods typically rely on attention or gate-based fusion mechanisms but overlook complementarity contained in multi-modal data. In this paper, we propose a novel framework named Mixture of Complementary Modality Experts (MoCME), which consists of a Complementarity-guided Modality Knowledge Fusion (CMKF) module and an Entropy-guided Negative Sampling (EGNS) mechanism. The CMKF module exploits both intra-modal and inter-modal complementarity to fuse multi-view and multi-modal embeddings, enhancing representations of entities. Additionally, we introduce an Entropy-guided Negative Sampling mechanism to dynamically prioritize informative and uncertain negative samples to enhance training effectiveness and model robustness. Extensive experiments on five benchmark datasets demonstrate that our MoCME achieves state-of-the-art performance, surpassing existing approaches.
☆ Enhanced Deep Learning DeepFake Detection Integrating Handcrafted Features
The rapid advancement of deepfake and face swap technologies has raised significant concerns in digital security, particularly in identity verification and onboarding processes. Conventional detection methods often struggle to generalize against sophisticated facial manipulations. This study proposes an enhanced deep-learning detection framework that combines handcrafted frequency-domain features with conventional RGB inputs. This hybrid approach exploits frequency and spatial domain artifacts introduced during image manipulation, providing richer and more discriminative information to the classifier. Several frequency handcrafted features were evaluated, including the Steganalysis Rich Model, Discrete Cosine Transform, Error Level Analysis, Singular Value Decomposition, and Discrete Fourier Transform
☆ Harnessing Diffusion-Yielded Score Priors for Image Restoration
Deep image restoration models aim to learn a mapping from degraded image space to natural image space. However, they face several critical challenges: removing degradation, generating realistic details, and ensuring pixel-level consistency. Over time, three major classes of methods have emerged, including MSE-based, GAN-based, and diffusion-based methods. However, they fail to achieve a good balance between restoration quality, fidelity, and speed. We propose a novel method, HYPIR, to address these challenges. Our solution pipeline is straightforward: it involves initializing the image restoration model with a pre-trained diffusion model and then fine-tuning it with adversarial training. This approach does not rely on diffusion loss, iterative sampling, or additional adapters. We theoretically demonstrate that initializing adversarial training from a pre-trained diffusion model positions the initial restoration model very close to the natural image distribution. Consequently, this initialization improves numerical stability, avoids mode collapse, and substantially accelerates the convergence of adversarial training. Moreover, HYPIR inherits the capabilities of diffusion models with rich user control, enabling text-guided restoration and adjustable texture richness. Requiring only a single forward pass, it achieves faster convergence and inference speed than diffusion-based methods. Extensive experiments show that HYPIR outperforms previous state-of-the-art methods, achieving efficient and high-quality image restoration.
☆ Methods for the Segmentation of Reticular Structures Using 3D LiDAR Data: A Comparative Evaluation
Reticular structures form the backbone of major infrastructure like bridges, pylons, and airports, but their inspection and maintenance are costly and hazardous, often requiring human intervention. While prior research has focused on fault detection via images or robotic platform design, the autonomous navigation of robots within these structures is less explored. This study addresses that gap by proposing methods to detect navigable surfaces in truss structures, enhancing the autonomy of climbing robots. The paper introduces several approaches for binary segmentation of navigable surfaces versus background from 3D point clouds of metallic trusses. These methods fall into two categories: analytical algorithms and deep learning models. The analytical approach features a custom algorithm that segments structures by analyzing the eigendecomposition of planar patches in the point cloud. In parallel, advanced deep learning models PointNet, PointNet++, MinkUNet34C, and PointTransformerV3 are trained and evaluated for the same task. Comparative analysis shows that the analytical algorithm offers easier parameter tuning and performance comparable to deep learning models, which, while more computationally intensive, excel in segmentation accuracy. Notably, PointTransformerV3 achieves a Mean Intersection Over Union (mIoU) of about 97%. The study demonstrates the promise of both analytical and deep learning methods for improving autonomous navigation in complex truss environments. The results highlight the trade-offs between computational efficiency and segmentation performance, providing valuable guidance for future research and practical applications in autonomous infrastructure inspection and maintenance.
☆ M-Net: MRI Brain Tumor Sequential Segmentation Network via Mesh-Cast ICCV 2025
MRI tumor segmentation remains a critical challenge in medical imaging, where volumetric analysis faces unique computational demands due to the complexity of 3D data. The spatially sequential arrangement of adjacent MRI slices provides valuable information that enhances segmentation continuity and accuracy, yet this characteristic remains underutilized in many existing models. The spatial correlations between adjacent MRI slices can be regarded as "temporal-like" data, similar to frame sequences in video segmentation tasks. To bridge this gap, we propose M-Net, a flexible framework specifically designed for sequential image segmentation. M-Net introduces the novel Mesh-Cast mechanism, which seamlessly integrates arbitrary sequential models into the processing of both channel and temporal information, thereby systematically capturing the inherent "temporal-like" spatial correlations between MRI slices. Additionally, we define an MRI sequential input pattern and design a Two-Phase Sequential (TPS) training strategy, which first focuses on learning common patterns across sequences before refining slice-specific feature extraction. This approach leverages temporal modeling techniques to preserve volumetric contextual information while avoiding the high computational cost of full 3D convolutions, thereby enhancing the generalizability and robustness of M-Net in sequential segmentation tasks. Experiments on the BraTS2019 and BraTS2023 datasets demonstrate that M-Net outperforms existing methods across all key metrics, establishing itself as a robust solution for temporally-aware MRI tumor segmentation.
comment: ICCV 2025 Accepted
☆ AV-Deepfake1M++: A Large-Scale Audio-Visual Deepfake Benchmark with Real-World Perturbations
The rapid surge of text-to-speech and face-voice reenactment models makes video fabrication easier and highly realistic. To encounter this problem, we require datasets that rich in type of generation methods and perturbation strategy which is usually common for online videos. To this end, we propose AV-Deepfake1M++, an extension of the AV-Deepfake1M having 2 million video clips with diversified manipulation strategy and audio-visual perturbation. This paper includes the description of data generation strategies along with benchmarking of AV-Deepfake1M++ using state-of-the-art methods. We believe that this dataset will play a pivotal role in facilitating research in Deepfake domain. Based on this dataset, we host the 2025 1M-Deepfakes Detection Challenge. The challenge details, dataset and evaluation scripts are available online under a research-only license at https://deepfakes1m.github.io/2025.
☆ LSFDNet: A Single-Stage Fusion and Detection Network for Ships Using SWIR and LWIR
Traditional ship detection methods primarily rely on single-modal approaches, such as visible or infrared images, which limit their application in complex scenarios involving varying lighting conditions and heavy fog. To address this issue, we explore the advantages of short-wave infrared (SWIR) and long-wave infrared (LWIR) in ship detection and propose a novel single-stage image fusion detection algorithm called LSFDNet. This algorithm leverages feature interaction between the image fusion and object detection subtask networks, achieving remarkable detection performance and generating visually impressive fused images. To further improve the saliency of objects in the fused images and improve the performance of the downstream detection task, we introduce the Multi-Level Cross-Fusion (MLCF) module. This module combines object-sensitive fused features from the detection task and aggregates features across multiple modalities, scales, and tasks to obtain more semantically rich fused features. Moreover, we utilize the position prior from the detection task in the Object Enhancement (OE) loss function, further increasing the retention of object semantics in the fused images. The detection task also utilizes preliminary fused features from the fusion task to complement SWIR and LWIR features, thereby enhancing detection performance. Additionally, we have established a Nearshore Ship Long-Short Wave Registration (NSLSR) dataset to train effective SWIR and LWIR image fusion and detection networks, bridging a gap in this field. We validated the superiority of our proposed single-stage fusion detection algorithm on two datasets. The source code and dataset are available at https://github.com/Yanyin-Guo/LSFDNet
comment: ACMMM2025
☆ Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/
comment: Accepted for Interspeech 2025 Project Page: https://cau-irislab.github.io/interspeech25/
☆ MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization ICCV 2025
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.
comment: Accepted for ICCV 2025 Project Page: https://cau-irislab.github.io/ICCV25-MemoryTalker/
☆ FED-PsyAU: Privacy-Preserving Micro-Expression Recognition via Psychological AU Coordination and Dynamic Facial Motion Modeling
Micro-expressions (MEs) are brief, low-intensity, often localized facial expressions. They could reveal genuine emotions individuals may attempt to conceal, valuable in contexts like criminal interrogation and psychological counseling. However, ME recognition (MER) faces challenges, such as small sample sizes and subtle features, which hinder efficient modeling. Additionally, real-world applications encounter ME data privacy issues, leaving the task of enhancing recognition across settings under privacy constraints largely unexplored. To address these issues, we propose a FED-PsyAU research framework. We begin with a psychological study on the coordination of upper and lower facial action units (AUs) to provide structured prior knowledge of facial muscle dynamics. We then develop a DPK-GAT network that combines these psychological priors with statistical AU patterns, enabling hierarchical learning of facial motion features from regional to global levels, effectively enhancing MER performance. Additionally, our federated learning framework advances MER capabilities across multiple clients without data sharing, preserving privacy and alleviating the limited-sample issue for each client. Extensive experiments on commonly-used ME databases demonstrate the effectiveness of our approach.
☆ Annotation-Free Human Sketch Quality Assessment
As lovely as bunnies are, your sketched version would probably not do them justice (Fig.~\ref{fig:intro}). This paper recognises this very problem and studies sketch quality assessment for the first time -- letting you find these badly drawn ones. Our key discovery lies in exploiting the magnitude ($L_2$ norm) of a sketch feature as a quantitative quality metric. We propose Geometry-Aware Classification Layer (GACL), a generic method that makes feature-magnitude-as-quality-metric possible and importantly does it without the need for specific quality annotations from humans. GACL sees feature magnitude and recognisability learning as a dual task, which can be simultaneously optimised under a neat cross-entropy classification loss with theoretic guarantee. This gives GACL a nice geometric interpretation (the better the quality, the easier the recognition), and makes it agnostic to both network architecture changes and the underlying sketch representation. Through a large scale human study of 160,000 \doublecheck{trials}, we confirm the agreement between our GACL-induced metric and human quality perception. We further demonstrate how such a quality assessment capability can for the first time enable three practical sketch applications. Interestingly, we show GACL not only works on abstract visual representations such as sketch but also extends well to natural images on the problem of image quality assessment (IQA). Last but not least, we spell out the general properties of GACL as general-purpose data re-weighting strategy and demonstrate its applications in vertical problems such as noisy label cleansing. Code will be made publicly available at github.com/yanglan0225/SketchX-Quantifying-Sketch-Quality.
comment: Accepted by IJCV
☆ Low-Cost Machine Vision System for Sorting Green Lentils (Lens Culinaris) Based on Pneumatic Ejection and Deep Learning
This paper presents the design, development, and evaluation of a dynamic grain classification system for green lentils (Lens Culinaris), which leverages computer vision and pneumatic ejection. The system integrates a YOLOv8-based detection model that identifies and locates grains on a conveyor belt, together with a second YOLOv8-based classification model that categorises grains into six classes: Good, Yellow, Broken, Peeled, Dotted, and Reject. This two-stage YOLOv8 pipeline enables accurate, real-time, multi-class categorisation of lentils, implemented on a low-cost, modular hardware platform. The pneumatic ejection mechanism separates defective grains, while an Arduino-based control system coordinates real-time interaction between the vision system and mechanical components. The system operates effectively at a conveyor speed of 59 mm/s, achieving a grain separation accuracy of 87.2%. Despite a limited processing rate of 8 grams per minute, the prototype demonstrates the potential of machine vision for grain sorting and provides a modular foundation for future enhancements.
comment: Accepted for publication in the Proceedings of the 30th International Conference on Automation and Computing (ICAC 2025)
☆ Enhancing Spatial Reasoning through Visual and Textual Thinking
The spatial reasoning task aims to reason about the spatial relationships in 2D and 3D space, which is a fundamental capability for Visual Question Answering (VQA) and robotics. Although vision language models (VLMs) have developed rapidly in recent years, they are still struggling with the spatial reasoning task. In this paper, we introduce a method that can enhance Spatial reasoning through Visual and Textual thinking Simultaneously (SpatialVTS). In the spatial visual thinking phase, our model is trained to generate location-related specific tokens of essential targets automatically. Not only are the objects mentioned in the problem addressed, but also the potential objects related to the reasoning are considered. During the spatial textual thinking phase, Our model conducts long-term thinking based on visual cues and dialogues, gradually inferring the answers to spatial reasoning problems. To effectively support the model's training, we perform manual corrections to the existing spatial reasoning dataset, eliminating numerous incorrect labels resulting from automatic annotation, restructuring the data input format to enhance generalization ability, and developing thinking processes with logical reasoning details. Without introducing additional information (such as masks or depth), our model's overall average level in several spatial understanding tasks has significantly improved compared with other models.
☆ AgroBench: Vision-Language Model Benchmark in Agriculture ICCV 2025
Precise automated understanding of agricultural tasks such as disease identification is essential for sustainable crop production. Recent advances in vision-language models (VLMs) are expected to further expand the range of agricultural tasks by facilitating human-model interaction through easy, text-based communication. Here, we introduce AgroBench (Agronomist AI Benchmark), a benchmark for evaluating VLM models across seven agricultural topics, covering key areas in agricultural engineering and relevant to real-world farming. Unlike recent agricultural VLM benchmarks, AgroBench is annotated by expert agronomists. Our AgroBench covers a state-of-the-art range of categories, including 203 crop categories and 682 disease categories, to thoroughly evaluate VLM capabilities. In our evaluation on AgroBench, we reveal that VLMs have room for improvement in fine-grained identification tasks. Notably, in weed identification, most open-source VLMs perform close to random. With our wide range of topics and expert-annotated categories, we analyze the types of errors made by VLMs and suggest potential pathways for future VLM development. Our dataset and code are available at https://dahlian00.github.io/AgroBenchPage/ .
comment: ICCV 2025
☆ T2VParser: Adaptive Decomposition Tokens for Partial Alignment in Text to Video Retrieval
Text-to-video retrieval essentially aims to train models to align visual content with textual descriptions accurately. Due to the impressive general multimodal knowledge demonstrated by image-text pretrained models such as CLIP, existing work has primarily focused on extending CLIP knowledge for video-text tasks. However, videos typically contain richer information than images. In current video-text datasets, textual descriptions can only reflect a portion of the video content, leading to partial misalignment in video-text matching. Therefore, directly aligning text representations with video representations can result in incorrect supervision, ignoring the inequivalence of information. In this work, we propose T2VParser to extract multiview semantic representations from text and video, achieving adaptive semantic alignment rather than aligning the entire representation. To extract corresponding representations from different modalities, we introduce Adaptive Decomposition Tokens, which consist of a set of learnable tokens shared across modalities. The goal of T2VParser is to emphasize precise alignment between text and video while retaining the knowledge of pretrained models. Experimental results demonstrate that T2VParser achieves accurate partial alignment through effective cross-modal content decomposition. The code is available at https://github.com/Lilidamowang/T2VParser.
☆ GaRe: Relightable 3D Gaussian Splatting for Outdoor Scenes from Unconstrained Photo Collections
We propose a 3D Gaussian splatting-based framework for outdoor relighting that leverages intrinsic image decomposition to precisely integrate sunlight, sky radiance, and indirect lighting from unconstrained photo collections. Unlike prior methods that compress the per-image global illumination into a single latent vector, our approach enables simultaneously diverse shading manipulation and the generation of dynamic shadow effects. This is achieved through three key innovations: (1) a residual-based sun visibility extraction method to accurately separate direct sunlight effects, (2) a region-based supervision framework with a structural consistency loss for physically interpretable and coherent illumination decomposition, and (3) a ray-tracing-based technique for realistic shadow simulation. Extensive experiments demonstrate that our framework synthesizes novel views with competitive fidelity against state-of-the-art relighting solutions and produces more natural and multifaceted illumination and shadow effects.
☆ Investigating the Effect of Spatial Context on Multi-Task Sea Ice Segmentation
Capturing spatial context at multiple scales is crucial for deep learning-based sea ice segmentation. However, the optimal specification of spatial context based on observation resolution and task characteristics remains underexplored. This study investigates the impact of spatial context on the segmentation of sea ice concentration, stage of development, and floe size using a multi-task segmentation model. We implement Atrous Spatial Pyramid Pooling with varying atrous rates to systematically control the receptive field size of convolutional operations, and to capture multi-scale contextual information. We explore the interactions between spatial context and feature resolution for different sea ice properties and examine how spatial context influences segmentation performance across different input feature combinations from Sentinel-1 SAR and Advanced Microwave Radiometer-2 (AMSR2) for multi-task mapping. Using Gradient-weighted Class Activation Mapping, we visualize how atrous rates influence model decisions. Our findings indicate that smaller receptive fields excel for high-resolution Sentinel-1 data, while medium receptive fields yield better performances for stage of development segmentation and larger receptive fields often lead to diminished performances. The fusion of SAR and AMSR2 enhances segmentation across all tasks. We highlight the value of lower-resolution 18.7 and 36.5 GHz AMSR2 channels in sea ice mapping. These findings highlight the importance of selecting appropriate spatial context based on observation resolution and target properties in sea ice mapping. By systematically analyzing receptive field effects in a multi-task setting, our study provides insights for optimizing deep learning models in geospatial applications.
☆ An Improved YOLOv8 Approach for Small Target Detection of Rice Spikelet Flowering in Field Environments
Accurately detecting rice flowering time is crucial for timely pollination in hybrid rice seed production. This not only enhances pollination efficiency but also ensures higher yields. However, due to the complexity of field environments and the characteristics of rice spikelets, such as their small size and short flowering period, automated and precise recognition remains challenging. To address this, this study proposes a rice spikelet flowering recognition method based on an improved YOLOv8 object detection model. First, a Bidirectional Feature Pyramid Network (BiFPN) replaces the original PANet structure to enhance feature fusion and improve multi-scale feature utilization. Second, to boost small object detection, a p2 small-object detection head is added, using finer feature mapping to reduce feature loss commonly seen in detecting small targets. Given the lack of publicly available datasets for rice spikelet flowering in field conditions, a high-resolution RGB camera and data augmentation techniques are used to construct a dedicated dataset, providing reliable support for model training and testing. Experimental results show that the improved YOLOv8s-p2 model achieves an mAP@0.5 of 65.9%, precision of 67.6%, recall of 61.5%, and F1-score of 64.41%, representing improvements of 3.10%, 8.40%, 10.80%, and 9.79%, respectively, over the baseline YOLOv8. The model also runs at 69 f/s on the test set, meeting practical application requirements. Overall, the improved YOLOv8s-p2 offers high accuracy and speed, providing an effective solution for automated monitoring in hybrid rice seed production.
comment: 13 pages, 9 figures
☆ Automated 3D-GS Registration and Fusion via Skeleton Alignment and Gaussian-Adaptive Features IROS 2025
In recent years, 3D Gaussian Splatting (3D-GS)-based scene representation demonstrates significant potential in real-time rendering and training efficiency. However, most existing methods primarily focus on single-map reconstruction, while the registration and fusion of multiple 3D-GS sub-maps remain underexplored. Existing methods typically rely on manual intervention to select a reference sub-map as a template and use point cloud matching for registration. Moreover, hard-threshold filtering of 3D-GS primitives often degrades rendering quality after fusion. In this paper, we present a novel approach for automated 3D-GS sub-map alignment and fusion, eliminating the need for manual intervention while enhancing registration accuracy and fusion quality. First, we extract geometric skeletons across multiple scenes and leverage ellipsoid-aware convolution to capture 3D-GS attributes, facilitating robust scene registration. Second, we introduce a multi-factor Gaussian fusion strategy to mitigate the scene element loss caused by rigid thresholding. Experiments on the ScanNet-GSReg and our Coord datasets demonstrate the effectiveness of the proposed method in registration and fusion. For registration, it achieves a 41.9\% reduction in RRE on complex scenes, ensuring more precise pose estimation. For fusion, it improves PSNR by 10.11 dB, highlighting superior structural preservation. These results confirm its ability to enhance scene alignment and reconstruction fidelity, ensuring more consistent and accurate 3D scene representation for robotic perception and autonomous navigation.
comment: Accepted to IROS 2025
☆ Priority-Aware Pathological Hierarchy Training for Multiple Instance Learning MICCAI
Multiple Instance Learning (MIL) is increasingly being used as a support tool within clinical settings for pathological diagnosis decisions, achieving high performance and removing the annotation burden. However, existing approaches for clinical MIL tasks have not adequately addressed the priority issues that exist in relation to pathological symptoms and diagnostic classes, causing MIL models to ignore priority among classes. To overcome this clinical limitation of MIL, we propose a new method that addresses priority issues using two hierarchies: vertical inter-hierarchy and horizontal intra-hierarchy. The proposed method aligns MIL predictions across each hierarchical level and employs an implicit feature re-usability during training to facilitate clinically more serious classes within the same level. Experiments with real-world patient data show that the proposed method effectively reduces misdiagnosis and prioritizes more important symptoms in multiclass scenarios. Further analysis verifies the efficacy of the proposed components and qualitatively confirms the MIL predictions against challenging cases with multiple symptoms.
comment: 10 pages, 4 figures, Accepted for oral presentation by The 2nd MICCAI Student Board (MSB) EMERGE Workshop
☆ Frequency-Aware Autoregressive Modeling for Efficient High-Resolution Image Synthesis
Visual autoregressive modeling, based on the next-scale prediction paradigm, exhibits notable advantages in image quality and model scalability over traditional autoregressive and diffusion models. It generates images by progressively refining resolution across multiple stages. However, the computational overhead in high-resolution stages remains a critical challenge due to the substantial number of tokens involved. In this paper, we introduce SparseVAR, a plug-and-play acceleration framework for next-scale prediction that dynamically excludes low-frequency tokens during inference without requiring additional training. Our approach is motivated by the observation that tokens in low-frequency regions have a negligible impact on image quality in high-resolution stages and exhibit strong similarity with neighboring tokens. Additionally, we observe that different blocks in the next-scale prediction model focus on distinct regions, with some concentrating on high-frequency areas. SparseVAR leverages these insights by employing lightweight MSE-based metrics to identify low-frequency tokens while preserving the fidelity of excluded regions through a small set of uniformly sampled anchor tokens. By significantly reducing the computational cost while maintaining high image generation quality, SparseVAR achieves notable acceleration in both HART and Infinity. Specifically, SparseVAR achieves up to a 2 times speedup with minimal quality degradation in Infinity-2B.
☆ JOLT3D: Joint Learning of Talking Heads and 3DMM Parameters with Application to Lip-Sync
In this work, we revisit the effectiveness of 3DMM for talking head synthesis by jointly learning a 3D face reconstruction model and a talking head synthesis model. This enables us to obtain a FACS-based blendshape representation of facial expressions that is optimized for talking head synthesis. This contrasts with previous methods that either fit 3DMM parameters to 2D landmarks or rely on pretrained face reconstruction models. Not only does our approach increase the quality of the generated face, but it also allows us to take advantage of the blendshape representation to modify just the mouth region for the purpose of audio-based lip-sync. To this end, we propose a novel lip-sync pipeline that, unlike previous methods, decouples the original chin contour from the lip-synced chin contour, and reduces flickering near the mouth.
comment: 10 + 8 pages, 11 figures
☆ WEEP: A Differentiable Nonconvex Sparse Regularizer via Weakly-Convex Envelope
Sparse regularization is fundamental in signal processing for efficient signal recovery and feature extraction. However, it faces a fundamental dilemma: the most powerful sparsity-inducing penalties are often non-differentiable, conflicting with gradient-based optimizers that dominate the field. We introduce WEEP (Weakly-convex Envelope of Piecewise Penalty), a novel, fully differentiable sparse regularizer derived from the weakly-convex envelope framework. WEEP provides strong, unbiased sparsity while maintaining full differentiability and L-smoothness, making it natively compatible with any gradient-based optimizer. This resolves the conflict between statistical performance and computational tractability. We demonstrate superior performance compared to the L1-norm and other established non-convex sparse regularizers on challenging signal and image denoising tasks.
comment: 8 pages, 4 figures
☆ Top2Pano: Learning to Generate Indoor Panoramas from Top-Down View ICCV 2025
Generating immersive 360{\deg} indoor panoramas from 2D top-down views has applications in virtual reality, interior design, real estate, and robotics. This task is challenging due to the lack of explicit 3D structure and the need for geometric consistency and photorealism. We propose Top2Pano, an end-to-end model for synthesizing realistic indoor panoramas from top-down views. Our method estimates volumetric occupancy to infer 3D structures, then uses volumetric rendering to generate coarse color and depth panoramas. These guide a diffusion-based refinement stage using ControlNet, enhancing realism and structural fidelity. Evaluations on two datasets show Top2Pano outperforms baselines, effectively reconstructing geometry, occlusions, and spatial arrangements. It also generalizes well, producing high-quality panoramas from schematic floorplans. Our results highlight Top2Pano's potential in bridging top-down views with immersive indoor synthesis.
comment: ICCV 2025. Project page: https://top2pano.github.io/
☆ Exploring Probabilistic Modeling Beyond Domain Generalization for Semantic Segmentation ICCV2025
Domain Generalized Semantic Segmentation (DGSS) is a critical yet challenging task, as domain shifts in unseen environments can severely compromise model performance. While recent studies enhance feature alignment by projecting features into the source domain, they often neglect intrinsic latent domain priors, leading to suboptimal results. In this paper, we introduce PDAF, a Probabilistic Diffusion Alignment Framework that enhances the generalization of existing segmentation networks through probabilistic diffusion modeling. PDAF introduces a Latent Domain Prior (LDP) to capture domain shifts and uses this prior as a conditioning factor to align both source and unseen target domains. To achieve this, PDAF integrates into a pre-trained segmentation model and utilizes paired source and pseudo-target images to simulate latent domain shifts, enabling LDP modeling. The framework comprises three modules: the Latent Prior Extractor (LPE) predicts the LDP by supervising domain shifts; the Domain Compensation Module (DCM) adjusts feature representations to mitigate domain shifts; and the Diffusion Prior Estimator (DPE) leverages a diffusion process to estimate the LDP without requiring paired samples. This design enables PDAF to iteratively model domain shifts, progressively refining feature representations to enhance generalization under complex target conditions. Extensive experiments validate the effectiveness of PDAF across diverse and challenging urban scenes.
comment: Accepted by ICCV2025
☆ Evaluating Deep Learning Models for African Wildlife Image Classification: From DenseNet to Vision Transformers
Wildlife populations in Africa face severe threats, with vertebrate numbers declining by over 65% in the past five decades. In response, image classification using deep learning has emerged as a promising tool for biodiversity monitoring and conservation. This paper presents a comparative study of deep learning models for automatically classifying African wildlife images, focusing on transfer learning with frozen feature extractors. Using a public dataset of four species: buffalo, elephant, rhinoceros, and zebra; we evaluate the performance of DenseNet-201, ResNet-152, EfficientNet-B4, and Vision Transformer ViT-H/14. DenseNet-201 achieved the best performance among convolutional networks (67% accuracy), while ViT-H/14 achieved the highest overall accuracy (99%), but with significantly higher computational cost, raising deployment concerns. Our experiments highlight the trade-offs between accuracy, resource requirements, and deployability. The best-performing CNN (DenseNet-201) was integrated into a Hugging Face Gradio Space for real-time field use, demonstrating the feasibility of deploying lightweight models in conservation settings. This work contributes to African-grounded AI research by offering practical insights into model selection, dataset preparation, and responsible deployment of deep learning tools for wildlife conservation.
comment: Accepted as a camera-ready paper at Deep Learning Indaba 2025 (Kigali, Rwanda)
☆ Group Relative Augmentation for Data Efficient Action Detection
Adapting large Video-Language Models (VLMs) for action detection using only a few examples poses challenges like overfitting and the granularity mismatch between scene-level pre-training and required person-centric understanding. We propose an efficient adaptation strategy combining parameter-efficient tuning (LoRA) with a novel learnable internal feature augmentation. Applied within the frozen VLM backbone using FiLM, these augmentations generate diverse feature variations directly relevant to the task. Additionally, we introduce a group-weighted loss function that dynamically modulates the training contribution of each augmented sample based on its prediction divergence relative to the group average. This promotes robust learning by prioritizing informative yet reasonable augmentations. We demonstrate our method's effectiveness on complex multi-label, multi-person action detection datasets (AVA, MOMA), achieving strong mAP performance and showcasing significant data efficiency for adapting VLMs from limited examples.
☆ Enhancing and Accelerating Brain MRI through Deep Learning Reconstruction Using Prior Subject-Specific Imaging
Magnetic resonance imaging (MRI) is a crucial medical imaging modality. However, long acquisition times remain a significant challenge, leading to increased costs, and reduced patient comfort. Recent studies have shown the potential of using deep learning models that incorporate information from prior subject-specific MRI scans to improve reconstruction quality of present scans. Integrating this prior information requires registration of the previous scan to the current image reconstruction, which can be time-consuming. We propose a novel deep-learning-based MRI reconstruction framework which consists of an initial reconstruction network, a deep registration model, and a transformer-based enhancement network. We validated our method on a longitudinal dataset of T1-weighted MRI scans with 2,808 images from 18 subjects at four acceleration factors (R5, R10, R15, R20). Quantitative metrics confirmed our approach's superiority over existing methods (p < 0.05, Wilcoxon signed-rank test). Furthermore, we analyzed the impact of our MRI reconstruction method on the downstream task of brain segmentation and observed improved accuracy and volumetric agreement with reference segmentations. Our approach also achieved a substantial reduction in total reconstruction time compared to methods that use traditional registration algorithms, making it more suitable for real-time clinical applications. The code associated with this work is publicly available at https://github.com/amirshamaei/longitudinal-mri-deep-recon.
☆ Analyzing the Sensitivity of Vision Language Models in Visual Question Answering
We can think of Visual Question Answering as a (multimodal) conversation between a human and an AI system. Here, we explore the sensitivity of Vision Language Models (VLMs) through the lens of cooperative principles of conversation proposed by Grice. Specifically, even when Grice's maxims of conversation are flouted, humans typically do not have much difficulty in understanding the conversation even though it requires more cognitive effort. Here, we study if VLMs are capable of handling violations to Grice's maxims in a manner that is similar to humans. Specifically, we add modifiers to human-crafted questions and analyze the response of VLMs to these modifiers. We use three state-of-the-art VLMs in our study, namely, GPT-4o, Claude-3.5-Sonnet and Gemini-1.5-Flash on questions from the VQA v2.0 dataset. Our initial results seem to indicate that the performance of VLMs consistently diminish with the addition of modifiers which indicates our approach as a promising direction to understand the limitations of VLMs.
☆ GLCP: Global-to-Local Connectivity Preservation for Tubular Structure Segmentation MICCAI 2025
Accurate segmentation of tubular structures, such as vascular networks, plays a critical role in various medical domains. A remaining significant challenge in this task is structural fragmentation, which can adversely impact downstream applications. Existing methods primarily focus on designing various loss functions to constrain global topological structures. However, they often overlook local discontinuity regions, leading to suboptimal segmentation results. To overcome this limitation, we propose a novel Global-to-Local Connectivity Preservation (GLCP) framework that can simultaneously perceive global and local structural characteristics of tubular networks. Specifically, we propose an Interactive Multi-head Segmentation (IMS) module to jointly learn global segmentation, skeleton maps, and local discontinuity maps, respectively. This enables our model to explicitly target local discontinuity regions while maintaining global topological integrity. In addition, we design a lightweight Dual-Attention-based Refinement (DAR) module to further improve segmentation quality by refining the resulting segmentation maps. Extensive experiments on both 2D and 3D datasets demonstrate that our GLCP achieves superior accuracy and continuity in tubular structure segmentation compared to several state-of-the-art approaches. The source codes will be available at https://github.com/FeixiangZhou/GLCP.
comment: MICCAI 2025 (Oral)
☆ VoluMe -- Authentic 3D Video Calls from Live Gaussian Splat Prediction
Virtual 3D meetings offer the potential to enhance copresence, increase engagement and thus improve effectiveness of remote meetings compared to standard 2D video calls. However, representing people in 3D meetings remains a challenge; existing solutions achieve high quality by using complex hardware, making use of fixed appearance via enrolment, or by inverting a pre-trained generative model. These approaches lead to constraints that are unwelcome and ill-fitting for videoconferencing applications. We present the first method to predict 3D Gaussian reconstructions in real time from a single 2D webcam feed, where the 3D representation is not only live and realistic, but also authentic to the input video. By conditioning the 3D representation on each video frame independently, our reconstruction faithfully recreates the input video from the captured viewpoint (a property we call authenticity), while generalizing realistically to novel viewpoints. Additionally, we introduce a stability loss to obtain reconstructions that are temporally stable on video sequences. We show that our method delivers state-of-the-art accuracy in visual quality and stability metrics compared to existing methods, and demonstrate our approach in live one-to-one 3D meetings using only a standard 2D camera and display. This demonstrates that our approach can allow anyone to communicate volumetrically, via a method for 3D videoconferencing that is not only highly accessible, but also realistic and authentic.
☆ Fairness and Robustness of CLIP-Based Models for Chest X-rays MICCAI
Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness
comment: Accepted for publication at the FAIMI MICCAI workshop 2025
☆ HDR Environment Map Estimation with Latent Diffusion Models
We advance the field of HDR environment map estimation from a single-view image by establishing a novel approach leveraging the Latent Diffusion Model (LDM) to produce high-quality environment maps that can plausibly light mirror-reflective surfaces. A common issue when using the ERP representation, the format used by the vast majority of approaches, is distortions at the poles and a seam at the sides of the environment map. We remove the border seam artefact by proposing an ERP convolutional padding in the latent autoencoder. Additionally, we investigate whether adapting the diffusion network architecture to the ERP format can improve the quality and accuracy of the estimated environment map by proposing a panoramically-adapted Diffusion Transformer architecture. Our proposed PanoDiT network reduces ERP distortions and artefacts, but at the cost of image quality and plausibility. We evaluate with standard benchmarks to demonstrate that our models estimate high-quality environment maps that perform competitively with state-of-the-art approaches in both image quality and lighting accuracy.
☆ Tracking Moose using Aerial Object Detection
Aerial wildlife tracking is critical for conservation efforts and relies on detecting small objects on the ground below the aircraft. It presents technical challenges: crewed aircraft are expensive, risky and disruptive; autonomous drones have limited computational capacity for onboard AI systems. Since the objects of interest may appear only a few pixels wide, small object detection is an inherently challenging computer vision subfield compounded by computational efficiency needs. This paper applies a patching augmentation to datasets to study model performance under various settings. A comparative study of three common yet architecturally diverse object detectors is conducted using the data, varying the patching method's hyperparameters against detection accuracy. Each model achieved at least 93\% mAP@IoU=0.5 on at least one patching configuration. Statistical analyses provide an in-depth commentary on the effects of various factors. Analysis also shows that faster, simpler models are about as effective as models that require more computational power for this task and perform well given limited patch scales, encouraging UAV deployment. Datasets and models will be made available via https://github.com/chrisindris/Moose.
comment: 18 pages, 6 figures, 8 tables
☆ Dual Guidance Semi-Supervised Action Detection
Semi-Supervised Learning (SSL) has shown tremendous potential to improve the predictive performance of deep learning models when annotations are hard to obtain. However, the application of SSL has so far been mainly studied in the context of image classification. In this work, we present a semi-supervised approach for spatial-temporal action localization. We introduce a dual guidance network to select better pseudo-bounding boxes. It combines a frame-level classification with a bounding-box prediction to enforce action class consistency across frames and boxes. Our evaluation across well-known spatial-temporal action localization datasets, namely UCF101-24 , J-HMDB-21 and AVA shows that the proposed module considerably enhances the model's performance in limited labeled data settings. Our framework achieves superior results compared to extended image-based semi-supervised baselines.
☆ On Explaining Visual Captioning with Hybrid Markov Logic Networks
Deep Neural Networks (DNNs) have made tremendous progress in multimodal tasks such as image captioning. However, explaining/interpreting how these models integrate visual information, language information and knowledge representation to generate meaningful captions remains a challenging problem. Standard metrics to measure performance typically rely on comparing generated captions with human-written ones that may not provide a user with a deep insights into this integration. In this work, we develop a novel explanation framework that is easily interpretable based on Hybrid Markov Logic Networks (HMLNs) - a language that can combine symbolic rules with real-valued functions - where we hypothesize how relevant examples from the training data could have influenced the generation of the observed caption. To do this, we learn a HMLN distribution over the training instances and infer the shift in distributions over these instances when we condition on the generated sample which allows us to quantify which examples may have been a source of richer information to generate the observed caption. Our experiments on captions generated for several state-of-the-art captioning models using Amazon Mechanical Turk illustrate the interpretability of our explanations, and allow us to compare these models along the dimension of explainability.
☆ Learning from Limited and Imperfect Data
The distribution of data in the world (eg, internet, etc.) significantly differs from the well-curated datasets and is often over-populated with samples from common categories. The algorithms designed for well-curated datasets perform suboptimally when used for learning from imperfect datasets with long-tailed imbalances and distribution shifts. To expand the use of deep models, it is essential to overcome the labor-intensive curation process by developing robust algorithms that can learn from diverse, real-world data distributions. Toward this goal, we develop practical algorithms for Deep Neural Networks which can learn from limited and imperfect data present in the real world. This thesis is divided into four segments, each covering a scenario of learning from limited or imperfect data. The first part of the thesis focuses on Learning Generative Models from Long-Tail Data, where we mitigate the mode-collapse and enable diverse aesthetic image generations for tail (minority) classes. In the second part, we enable effective generalization on tail classes through Inductive Regularization schemes, which allow tail classes to generalize as effectively as the head classes without requiring explicit generation of images. In the third part, we develop algorithms for Optimizing Relevant Metrics for learning from long-tailed data with limited annotation (semi-supervised), followed by the fourth part, which focuses on the Efficient Domain Adaptation of the model to various domains with very few to zero labeled samples.
comment: PhD Thesis
☆ PanoGAN A Deep Generative Model for Panoramic Dental Radiographs
This paper presents the development of a generative adversarial network (GAN) for synthesizing dental panoramic radiographs. Although exploratory in nature, the study aims to address the scarcity of data in dental research and education. We trained a deep convolutional GAN (DCGAN) using a Wasserstein loss with gradient penalty (WGANGP) on a dataset of 2322 radiographs of varying quality. The focus was on the dentoalveolar regions, other anatomical structures were cropped out. Extensive preprocessing and data cleaning were performed to standardize the inputs while preserving anatomical variability. We explored four candidate models by varying critic iterations, feature depth, and the use of denoising prior to training. A clinical expert evaluated the generated radiographs based on anatomical visibility and realism, using a 5-point scale (1 very poor 5 excellent). Most images showed moderate anatomical depiction, although some were degraded by artifacts. A trade-off was observed the model trained on non-denoised data yielded finer details especially in structures like the mandibular canal and trabecular bone, while a model trained on denoised data offered superior overall image clarity and sharpness. These findings provide a foundation for future work on GAN-based methods in dental imaging.
☆ Hot-Swap MarkBoard: An Efficient Black-box Watermarking Approach for Large-scale Model Distribution
Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific $n$-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.
♻ ☆ PatchTraj: Dynamic Patch Representation Learning for Time-Frequency Trajectory Prediction
Pedestrian trajectory prediction is crucial for autonomous driving and robotics. While existing point-based and grid-based methods expose two key limitations: insufficiently modeling human motion dynamics, as they fail to balance local motion details with long-range spatiotemporal dependencies, and the time representation lacks interaction with the frequency domain in modeling trajectory sequences. To address these challenges, we propose PatchTraj, a dynamic patch-based trajectory prediction framework that unifies time-domain and frequency-domain representations. Specifically, we decompose the trajectory into raw time sequences and frequency components, employing dynamic patch partitioning for multi-scale trajectory segmentation to capture hierarchical motion patterns. Each patch is processed by an adaptive embedding layer with scale-aware feature extraction, followed by hierarchical feature aggregation to model both fine-grained and long-range dependencies. The outputs of two branches interact via cross-modal attention, enabling complementary fusion of temporal and spectral cues. Finally, a Transformer encoder-decoder integrates both modalities to autoregressively predict future trajectories. Extensive experiments on ETH-UCY, SDD, NBA, and JRDB datasets demonstrate that our method achieves state-of-the-art performance with high efficiency.
♻ ☆ Learning Multi-frame and Monocular Prior for Estimating Geometry in Dynamic Scenes
In monocular videos that capture dynamic scenes, estimating the 3D geometry of video contents has been a fundamental challenge in computer vision. Specifically, the task is significantly challenged by the object motion, where existing models are limited to predict only partial attributes of the dynamic scenes, such as depth or pointmaps spanning only over a pair of frames. Since these attributes are inherently noisy under multiple frames, test-time global optimizations are often employed to fully recover the geometry, which is liable to failure and incurs heavy inference costs. To address the challenge, we present a new model, coined MMP, to estimate the geometry in a feed-forward manner, which produces a dynamic pointmap representation that evolves over multiple frames. Specifically, based on the recent Siamese architecture, we introduce a new trajectory encoding module to project point-wise dynamics on the representation for each frame, which can provide significantly improved expressiveness for dynamic scenes. In our experiments, we find MMP can achieve state-of-the-art quality in feed-forward pointmap prediction, e.g., 15.1% enhancement in the regression error.
comment: This paper was supported by RLWRLD
♻ ☆ Synthetic-to-Real Camouflaged Object Detection
Due to the high cost of collection and labeling, there are relatively few datasets for camouflaged object detection (COD). In particular, for certain specialized categories, the available image dataset is insufficiently populated. Synthetic datasets can be utilized to alleviate the problem of limited data to some extent. However, directly training with synthetic datasets compared to real datasets can lead to a degradation in model performance. To tackle this problem, in this work, we investigate a new task, namely Syn-to-Real Camouflaged Object Detection (S2R-COD). In order to improve the model performance in real world scenarios, a set of annotated synthetic camouflaged images and a limited number of unannotated real images must be utilized. We propose the Cycling Syn-to-Real Domain Adaptation Framework (CSRDA), a method based on the student-teacher model. Specially, CSRDA propagates class information from the labeled source domain to the unlabeled target domain through pseudo labeling combined with consistency regularization. Considering that narrowing the intra-domain gap can improve the quality of pseudo labeling, CSRDA utilizes a recurrent learning framework to build an evolving real domain for bridging the source and target domain. Extensive experiments demonstrate the effectiveness of our framework, mitigating the problem of limited data and handcraft annotations in COD. Our code is publicly available at: https://github.com/Muscape/S2R-COD.
♻ ☆ Perpetua: Multi-Hypothesis Persistence Modeling for Semi-Static Environments IROS 2025
Many robotic systems require extended deployments in complex, dynamic environments. In such deployments, parts of the environment may change between subsequent robot observations. Most robotic mapping or environment modeling algorithms are incapable of representing dynamic features in a way that enables predicting their future state. Instead, they opt to filter certain state observations, either by removing them or some form of weighted averaging. This paper introduces Perpetua, a method for modeling the dynamics of semi-static features. Perpetua is able to: incorporate prior knowledge about the dynamics of the feature if it exists, track multiple hypotheses, and adapt over time to enable predicting of future feature states. Specifically, we chain together mixtures of "persistence" and "emergence" filters to model the probability that features will disappear or reappear in a formal Bayesian framework. The approach is an efficient, scalable, general, and robust method for estimating the states of features in an environment, both in the present as well as at arbitrary future times. Through experiments on simulated and real-world data, we find that Perpetua yields better accuracy than similar approaches while also being online adaptable and robust to missing observations.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025) Code available at https://github.com/montrealrobotics/perpetua-code. Webpage and additional videos at https://montrealrobotics.ca/perpetua/
♻ ☆ SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
comment: 47 pages, 18 figures, authors are listed in alphabetical order by their last names; v2 modifies minor issues
♻ ☆ Facial Demorphing from a Single Morph Using a Latent Conditional GAN
A morph is created by combining two (or more) face images from two (or more) identities to create a composite image that is highly similar to all constituent identities, allowing the forged morph to be biometrically associated with more than one individual. Morph Attack Detection (MAD) can be used to detect a morph, but does not reveal the constituent images. Demorphing - the process of deducing the constituent images - is thus vital to provide additional evidence about a morph. Existing demorphing methods suffer from the morph replication problem, where the outputs tend to look very similar to the morph itself, or assume that train and test morphs are generated using the same morph technique. The proposed method overcomes these issues. The method decomposes a morph in latent space allowing it to demorph images created from unseen morph techniques and face styles. We train our method on morphs created from synthetic faces and test on morphs created from real faces using different morph techniques. Our method outperforms existing methods by a considerable margin and produces high fidelity demorphed face images.
♻ ☆ Swin-TUNA : A Novel PEFT Approach for Accurate Food Image Segmentation
In the field of food image processing, efficient semantic segmentation techniques are crucial for industrial applications. However, existing large-scale Transformer-based models (such as FoodSAM) face challenges in meeting practical deploymentrequirements due to their massive parameter counts and high computational resource demands. This paper introduces TUNable Adapter module (Swin-TUNA), a Parameter Efficient Fine-Tuning (PEFT) method that integrates multiscale trainable adapters into the Swin Transformer architecture, achieving high-performance food image segmentation by updating only 4% of the parameters. The core innovation of Swin-TUNA lies in its hierarchical feature adaptation mechanism: it designs separable convolutions in depth and dimensional mappings of varying scales to address the differences in features between shallow and deep networks, combined with a dynamic balancing strategy for tasks-agnostic and task-specific features. Experiments demonstrate that this method achieves mIoU of 50.56% and 74.94% on the FoodSeg103 and UECFoodPix Complete datasets, respectively, surpassing the fully parameterized FoodSAM model while reducing the parameter count by 98.7% (to only 8.13M). Furthermore, Swin-TUNA exhibits faster convergence and stronger generalization capabilities in low-data scenarios, providing an efficient solution for assembling lightweight food image.
comment: After discussion among the authors, some parts of the paper are deemed inappropriate and will be revised and resubmitted
♻ ☆ Distilling Diffusion Models to Efficient 3D LiDAR Scene Completion ICCV'25
Diffusion models have been applied to 3D LiDAR scene completion due to their strong training stability and high completion quality. However, the slow sampling speed limits the practical application of diffusion-based scene completion models since autonomous vehicles require an efficient perception of surrounding environments. This paper proposes a novel distillation method tailored for 3D Li- DAR scene completion models, dubbed ScoreLiDAR, which achieves efficient yet high-quality scene completion. Score- LiDAR enables the distilled model to sample in significantly fewer steps after distillation. To improve completion quality, we also introduce a novel Structural Loss, which encourages the distilled model to capture the geometric structure of the 3D LiDAR scene. The loss contains a scene-wise term constraining the holistic structure and a point-wise term constraining the key landmark points and their relative configuration. Extensive experiments demonstrate that ScoreLiDAR significantly accelerates the completion time from 30.55 to 5.37 seconds per frame (>5x) on SemanticKITTI and achieves superior performance compared to state-of-the-art 3D LiDAR scene completion models. Our model and code are publicly available on https://github.com/happyw1nd/ScoreLiDAR.
comment: This paper is accepted by ICCV'25(Oral), the model and code are publicly available on https://github.com/happyw1nd/ScoreLiDAR
♻ ☆ ADIEE: Automatic Dataset Creation and Scorer for Instruction-Guided Image Editing Evaluation ICCV
Recent advances in instruction-guided image editing underscore the need for effective automated evaluation. While Vision-Language Models (VLMs) have been explored as judges, open-source models struggle with alignment, and proprietary models lack transparency and cost efficiency. Additionally, no public training datasets exist to fine-tune open-source VLMs, only small benchmarks with diverse evaluation schemes. To address this, we introduce ADIEE, an automated dataset creation approach which is then used to train a scoring model for instruction-guided image editing evaluation. We generate a large-scale dataset with over 100K samples and use it to fine-tune a LLaVA-NeXT-8B model modified to decode a numeric score from a custom token. The resulting scorer outperforms all open-source VLMs and Gemini-Pro 1.5 across all benchmarks, achieving a 0.0696 (+17.24%) gain in score correlation with human ratings on AURORA-Bench, and improving pair-wise comparison accuracy by 4.03% (+7.21%) on GenAI-Bench and 4.75% (+9.35%) on AURORA-Bench, respectively, compared to the state-of-the-art. The scorer can act as a reward model, enabling automated best edit selection and model fine-tuning. Notably, the proposed scorer can boost MagicBrush model's average evaluation score on ImagenHub from 5.90 to 6.43 (+8.98%). Our code and models are available at https://github.com/SherryXTChen/ADIEE.git.
comment: International Conference on Computer Vision (ICCV) 2025
♻ ☆ GUI-G$^2$: Gaussian Reward Modeling for GUI Grounding
Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G$^2$), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G$^2$ incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G$^2$, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.
♻ ☆ FREE-Merging: Fourier Transform for Efficient Model Merging ICCV2025
With the rapid growth of deep learning, there is an increasing availability of open-source models for various tasks. However, single fine-tuned models often fall short of meeting the diverse needs of users. Model merging has thus emerged as an efficient method to integrate the capabilities of existing models into a unified model. Nevertheless, existing model merging methods face challenging trade-offs between performance and deployment costs, primarily due to task interference. For the first time, we reveal that task interference is evident in the frequency domain of model parameters, yet current efforts only focus on spatial domain solutions, which are largely ineffective in addressing frequency domain interference. To mitigate the impact of frequency domain interference, we propose FR-Merging, an innovative method that effectively filters harmful frequency domain interference on the backbone with minimal computational overhead. Since performance loss is inevitable with cost-free methods, we propose a lightweight task-specific expert module that dynamically compensates for information loss during merging. This proposed framework, FREE-Merging (FR-Merging with experts), strikes a balanced trade-off between training cost, inference latency, storage requirements, and performance. We demonstrate the effectiveness of both FR-Merging and FREE-Merging on multiple tasks across CV, NLP, and Multi-Modal domains and show that they can be flexibly adapted to specific needs.
comment: Accepted by ICCV2025
REGRACE: A Robust and Efficient Graph-based Re-localization Algorithm using Consistency Evaluation IROS2025
Loop closures are essential for correcting odometry drift and creating consistent maps, especially in the context of large-scale navigation. Current methods using dense point clouds for accurate place recognition do not scale well due to computationally expensive scan-to-scan comparisons. Alternative object-centric approaches are more efficient but often struggle with sensitivity to viewpoint variation. In this work, we introduce REGRACE, a novel approach that addresses these challenges of scalability and perspective difference in re-localization by using LiDAR-based submaps. We introduce rotation-invariant features for each labeled object and enhance them with neighborhood context through a graph neural network. To identify potential revisits, we employ a scalable bag-of-words approach, pooling one learned global feature per submap. Additionally, we define a revisit with geometrical consistency cues rather than embedding distance, allowing us to recognize far-away loop closures. Our evaluations demonstrate that REGRACE achieves similar results compared to state-of-the-art place recognition and registration baselines while being twice as fast. Code and models are publicly available.
comment: Accepted to IROS2025
♻ ☆ ZeroReg3D: A Zero-shot Registration Pipeline for 3D Consecutive Histopathology Image Reconstruction
Histological analysis plays a crucial role in understanding tissue structure and pathology. While recent advancements in registration methods have improved 2D histological analysis, they often struggle to preserve critical 3D spatial relationships, limiting their utility in both clinical and research applications. Specifically, constructing accurate 3D models from 2D slices remains challenging due to tissue deformation, sectioning artifacts, variability in imaging techniques, and inconsistent illumination. Deep learning-based registration methods have demonstrated improved performance but suffer from limited generalizability and require large-scale training data. In contrast, non-deep-learning approaches offer better generalizability but often compromise on accuracy. In this study, we introduced ZeroReg3D, a novel zero-shot registration pipeline tailored for accurate 3D reconstruction from serial histological sections. By combining zero-shot deep learning-based keypoint matching with optimization-based affine and non-rigid registration techniques, ZeroReg3D effectively addresses critical challenges such as tissue deformation, sectioning artifacts, staining variability, and inconsistent illumination without requiring retraining or fine-tuning. The code has been made publicly available at https://github.com/hrlblab/ZeroReg3D
♻ ☆ A Survey of Deep Learning for Geometry Problem Solving
Geometry problem solving is a key area of mathematical reasoning, which is widely involved in many important fields such as education, mathematical ability assessment of artificial intelligence, and multimodal ability assessment. In recent years, the rapid development of deep learning technology, especially the rise of multimodal large language models, has triggered a widespread research boom. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our goal is to provide a comprehensive and practical reference of deep learning for geometry problem solving to promote further developments in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.
comment: Work in progress
♻ ☆ Rethinking Multi-Modal Object Detection from the Perspective of Mono-Modality Feature Learning
Multi-Modal Object Detection (MMOD), due to its stronger adaptability to various complex environments, has been widely applied in various applications. Extensive research is dedicated to the RGB-IR object detection, primarily focusing on how to integrate complementary features from RGB-IR modalities. However, they neglect the mono-modality insufficient learning problem, which arises from decreased feature extraction capability in multi-modal joint learning. This leads to a prevalent but unreasonable phenomenon\textemdash Fusion Degradation, which hinders the performance improvement of the MMOD model. Motivated by this, in this paper, we introduce linear probing evaluation to the multi-modal detectors and rethink the multi-modal object detection task from the mono-modality learning perspective. Therefore, we construct a novel framework called M$^2$D-LIF, which consists of the Mono-Modality Distillation (M$^2$D) method and the Local Illumination-aware Fusion (LIF) module. The M$^2$D-LIF framework facilitates the sufficient learning of mono-modality during multi-modal joint training and explores a lightweight yet effective feature fusion manner to achieve superior object detection performance. Extensive experiments conducted on three MMOD datasets demonstrate that our M$^2$D-LIF effectively mitigates the Fusion Degradation phenomenon and outperforms the previous SOTA detectors. The codes are available at https://github.com/Zhao-Tian-yi/M2D-LIF.
comment: 10 pages, 6 figures
♻ ☆ Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression
Visual Anomaly Detection (VAD) is a key task in industrial settings, where minimizing operational costs is essential. Deploying deep learning models within Internet of Things (IoT) environments introduces specific challenges due to limited computational power and bandwidth of edge devices. This study investigates how to perform VAD effectively under such constraints by leveraging compact, efficient processing strategies. We evaluate several data compression techniques, examining the tradeoff between system latency and detection accuracy. Experiments on the MVTec AD benchmark demonstrate that significant compression can be achieved with minimal loss in anomaly detection performance compared to uncompressed data. Current results show up to 80% reduction in end-to-end inference time, including edge processing, transmission, and server computation.
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ LLM2TEA: An Agentic AI Designer for Discovery with Generative Evolutionary Multitasking
This paper presents LLM2TEA, a Large Language Model (LLM) driven MultiTask Evolutionary Algorithm, representing the first agentic AI designer of its kind operating with generative evolutionary multitasking (GEM). LLM2TEA enables the crossbreeding of solutions from multiple domains, fostering novel solutions that transcend disciplinary boundaries. Of particular interest is the ability to discover designs that are both novel and conforming to real-world physical specifications. LLM2TEA comprises an LLM to generate genotype samples from text prompts describing target objects, a text-to-3D generative model to produce corresponding phenotypes, a classifier to interpret its semantic representations, and a computational simulator to assess its physical properties. Novel LLM-based multitask evolutionary operators are introduced to guide the search towards high-performing, practically viable designs. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, showing 97% to 174% improvements in the diversity of novel designs over the current text-to-3D baseline. Moreover, over 73% of the generated designs outperform the top 1% of designs produced by the text-to-3D baseline in terms of physical performance. The designs produced by LLM2TEA are not only aesthetically creative but also functional in real-world contexts. Several of these designs have been successfully 3D printed, demonstrating the ability of our approach to transform AI-generated outputs into tangible, physical designs. These designs underscore the potential of LLM2TEA as a powerful tool for complex design optimization and discovery, capable of producing novel and physically viable designs.
comment: This work is accepted by IEEE CIM. IEEE copyrights applies
♻ ☆ SEAL: Searching Expandable Architectures for Incremental Learning
Incremental learning is a machine learning paradigm where a model learns from a sequential stream of tasks. This setting poses a key challenge: balancing plasticity (learning new tasks) and stability (preserving past knowledge). Neural Architecture Search (NAS), a branch of AutoML, automates the design of the architecture of Deep Neural Networks and has shown success in static settings. However, existing NAS-based approaches to incremental learning often rely on expanding the model at every task, making them impractical in resource-constrained environments. In this work, we introduce SEAL, a NAS-based framework tailored for data-incremental learning, a scenario where disjoint data samples arrive sequentially and are not stored for future access. SEAL adapts the model structure dynamically by expanding it only when necessary, based on a capacity estimation metric. Stability is preserved through cross-distillation training after each expansion step. The NAS component jointly searches for both the architecture and the optimal expansion policy. Experiments across multiple benchmarks demonstrate that SEAL effectively reduces forgetting and enhances accuracy while maintaining a lower model size compared to prior methods. These results highlight the promise of combining NAS and selective expansion for efficient, adaptive learning in incremental scenarios.
comment: 9 pages, 5 figures
♻ ☆ Are ECGs enough? Deep learning classification of pulmonary embolism using electrocardiograms RAS
Pulmonary embolism is a leading cause of out of hospital cardiac arrest that requires fast diagnosis. While computed tomography pulmonary angiography is the standard diagnostic tool, it is not always accessible. Electrocardiography is an essential tool for diagnosing multiple cardiac anomalies, as it is affordable, fast and available in many settings. However, the availability of public ECG datasets, specially for PE, is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural networks in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate information learned in larger ECG datasets, such as PTB-XL, CPSC18 and MedalCare-XL, to a smaller, more challenging dataset for PE. By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .
comment: Accepted to the MIRASOL 2025 Workshop (MICCAI 2025)
♻ ☆ FreeQ-Graph: Free-form Querying with Semantic Consistent Scene Graph for 3D Scene Understanding
Semantic querying in complex 3D scenes through free-form language presents a significant challenge. Existing 3D scene understanding methods use large-scale training data and CLIP to align text queries with 3D semantic features. However, their reliance on predefined vocabulary priors from training data hinders free-form semantic querying. Besides, recent advanced methods rely on LLMs for scene understanding but lack comprehensive 3D scene-level information and often overlook the potential inconsistencies in LLM-generated outputs. In our paper, we propose FreeQ-Graph, which enables Free-form Querying with a semantic consistent scene Graph for 3D scene understanding. The core idea is to encode free-form queries from a complete and accurate 3D scene graph without predefined vocabularies, and to align them with 3D consistent semantic labels, which accomplished through three key steps. We initiate by constructing a complete and accurate 3D scene graph that maps free-form objects and their relations through LLM and LVLM guidance, entirely free from training data or predefined priors. Most importantly, we align graph nodes with accurate semantic labels by leveraging 3D semantic aligned features from merged superpoints, enhancing 3D semantic consistency. To enable free-form semantic querying, we then design an LLM-based reasoning algorithm that combines scene-level and object-level information to intricate reasoning. We conducted extensive experiments on 3D semantic grounding, segmentation, and complex querying tasks, while also validating the accuracy of graph generation. Experiments on 6 datasets show that our model excels in both complex free-form semantic queries and intricate relational reasoning.
♻ ☆ Edge-guided Low-light Image Enhancement with Inertial Bregman Alternating Linearized Minimization
Prior-based methods for low-light image enhancement often face challenges in extracting available prior information from dim images. To overcome this limitation, we introduce a simple yet effective Retinex model with the proposed edge extraction prior. More specifically, we design an edge extraction network to capture the fine edge features from the low-light image directly. Building upon the Retinex theory, we decompose the low-light image into its illumination and reflectance components and introduce an edge-guided Retinex model for enhancing low-light images. To solve the proposed model, we propose a novel inertial Bregman alternating linearized minimization algorithm. This algorithm addresses the optimization problem associated with the edge-guided Retinex model, enabling effective enhancement of low-light images. Through rigorous theoretical analysis, we establish the convergence properties of the algorithm. Besides, we prove that the proposed algorithm converges to a stationary point of the problem through nonconvex optimization theory. Furthermore, extensive experiments are conducted on multiple real-world low-light image datasets to demonstrate the efficiency and superiority of the proposed scheme.
comment: 16 pages
♻ ☆ Implementing Adaptations for Vision AutoRegressive Model ICML 2025
Vision AutoRegressive model (VAR) was recently introduced as an alternative to Diffusion Models (DMs) in image generation domain. In this work we focus on its adaptations, which aim to fine-tune pre-trained models to perform specific downstream tasks, like medical data generation. While for DMs there exist many techniques, adaptations for VAR remain underexplored. Similarly, differentially private (DP) adaptations-ones that aim to preserve privacy of the adaptation data-have been extensively studied for DMs, while VAR lacks such solutions. In our work, we implement and benchmark many strategies for VAR, and compare them to state-of-the-art DM adaptation strategies. We observe that VAR outperforms DMs for non-DP adaptations, however, the performance of DP suffers, which necessitates further research in private adaptations for VAR. Code is available at https://github.com/sprintml/finetuning_var_dp.
comment: Accepted at DIG-BUGS: Data in Generative Models Workshop @ ICML 2025
♻ ☆ Visual Enumeration Remains Challenging for Multimodal Generative AI
Many animal species can approximately judge the number of objects in a visual scene at a single glance, and humans can further determine the exact cardinality of a set by deploying systematic counting procedures. In contrast, it has been observed that even state-of-the-art AI systems have very limited enumeration skills. In this work, we propose two benchmark tasks inspired by cognitive science that allow to precisely evaluate the visual enumeration capabilities of multimodal foundation models, thereby providing an objective measure of their number sense and counting level. We consider popular visual question answering models (BLIP, LLaVA and ViLT) as well as advanced image-to-text (Gemini, GPT and Qwen) and text-to-image (DALL-E, FLUX and Stable Diffusion) AI systems. Our analyses show that even the most advanced models cannot reliably name the number of objects in simple visual stimuli or generate images containing a target number of items, as indexed by their low accuracy in both types of tasks. Especially for numbers outside the subitizing range, their responses are often far from the target numerosity, and, in stark contrast with human behavior, in many cases the distribution of errors depends on the object category. We also observe some striking mistakes with small numbers. Our findings demonstrate that developing an intuitive visual understanding of number remains challenging for AI models and that merely increasing model size might not be a viable strategy to promote the emergence of systematic counting skills. We release the full code of our benchmark to facilitate the evaluation of enumeration skills in future AI systems.
♻ ☆ PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning ACM MM 2025
As multimedia content expands, the demand for unified multimodal retrieval (UMR) in real-world applications increases. Recent work leverages multimodal large language models (MLLMs) to tackle this task. However, their large parameter size results in high training costs and low inference efficiency. To address this, we propose PUMA: a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning. Our approach improves UMR from both structural and learning perspectives. (1) Structurally, we propose Layer-Pruned Self-Distillation, which prunes MLLMs by keeping only shallow layers while distilling features from dropped deep layers as teacher signals. This reduces parameters and preserves representation capability. (2) On the learning side, we introduce Modality-Adaptive Contrastive Learning Loss (MAC-Loss), which separates in-batch negatives into harder intra-modality and easier inter-modality groups based on the target modality, assigning different temperature strategies to enhance learning efficiency. Experiments show our method significantly reduces resource usage while maintaining strong performance.
comment: Accepted to ACM MM 2025
♻ ☆ ReasonVQA: A Multi-hop Reasoning Benchmark with Structural Knowledge for Visual Question Answering ICCV
In this paper, we propose a new dataset, ReasonVQA, for the Visual Question Answering (VQA) task. Our dataset is automatically integrated with structured encyclopedic knowledge and constructed using a low-cost framework, which is capable of generating complex, multi-hop questions. We evaluated state-of-the-art VQA models on ReasonVQA, and the empirical results demonstrate that ReasonVQA poses significant challenges to these models, highlighting its potential for benchmarking and advancing the field of VQA. Additionally, our dataset can be easily scaled with respect to input images; the current version surpasses the largest existing datasets requiring external knowledge by more than an order of magnitude.
comment: Accepted at the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both computationally efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((\alpha_i + \tanh(\beta_i x_i)) \cdot \gamma_i x_i) + \delta$, where all parameters $\alpha_i$, $\beta_i$, $\gamma_i$, and $\delta$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to 96.69% test accuracy within 11 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and computational efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it.
comment: 10 pages, 2 figures, 1 table. Includes a GitHub repository for MNIST experiments and a PyPI package for APTx Neuron implementation
♻ ☆ Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps IROS 2025
Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
comment: Accepted at IROS 2025
♻ ☆ Prediction of microstructural representativity from a single image
In this study, we present a method for predicting the representativity of the phase fraction observed in a single image (2D or 3D) of a material. Traditional approaches often require large datasets and extensive statistical analysis to estimate the Integral Range, a key factor in determining the variance of microstructural properties. Our method leverages the Two-Point Correlation function to directly estimate the variance from a single image, thereby enabling phase fraction prediction with associated confidence levels. We validate our approach using open-source datasets, demonstrating its efficacy across diverse microstructures. This technique significantly reduces the data requirements for representativity analysis, providing a practical tool for material scientists and engineers working with limited microstructural data. To make the method easily accessible, we have created a web-application, www.imagerep.io, for quick, simple and informative use of the method.
♻ ☆ PARTE: Part-Guided Texturing for 3D Human Reconstruction from a Single Image ICCV 2025
The misaligned human texture across different human parts is one of the main limitations of existing 3D human reconstruction methods. Each human part, such as a jacket or pants, should maintain a distinct texture without blending into others. The structural coherence of human parts serves as a crucial cue to infer human textures in the invisible regions of a single image. However, most existing 3D human reconstruction methods do not explicitly exploit such part segmentation priors, leading to misaligned textures in their reconstructions. In this regard, we present PARTE, which utilizes 3D human part information as a key guide to reconstruct 3D human textures. Our framework comprises two core components. First, to infer 3D human part information from a single image, we propose a 3D part segmentation module (PartSegmenter) that initially reconstructs a textureless human surface and predicts human part labels based on the textureless surface. Second, to incorporate part information into texture reconstruction, we introduce a part-guided texturing module (PartTexturer), which acquires prior knowledge from a pre-trained image generation network on texture alignment of human parts. Extensive experiments demonstrate that our framework achieves state-of-the-art quality in 3D human reconstruction. The project page is available at https://hygenie1228.github.io/PARTE/.
comment: Published at ICCV 2025, 22 pages including the supplementary material
♻ ☆ Hoi2Threat: An Interpretable Threat Detection Method for Human Violence Scenarios Guided by Human-Object Interaction
In light of the mounting imperative for public security, the necessity for automated threat detection in high-risk scenarios is becoming increasingly pressing. However, existing methods generally suffer from the problems of uninterpretable inference and biased semantic understanding, which severely limits their reliability in practical deployment. In order to address the aforementioned challenges, this article proposes a threat detection method based on human-object interaction pairs (HOI-pairs), Hoi2Threat. This method is based on the fine-grained multimodal TD-Hoi dataset, enhancing the model's semantic modeling ability for key entities and their behavioral interactions by using structured HOI tags to guide language generation. Furthermore, a set of metrics is designed for the evaluation of text response quality, with the objective of systematically measuring the model's representation accuracy and comprehensibility during threat interpretation. The experimental results have demonstrated that Hoi2Threat attains substantial enhancement in several threat detection tasks, particularly in the core metrics of Correctness of Information (CoI), Behavioral Mapping Accuracy (BMA), and Threat Detailed Orientation (TDO), which are 5.08, 5.04, and 4.76, and 7.10%, 6.80%, and 2.63%, respectively, in comparison with the Gemma3 (4B). The aforementioned results provide comprehensive validation of the merits of this approach in the domains of semantic understanding, entity behavior mapping, and interpretability.
♻ ☆ Everything is a Video: Unifying Modalities through Next-Frame Prediction
Multimodal learning, which involves integrating information from various modalities such as text, images, audio, and video, is pivotal for numerous complex tasks like visual question answering, cross-modal retrieval, and caption generation. Traditional approaches rely on modality-specific encoders and late fusion techniques, which can hinder scalability and flexibility when adapting to new tasks or modalities. To address these limitations, we introduce a novel framework that extends the concept of task reformulation beyond natural language processing (NLP) to multimodal learning. We propose to reformulate diverse multimodal tasks into a unified next-frame prediction problem, allowing a single model to handle different modalities without modality-specific components. This method treats all inputs and outputs as sequential frames in a video, enabling seamless integration of modalities and effective knowledge transfer across tasks. Our approach is evaluated on a range of tasks, including text-to-text, image-to-text, video-to-video, video-to-text, and audio-to-text, demonstrating the model's ability to generalize across modalities with minimal adaptation. We show that task reformulation can significantly simplify multimodal model design across various tasks, laying the groundwork for more generalized multimodal foundation models.
comment: 10 pages, 10 figures
♻ ☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
♻ ☆ GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose the Dual-Group Multi-Scale Wavelet Loss, a wavelet-domain constraint mechanism via dual-group subband strategy and cross-resolution frequency alignment for enhanced reconstruction fidelity in RSI-SR. Extensive experiments under two degradation methods on several benchmarks, including AID, UCMerced, and RSSRD-QH, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.09 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 3.2 times faster.
comment: GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
♻ ☆ Video Forgery Detection for Surveillance Cameras: A Review
The widespread availability of video recording through smartphones and digital devices has made video-based evidence more accessible than ever. Surveillance footage plays a crucial role in security, law enforcement, and judicial processes. However, with the rise of advanced video editing tools, tampering with digital recordings has become increasingly easy, raising concerns about their authenticity. Ensuring the integrity of surveillance videos is essential, as manipulated footage can lead to misinformation and undermine judicial decisions. This paper provides a comprehensive review of existing forensic techniques used to detect video forgery, focusing on their effectiveness in verifying the authenticity of surveillance recordings. Various methods, including compression-based analysis, frame duplication detection, and machine learning-based approaches, are explored. The findings highlight the growing necessity for more robust forensic techniques to counteract evolving forgery methods. Strengthening video forensic capabilities will ensure that surveillance recordings remain credible and admissible as legal evidence.
♻ ☆ Continual Low-Rank Scaled Dot-product Attention
Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of Transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.
comment: 16 pages, 7 figures
♻ ☆ Unlocking Constraints: Source-Free Occlusion-Aware Seamless Segmentation ICCV 2025
Panoramic image processing is essential for omni-context perception, yet faces constraints like distortions, perspective occlusions, and limited annotations. Previous unsupervised domain adaptation methods transfer knowledge from labeled pinhole data to unlabeled panoramic images, but they require access to source pinhole data. To address these, we introduce a more practical task, i.e., Source-Free Occlusion-Aware Seamless Segmentation (SFOASS), and propose its first solution, called UNconstrained Learning Omni-Context Knowledge (UNLOCK). Specifically, UNLOCK includes two key modules: Omni Pseudo-Labeling Learning and Amodal-Driven Context Learning. While adapting without relying on source data or target labels, this framework enhances models to achieve segmentation with 360{\deg} viewpoint coverage and occlusion-aware reasoning. Furthermore, we benchmark the proposed SFOASS task through both real-to-real and synthetic-to-real adaptation settings. Experimental results show that our source-free method achieves performance comparable to source-dependent methods, yielding state-of-the-art scores of 10.9 in mAAP and 11.6 in mAP, along with an absolute improvement of +4.3 in mAPQ over the source-only method. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK.
comment: Accepted to ICCV 2025. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK
♻ ☆ Architecture-Aware Minimization (A$^2$M): How to Find Flat Minima in Neural Architecture Search
Neural Architecture Search (NAS) has become an essential tool for designing effective and efficient neural networks. In this paper, we investigate the geometric properties of neural architecture spaces commonly used in differentiable NAS methods, specifically NAS-Bench-201 and DARTS. By defining flatness metrics such as neighborhoods and loss barriers along paths in architecture space, we reveal locality and flatness characteristics analogous to the well-known properties of neural network loss landscapes in weight space. In particular, we find that highly accurate architectures cluster together in flat regions, while suboptimal architectures remain isolated, unveiling the detailed geometrical structure of the architecture search landscape. Building on these insights, we propose Architecture-Aware Minimization (A$^2$M), a novel analytically derived algorithmic framework that explicitly biases, for the first time, the gradient of differentiable NAS methods towards flat minima in architecture space. A$^2$M consistently improves generalization over state-of-the-art DARTS-based algorithms on benchmark datasets including CIFAR-10, CIFAR-100, and ImageNet16-120, across both NAS-Bench-201 and DARTS search spaces. Notably, A$^2$M is able to increase the test accuracy, on average across different differentiable NAS methods, by +3.60\% on CIFAR-10, +4.60\% on CIFAR-100, and +3.64\% on ImageNet16-120, demonstrating its superior effectiveness in practice. A$^2$M can be easily integrated into existing differentiable NAS frameworks, offering a versatile tool for future research and applications in automated machine learning. We open-source our code at https://github.com/AI-Tech-Research-Lab/AsquaredM.
comment: Published in the journal Machine Learning: Science and Technology - IOPscience
♻ ☆ "Principal Components" Enable A New Language of Images ICCV 2025
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space. While existing visual tokenizers primarily optimize for reconstruction fidelity, they often neglect the structural properties of the latent space--a critical factor for both interpretability and downstream tasks. Our method generates a 1D causal token sequence for images, where each successive token contributes non-overlapping information with mathematically guaranteed decreasing explained variance, analogous to principal component analysis. This structural constraint ensures the tokenizer extracts the most salient visual features first, with each subsequent token adding diminishing yet complementary information. Additionally, we identified and resolved a semantic-spectrum coupling effect that causes the unwanted entanglement of high-level semantic content and low-level spectral details in the tokens by leveraging a diffusion decoder. Experiments demonstrate that our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system. Moreover, autoregressive models trained on our token sequences achieve performance comparable to current state-of-the-art methods while requiring fewer tokens for training and inference.
comment: Accepted by ICCV 2025
♻ ☆ MUSE-VL: Modeling Unified VLM through Semantic Discrete Encoding ICCV 2025
We introduce MUSE-VL, a Unified Vision-Language Model through Semantic discrete Encoding for multimodal understanding and generation. Recently, the research community has begun exploring unified models for visual generation and understanding. However, existing vision tokenizers (e.g., VQGAN) only consider low-level information, which makes it difficult to align with language tokens. This results in high training complexity and necessitates a large amount of training data to achieve optimal performance. Additionally, their performance is still far from dedicated understanding models. This paper proposes Semantic Discrete Encoding (SDE), which effectively aligns the information of visual tokens and language tokens by adding semantic constraints to the visual tokenizer. This greatly reduces the amount of training data and improves the performance of the unified model. With the same LLM size, our method improved the understanding performance by 4.8% compared to the previous SOTA Emu3 and surpassed the dedicated understanding model LLaVA-NeXT 34B by 3.7%. Our model also surpasses the existing unified models on visual generation benchmarks.
comment: ICCV 2025
♻ ☆ KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities
Recent advances in text-to-image generation have improved the quality of synthesized images, but evaluations mainly focus on aesthetics or alignment with text prompts. Thus, it remains unclear whether these models can accurately represent a wide variety of realistic visual entities. To bridge this gap, we propose KITTEN, a benchmark for Knowledge-InTensive image generaTion on real-world ENtities. Using KITTEN, we conduct a systematic study of the latest text-to-image models and retrieval-augmented models, focusing on their ability to generate real-world visual entities, such as landmarks and animals. Analysis using carefully designed human evaluations, automatic metrics, and MLLM evaluations show that even advanced text-to-image models fail to generate accurate visual details of entities. While retrieval-augmented models improve entity fidelity by incorporating reference images, they tend to over-rely on them and struggle to create novel configurations of the entity in creative text prompts.
comment: Project page: https://kitten-project.github.io/
♻ ☆ Text-guided multi-stage cross-perception network for medical image segmentation
Medical image segmentation plays a crucial role in clinical medicine, serving as a tool for auxiliary diagnosis, treatment planning, and disease monitoring, thus facilitating physicians in the study and treatment of diseases. However, existing medical image segmentation methods are limited by the weak semantic expression of the target segmentation regions, which is caused by the low contrast between the target and non-target segmentation regions. To address this limitation, text prompt information has greast potential to capture the lesion location. However, existing text-guided methods suffer from insufficient cross-modal interaction and inadequate cross-modal feature expression. To resolve these issues, we propose the Text-guided Multi-stage Cross-perception network (TMC). In TMC, we introduce a multistage cross-attention module to enhance the model's understanding of semantic details and a multi-stage alignment loss to improve the consistency of cross-modal semantics. The results of the experiments demonstrate that our TMC achieves a superior performance with Dice of 84.77%, 78.50%, 88.73% in three public datasets (QaTa-COV19, MosMedData and Breast), outperforming UNet based networks and text-guided methods.
♻ ☆ Quadratic Gaussian Splatting: High Quality Surface Reconstruction with Second-order Geometric Primitives
We propose Quadratic Gaussian Splatting (QGS), a novel representation that replaces static primitives with deformable quadric surfaces (e.g., ellipse, paraboloids) to capture intricate geometry. Unlike prior works that rely on Euclidean distance for primitive density modeling--a metric misaligned with surface geometry under deformation--QGS introduces geodesic distance-based density distributions. This innovation ensures that density weights adapt intrinsically to the primitive curvature, preserving consistency during shape changes (e.g., from planar disks to curved paraboloids). By solving geodesic distances in closed form on quadric surfaces, QGS enables surface-aware splatting, where a single primitive can represent complex curvature that previously required dozens of planar surfels, potentially reducing memory usage while maintaining efficient rendering via fast ray-quadric intersection. Experiments on DTU, Tanks and Temples, and MipNeRF360 datasets demonstrate state-of-the-art surface reconstruction, with QGS reducing geometric error (chamfer distance) by 33% over 2DGS and 27% over GOF on the DTU dataset. Crucially, QGS retains competitive appearance quality, bridging the gap between geometric precision and visual fidelity for applications like robotics and immersive reality.
comment: 16pages,18figures
♻ ☆ Benchmarking Graph Neural Networks for Document Layout Analysis in Public Affairs ICDAR
The automatic analysis of document layouts in digital-born PDF documents remains a challenging problem due to the heterogeneous arrangement of textual and nontextual elements and the imprecision of the textual metadata in the Portable Document Format. In this work, we benchmark Graph Neural Network (GNN) architectures for the task of fine-grained layout classification of text blocks from digital native documents. We introduce two graph construction structures: a k-closest-neighbor graph and a fully connected graph, and generate node features via pre-trained text and vision models, thus avoiding manual feature engineering. Three experimental frameworks are evaluated: single-modality (text or visual), concatenated multimodal, and dual-branch multimodal. We evaluated four foundational GNN models and compared them with the baseline. Our experiments are specifically conducted on a rich dataset of public affairs documents that includes more than 20 sources (e.g., regional and national-level official gazettes), 37K PDF documents, with 441K pages in total. Our results demonstrate that GraphSAGE operating on the k-closest-neighbor graph in a dual-branch configuration achieves the highest per-class and overall accuracy, outperforming the baseline in some sources. These findings confirm the importance of local layout relationships and multimodal fusion exploited through GNNs for the analysis of native digital document layouts.
comment: 15 pages, 2 figures, accepted paper at The Fifth ICDAR International Workshop on Machine Learning
♻ ☆ Free-form language-based robotic reasoning and grasping IROS 2025
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Accepted to IROS 2025. Project website: https://tev-fbk.github.io/FreeGrasp/
♻ ☆ InstructFLIP: Exploring Unified Vision-Language Model for Face Anti-spoofing
Face anti-spoofing (FAS) aims to construct a robust system that can withstand diverse attacks. While recent efforts have concentrated mainly on cross-domain generalization, two significant challenges persist: limited semantic understanding of attack types and training redundancy across domains. We address the first by integrating vision-language models (VLMs) to enhance the perception of visual input. For the second challenge, we employ a meta-domain strategy to learn a unified model that generalizes well across multiple domains. Our proposed InstructFLIP is a novel instruction-tuned framework that leverages VLMs to enhance generalization via textual guidance trained solely on a single domain. At its core, InstructFLIP explicitly decouples instructions into content and style components, where content-based instructions focus on the essential semantics of spoofing, and style-based instructions consider variations related to the environment and camera characteristics. Extensive experiments demonstrate the effectiveness of InstructFLIP by outperforming SOTA models in accuracy and substantially reducing training redundancy across diverse domains in FAS. Project website is available at https://kunkunlin1221.github.io/InstructFLIP.
comment: Accepted by MM'25
♻ ☆ Explainable Synthetic Image Detection through Diffusion Timestep Ensembling
Recent advances in diffusion models have enabled the creation of deceptively real images, posing significant security risks when misused. In this study, we empirically show that different timesteps of DDIM inversion reveal varying subtle distinctions between synthetic and real images that are extractable for detection, in the forms of such as Fourier power spectrum high-frequency discrepancies and inter-pixel variance distributions. Based on these observations, we propose a novel synthetic image detection method that directly utilizes features of intermediately noised images by training an ensemble on multiple noised timesteps, circumventing conventional reconstruction-based strategies. To enhance human comprehension, we introduce a metric-grounded explanation generation and refinement module to identify and explain AI-generated flaws. Additionally, we construct the GenHard and GenExplain benchmarks to provide detection samples of greater difficulty and high-quality rationales for fake images. Extensive experiments show that our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and challenging samples respectively, and demonstrates generalizability and robustness. Our code and datasets are available at https://github.com/Shadowlized/ESIDE.
comment: 16 pages, 8 figures
♻ ☆ Latent Multimodal Reconstruction for Misinformation Detection
Multimodal misinformation, such as miscaptioned images, where captions misrepresent an image's origin, context, or meaning, poses a growing challenge in the digital age. To support fact-checkers, researchers have focused on developing datasets and methods for multimodal misinformation detection (MMD). Due to the scarcity of large-scale annotated MMD datasets, recent approaches rely on synthetic training data created via out-of-context pairings or named entity manipulations (e.g., altering names, dates, or locations). However, these often yield simplistic examples that lack real-world complexity, limiting model robustness. Meanwhile, Large Vision-Language Models (LVLMs) remain underexplored for generating diverse and realistic synthetic data for MMD. To address, we introduce "Miscaption This!", a collection of LVLM-generated miscaptioned image datasets. Additionally, we introduce "Latent Multimodal Reconstruction" (LAMAR), a network trained to reconstruct the embeddings of truthful captions, providing a strong auxiliary signal to guide detection. We explore various training strategies (end-to-end vs. large-scale pre-training) and integration mechanisms (direct, mask, gate, and attention). Extensive experiments show that models trained on "MisCaption This!" generalize better to real-world misinformation while LAMAR achieves new state-of-the-art on both NewsCLIPpings and VERITE benchmarks; highlighting the value of LVLM-generated data and reconstruction-based networks for advancing MMD. Our code is available at https://github.com/stevejpapad/miscaptioned-image-reconstruction
♻ ☆ Leveraging Modified Ex Situ Tomography Data for Segmentation of In Situ Synchrotron X-Ray Computed Tomography
In situ synchrotron X-ray computed tomography enables dynamic material studies. However, automated segmentation remains challenging due to complex imaging artefacts - like ring and cupping effects - and limited training data. We present a methodology for deep learning-based segmentation by transforming high-quality ex situ laboratory data to train models for segmentation of in situ synchrotron data, demonstrated through a metal oxide dissolution study. Using a modified SegFormer architecture, our approach achieves segmentation performance (94.7% IoU) that matches human inter-annotator reliability (94.6% IoU). This indicates the model has reached the practical upper bound for this task, while reducing processing time by 2 orders of magnitude per 3D dataset compared to manual segmentation. The method maintains robust performance over significant morphological changes during experiments, despite training only on static specimens. This methodology can be readily applied to diverse materials systems, enabling the efficient analysis of the large volumes of time-resolved tomographic data generated in typical in situ experiments across scientific disciplines.
♻ ☆ Dynamic Try-On: Taming Video Virtual Try-on with Dynamic Attention Mechanism
Video try-on stands as a promising area for its tremendous real-world potential. Previous research on video try-on has primarily focused on transferring product clothing images to videos with simple human poses, while performing poorly with complex movements. To better preserve clothing details, those approaches are armed with an additional garment encoder, resulting in higher computational resource consumption. The primary challenges in this domain are twofold: (1) leveraging the garment encoder's capabilities in video try-on while lowering computational requirements; (2) ensuring temporal consistency in the synthesis of human body parts, especially during rapid movements. To tackle these issues, we propose a novel video try-on framework based on Diffusion Transformer(DiT), named Dynamic Try-On. To reduce computational overhead, we adopt a straightforward approach by utilizing the DiT backbone itself as the garment encoder and employing a dynamic feature fusion module to store and integrate garment features. To ensure temporal consistency of human body parts, we introduce a limb-aware dynamic attention module that enforces the DiT backbone to focus on the regions of human limbs during the denoising process. Extensive experiments demonstrate the superiority of Dynamic Try-On in generating stable and smooth try-on results, even for videos featuring complicated human postures.
comment: Project Page: https://zhengjun-ai.github.io/dynamic-tryon-page/. Accepted by The 36th British Machine Vision Conference
♻ ☆ M-SpecGene: Generalized Foundation Model for RGBT Multispectral Vision ICCV2025
RGB-Thermal (RGBT) multispectral vision is essential for robust perception in complex environments. Most RGBT tasks follow a case-by-case research paradigm, relying on manually customized models to learn task-oriented representations. Nevertheless, this paradigm is inherently constrained by artificial inductive bias, modality bias, and data bottleneck. To address these limitations, we make the initial attempt to build a Generalized RGBT MultiSpectral foundation model (M-SpecGene), which aims to learn modality-invariant representations from large-scale broad data in a self-supervised manner. M-SpecGene provides new insights into multispectral fusion and integrates prior case-by-case studies into a unified paradigm. Considering the unique characteristic of information imbalance in RGBT data, we introduce the Cross-Modality Structural Sparsity (CMSS) metric to quantify the information density across two modalities. Then we develop the GMM-CMSS progressive masking strategy to facilitate a flexible, easy-to-hard, and object-centric pre-training process. Comprehensive experiments validate M-SpecGene's generalizability across eleven datasets for four RGBT downstream tasks. The code will be available at https://github.com/CalayZhou/M-SpecGene.
comment: accepted by ICCV2025
♻ ☆ Generative AI for Cel-Animation: A Survey ICCV 2025
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, challenges like visual consistency, stylistic coherence, and ethical considerations persist. Additionally, this paper explores future directions and advancements in AI-assisted animation.
comment: Accepted by ICCV 2025 AISTORY Workshop
♻ ☆ IM-LUT: Interpolation Mixing Look-Up Tables for Image Super-Resolution ICCV 2025
Super-resolution (SR) has been a pivotal task in image processing, aimed at enhancing image resolution across various applications. Recently, look-up table (LUT)-based approaches have attracted interest due to their efficiency and performance. However, these methods are typically designed for fixed scale factors, making them unsuitable for arbitrary-scale image SR (ASISR). Existing ASISR techniques often employ implicit neural representations, which come with considerable computational cost and memory demands. To address these limitations, we propose Interpolation Mixing LUT (IM-LUT), a novel framework that operates ASISR by learning to blend multiple interpolation functions to maximize their representational capacity. Specifically, we introduce IM-Net, a network trained to predict mixing weights for interpolation functions based on local image patterns and the target scale factor. To enhance efficiency of interpolation-based methods, IM-Net is transformed into IM-LUT, where LUTs are employed to replace computationally expensive operations, enabling lightweight and fast inference on CPUs while preserving reconstruction quality. Experimental results on several benchmark datasets demonstrate that IM-LUT consistently achieves a superior balance between image quality and efficiency compared to existing methods, highlighting its potential as a promising solution for resource-constrained applications.
comment: ICCV 2025
♻ ☆ Mocap-2-to-3: Multi-view Lifting for Monocular Motion Recovery with 2D Pretraining
Recovering absolute human motion from monocular inputs is challenging due to two main issues. First, existing methods depend on 3D training data collected from limited environments, constraining out-of-distribution generalization. The second issue is the difficulty of estimating metric-scale poses from monocular input. To address these challenges, we introduce Mocap-2-to-3, a novel framework that performs multi-view lifting from monocular input by leveraging 2D data pre-training, enabling the reconstruction of metrically accurate 3D motions with absolute positions. To leverage abundant 2D data, we decompose complex 3D motion into multi-view syntheses. We first pretrain a single-view diffusion model on extensive 2D datasets, then fine-tune a multi-view model using public 3D data to enable view-consistent motion generation from monocular input, allowing the model to acquire action priors and diversity through 2D data. Furthermore, to recover absolute poses, we propose a novel human motion representation that decouples the learning of local pose and global movements, while encoding geometric priors of the ground to accelerate convergence. This enables progressive recovery of motion in absolute space during inference. Experimental results on in-the-wild benchmarks demonstrate that our method surpasses state-of-the-art approaches in both camera-space motion realism and world-grounded human positioning, while exhibiting superior generalization capability. Our code will be made publicly available.
♻ ☆ SurfaceSplat: Connecting Surface Reconstruction and Gaussian Splatting ICCV 2025
Surface reconstruction and novel view rendering from sparse-view images are challenging. Signed Distance Function (SDF)-based methods struggle with fine details, while 3D Gaussian Splatting (3DGS)-based approaches lack global geometry coherence. We propose a novel hybrid method that combines the strengths of both approaches: SDF captures coarse geometry to enhance 3DGS-based rendering, while newly rendered images from 3DGS refine the details of SDF for accurate surface reconstruction. As a result, our method surpasses state-of-the-art approaches in surface reconstruction and novel view synthesis on the DTU and MobileBrick datasets. Code will be released at https://github.com/aim-uofa/SurfaceSplat.
comment: Accepted to ICCV 2025
♻ ☆ Benchmarking and Analyzing Generative Data for Visual Recognition
Advancements in large pre-trained generative models have expanded their potential as effective data generators in visual recognition. This work delves into the impact of generative images, primarily comparing paradigms that harness external data (\ie generative \vs retrieval \vs original). Our key contributions are: \textbf{1) GenBench Construction:} We devise \textbf{GenBench}, a broad benchmark comprising 22 datasets with 2548 categories, to appraise generative data across various visual recognition tasks. \textbf{2) CLER Score:} To address the insufficient correlation of existing metrics (\eg, FID, CLIP score) with downstream recognition performance, we propose \textbf{CLER}, a training-free metric indicating generative data's efficiency for recognition tasks prior to training. \textbf{3) New Baselines:} Comparisons of generative data with retrieved data from the same external pool help to elucidate the unique traits of generative data. \textbf{4) External Knowledge Injection:} By fine-tuning special token embeddings for each category via Textual Inversion, performance improves across 17 datasets, except when dealing with low-resolution reference images. Our exhaustive benchmark and analysis spotlight generative data's promise in visual recognition, while identifying key challenges for future investigation.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ EventVAD: Training-Free Event-Aware Video Anomaly Detection ACM MM 2025
Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.
comment: Paper was accepted by ACM MM 2025; Code: https://github.com/YihuaJerry/EventVAD
♻ ☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance ICCV 2025
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
comment: Accepted by ICCV 2025
♻ ☆ Otter: A Multi-Modal Model with In-Context Instruction Tuning
Recent advances in Large Multimodal Models (LMMs) have unveiled great potential as visual assistants. However, most existing works focus on responding to individual instructions or using previous dialogues for contextual understanding. There is little discussion on employing both images and text as in-context examples to enhance the instruction following capability. To bridge this gap, we introduce the \textbf{Otter} model to leverage both textual and visual in-context examples for instruction tuning. Specifically, Otter builds upon Flamingo with Perceiver architecture, and has been instruction tuned for general purpose multi-modal assistant. Otter seamlessly processes multi-modal inputs, supporting modalities including text, multiple images, and dynamic video content. To support the training of Otter, we present the \textbf{MIMIC-IT} (\textbf{M}ult\textbf{I}-\textbf{M}odal \textbf{I}n-\textbf{C}ontext \textbf{I}nstruction \textbf{T}uning) dataset, which encompasses over 3 million multi-modal instruction-response pairs, including approximately 2.2 million unique instructions across a broad spectrum of images and videos. MIMIC-IT has been carefully curated to feature a diverse array of in-context examples for each entry. Comprehensive evaluations suggest that instruction tuning with these in-context examples substantially enhances model convergence and generalization capabilities. Notably, the extensive scenario coverage provided by the MIMIC-IT dataset empowers the Otter model to excel in tasks involving complex video and multi-image understanding.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ Decentralized LoRA Augmented Transformer with Context-aware Multi-scale Feature Learning for Secured Eye Diagnosis
Accurate and privacy-preserving diagnosis of ophthalmic diseases remains a critical challenge in medical imaging, particularly given the limitations of existing deep learning models in handling data imbalance, data privacy concerns, spatial feature diversity, and clinical interpretability. This paper proposes a novel Data efficient Image Transformer (DeiT) based framework that integrates context aware multiscale patch embedding, Low-Rank Adaptation (LoRA), knowledge distillation, and federated learning to address these challenges in a unified manner. The proposed model effectively captures both local and global retinal features by leveraging multi scale patch representations with local and global attention mechanisms. LoRA integration enhances computational efficiency by reducing the number of trainable parameters, while federated learning ensures secure, decentralized training without compromising data privacy. A knowledge distillation strategy further improves generalization in data scarce settings. Comprehensive evaluations on two benchmark datasets OCTDL and the Eye Disease Image Dataset demonstrate that the proposed framework consistently outperforms both traditional CNNs and state of the art transformer architectures across key metrics including AUC, F1 score, and precision. Furthermore, Grad-CAM++ visualizations provide interpretable insights into model predictions, supporting clinical trust. This work establishes a strong foundation for scalable, secure, and explainable AI applications in ophthalmic diagnostics.
comment: Under Review at Knowledge-Based Systems
♻ ☆ LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors
We aim to address sparse-view reconstruction of a 3D scene by leveraging priors from large-scale vision models. While recent advancements such as 3D Gaussian Splatting (3DGS) have demonstrated remarkable successes in 3D reconstruction, these methods typically necessitate hundreds of input images that densely capture the underlying scene, making them time-consuming and impractical for real-world applications. However, sparse-view reconstruction is inherently ill-posed and under-constrained, often resulting in inferior and incomplete outcomes. This is due to issues such as failed initialization, overfitting on input images, and a lack of details. To mitigate these challenges, we introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images. Specifically, we propose a robust initialization module that leverages stereo priors to aid in the recovery of camera poses and the reliable point clouds. Additionally, a diffusion-based refinement is iteratively applied to incorporate image diffusion priors into the Gaussian optimization process to preserve intricate scene details. Finally, we utilize video diffusion priors to further enhance the rendered images for realistic visual effects. Overall, our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods. We validate the effectiveness of our framework through experiments on various public datasets, demonstrating its potential for high-quality 360-degree scene reconstruction. Visual results are on our website.
comment: Project page: https://hanyangyu1021.github.io/lm-gaussian.github.io/
♻ ☆ One Last Attention for Your Vision-Language Model ICCV 2025
Pretrained vision-language models (VLMs), such as CLIP, achieve remarkable zero-shot performance, yet their downstream potential hinges on effective fine-tuning. Most adaptation methods typically focus on refining representation from separate modalities (text or vision) but neglect the critical role of their fused representations in the decision-making process, \emph{\ie} rational matrix that drives the final prediction. To bridge the gap, we propose a simple yet effective \textbf{R}ational \textbf{Ada}ptaion ({RAda}) to explicitly exploit the final fused representation during fine-tuning. RAda employs a learned mask, obtained from a lightweight attention layer attached at the end of a VLM, to dynamically calibrate the contribution of each element in the rational matrix, enabling targeted adjustments to the final cross-modal interactions without incurring costly modifications to intermediate features. Experiments in different settings (i.e., updating, or freezing pretrained encoders in adaptation, and test-time training that can only access the unlabeled test data) show that RAda serves as a versatile fine-tuning technique, improving the baseline with minimal code and performing comparably against current arts in most settings. Code is available at \href{https://github.com/khufia/RAda/tree/main}{github.com/khufia/RAda}.
comment: Accepted by ICCV 2025
♻ ☆ RemixFusion: Residual-based Mixed Representation for Large-scale Online RGB-D Reconstruction
The introduction of the neural implicit representation has notably propelled the advancement of online dense reconstruction techniques. Compared to traditional explicit representations, such as TSDF, it improves the mapping completeness and memory efficiency. However, the lack of reconstruction details and the time-consuming learning of neural representations hinder the widespread application of neural-based methods to large-scale online reconstruction. We introduce RemixFusion, a novel residual-based mixed representation for scene reconstruction and camera pose estimation dedicated to high-quality and large-scale online RGB-D reconstruction. In particular, we propose a residual-based map representation comprised of an explicit coarse TSDF grid and an implicit neural module that produces residuals representing fine-grained details to be added to the coarse grid. Such mixed representation allows for detail-rich reconstruction with bounded time and memory budget, contrasting with the overly-smoothed results by the purely implicit representations, thus paving the way for high-quality camera tracking. Furthermore, we extend the residual-based representation to handle multi-frame joint pose optimization via bundle adjustment (BA). In contrast to the existing methods, which optimize poses directly, we opt to optimize pose changes. Combined with a novel technique for adaptive gradient amplification, our method attains better optimization convergence and global optimality. Furthermore, we adopt a local moving volume to factorize the mixed scene representation with a divide-and-conquer design to facilitate efficient online learning in our residual-based framework. Extensive experiments demonstrate that our method surpasses all state-of-the-art ones, including those based either on explicit or implicit representations, in terms of the accuracy of both mapping and tracking on large-scale scenes.
♻ ☆ Eyes Will Shut: A Vision-Based Next GPS Location Prediction Model by Reinforcement Learning from Visual Map Feed Back
Next Location Prediction is a fundamental task in the study of human mobility, with wide-ranging applications in transportation planning, urban governance, and epidemic forecasting. In practice, when humans attempt to predict the next location in a trajectory, they often visualize the trajectory on a map and reason based on road connectivity and movement trends. However, the vast majority of existing next-location prediction models do not reason over maps \textbf{in the way that humans do}. Fortunately, the recent development of Vision-Language Models (VLMs) has demonstrated strong capabilities in visual perception and even visual reasoning. This opens up a new possibility: by rendering both the road network and trajectory onto an image and leveraging the reasoning abilities of VLMs, we can enable models to perform trajectory inference in a human-like manner. To explore this idea, we first propose a method called Vision-Guided Location Search (VGLS), which evaluates whether a general-purpose VLM is capable of trajectory-based reasoning without modifying any of its internal parameters. Based on insights from the VGLS results, we further propose our main approach: VLMLocPredictor, which is composed of two stages: In the first stage, we design two Supervised Fine-Tuning (SFT) tasks that help the VLM understand road network and trajectory structures and acquire basic reasoning ability on such visual inputs. In the second stage, we introduce Reinforcement Learning from Visual Map Feedback, enabling the model to self-improve its next-location prediction ability through interaction with the environment. Experiments conducted on datasets from four different cities show that our method achieves state-of-the-art (SOTA) performance and exhibits superior cross-city generalization compared to other LLM-based approaches.
♻ ☆ Learning to Unlearn while Retaining: Combating Gradient Conflicts in Machine Unlearning ICCV 2025
Machine Unlearning has recently garnered significant attention, aiming to selectively remove knowledge associated with specific data while preserving the model's performance on the remaining data. A fundamental challenge in this process is balancing effective unlearning with knowledge retention, as naive optimization of these competing objectives can lead to conflicting gradients, hindering convergence and degrading overall performance. To address this issue, we propose Learning to Unlearn while Retaining, aimed to mitigate gradient conflicts between unlearning and retention objectives. Our approach strategically avoids conflicts through an implicit gradient regularization mechanism that emerges naturally within the proposed framework. This prevents conflicting gradients between unlearning and retention, leading to effective unlearning while preserving the model's utility. We validate our approach across both discriminative and generative tasks, demonstrating its effectiveness in achieving unlearning without compromising performance on remaining data. Our results highlight the advantages of avoiding such gradient conflicts, outperforming existing methods that fail to account for these interactions.
comment: Accepted at ICCV 2025
♻ ☆ VGS-ATD: Robust Distributed Learning for Multi-Label Medical Image Classification Under Heterogeneous and Imbalanced Conditions
In recent years, advanced deep learning architectures have shown strong performance in medical imaging tasks. However, the traditional centralized learning paradigm poses serious privacy risks as all data is collected and trained on a single server. To mitigate this challenge, decentralized approaches such as federated learning and swarm learning have emerged, allowing model training on local nodes while sharing only model weights. While these methods enhance privacy, they struggle with heterogeneous and imbalanced data and suffer from inefficiencies due to frequent communication and the aggregation of weights. More critically, the dynamic and complex nature of clinical environments demands scalable AI systems capable of continuously learning from diverse modalities and multilabels. Yet, both centralized and decentralized models are prone to catastrophic forgetting during system expansion, often requiring full model retraining to incorporate new data. To address these limitations, we propose VGS-ATD, a novel distributed learning framework. To validate VGS-ATD, we evaluate it in experiments spanning 30 datasets and 80 independent labels across distributed nodes, VGS-ATD achieved an overall accuracy of 92.7%, outperforming centralized learning (84.9%) and swarm learning (72.99%), while federated learning failed under these conditions due to high requirements on computational resources. VGS-ATD also demonstrated strong scalability, with only a 1% drop in accuracy on existing nodes after expansion, compared to a 20% drop in centralized learning, highlighting its resilience to catastrophic forgetting. Additionally, it reduced computational costs by up to 50% relative to both centralized and swarm learning, confirming its superior efficiency and scalability.
comment: The idea is still underdeveloped, not yet enough to be published
♻ ☆ TAIL: Text-Audio Incremental Learning
Many studies combine text and audio to capture multi-modal information but they overlook the model's generalization ability on new datasets. Introducing new datasets may affect the feature space of the original dataset, leading to catastrophic forgetting. Meanwhile, large model parameters can significantly impact training performance. To address these limitations, we introduce a novel task called Text-Audio Incremental Learning (TAIL) task for text-audio retrieval, and propose a new method, PTAT, Prompt Tuning for Audio-Text incremental learning. This method utilizes prompt tuning to optimize the model parameters while incorporating an audio-text similarity and feature distillation module to effectively mitigate catastrophic forgetting. We benchmark our method and previous incremental learning methods on AudioCaps, Clotho, BBC Sound Effects and Audioset datasets, and our method outperforms previous methods significantly, particularly demonstrating stronger resistance to forgetting on older datasets. Compared to the full-parameters Finetune (Sequential) method, our model only requires 2.42\% of its parameters, achieving 4.46\% higher performance.
comment: 6 figures, 4 tables
♻ ☆ Grid-LOGAT: Grid Based Local and Global Area Transcription for Video Question Answering
In this paper, we propose a Grid-based Local and Global Area Transcription (Grid-LoGAT) system for Video Question Answering (VideoQA). The system operates in two phases. First, extracting text transcripts from video frames using a Vision-Language Model (VLM). Next, processing questions using these transcripts to generate answers through a Large Language Model (LLM). This design ensures image privacy by deploying the VLM on edge devices and the LLM in the cloud. To improve transcript quality, we propose grid-based visual prompting, which extracts intricate local details from each grid cell and integrates them with global information. Evaluation results show that Grid-LoGAT, using the open-source VLM (LLaVA-1.6-7B) and LLM (Llama-3.1-8B), outperforms state-of-the-art methods with similar baseline models on NExT-QA and STAR-QA datasets with an accuracy of 65.9% and 50.11% respectively. Additionally, our method surpasses the non-grid version by 24 points on localization-based questions we created using NExT-QA. (This paper is accepted by IEEE ICIP 2025.)
comment: Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
♻ ☆ Part Segmentation of Human Meshes via Multi-View Human Parsing
Recent advances in point cloud deep learning have led to models that achieve high per-part labeling accuracy on large-scale point clouds, using only the raw geometry of unordered point sets. In parallel, the field of human parsing focuses on predicting body part and clothing/accessory labels from images. This work aims to bridge these two domains by enabling per-vertex semantic segmentation of large-scale human meshes. To achieve this, a pseudo-ground truth labeling pipeline is developed for the Thuman2.1 dataset: meshes are first aligned to a canonical pose, segmented from multiple viewpoints, and the resulting point-level labels are then backprojected onto the original mesh to produce per-point pseudo ground truth annotations. Subsequently, a novel, memory-efficient sampling strategy is introduced, a windowed iterative farthest point sampling (FPS) with space-filling curve-based serialization to effectively downsample the point clouds. This is followed by a purely geometric segmentation using PointTransformer, enabling semantic parsing of human meshes without relying on texture information. Experimental results confirm the effectiveness and accuracy of the proposed approach.
♻ ☆ Vec2Face+ for Face Dataset Generation
When synthesizing identities as face recognition training data, it is generally believed that large inter-class separability and intra-class attribute variation are essential for synthesizing a quality dataset. % This belief is generally correct, and this is what we aim for. However, when increasing intra-class variation, existing methods overlook the necessity of maintaining intra-class identity consistency. % To address this and generate high-quality face training data, we propose Vec2Face+, a generative model that creates images directly from image features and allows for continuous and easy control of face identities and attributes. Using Vec2Face+, we obtain datasets with proper inter-class separability and intra-class variation and identity consistency using three strategies: 1) we sample vectors sufficiently different from others to generate well-separated identities; 2) we propose an AttrOP algorithm for increasing general attribute variations; 3) we propose LoRA-based pose control for generating images with profile head poses, which is more efficient and identity-preserving than AttrOP. % Our system generates VFace10K, a synthetic face dataset with 10K identities, which allows an FR model to achieve state-of-the-art accuracy on seven real-world test sets. Scaling the size to 4M and 12M images, the corresponding VFace100K and VFace300K datasets yield higher accuracy than the real-world training dataset, CASIA-WebFace, on five real-world test sets. This is the first time a synthetic dataset beats the CASIA-WebFace in average accuracy. In addition, we find that only 1 out of 11 synthetic datasets outperforms random guessing (\emph{i.e., 50\%}) in twin verification and that models trained with synthetic identities are more biased than those trained with real identities. Both are important aspects for future investigation. Code is available at https://github.com/HaiyuWu/Vec2Face_plus
♻ ☆ Addressing High Class Imbalance in Multi-Class Diabetic Retinopathy Severity Grading with Augmentation and Transfer Learning
Diabetic retinopathy (DR) is a leading cause of vision loss worldwide, and early diagnosis through automated retinal image analysis can significantly reduce the risk of blindness. This paper presents a robust deep learning framework for both binary and five-class DR classification, leveraging transfer learning and extensive data augmentation to address the challenges of class imbalance and limited training data. We evaluate a range of pretrained convolutional neural network architectures, including variants of ResNet and EfficientNet, on the APTOS 2019 dataset. For binary classification, our proposed model achieves a state-of-the-art accuracy of 98.9%, with a precision of 98.6%, recall of 99.3%, F1-score of 98.9%, and an AUC of 99.4%. In the more challenging five-class severity classification task, our model obtains a competitive accuracy of 84.6% and an AUC of 94.1%, outperforming several existing approaches. Our findings also demonstrate that EfficientNet-B0 and ResNet34 offer optimal trade-offs between accuracy and computational efficiency across both tasks. These results underscore the effectiveness of combining class-balanced augmentation with transfer learning for high-performance DR diagnosis. The proposed framework provides a scalable and accurate solution for DR screening, with potential for deployment in real-world clinical environments.
comment: 9 pages, 1 Figure
♻ ☆ FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation ACL 2025
We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible at https://github.com/flageval-baai/FlagEvalMM.
comment: Accepted by ACL 2025 Demo
♻ ☆ Adversarial attacks and defenses in explainable artificial intelligence: A survey
Explainable artificial intelligence (XAI) methods are portrayed as a remedy for debugging and trusting statistical and deep learning models, as well as interpreting their predictions. However, recent advances in adversarial machine learning (AdvML) highlight the limitations and vulnerabilities of state-of-the-art explanation methods, putting their security and trustworthiness into question. The possibility of manipulating, fooling or fairwashing evidence of the model's reasoning has detrimental consequences when applied in high-stakes decision-making and knowledge discovery. This survey provides a comprehensive overview of research concerning adversarial attacks on explanations of machine learning models, as well as fairness metrics. We introduce a unified notation and taxonomy of methods facilitating a common ground for researchers and practitioners from the intersecting research fields of AdvML and XAI. We discuss how to defend against attacks and design robust interpretation methods. We contribute a list of existing insecurities in XAI and outline the emerging research directions in adversarial XAI (AdvXAI). Future work should address improving explanation methods and evaluation protocols to take into account the reported safety issues.
comment: Accepted by Information Fusion
Artificial Intelligence 180
☆ A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
comment: 51 pages, 9 figures
☆ GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
comment: 51 pages, 5 figures
☆ Smart Expansion Techniques for ASP-based Interactive Configuration
Product configuration is a successful application of Answer Set Programming (ASP). However, challenges are still open for interactive systems to effectively guide users through the configuration process. The aim of our work is to provide an ASP-based solver for interactive configuration that can deal with large-scale industrial configuration problems and that supports intuitive user interfaces via an API. In this paper, we focus on improving the performance of automatically completing a partial configuration. Our main contribution enhances the classical incremental approach for multi-shot solving by four different smart expansion functions. The core idea is to determine and add specific objects or associations to the partial configuration by exploiting cautious and brave consequences before checking for the existence of a complete configuration with the current objects in each iteration. This approach limits the number of costly unsatisfiability checks and reduces the search space, thereby improving solving performance. In addition, we present a user interface that uses our API and is implemented in ASP.
comment: Under consideration for publication in Theory and Practice of Logic Programming (TPLP)
☆ MIRAGE-Bench: LLM Agent is Hallucinating and Where to Find Them
Hallucinations pose critical risks for large language model (LLM)-based agents, often manifesting as hallucinative actions resulting from fabricated or misinterpreted information within the cognitive context. While recent studies have exposed such failures, existing evaluations remain fragmented and lack a principled testbed. In this paper, we present MIRAGE-Bench--Measuring Illusions in Risky AGEnt settings--the first unified benchmark for eliciting and evaluating hallucinations in interactive LLM-agent scenarios. We begin by introducing a three-part taxonomy to address agentic hallucinations: actions that are unfaithful to (i) task instructions, (ii) execution history, or (iii) environment observations. To analyze, we first elicit such failures by performing a systematic audit of existing agent benchmarks, then synthesize test cases using a snapshot strategy that isolates decision points in deterministic and reproducible manners. To evaluate hallucination behaviors, we adopt a fine-grained-level LLM-as-a-Judge paradigm with tailored risk-aware prompts, enabling scalable, high-fidelity assessment of agent actions without enumerating full action spaces. MIRAGE-Bench provides actionable insights on failure modes of LLM agents and lays the groundwork for principled progress in mitigating hallucinations in interactive environments.
comment: Code and data: https://github.com/sunblaze-ucb/mirage-bench.git
☆ Memorization in Fine-Tuned Large Language Models
This study investigates the mechanisms and factors influencing memorization in fine-tuned large language models (LLMs), with a focus on the medical domain due to its privacy-sensitive nature. We examine how different aspects of the fine-tuning process affect a model's propensity to memorize training data, using the PHEE dataset of pharmacovigilance events. Our research employs two main approaches: a membership inference attack to detect memorized data, and a generation task with prompted prefixes to assess verbatim reproduction. We analyze the impact of adapting different weight matrices in the transformer architecture, the relationship between perplexity and memorization, and the effect of increasing the rank in low-rank adaptation (LoRA) fine-tuning. Key findings include: (1) Value and Output matrices contribute more significantly to memorization compared to Query and Key matrices; (2) Lower perplexity in the fine-tuned model correlates with increased memorization; (3) Higher LoRA ranks lead to increased memorization, but with diminishing returns at higher ranks. These results provide insights into the trade-offs between model performance and privacy risks in fine-tuned LLMs. Our findings have implications for developing more effective and responsible strategies for adapting large language models while managing data privacy concerns.
☆ Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
☆ Modular Delta Merging with Orthogonal Constraints: A Scalable Framework for Continual and Reversible Model Composition ICLR 2025
In real-world machine learning deployments, models must be continually updated, composed, and when required, selectively undone. However, existing approaches to model merging and continual learning often suffer from task interference, catastrophic forgetting, or lack of reversibility. We propose Modular Delta Merging with Orthogonal Constraints (MDM-OC), a novel framework that enables scalable, interference-free, and reversible composition of fine-tuned models. Each task-specific model is encoded as a delta from a shared base and projected into an orthogonal subspace to eliminate conflict. These projected deltas are then merged via gradient-based optimization to form a unified model that retains performance across tasks. Our approach supports continual integration of new models, structured unmerging for compliance such as GDPR requirements, and model stability via elastic weight consolidation and synthetic replay. Extensive experiments on vision and natural language processing benchmarks demonstrate that MDM-OC outperforms prior baselines in accuracy, backward transfer, and unmerge fidelity, while remaining memory-efficient and computationally tractable. This framework offers a principled solution for modular and compliant AI system design.
comment: 11 pages, 6 figures, 3 tables. Will be Submitted to ICLR 2025 for review
☆ Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.
comment: Codes and data are available at https://github.com/listen0425/Security-Tensors
☆ Personalized Treatment Effect Estimation from Unstructured Data
Existing methods for estimating personalized treatment effects typically rely on structured covariates, limiting their applicability to unstructured data. Yet, leveraging unstructured data for causal inference has considerable application potential, for instance in healthcare, where clinical notes or medical images are abundant. To this end, we first introduce an approximate 'plug-in' method trained directly on the neural representations of unstructured data. However, when these fail to capture all confounding information, the method may be subject to confounding bias. We therefore introduce two theoretically grounded estimators that leverage structured measurements of the confounders during training, but allow estimating personalized treatment effects purely from unstructured inputs, while avoiding confounding bias. When these structured measurements are only available for a non-representative subset of the data, these estimators may suffer from sampling bias. To address this, we further introduce a regression-based correction that accounts for the non-uniform sampling, assuming the sampling mechanism is known or can be well-estimated. Our experiments on two benchmark datasets show that the plug-in method, directly trainable on large unstructured datasets, achieves strong empirical performance across all settings, despite its simplicity.
☆ SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
☆ From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that governs domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmark datasets (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 cross-domain scenarios.
☆ Handoff Design in User-Centric Cell-Free Massive MIMO Networks Using DRL
In the user-centric cell-free massive MIMO (UC-mMIMO) network scheme, user mobility necessitates updating the set of serving access points to maintain the user-centric clustering. Such updates are typically performed through handoff (HO) operations; however, frequent HOs lead to overheads associated with the allocation and release of resources. This paper presents a deep reinforcement learning (DRL)-based solution to predict and manage these connections for mobile users. Our solution employs the Soft Actor-Critic algorithm, with continuous action space representation, to train a deep neural network to serve as the HO policy. We present a novel proposition for a reward function that integrates a HO penalty in order to balance the attainable rate and the associated overhead related to HOs. We develop two variants of our system; the first one uses mobility direction-assisted (DA) observations that are based on the user movement pattern, while the second one uses history-assisted (HA) observations that are based on the history of the large-scale fading (LSF). Simulation results show that our DRL-based continuous action space approach is more scalable than discrete space counterpart, and that our derived HO policy automatically learns to gather HOs in specific time slots to minimize the overhead of initiating HOs. Our solution can also operate in real time with a response time less than 0.4 ms.
comment: Published in IEEE Transactions on Communications (IEEE TCOM)
☆ Core Safety Values for Provably Corrigible Agents
We introduce the first implementable framework for corrigibility, with provable guarantees in multi-step, partially observed environments. Our framework replaces a single opaque reward with five *structurally separate* utility heads -- deference, switch-access preservation, truthfulness, low-impact behavior via a belief-based extension of Attainable Utility Preservation, and bounded task reward -- combined lexicographically by strict weight gaps. Theorem 1 proves exact single-round corrigibility in the partially observable off-switch game; Theorem 3 extends the guarantee to multi-step, self-spawning agents, showing that even if each head is \emph{learned} to mean-squared error $\varepsilon$ and the planner is $\varepsilon$-sub-optimal, the probability of violating \emph{any} safety property is bounded while still ensuring net human benefit. In contrast to Constitutional AI or RLHF/RLAIF, which merge all norms into one learned scalar, our separation makes obedience and impact-limits dominate even when incentives conflict. For open-ended settings where adversaries can modify the agent, we prove that deciding whether an arbitrary post-hack agent will ever violate corrigibility is undecidable by reduction to the halting problem, then carve out a finite-horizon ``decidable island'' where safety can be certified in randomized polynomial time and verified with privacy-preserving, constant-round zero-knowledge proofs. Consequently, the remaining challenge is the ordinary ML task of data coverage and generalization: reward-hacking risk is pushed into evaluation quality rather than hidden incentive leak-through, giving clearer implementation guidance for today's LLM assistants and future autonomous systems.
comment: 14 pages
☆ On the Limits of Hierarchically Embedded Logic in Classical Neural Networks
We propose a formal model of reasoning limitations in large neural net models for language, grounded in the depth of their neural architecture. By treating neural networks as linear operators over logic predicate space we show that each layer can encode at most one additional level of logical reasoning. We prove that a neural network of depth a particular depth cannot faithfully represent predicates in a one higher order logic, such as simple counting over complex predicates, implying a strict upper bound on logical expressiveness. This structure induces a nontrivial null space during tokenization and embedding, excluding higher-order predicates from representability. Our framework offers a natural explanation for phenomena such as hallucination, repetition, and limited planning, while also providing a foundation for understanding how approximations to higher-order logic may emerge. These results motivate architectural extensions and interpretability strategies in future development of language models.
comment: 9 pages
☆ Your AI, Not Your View: The Bias of LLMs in Investment Analysis
In finance, Large Language Models (LLMs) face frequent knowledge conflicts due to discrepancies between pre-trained parametric knowledge and real-time market data. These conflicts become particularly problematic when LLMs are deployed in real-world investment services, where misalignment between a model's embedded preferences and those of the financial institution can lead to unreliable recommendations. Yet little research has examined what investment views LLMs actually hold. We propose an experimental framework to investigate such conflicts, offering the first quantitative analysis of confirmation bias in LLM-based investment analysis. Using hypothetical scenarios with balanced and imbalanced arguments, we extract models' latent preferences and measure their persistence. Focusing on sector, size, and momentum, our analysis reveals distinct, model-specific tendencies. In particular, we observe a consistent preference for large-cap stocks and contrarian strategies across most models. These preferences often harden into confirmation bias, with models clinging to initial judgments despite counter-evidence.
☆ Mind the Gap: Conformative Decoding to Improve Output Diversity of Instruction-Tuned Large Language Models
Instruction-tuning large language models (LLMs) reduces the diversity of their outputs, which has implications for many tasks, particularly for creative tasks. This paper investigates the ``diversity gap'' for a writing prompt narrative generation task. This gap emerges as measured by current diversity metrics for various open-weight and open-source LLMs. The results show significant decreases in diversity due to instruction-tuning. We explore the diversity loss at each fine-tuning stage for the OLMo and OLMo 2 models to further understand how output diversity is affected. The results indicate that DPO has the most substantial impact on diversity. Motivated by these findings, we present a new decoding strategy, conformative decoding, which guides an instruct model using its more diverse base model to reintroduce output diversity. We show that conformative decoding typically increases diversity and even maintains or improves quality.
comment: 9 pages, 3 figures
☆ Partially Observable Monte-Carlo Graph Search
Currently, large partially observable Markov decision processes (POMDPs) are often solved by sampling-based online methods which interleave planning and execution phases. However, a pre-computed offline policy is more desirable in POMDP applications with time or energy constraints. But previous offline algorithms are not able to scale up to large POMDPs. In this article, we propose a new sampling-based algorithm, the partially observable Monte-Carlo graph search (POMCGS) to solve large POMDPs offline. Different from many online POMDP methods, which progressively develop a tree while performing (Monte-Carlo) simulations, POMCGS folds this search tree on the fly to construct a policy graph, so that computations can be drastically reduced, and users can analyze and validate the policy prior to embedding and executing it. Moreover, POMCGS, together with action progressive widening and observation clustering methods provided in this article, is able to address certain continuous POMDPs. Through experiments, we demonstrate that POMCGS can generate policies on the most challenging POMDPs, which cannot be computed by previous offline algorithms, and these policies' values are competitive compared with the state-of-the-art online POMDP algorithms.
comment: To be published in Proceedings of ICAPS 2025
☆ Multivariate Conformal Prediction via Conformalized Gaussian Scoring
While achieving exact conditional coverage in conformal prediction is unattainable without making strong, untestable regularity assumptions, the promise of conformal prediction hinges on finding approximations to conditional guarantees that are realizable in practice. A promising direction for obtaining conditional dependence for conformal sets--in particular capturing heteroskedasticity--is through estimating the conditional density $\mathbb{P}_{Y|X}$ and conformalizing its level sets. Previous work in this vein has focused on nonconformity scores based on the empirical cumulative distribution function (CDF). Such scores are, however, computationally costly, typically requiring expensive sampling methods. To avoid the need for sampling, we observe that the CDF-based score reduces to a Mahalanobis distance in the case of Gaussian scores, yielding a closed-form expression that can be directly conformalized. Moreover, the use of a Gaussian-based score opens the door to a number of extensions of the basic conformal method; in particular, we show how to construct conformal sets with missing output values, refine conformal sets as partial information about $Y$ becomes available, and construct conformal sets on transformations of the output space. Finally, empirical results indicate that our approach produces conformal sets that more closely approximate conditional coverage in multivariate settings compared to alternative methods.
☆ Dissecting Persona-Driven Reasoning in Language Models via Activation Patching
Large language models (LLMs) exhibit remarkable versatility in adopting diverse personas. In this study, we examine how assigning a persona influences a model's reasoning on an objective task. Using activation patching, we take a first step toward understanding how key components of the model encode persona-specific information. Our findings reveal that the early Multi-Layer Perceptron (MLP) layers attend not only to the syntactic structure of the input but also process its semantic content. These layers transform persona tokens into richer representations, which are then used by the middle Multi-Head Attention (MHA) layers to shape the model's output. Additionally, we identify specific attention heads that disproportionately attend to racial and color-based identities.
comment: 11 pages
☆ FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/fine-grained-editting.
☆ FHSTP@EXIST 2025 Benchmark: Sexism Detection with Transparent Speech Concept Bottleneck Models
Sexism has become widespread on social media and in online conversation. To help address this issue, the fifth Sexism Identification in Social Networks (EXIST) challenge is initiated at CLEF 2025. Among this year's international benchmarks, we concentrate on solving the first task aiming to identify and classify sexism in social media textual posts. In this paper, we describe our solutions and report results for three subtasks: Subtask 1.1 - Sexism Identification in Tweets, Subtask 1.2 - Source Intention in Tweets, and Subtask 1.3 - Sexism Categorization in Tweets. We implement three models to address each subtask which constitute three individual runs: Speech Concept Bottleneck Model (SCBM), Speech Concept Bottleneck Model with Transformer (SCBMT), and a fine-tuned XLM-RoBERTa transformer model. SCBM uses descriptive adjectives as human-interpretable bottleneck concepts. SCBM leverages large language models (LLMs) to encode input texts into a human-interpretable representation of adjectives, then used to train a lightweight classifier for downstream tasks. SCBMT extends SCBM by fusing adjective-based representation with contextual embeddings from transformers to balance interpretability and classification performance. Beyond competitive results, these two models offer fine-grained explanations at both instance (local) and class (global) levels. We also investigate how additional metadata, e.g., annotators' demographic profiles, can be leveraged. For Subtask 1.1, XLM-RoBERTa, fine-tuned on provided data augmented with prior datasets, ranks 6th for English and Spanish and 4th for English in the Soft-Soft evaluation. Our SCBMT achieves 7th for English and Spanish and 6th for Spanish.
comment: 12 pages
☆ Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization
Multi-objective combinatorial optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives. Although traditional evolutionary algorithms can be effective, they typically depend on domain knowledge and repeated parameter tuning, limiting flexibility when applied to unseen MOCOP instances. Recently, integration of Large Language Models (LLMs) into evolutionary computation has opened new avenues for automatic heuristic generation, using their advanced language understanding and code synthesis capabilities. Nevertheless, most existing approaches predominantly focus on single-objective tasks, often neglecting key considerations such as runtime efficiency and heuristic diversity in multi-objective settings. To bridge this gap, we introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE), a novel enhancement of the Simple Evolutionary Multiobjective Optimization (SEMO) framework that leverages LLMs and Pareto Front Grid (PFG) technique. By partitioning the objective space into grids and retaining top-performing candidates to guide heuristic generation, MPaGE utilizes LLMs to prioritize heuristics with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population. Through extensive evaluations, MPaGE demonstrates superior performance over existing LLM-based frameworks, and achieves competitive results to traditional Multi-objective evolutionary algorithms (MOEAs), with significantly faster runtime. Our code is available at: https://github.com/langkhachhoha/MPaGE.
comment: 36 pages, 20 figures
☆ Modeling User Behavior from Adaptive Surveys with Supplemental Context ICML 2025
Modeling user behavior is critical across many industries where understanding preferences, intent, or decisions informs personalization, targeting, and strategic outcomes. Surveys have long served as a classical mechanism for collecting such behavioral data due to their interpretability, structure, and ease of deployment. However, surveys alone are inherently limited by user fatigue, incomplete responses, and practical constraints on their length making them insufficient for capturing user behavior. In this work, we present LANTERN (Late-Attentive Network for Enriched Response Modeling), a modular architecture for modeling user behavior by fusing adaptive survey responses with supplemental contextual signals. We demonstrate the architectural value of maintaining survey primacy through selective gating, residual connections and late fusion via cross-attention, treating survey data as the primary signal while incorporating external modalities only when relevant. LANTERN outperforms strong survey-only baselines in multi-label prediction of survey responses. We further investigate threshold sensitivity and the benefits of selective modality reliance through ablation and rare/frequent attribute analysis. LANTERN's modularity supports scalable integration of new encoders and evolving datasets. This work provides a practical and extensible blueprint for behavior modeling in survey-centric applications.
comment: Best Paper, NewInML @ ICML 2025
☆ MediQAl: A French Medical Question Answering Dataset for Knowledge and Reasoning Evaluation
This work introduces MediQAl, a French medical question answering dataset designed to evaluate the capabilities of language models in factual medical recall and reasoning over real-world clinical scenarios. MediQAl contains 32,603 questions sourced from French medical examinations across 41 medical subjects. The dataset includes three tasks: (i) Multiple-Choice Question with Unique answer, (ii) Multiple-Choice Question with Multiple answer, and (iii) Open-Ended Question with Short-Answer. Each question is labeled as Understanding or Reasoning, enabling a detailed analysis of models' cognitive capabilities. We validate the MediQAl dataset through extensive evaluation with 14 large language models, including recent reasoning-augmented models, and observe a significant performance gap between factual recall and reasoning tasks. Our evaluation provides a comprehensive benchmark for assessing language models' performance on French medical question answering, addressing a crucial gap in multilingual resources for the medical domain.
☆ HAMLET-FFD: Hierarchical Adaptive Multi-modal Learning Embeddings Transformation for Face Forgery Detection
The rapid evolution of face manipulation techniques poses a critical challenge for face forgery detection: cross-domain generalization. Conventional methods, which rely on simple classification objectives, often fail to learn domain-invariant representations. We propose HAMLET-FFD, a cognitively inspired Hierarchical Adaptive Multi-modal Learning framework that tackles this challenge via bidirectional cross-modal reasoning. Building on contrastive vision-language models such as CLIP, HAMLET-FFD introduces a knowledge refinement loop that iteratively assesses authenticity by integrating visual evidence with conceptual cues, emulating expert forensic analysis. A key innovation is a bidirectional fusion mechanism in which textual authenticity embeddings guide the aggregation of hierarchical visual features, while modulated visual features refine text embeddings to generate image-adaptive prompts. This closed-loop process progressively aligns visual observations with semantic priors to enhance authenticity assessment. By design, HAMLET-FFD freezes all pretrained parameters, serving as an external plugin that preserves CLIP's original capabilities. Extensive experiments demonstrate its superior generalization to unseen manipulations across multiple benchmarks, and visual analyses reveal a division of labor among embeddings, with distinct representations specializing in fine-grained artifact recognition.
☆ SCORPION: Addressing Scanner-Induced Variability in Histopathology MICCAI
Ensuring reliable model performance across diverse domains is a critical challenge in computational pathology. A particular source of variability in Whole-Slide Images is introduced by differences in digital scanners, thus calling for better scanner generalization. This is critical for the real-world adoption of computational pathology, where the scanning devices may differ per institution or hospital, and the model should not be dependent on scanner-induced details, which can ultimately affect the patient's diagnosis and treatment planning. However, past efforts have primarily focused on standard domain generalization settings, evaluating on unseen scanners during training, without directly evaluating consistency across scanners for the same tissue. To overcome this limitation, we introduce SCORPION, a new dataset explicitly designed to evaluate model reliability under scanner variability. SCORPION includes 480 tissue samples, each scanned with 5 scanners, yielding 2,400 spatially aligned patches. This scanner-paired design allows for the isolation of scanner-induced variability, enabling a rigorous evaluation of model consistency while controlling for differences in tissue composition. Furthermore, we propose SimCons, a flexible framework that combines augmentation-based domain generalization techniques with a consistency loss to explicitly address scanner generalization. We empirically show that SimCons improves model consistency on varying scanners without compromising task-specific performance. By releasing the SCORPION dataset and proposing SimCons, we provide the research community with a crucial resource for evaluating and improving model consistency across diverse scanners, setting a new standard for reliability testing.
comment: Accepted in UNSURE 2025 workshop in MICCAI
☆ Music Arena: Live Evaluation for Text-to-Music
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare, as study protocols may differ across systems. Moreover, human preferences might help researchers align their TTM systems or improve automatic evaluation metrics, but an open and renewable source of preferences does not currently exist. We aim to fill these gaps by offering *live* evaluation for TTM. In Music Arena, real-world users input text prompts of their choosing and compare outputs from two TTM systems, and their preferences are used to compile a leaderboard. While Music Arena follows recent evaluation trends in other AI domains, we also design it with key features tailored to music: an LLM-based routing system to navigate the heterogeneous type signatures of TTM systems, and the collection of *detailed* preferences including listening data and natural language feedback. We also propose a rolling data release policy with user privacy guarantees, providing a renewable source of preference data and increasing platform transparency. Through its standardized evaluation protocol, transparent data access policies, and music-specific features, Music Arena not only addresses key challenges in the TTM ecosystem but also demonstrates how live evaluation can be thoughtfully adapted to unique characteristics of specific AI domains. Music Arena is available at: https://music-arena.org
☆ JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.
comment: https://github.com/declare-lab/jamify
☆ Not Only Grey Matter: OmniBrain for Robust Multimodal Classification of Alzheimer's Disease ICCV 2025
Alzheimer's disease affects over 55 million people worldwide and is projected to more than double by 2050, necessitating rapid, accurate, and scalable diagnostics. However, existing approaches are limited because they cannot achieve clinically acceptable accuracy, generalization across datasets, robustness to missing modalities, and explainability all at the same time. This inability to satisfy all these requirements simultaneously undermines their reliability in clinical settings. We propose OmniBrain, a multimodal framework that integrates brain MRI, radiomics, gene expression, and clinical data using a unified model with cross-attention and modality dropout. OmniBrain achieves $92.2 \pm 2.4\%$accuracy on the ANMerge dataset and generalizes to the MRI-only ADNI dataset with $70.4 \pm 2.7\%$ accuracy, outperforming unimodal and prior multimodal approaches. Explainability analyses highlight neuropathologically relevant brain regions and genes, enhancing clinical trust. OmniBrain offers a robust, interpretable, and practical solution for real-world Alzheimer's diagnosis.
comment: Published in Third Workshop on Computer Vision for Automated Medical Diagnosis CVAMD 2025 in ICCV 2025
☆ Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces ICLR 2025
Advances in reinforcement learning (RL) have led to its successful application in complex tasks with continuous state and action spaces. Despite these advances in practice, most theoretical work pertains to finite state and action spaces. We propose building a theoretical understanding of continuous state and action spaces by employing a geometric lens to understand the locally attained set of states. The set of all parametrised policies learnt through a semi-gradient based approach induces a set of attainable states in RL. We show that the training dynamics of a two-layer neural policy induce a low dimensional manifold of attainable states embedded in the high-dimensional nominal state space trained using an actor-critic algorithm. We prove that, under certain conditions, the dimensionality of this manifold is of the order of the dimensionality of the action space. This is the first result of its kind, linking the geometry of the state space to the dimensionality of the action space. We empirically corroborate this upper bound for four MuJoCo environments and also demonstrate the results in a toy environment with varying dimensionality. We also show the applicability of this theoretical result by introducing a local manifold learning layer to the policy and value function networks to improve the performance in control environments with very high degrees of freedom by changing one layer of the neural network to learn sparse representations.
comment: Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025). arXiv admin note: text overlap with arXiv:2301.00009
☆ Free Energy-Inspired Cognitive Risk Integration for AV Navigation in Pedestrian-Rich Environments
Recent advances in autonomous vehicle (AV) behavior planning have shown impressive social interaction capabilities when interacting with other road users. However, achieving human-like prediction and decision-making in interactions with vulnerable road users remains a key challenge in complex multi-agent interactive environments. Existing research focuses primarily on crowd navigation for small mobile robots, which cannot be directly applied to AVs due to inherent differences in their decision-making strategies and dynamic boundaries. Moreover, pedestrians in these multi-agent simulations follow fixed behavior patterns that cannot dynamically respond to AV actions. To overcome these limitations, this paper proposes a novel framework for modeling interactions between the AV and multiple pedestrians. In this framework, a cognitive process modeling approach inspired by the Free Energy Principle is integrated into both the AV and pedestrian models to simulate more realistic interaction dynamics. Specifically, the proposed pedestrian Cognitive-Risk Social Force Model adjusts goal-directed and repulsive forces using a fused measure of cognitive uncertainty and physical risk to produce human-like trajectories. Meanwhile, the AV leverages this fused risk to construct a dynamic, risk-aware adjacency matrix for a Graph Convolutional Network within a Soft Actor-Critic architecture, allowing it to make more reasonable and informed decisions. Simulation results indicate that our proposed framework effectively improves safety, efficiency, and smoothness of AV navigation compared to the state-of-the-art method.
comment: 14 pages, 5 figures
☆ First Hallucination Tokens Are Different from Conditional Ones
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
☆ Why Flow Matching is Particle Swarm Optimization?
This paper preliminarily investigates the duality between flow matching in generative models and particle swarm optimization (PSO) in evolutionary computation. Through theoretical analysis, we reveal the intrinsic connections between these two approaches in terms of their mathematical formulations and optimization mechanisms: the vector field learning in flow matching shares similar mathematical expressions with the velocity update rules in PSO; both methods follow the fundamental framework of progressive evolution from initial to target distributions; and both can be formulated as dynamical systems governed by ordinary differential equations. Our study demonstrates that flow matching can be viewed as a continuous generalization of PSO, while PSO provides a discrete implementation of swarm intelligence principles. This duality understanding establishes a theoretical foundation for developing novel hybrid algorithms and creates a unified framework for analyzing both methods. Although this paper only presents preliminary discussions, the revealed correspondences suggest several promising research directions, including improving swarm intelligence algorithms based on flow matching principles and enhancing generative models using swarm intelligence concepts.
comment: 7 pages, 0 figures
☆ MMGraphRAG: Bridging Vision and Language with Interpretable Multimodal Knowledge Graphs
Retrieval-Augmented Generation (RAG) enhances language model generation by retrieving relevant information from external knowledge bases. However, conventional RAG methods face the issue of missing multimodal information. Multimodal RAG methods address this by fusing images and text through mapping them into a shared embedding space, but they fail to capture the structure of knowledge and logical chains between modalities. Moreover, they also require large-scale training for specific tasks, resulting in limited generalizing ability. To address these limitations, we propose MMGraphRAG, which refines visual content through scene graphs and constructs a multimodal knowledge graph (MMKG) in conjunction with text-based KG. It employs spectral clustering to achieve cross-modal entity linking and retrieves context along reasoning paths to guide the generative process. Experimental results show that MMGraphRAG achieves state-of-the-art performance on the DocBench and MMLongBench datasets, demonstrating strong domain adaptability and clear reasoning paths.
☆ LanternNet: A Novel Hub-and-Spoke System to Seek and Suppress Spotted Lanternfly Populations
The invasive spotted lanternfly (SLF) poses a significant threat to agriculture and ecosystems, causing widespread damage. Current control methods, such as egg scraping, pesticides, and quarantines, prove labor-intensive, environmentally hazardous, and inadequate for long-term SLF suppression. This research introduces LanternNet, a novel autonomous robotic Hub-and-Spoke system designed for scalable detection and suppression of SLF populations. A central, tree-mimicking hub utilizes a YOLOv8 computer vision model for precise SLF identification. Three specialized robotic spokes perform targeted tasks: pest neutralization, environmental monitoring, and navigation/mapping. Field deployment across multiple infested sites over 5 weeks demonstrated LanternNet's efficacy. Quantitative analysis revealed significant reductions (p < 0.01, paired t-tests) in SLF populations and corresponding improvements in tree health indicators across the majority of test sites. Compared to conventional methods, LanternNet offers substantial cost advantages and improved scalability. Furthermore, the system's adaptability for enhanced autonomy and targeting of other invasive species presents significant potential for broader ecological impact. LanternNet demonstrates the transformative potential of integrating robotics and AI for advanced invasive species management and improved environmental outcomes.
☆ Aligning Large Language Model Agents with Rational and Moral Preferences: A Supervised Fine-Tuning Approach
Understanding how large language model (LLM) agents behave in strategic interactions is essential as these systems increasingly participate autonomously in economically and morally consequential decisions. We evaluate LLM preferences using canonical economic games, finding substantial deviations from human behavior. Models like GPT-4o show excessive cooperation and limited incentive sensitivity, while reasoning models, such as o3-mini, align more consistently with payoff-maximizing strategies. We propose a supervised fine-tuning pipeline that uses synthetic datasets derived from economic reasoning to align LLM agents with economic preferences, focusing on two stylized preference structures. In the first, utility depends only on individual payoffs (homo economicus), while utility also depends on a notion of Kantian universalizability in the second preference structure (homo moralis). We find that fine-tuning based on small datasets shifts LLM agent behavior toward the corresponding economic agent. We further assess the fine-tuned agents' behavior in two applications: Moral dilemmas involving autonomous vehicles and algorithmic pricing in competitive markets. These examples illustrate how different normative objectives embedded via realizations from structured preference structures can influence market and moral outcomes. This work contributes a replicable, cost-efficient, and economically grounded pipeline to align AI preferences using moral-economic principles.
☆ Investigation of Accuracy and Bias in Face Recognition Trained with Synthetic Data
Synthetic data has emerged as a promising alternative for training face recognition (FR) models, offering advantages in scalability, privacy compliance, and potential for bias mitigation. However, critical questions remain on whether both high accuracy and fairness can be achieved with synthetic data. In this work, we evaluate the impact of synthetic data on bias and performance of FR systems. We generate balanced face dataset, FairFaceGen, using two state of the art text-to-image generators, Flux.1-dev and Stable Diffusion v3.5 (SD35), and combine them with several identity augmentation methods, including Arc2Face and four IP-Adapters. By maintaining equal identity count across synthetic and real datasets, we ensure fair comparisons when evaluating FR performance on standard (LFW, AgeDB-30, etc.) and challenging IJB-B/C benchmarks and FR bias on Racial Faces in-the-Wild (RFW) dataset. Our results demonstrate that although synthetic data still lags behind the real datasets in the generalization on IJB-B/C, demographically balanced synthetic datasets, especially those generated with SD35, show potential for bias mitigation. We also observe that the number and quality of intra-class augmentations significantly affect FR accuracy and fairness. These findings provide practical guidelines for constructing fairer FR systems using synthetic data.
comment: Accepted for publication in IEEE International Joint Conference on Biometrics (IJCB), 2025
☆ evalSmarT: An LLM-Based Framework for Evaluating Smart Contract Generated Comments
Smart contract comment generation has gained traction as a means to improve code comprehension and maintainability in blockchain systems. However, evaluating the quality of generated comments remains a challenge. Traditional metrics such as BLEU and ROUGE fail to capture domain-specific nuances, while human evaluation is costly and unscalable. In this paper, we present \texttt{evalSmarT}, a modular and extensible framework that leverages large language models (LLMs) as evaluators. The system supports over 400 evaluator configurations by combining approximately 40 LLMs with 10 prompting strategies. We demonstrate its application in benchmarking comment generation tools and selecting the most informative outputs. Our results show that prompt design significantly impacts alignment with human judgment, and that LLM-based evaluation offers a scalable and semantically rich alternative to existing methods.
comment: 4 pages, 4 tables
☆ How Chain-of-Thought Works? Tracing Information Flow from Decoding, Projection, and Activation
Chain-of-Thought (CoT) prompting significantly enhances model reasoning, yet its internal mechanisms remain poorly understood. We analyze CoT's operational principles by reversely tracing information flow across decoding, projection, and activation phases. Our quantitative analysis suggests that CoT may serve as a decoding space pruner, leveraging answer templates to guide output generation, with higher template adherence strongly correlating with improved performance. Furthermore, we surprisingly find that CoT modulates neuron engagement in a task-dependent manner: reducing neuron activation in open-domain tasks, yet increasing it in closed-domain scenarios. These findings offer a novel mechanistic interpretability framework and critical insights for enabling targeted CoT interventions to design more efficient and robust prompts. We released our code and data at https://anonymous.4open.science/r/cot-D247.
☆ Learning to See Inside Opaque Liquid Containers using Speckle Vibrometry ICCV 2025
Computer vision seeks to infer a wide range of information about objects and events. However, vision systems based on conventional imaging are limited to extracting information only from the visible surfaces of scene objects. For instance, a vision system can detect and identify a Coke can in the scene, but it cannot determine whether the can is full or empty. In this paper, we aim to expand the scope of computer vision to include the novel task of inferring the hidden liquid levels of opaque containers by sensing the tiny vibrations on their surfaces. Our method provides a first-of-a-kind way to inspect the fill level of multiple sealed containers remotely, at once, without needing physical manipulation and manual weighing. First, we propose a novel speckle-based vibration sensing system for simultaneously capturing scene vibrations on a 2D grid of points. We use our system to efficiently and remotely capture a dataset of vibration responses for a variety of everyday liquid containers. Then, we develop a transformer-based approach for analyzing the captured vibrations and classifying the container type and its hidden liquid level at the time of measurement. Our architecture is invariant to the vibration source, yielding correct liquid level estimates for controlled and ambient scene sound sources. Moreover, our model generalizes to unseen container instances within known classes (e.g., training on five Coke cans of a six-pack, testing on a sixth) and fluid levels. We demonstrate our method by recovering liquid levels from various everyday containers.
comment: ICCV 2025
☆ Beyond Listenership: AI-Predicted Interventions Drive Improvements in Maternal Health Behaviours
Automated voice calls with health information are a proven method for disseminating maternal and child health information among beneficiaries and are deployed in several programs around the world. However, these programs often suffer from beneficiary dropoffs and poor engagement. In previous work, through real-world trials, we showed that an AI model, specifically a restless bandit model, could identify beneficiaries who would benefit most from live service call interventions, preventing dropoffs and boosting engagement. However, one key question has remained open so far: does such improved listenership via AI-targeted interventions translate into beneficiaries' improved knowledge and health behaviors? We present a first study that shows not only listenership improvements due to AI interventions, but also simultaneously links these improvements to health behavior changes. Specifically, we demonstrate that AI-scheduled interventions, which enhance listenership, lead to statistically significant improvements in beneficiaries' health behaviors such as taking iron or calcium supplements in the postnatal period, as well as understanding of critical health topics during pregnancy and infancy. This underscores the potential of AI to drive meaningful improvements in maternal and child health.
☆ Industry Insights from Comparing Deep Learning and GBDT Models for E-Commerce Learning-to-Rank RecSys 2025
In e-commerce recommender and search systems, tree-based models, such as LambdaMART, have set a strong baseline for Learning-to-Rank (LTR) tasks. Despite their effectiveness and widespread adoption in industry, the debate continues whether deep neural networks (DNNs) can outperform traditional tree-based models in this domain. To contribute to this discussion, we systematically benchmark DNNs against our production-grade LambdaMART model. We evaluate multiple DNN architectures and loss functions on a proprietary dataset from OTTO and validate our findings through an 8-week online A/B test. The results show that a simple DNN architecture outperforms a strong tree-based baseline in terms of total clicks and revenue, while achieving parity in total units sold.
comment: This work was accepted for publication in the 19th ACM Conference on Recommender Systems (RecSys 2025). The final published version will be available at the ACM Digital Library
☆ AR-LIF: Adaptive reset leaky-integrate and fire neuron for spiking neural networks
Spiking neural networks possess the advantage of low energy consumption due to their event-driven nature. Compared with binary spike outputs, their inherent floating-point dynamics are more worthy of attention. The threshold level and reset mode of neurons play a crucial role in determining the number and timing of spikes. The existing hard reset method causes information loss, while the improved soft reset method adopts a uniform treatment for neurons. In response to this, this paper designs an adaptive reset neuron, establishing the correlation between input, output and reset, and integrating a simple yet effective threshold adjustment strategy. It achieves excellent performance on various datasets while maintaining the advantage of low energy consumption.
☆ Regularizing Subspace Redundancy of Low-Rank Adaptation
Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.
comment: 10 pages, 4 figures, Accepted by ACMMM2025
☆ Multi-Masked Querying Network for Robust Emotion Recognition from Incomplete Multi-Modal Physiological Signals MICCAI2025
Emotion recognition from physiological data is crucial for mental health assessment, yet it faces two significant challenges: incomplete multi-modal signals and interference from body movements and artifacts. This paper presents a novel Multi-Masked Querying Network (MMQ-Net) to address these issues by integrating multiple querying mechanisms into a unified framework. Specifically, it uses modality queries to reconstruct missing data from incomplete signals, category queries to focus on emotional state features, and interference queries to separate relevant information from noise. Extensive experiment results demonstrate the superior emotion recognition performance of MMQ-Net compared to existing approaches, particularly under high levels of data incompleteness.
comment: MICCAI2025
☆ Learning the Value Systems of Societies from Preferences
Aligning AI systems with human values and the value-based preferences of various stakeholders (their value systems) is key in ethical AI. In value-aware AI systems, decision-making draws upon explicit computational representations of individual values (groundings) and their aggregation into value systems. As these are notoriously difficult to elicit and calibrate manually, value learning approaches aim to automatically derive computational models of an agent's values and value system from demonstrations of human behaviour. Nonetheless, social science and humanities literature suggest that it is more adequate to conceive the value system of a society as a set of value systems of different groups, rather than as the simple aggregation of individual value systems. Accordingly, here we formalize the problem of learning the value systems of societies and propose a method to address it based on heuristic deep clustering. The method learns socially shared value groundings and a set of diverse value systems representing a given society by observing qualitative value-based preferences from a sample of agents. We evaluate the proposal in a use case with real data about travelling decisions.
comment: Full version of publication under the same accepted at ECAI 2025 conference (Submission 6755). 8 pages + 2 supplementary material
☆ Prostate Cancer Classification Using Multimodal Feature Fusion and Explainable AI
Prostate cancer, the second most prevalent male malignancy, requires advanced diagnostic tools. We propose an explainable AI system combining BERT (for textual clinical notes) and Random Forest (for numerical lab data) through a novel multimodal fusion strategy, achieving superior classification performance on PLCO-NIH dataset (98% accuracy, 99% AUC). While multimodal fusion is established, our work demonstrates that a simple yet interpretable BERT+RF pipeline delivers clinically significant improvements - particularly for intermediate cancer stages (Class 2/3 recall: 0.900 combined vs 0.824 numerical/0.725 textual). SHAP analysis provides transparent feature importance rankings, while ablation studies prove textual features' complementary value. This accessible approach offers hospitals a balance of high performance (F1=89%), computational efficiency, and clinical interpretability - addressing critical needs in prostate cancer diagnostics.
☆ Algorithmic Fairness: A Runtime Perspective
Fairness in AI is traditionally studied as a static property evaluated once, over a fixed dataset. However, real-world AI systems operate sequentially, with outcomes and environments evolving over time. This paper proposes a framework for analysing fairness as a runtime property. Using a minimal yet expressive model based on sequences of coin tosses with possibly evolving biases, we study the problems of monitoring and enforcing fairness expressed in either toss outcomes or coin biases. Since there is no one-size-fits-all solution for either problem, we provide a summary of monitoring and enforcement strategies, parametrised by environment dynamics, prediction horizon, and confidence thresholds. For both problems, we present general results under simple or minimal assumptions. We survey existing solutions for the monitoring problem for Markovian and additive dynamics, and existing solutions for the enforcement problem in static settings with known dynamics.
comment: To appear in RV 2025
☆ Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
comment: 9 pages, 9 figures. Jake Thomas served as Editor for this manuscript
☆ A General Framework for Dynamic MAPF using Multi-Shot ASP and Tunnels
MAPF problem aims to find plans for multiple agents in an environment within a given time, such that the agents do not collide with each other or obstacles. Motivated by the execution and monitoring of these plans, we study Dynamic MAPF (D-MAPF) problem, which allows changes such as agents entering/leaving the environment or obstacles being removed/moved. Considering the requirements of real-world applications in warehouses with the presence of humans, we introduce 1) a general definition for D-MAPF (applicable to variations of D-MAPF), 2) a new framework to solve D-MAPF (utilizing multi-shot computation, and allowing different methods to solve D-MAPF), and 3) a new ASP-based method to solve D-MAPF (combining advantages of replanning and repairing methods, with a novel concept of tunnels to specify where agents can move). We have illustrated the strengths and weaknesses of this method by experimental evaluations, from the perspectives of computational performance and quality of solutions.
☆ A Multimodal Architecture for Endpoint Position Prediction in Team-based Multiplayer Games
Understanding and predicting player movement in multiplayer games is crucial for achieving use cases such as player-mimicking bot navigation, preemptive bot control, strategy recommendation, and real-time player behavior analytics. However, the complex environments allow for a high degree of navigational freedom, and the interactions and team-play between players require models that make effective use of the available heterogeneous input data. This paper presents a multimodal architecture for predicting future player locations on a dynamic time horizon, using a U-Net-based approach for calculating endpoint location probability heatmaps, conditioned using a multimodal feature encoder. The application of a multi-head attention mechanism for different groups of features allows for communication between agents. In doing so, the architecture makes efficient use of the multimodal game state including image inputs, numerical and categorical features, as well as dynamic game data. Consequently, the presented technique lays the foundation for various downstream tasks that rely on future player positions such as the creation of player-predictive bot behavior or player anomaly detection.
☆ MIMII-Agent: Leveraging LLMs with Function Calling for Relative Evaluation of Anomalous Sound Detection
This paper proposes a method for generating machine-type-specific anomalies to evaluate the relative performance of unsupervised anomalous sound detection (UASD) systems across different machine types, even in the absence of real anomaly sound data. Conventional keyword-based data augmentation methods often produce unrealistic sounds due to their reliance on manually defined labels, limiting scalability as machine types and anomaly patterns diversify. Advanced audio generative models, such as MIMII-Gen, show promise but typically depend on anomalous training data, making them less effective when diverse anomalous examples are unavailable. To address these limitations, we propose a novel synthesis approach leveraging large language models (LLMs) to interpret textual descriptions of faults and automatically select audio transformation functions, converting normal machine sounds into diverse and plausible anomalous sounds. We validate this approach by evaluating a UASD system trained only on normal sounds from five machine types, using both real and synthetic anomaly data. Experimental results reveal consistent trends in relative detection difficulty across machine types between synthetic and real anomalies. This finding supports our hypothesis and highlights the effectiveness of the proposed LLM-based synthesis approach for relative evaluation of UASD systems.
☆ Hot-Swap MarkBoard: An Efficient Black-box Watermarking Approach for Large-scale Model Distribution
Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific $n$-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.
☆ Ontology-Enhanced Knowledge Graph Completion using Large Language Models
Large Language Models (LLMs) have been extensively adopted in Knowledge Graph Completion (KGC), showcasing significant research advancements. However, as black-box models driven by deep neural architectures, current LLM-based KGC methods rely on implicit knowledge representation with parallel propagation of erroneous knowledge, thereby hindering their ability to produce conclusive and decisive reasoning outcomes. We aim to integrate neural-perceptual structural information with ontological knowledge, leveraging the powerful capabilities of LLMs to achieve a deeper understanding of the intrinsic logic of the knowledge. We propose an ontology enhanced KGC method using LLMs -- OL-KGC. It first leverages neural perceptual mechanisms to effectively embed structural information into the textual space, and then uses an automated extraction algorithm to retrieve ontological knowledge from the knowledge graphs (KGs) that needs to be completed, which is further transformed into a textual format comprehensible to LLMs for providing logic guidance. We conducted extensive experiments on three widely-used benchmarks -- FB15K-237, UMLS and WN18RR. The experimental results demonstrate that OL-KGC significantly outperforms existing mainstream KGC methods across multiple evaluation metrics, achieving state-of-the-art performance.
☆ Adaptive Fuzzy Time Series Forecasting via Partially Asymmetric Convolution and Sub-Sliding Window Fusion
At present, state-of-the-art forecasting models are short of the ability to capture spatio-temporal dependency and synthesize global information at the stage of learning. To address this issue, in this paper, through the adaptive fuzzified construction of temporal data, we propose a novel convolutional architecture with partially asymmetric design based on the scheme of sliding window to realize accurate time series forecasting. First, the construction strategy of traditional fuzzy time series is improved to further extract short and long term temporal interrelation, which enables every time node to automatically possess corresponding global information and inner relationships among them in a restricted sliding window and the process does not require human involvement. Second, a bilateral Atrous algorithm is devised to reduce calculation demand of the proposed model without sacrificing global characteristics of elements. And it also allows the model to avoid processing redundant information. Third, after the transformation of time series, a partially asymmetric convolutional architecture is designed to more flexibly mine data features by filters in different directions on feature maps, which gives the convolutional neural network (CNN) the ability to construct sub-windows within existing sliding windows to model at a more fine-grained level. And after obtaining the time series information at different levels, the multi-scale features from different sub-windows will be sent to the corresponding network layer for time series information fusion. Compared with other competitive modern models, the proposed method achieves state-of-the-art results on most of popular time series datasets, which is fully verified by the experimental results.
☆ TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
Controllable Video-to-Music Generation with Multiple Time-Varying Conditions
Music enhances video narratives and emotions, driving demand for automatic video-to-music (V2M) generation. However, existing V2M methods relying solely on visual features or supplementary textual inputs generate music in a black-box manner, often failing to meet user expectations. To address this challenge, we propose a novel multi-condition guided V2M generation framework that incorporates multiple time-varying conditions for enhanced control over music generation. Our method uses a two-stage training strategy that enables learning of V2M fundamentals and audiovisual temporal synchronization while meeting users' needs for multi-condition control. In the first stage, we introduce a fine-grained feature selection module and a progressive temporal alignment attention mechanism to ensure flexible feature alignment. For the second stage, we develop a dynamic conditional fusion module and a control-guided decoder module to integrate multiple conditions and accurately guide the music composition process. Extensive experiments demonstrate that our method outperforms existing V2M pipelines in both subjective and objective evaluations, significantly enhancing control and alignment with user expectations.
comment: Accepted by the 33rd ACM International Conference on Multimedia (ACMMM 2025). The project page is available at https://kita-wjx.github.io/MCV2M/
☆ Lightweight Remote Sensing Scene Classification on Edge Devices via Knowledge Distillation and Early-exit
As the development of lightweight deep learning algorithms, various deep neural network (DNN) models have been proposed for the remote sensing scene classification (RSSC) application. However, it is still challenging for these RSSC models to achieve optimal performance among model accuracy, inference latency, and energy consumption on resource-constrained edge devices. In this paper, we propose a lightweight RSSC framework, which includes a distilled global filter network (GFNet) model and an early-exit mechanism designed for edge devices to achieve state-of-the-art performance. Specifically, we first apply frequency domain distillation on the GFNet model to reduce model size. Then we design a dynamic early-exit model tailored for DNN models on edge devices to further improve model inference efficiency. We evaluate our E3C model on three edge devices across four datasets. Extensive experimental results show that it achieves an average of 1.3x speedup on model inference and over 40% improvement on energy efficiency, while maintaining high classification accuracy.
comment: 9 pages, 5 figures, to be published in ACM Multimedia 2025
☆ Complementarity-driven Representation Learning for Multi-modal Knowledge Graph Completion
Multi-modal Knowledge Graph Completion (MMKGC) aims to uncover hidden world knowledge in multimodal knowledge graphs by leveraging both multimodal and structural entity information. However, the inherent imbalance in multimodal knowledge graphs, where modality distributions vary across entities, poses challenges in utilizing additional modality data for robust entity representation. Existing MMKGC methods typically rely on attention or gate-based fusion mechanisms but overlook complementarity contained in multi-modal data. In this paper, we propose a novel framework named Mixture of Complementary Modality Experts (MoCME), which consists of a Complementarity-guided Modality Knowledge Fusion (CMKF) module and an Entropy-guided Negative Sampling (EGNS) mechanism. The CMKF module exploits both intra-modal and inter-modal complementarity to fuse multi-view and multi-modal embeddings, enhancing representations of entities. Additionally, we introduce an Entropy-guided Negative Sampling mechanism to dynamically prioritize informative and uncertain negative samples to enhance training effectiveness and model robustness. Extensive experiments on five benchmark datasets demonstrate that our MoCME achieves state-of-the-art performance, surpassing existing approaches.
☆ Enhancing Large Multimodal Models with Adaptive Sparsity and KV Cache Compression
Large multimodal models (LMMs) have advanced significantly by integrating visual encoders with extensive language models, enabling robust reasoning capabilities. However, compressing LMMs for deployment on edge devices remains a critical challenge. In this work, we propose an adaptive search algorithm that optimizes sparsity and KV cache compression to enhance LMM efficiency. Utilizing the Tree-structured Parzen Estimator, our method dynamically adjusts pruning ratios and KV cache quantization bandwidth across different LMM layers, using model performance as the optimization objective. This approach uniquely combines pruning with key-value cache quantization and incorporates a fast pruning technique that eliminates the need for additional fine-tuning or weight adjustments, achieving efficient compression without compromising accuracy. Comprehensive evaluations on benchmark datasets, including LLaVA-1.5 7B and 13B, demonstrate our method superiority over state-of-the-art techniques such as SparseGPT and Wanda across various compression levels. Notably, our framework automatic allocation of KV cache compression resources sets a new standard in LMM optimization, delivering memory efficiency without sacrificing much performance.
comment: 6 pages
☆ Beyond Interactions: Node-Level Graph Generation for Knowledge-Free Augmentation in Recommender Systems
Recent advances in recommender systems rely on external resources such as knowledge graphs or large language models to enhance recommendations, which limit applicability in real-world settings due to data dependency and computational overhead. Although knowledge-free models are able to bolster recommendations by direct edge operations as well, the absence of augmentation primitives drives them to fall short in bridging semantic and structural gaps as high-quality paradigm substitutes. Unlike existing diffusion-based works that remodel user-item interactions, this work proposes NodeDiffRec, a pioneering knowledge-free augmentation framework that enables fine-grained node-level graph generation for recommendations and expands the scope of restricted augmentation primitives via diffusion. By synthesizing pseudo-items and corresponding interactions that align with the underlying distribution for injection, and further refining user preferences through a denoising preference modeling process, NodeDiffRec dramatically enhances both semantic diversity and structural connectivity without external knowledge. Extensive experiments across diverse datasets and recommendation algorithms demonstrate the superiority of NodeDiffRec, achieving State-of-the-Art (SOTA) performance, with maximum average performance improvement 98.6% in Recall@5 and 84.0% in NDCG@5 over selected baselines.
☆ Implicit Spatiotemporal Bandwidth Enhancement Filter by Sine-activated Deep Learning Model for Fast 3D Photoacoustic Tomography
3D photoacoustic tomography (3D-PAT) using high-frequency hemispherical transducers offers near-omnidirectional reception and enhanced sensitivity to the finer structural details encoded in the high-frequency components of the broadband photoacoustic (PA) signal. However, practical constraints such as limited number of channels with bandlimited sampling rate often result in sparse and bandlimited sensors that degrade image quality. To address this, we revisit the 2D deep learning (DL) approach applied directly to sensor-wise PA radio-frequency (PARF) data. Specifically, we introduce sine activation into the DL model to restore the broadband nature of PARF signals given the observed band-limited and high-frequency PARF data. Given the scarcity of 3D training data, we employ simplified training strategies by simulating random spherical absorbers. This combination of sine-activated model and randomized training is designed to emphasize bandwidth learning over dataset memorization. Our model was evaluated on a leaf skeleton phantom, a micro-CT-verified 3D spiral phantom and in-vivo human palm vasculature. The results showed that the proposed training mechanism on sine-activated model was well-generalized across the different tests by effectively increasing the sensor density and recovering the spatiotemporal bandwidth. Qualitatively, the sine-activated model uniquely enhanced high-frequency content that produces clearer vascular structure with fewer artefacts. Quantitatively, the sine-activated model exhibits full bandwidth at -12 dB spectrum and significantly higher contrast-to-noise ratio with minimal loss of structural similarity index. Lastly, we optimized our approach to enable fast enhanced 3D-PAT at 2 volumes-per-second for better practical imaging of a free-moving targets.
comment: 14 pages, 13 figures. This work has been submitted to the IEEE for possible publication
☆ DAG-AFL:Directed Acyclic Graph-based Asynchronous Federated Learning
Due to the distributed nature of federated learning (FL), the vulnerability of the global model and the need for coordination among many client devices pose significant challenges. As a promising decentralized, scalable and secure solution, blockchain-based FL methods have attracted widespread attention in recent years. However, traditional consensus mechanisms designed for Proof of Work (PoW) similar to blockchain incur substantial resource consumption and compromise the efficiency of FL, particularly when participating devices are wireless and resource-limited. To address asynchronous client participation and data heterogeneity in FL, while limiting the additional resource overhead introduced by blockchain, we propose the Directed Acyclic Graph-based Asynchronous Federated Learning (DAG-AFL) framework. We develop a tip selection algorithm that considers temporal freshness, node reachability and model accuracy, with a DAG-based trusted verification strategy. Extensive experiments on 3 benchmarking datasets against eight state-of-the-art approaches demonstrate that DAG-AFL significantly improves training efficiency and model accuracy by 22.7% and 6.5% on average, respectively.
comment: 6 pages, IEEE International Conference on Multimedia & Expo 2025 conference paper
☆ Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/
comment: Accepted for Interspeech 2025 Project Page: https://cau-irislab.github.io/interspeech25/
☆ Unlearning of Knowledge Graph Embedding via Preference Optimization
Existing knowledge graphs (KGs) inevitably contain outdated or erroneous knowledge that needs to be removed from knowledge graph embedding (KGE) models. To address this challenge, knowledge unlearning can be applied to eliminate specific information while preserving the integrity of the remaining knowledge in KGs. Existing unlearning methods can generally be categorized into exact unlearning and approximate unlearning. However, exact unlearning requires high training costs while approximate unlearning faces two issues when applied to KGs due to the inherent connectivity of triples: (1) It fails to fully remove targeted information, as forgetting triples can still be inferred from remaining ones. (2) It focuses on local data for specific removal, which weakens the remaining knowledge in the forgetting boundary. To address these issues, we propose GraphDPO, a novel approximate unlearning framework based on direct preference optimization (DPO). Firstly, to effectively remove forgetting triples, we reframe unlearning as a preference optimization problem, where the model is trained by DPO to prefer reconstructed alternatives over the original forgetting triples. This formulation penalizes reliance on forgettable knowledge, mitigating incomplete forgetting caused by KG connectivity. Moreover, we introduce an out-boundary sampling strategy to construct preference pairs with minimal semantic overlap, weakening the connection between forgetting and retained knowledge. Secondly, to preserve boundary knowledge, we introduce a boundary recall mechanism that replays and distills relevant information both within and across time steps. We construct eight unlearning datasets across four popular KGs with varying unlearning rates. Experiments show that GraphDPO outperforms state-of-the-art baselines by up to 10.1% in MRR_Avg and 14.0% in MRR_F1.
☆ MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization ICCV 2025
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.
comment: Accepted for ICCV 2025 Project Page: https://cau-irislab.github.io/ICCV25-MemoryTalker/
☆ Enhancing Hallucination Detection via Future Context
Large Language Models (LLMs) are widely used to generate plausible text on online platforms, without revealing the generation process. As users increasingly encounter such black-box outputs, detecting hallucinations has become a critical challenge. To address this challenge, we focus on developing a hallucination detection framework for black-box generators. Motivated by the observation that hallucinations, once introduced, tend to persist, we sample future contexts. The sampled future contexts provide valuable clues for hallucination detection and can be effectively integrated with various sampling-based methods. We extensively demonstrate performance improvements across multiple methods using our proposed sampling approach.
☆ MeLA: A Metacognitive LLM-Driven Architecture for Automatic Heuristic Design
This paper introduces MeLA, a Metacognitive LLM-Driven Architecture that presents a new paradigm for Automatic Heuristic Design (AHD). Traditional evolutionary methods operate directly on heuristic code; in contrast, MeLA evolves the instructional prompts used to guide a Large Language Model (LLM) in generating these heuristics. This process of "prompt evolution" is driven by a novel metacognitive framework where the system analyzes performance feedback to systematically refine its generative strategy. MeLA's architecture integrates a problem analyzer to construct an initial strategic prompt, an error diagnosis system to repair faulty code, and a metacognitive search engine that iteratively optimizes the prompt based on heuristic effectiveness. In comprehensive experiments across both benchmark and real-world problems, MeLA consistently generates more effective and robust heuristics, significantly outperforming state-of-the-art methods. Ultimately, this research demonstrates the profound potential of using cognitive science as a blueprint for AI architecture, revealing that by enabling an LLM to metacognitively regulate its problem-solving process, we unlock a more robust and interpretable path to AHD.
Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2
☆ Enhancing Spatial Reasoning through Visual and Textual Thinking
The spatial reasoning task aims to reason about the spatial relationships in 2D and 3D space, which is a fundamental capability for Visual Question Answering (VQA) and robotics. Although vision language models (VLMs) have developed rapidly in recent years, they are still struggling with the spatial reasoning task. In this paper, we introduce a method that can enhance Spatial reasoning through Visual and Textual thinking Simultaneously (SpatialVTS). In the spatial visual thinking phase, our model is trained to generate location-related specific tokens of essential targets automatically. Not only are the objects mentioned in the problem addressed, but also the potential objects related to the reasoning are considered. During the spatial textual thinking phase, Our model conducts long-term thinking based on visual cues and dialogues, gradually inferring the answers to spatial reasoning problems. To effectively support the model's training, we perform manual corrections to the existing spatial reasoning dataset, eliminating numerous incorrect labels resulting from automatic annotation, restructuring the data input format to enhance generalization ability, and developing thinking processes with logical reasoning details. Without introducing additional information (such as masks or depth), our model's overall average level in several spatial understanding tasks has significantly improved compared with other models.
☆ Security Challenges in AI Agent Deployment: Insights from a Large Scale Public Competition
Recent advances have enabled LLM-powered AI agents to autonomously execute complex tasks by combining language model reasoning with tools, memory, and web access. But can these systems be trusted to follow deployment policies in realistic environments, especially under attack? To investigate, we ran the largest public red-teaming competition to date, targeting 22 frontier AI agents across 44 realistic deployment scenarios. Participants submitted 1.8 million prompt-injection attacks, with over 60,000 successfully eliciting policy violations such as unauthorized data access, illicit financial actions, and regulatory noncompliance. We use these results to build the Agent Red Teaming (ART) benchmark - a curated set of high-impact attacks - and evaluate it across 19 state-of-the-art models. Nearly all agents exhibit policy violations for most behaviors within 10-100 queries, with high attack transferability across models and tasks. Importantly, we find limited correlation between agent robustness and model size, capability, or inference-time compute, suggesting that additional defenses are needed against adversarial misuse. Our findings highlight critical and persistent vulnerabilities in today's AI agents. By releasing the ART benchmark and accompanying evaluation framework, we aim to support more rigorous security assessment and drive progress toward safer agent deployment.
☆ AQUA: A Large Language Model for Aquaculture & Fisheries
Aquaculture plays a vital role in global food security and coastal economies by providing sustainable protein sources. As the industry expands to meet rising demand, it faces growing challenges such as disease outbreaks, inefficient feeding practices, rising labor costs, logistical inefficiencies, and critical hatchery issues, including high mortality rates and poor water quality control. Although artificial intelligence has made significant progress, existing machine learning methods fall short of addressing the domain-specific complexities of aquaculture. To bridge this gap, we introduce AQUA, the first large language model (LLM) tailored for aquaculture, designed to support farmers, researchers, and industry practitioners. Central to this effort is AQUADAPT (Data Acquisition, Processing and Tuning), an Agentic Framework for generating and refining high-quality synthetic data using a combination of expert knowledge, largescale language models, and automated evaluation techniques. Our work lays the foundation for LLM-driven innovations in aquaculture research, advisory systems, and decision-making tools.
☆ LLMs-guided adaptive compensator: Bringing Adaptivity to Automatic Control Systems with Large Language Models
With rapid advances in code generation, reasoning, and problem-solving, Large Language Models (LLMs) are increasingly applied in robotics. Most existing work focuses on high-level tasks such as task decomposition. A few studies have explored the use of LLMs in feedback controller design; however, these efforts are restricted to overly simplified systems, fixed-structure gain tuning, and lack real-world validation. To further investigate LLMs in automatic control, this work targets a key subfield: adaptive control. Inspired by the framework of model reference adaptive control (MRAC), we propose an LLM-guided adaptive compensator framework that avoids designing controllers from scratch. Instead, the LLMs are prompted using the discrepancies between an unknown system and a reference system to design a compensator that aligns the response of the unknown system with that of the reference, thereby achieving adaptivity. Experiments evaluate five methods: LLM-guided adaptive compensator, LLM-guided adaptive controller, indirect adaptive control, learning-based adaptive control, and MRAC, on soft and humanoid robots in both simulated and real-world environments. Results show that the LLM-guided adaptive compensator outperforms traditional adaptive controllers and significantly reduces reasoning complexity compared to the LLM-guided adaptive controller. The Lyapunov-based analysis and reasoning-path inspection demonstrate that the LLM-guided adaptive compensator enables a more structured design process by transforming mathematical derivation into a reasoning task, while exhibiting strong generalizability, adaptability, and robustness. This study opens a new direction for applying LLMs in the field of automatic control, offering greater deployability and practicality compared to vision-language models.
☆ DmC: Nearest Neighbor Guidance Diffusion Model for Offline Cross-domain Reinforcement Learning
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes $k$-nearest neighbor ($k$-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
comment: accepted at ECAI 2025
☆ Speaking in Words, Thinking in Logic: A Dual-Process Framework in QA Systems IJCNN
Recent advances in large language models (LLMs) have significantly enhanced question-answering (QA) capabilities, particularly in open-domain contexts. However, in closed-domain scenarios such as education, healthcare, and law, users demand not only accurate answers but also transparent reasoning and explainable decision-making processes. While neural-symbolic (NeSy) frameworks have emerged as a promising solution, leveraging LLMs for natural language understanding and symbolic systems for formal reasoning, existing approaches often rely on large-scale models and exhibit inefficiencies in translating natural language into formal logic representations. To address these limitations, we introduce Text-JEPA (Text-based Joint-Embedding Predictive Architecture), a lightweight yet effective framework for converting natural language into first-order logic (NL2FOL). Drawing inspiration from dual-system cognitive theory, Text-JEPA emulates System 1 by efficiently generating logic representations, while the Z3 solver operates as System 2, enabling robust logical inference. To rigorously evaluate the NL2FOL-to-reasoning pipeline, we propose a comprehensive evaluation framework comprising three custom metrics: conversion score, reasoning score, and Spearman rho score, which collectively capture the quality of logical translation and its downstream impact on reasoning accuracy. Empirical results on domain-specific datasets demonstrate that Text-JEPA achieves competitive performance with significantly lower computational overhead compared to larger LLM-based systems. Our findings highlight the potential of structured, interpretable reasoning frameworks for building efficient and explainable QA systems in specialized domains.
comment: 8 pages, 3 figures. Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025, Workshop on Trustworthiness and Reliability in Neuro-Symbolic AI. https://2025.ijcnn.org
☆ Shapley-Value-Based Graph Sparsification for GNN Inference
Graph sparsification is a key technique for improving inference efficiency in Graph Neural Networks by removing edges with minimal impact on predictions. GNN explainability methods generate local importance scores, which can be aggregated into global scores for graph sparsification. However, many explainability methods produce only non-negative scores, limiting their applicability for sparsification. In contrast, Shapley value based methods assign both positive and negative contributions to node predictions, offering a theoretically robust and fair allocation of importance by evaluating many subsets of graphs. Unlike gradient-based or perturbation-based explainers, Shapley values enable better pruning strategies that preserve influential edges while removing misleading or adversarial connections. Our approach shows that Shapley value-based graph sparsification maintains predictive performance while significantly reducing graph complexity, enhancing both interpretability and efficiency in GNN inference.
comment: 10 pages
☆ STARN-GAT: A Multi-Modal Spatio-Temporal Graph Attention Network for Accident Severity Prediction
Accurate prediction of traffic accident severity is critical for improving road safety, optimizing emergency response strategies, and informing the design of safer transportation infrastructure. However, existing approaches often struggle to effectively model the intricate interdependencies among spatial, temporal, and contextual variables that govern accident outcomes. In this study, we introduce STARN-GAT, a Multi-Modal Spatio-Temporal Graph Attention Network, which leverages adaptive graph construction and modality-aware attention mechanisms to capture these complex relationships. Unlike conventional methods, STARN-GAT integrates road network topology, temporal traffic patterns, and environmental context within a unified attention-based framework. The model is evaluated on the Fatality Analysis Reporting System (FARS) dataset, achieving a Macro F1-score of 85 percent, ROC-AUC of 0.91, and recall of 81 percent for severe incidents. To ensure generalizability within the South Asian context, STARN-GAT is further validated on the ARI-BUET traffic accident dataset, where it attains a Macro F1-score of 0.84, recall of 0.78, and ROC-AUC of 0.89. These results demonstrate the model's effectiveness in identifying high-risk cases and its potential for deployment in real-time, safety-critical traffic management systems. Furthermore, the attention-based architecture enhances interpretability, offering insights into contributing factors and supporting trust in AI-assisted decision-making. Overall, STARN-GAT bridges the gap between advanced graph neural network techniques and practical applications in road safety analytics.
comment: 10 pages
☆ Enhancing QoS in Edge Computing through Federated Layering Techniques: A Pathway to Resilient AI Lifelong Learning Systems
In the context of the rapidly evolving information technology landscape, marked by the advent of 6G communication networks, we face an increased data volume and complexity in network environments. This paper addresses these challenges by focusing on Quality of Service (QoS) in edge computing frameworks. We propose a novel approach to enhance QoS through the development of General Artificial Intelligence Lifelong Learning Systems, with a special emphasis on Federated Layering Techniques (FLT). Our work introduces a federated layering-based small model collaborative mechanism aimed at improving AI models' operational efficiency and response time in environments where resources are limited. This innovative method leverages the strengths of cloud and edge computing, incorporating a negotiation and debate mechanism among small AI models to enhance reasoning and decision-making processes. By integrating model layering techniques with privacy protection measures, our approach ensures the secure transmission of model parameters while maintaining high efficiency in learning and reasoning capabilities. The experimental results demonstrate that our strategy not only enhances learning efficiency and reasoning accuracy but also effectively protects the privacy of edge nodes. This presents a viable solution for achieving resilient large model lifelong learning systems, with a significant improvement in QoS for edge computing environments.
☆ Teaching Language Models To Gather Information Proactively
Large language models (LLMs) are increasingly expected to function as collaborative partners, engaging in back-and-forth dialogue to solve complex, ambiguous problems. However, current LLMs often falter in real-world settings, defaulting to passive responses or narrow clarifications when faced with incomplete or under-specified prompts, falling short of proactively gathering the missing information that is crucial for high-quality solutions. In this work, we introduce a new task paradigm: proactive information gathering, where LLMs must identify gaps in the provided context and strategically elicit implicit user knowledge through targeted questions. To systematically study and train this capability, we design a scalable framework that generates partially specified, real-world tasks, masking key information and simulating authentic ambiguity. Within this setup, our core innovation is a reinforcement finetuning strategy that rewards questions that elicit genuinely new, implicit user information -- such as hidden domain expertise or fine-grained requirements -- that would otherwise remain unspoken. Experiments demonstrate that our trained Qwen-2.5-7B model significantly outperforms o3-mini by 18% on automatic evaluation metrics. More importantly, human evaluation reveals that clarification questions and final outlines generated by our model are favored by human annotators by 42% and 28% respectively. Together, these results highlight the value of proactive clarification in elevating LLMs from passive text generators to genuinely collaborative thought partners.
☆ Efficient Neural Combinatorial Optimization Solver for the Min-max Heterogeneous Capacitated Vehicle Routing Problem
Numerous Neural Combinatorial Optimization (NCO) solvers have been proposed to address Vehicle Routing Problems (VRPs). However, most of these solvers focus exclusively on single-vehicle VRP variants, overlooking the more realistic min-max Heterogeneous Capacitated Vehicle Routing Problem (MMHCVRP), which involves multiple vehicles. Existing MMHCVRP solvers typically select a vehicle and its next node to visit at each decoding step, but often make myopic decoding decisions and overlook key properties of MMHCVRP, including local topological relationships, vehicle permutation invariance, and node symmetry, resulting in suboptimal performance. To better address these limitations, we propose ECHO, an efficient NCO solver. First, ECHO exploits the proposed dual-modality node encoder to capture local topological relationships among nodes. Subsequently, to mitigate myopic decisions, ECHO employs the proposed Parameter-Free Cross-Attention mechanism to prioritize the vehicle selected in the preceding decoding step. Finally, leveraging vehicle permutation invariance and node symmetry, we introduce a tailored data augment strategy for MMHCVRP to stabilize the Reinforcement Learning training process. To assess the performance of ECHO, we conduct extensive experiments. The experimental results demonstrate that ECHO outperforms state-of-the-art NCO solvers across varying numbers of vehicles and nodes, and exhibits well-performing generalization across both scales and distribution patterns. Finally, ablation studies validate the effectiveness of all proposed methods.
☆ Deep Reinforcement Learning-based Cell DTX/DRX Configuration for Network Energy Saving
3GPP Release 18 cell discontinuous transmission and reception (cell DTX/DRX) is an important new network energy saving feature for 5G. As a time-domain technique, it periodically aggregates the user data transmissions in a given duration of time when the traffic load is not heavy, so that the remaining time can be kept silent and advanced sleep modes (ASM) can be enabled to shut down more radio components and save more energy for the cell. However, inevitably the packet delay is increased, as during the silent period no transmission is allowed. In this paper we study how to configure cell DTX/DRX to optimally balance energy saving and packet delay, so that for delay-sensitive traffic maximum energy saving can be achieved while the degradation of quality of service (QoS) is minimized. As the optimal configuration can be different for different network and traffic conditions, the problem is complex and we resort to deep reinforcement learning (DRL) framework to train an AI agent to solve it. Through careful design of 1) the learning algorithm, which implements a deep Q-network (DQN) on a contextual bandit (CB) model, and 2) the reward function, which utilizes a smooth approximation of a theoretically optimal but discontinuous reward function, we are able to train an AI agent that always tries to select the best possible Cell DTX/DRX configuration under any network and traffic conditions. Simulation results show that compared to the case when cell DTX/DRX is not used, our agent can achieve up to ~45% energy saving depending on the traffic load scenario, while always maintaining no more than ~1% QoS degradation.
comment: 7 pages, 7 figures
☆ Optimizing Multi-Tier Supply Chain Ordering with LNN+XGBoost: Mitigating the Bullwhip Effect
Supply chain management faces significant challenges, including demand fluctuations, inventory imbalances, and amplified upstream order variability due to the bullwhip effect. Traditional methods, such as simple moving averages, struggle to address dynamic market conditions. Emerging machine learning techniques, including LSTM, reinforcement learning, and XGBoost, offer potential solutions but are limited by computational complexity, training inefficiencies, or constraints in time-series modeling. Liquid Neural Networks, inspired by dynamic biological systems, present a promising alternative due to their adaptability, low computational cost, and robustness to noise, making them suitable for real-time decision-making and edge computing. Despite their success in applications like autonomous vehicles and medical monitoring, their potential in supply chain optimization remains underexplored. This study introduces a hybrid LNN and XGBoost model to optimize ordering strategies in multi-tier supply chains. By leveraging LNN's dynamic feature extraction and XGBoost's global optimization capabilities, the model aims to mitigate the bullwhip effect and enhance cumulative profitability. The research investigates how local and global synergies within the hybrid framework address the dual demands of adaptability and efficiency in SCM. The proposed approach fills a critical gap in existing methodologies, offering an innovative solution for dynamic and efficient supply chain management.
☆ MAAD: Automate Software Architecture Design through Knowledge-Driven Multi-Agent Collaboration
Software architecture design is a critical, yet inherently complex and knowledge-intensive phase of software development. It requires deep domain expertise, development experience, architectural knowledge, careful trade-offs among competing quality attributes, and the ability to adapt to evolving requirements. Traditionally, this process is time-consuming and labor-intensive, and relies heavily on architects, often resulting in limited design alternatives, especially under the pressures of agile development. While Large Language Model (LLM)-based agents have shown promising performance across various SE tasks, their application to architecture design remains relatively scarce and requires more exploration, particularly in light of diverse domain knowledge and complex decision-making. To address the challenges, we proposed MAAD (Multi-Agent Architecture Design), an automated framework that employs a knowledge-driven Multi-Agent System (MAS) for architecture design. MAAD orchestrates four specialized agents (i.e., Analyst, Modeler, Designer and Evaluator) to collaboratively interpret requirements specifications and produce architectural blueprints enriched with quality attributes-based evaluation reports. We then evaluated MAAD through a case study and comparative experiments against MetaGPT, a state-of-the-art MAS baseline. Our results show that MAAD's superiority lies in generating comprehensive architectural components and delivering insightful and structured architecture evaluation reports. Feedback from industrial architects across 11 requirements specifications further reinforces MAAD's practical usability. We finally explored the performance of the MAAD framework with three LLMs (GPT-4o, DeepSeek-R1, and Llama 3.3) and found that GPT-4o exhibits better performance in producing architecture design, emphasizing the importance of LLM selection in MAS-driven architecture design.
comment: 23 pages, 8 images, 1 table, Manuscript submitted to a journal (2025)
☆ ProMemAssist: Exploring Timely Proactive Assistance Through Working Memory Modeling in Multi-Modal Wearable Devices
Wearable AI systems aim to provide timely assistance in daily life, but existing approaches often rely on user initiation or predefined task knowledge, neglecting users' current mental states. We introduce ProMemAssist, a smart glasses system that models a user's working memory (WM) in real-time using multi-modal sensor signals. Grounded in cognitive theories of WM, our system represents perceived information as memory items and episodes with encoding mechanisms, such as displacement and interference. This WM model informs a timing predictor that balances the value of assistance with the cost of interruption. In a user study with 12 participants completing cognitively demanding tasks, ProMemAssist delivered more selective assistance and received higher engagement compared to an LLM baseline system. Qualitative feedback highlights the benefits of WM modeling for nuanced, context-sensitive support, offering design implications for more attentive and user-aware proactive agents.
comment: Accepted to UIST'25
☆ Evaluating Deep Learning Models for African Wildlife Image Classification: From DenseNet to Vision Transformers
Wildlife populations in Africa face severe threats, with vertebrate numbers declining by over 65% in the past five decades. In response, image classification using deep learning has emerged as a promising tool for biodiversity monitoring and conservation. This paper presents a comparative study of deep learning models for automatically classifying African wildlife images, focusing on transfer learning with frozen feature extractors. Using a public dataset of four species: buffalo, elephant, rhinoceros, and zebra; we evaluate the performance of DenseNet-201, ResNet-152, EfficientNet-B4, and Vision Transformer ViT-H/14. DenseNet-201 achieved the best performance among convolutional networks (67% accuracy), while ViT-H/14 achieved the highest overall accuracy (99%), but with significantly higher computational cost, raising deployment concerns. Our experiments highlight the trade-offs between accuracy, resource requirements, and deployability. The best-performing CNN (DenseNet-201) was integrated into a Hugging Face Gradio Space for real-time field use, demonstrating the feasibility of deploying lightweight models in conservation settings. This work contributes to African-grounded AI research by offering practical insights into model selection, dataset preparation, and responsible deployment of deep learning tools for wildlife conservation.
comment: Accepted as a camera-ready paper at Deep Learning Indaba 2025 (Kigali, Rwanda)
☆ Efficacy of AI RAG Tools for Complex Information Extraction and Data Annotation Tasks: A Case Study Using Banks Public Disclosures
We utilize a within-subjects design with randomized task assignments to understand the effectiveness of using an AI retrieval augmented generation (RAG) tool to assist analysts with an information extraction and data annotation task. We replicate an existing, challenging real-world annotation task with complex multi-part criteria on a set of thousands of pages of public disclosure documents from global systemically important banks (GSIBs) with heterogeneous and incomplete information content. We test two treatment conditions. First, a "naive" AI use condition in which annotators use only the tool and must accept the first answer they are given. And second, an "interactive" AI treatment condition where annotators use the tool interactively, and use their judgement to follow-up with additional information if necessary. Compared to the human-only baseline, the use of the AI tool accelerated task execution by up to a factor of 10 and enhanced task accuracy, particularly in the interactive condition. We find that when extrapolated to the full task, these methods could save up to 268 hours compared to the human-only approach. Additionally, our findings suggest that annotator skill, not just with the subject matter domain, but also with AI tools, is a factor in both the accuracy and speed of task performance.
☆ Games Agents Play: Towards Transactional Analysis in LLM-based Multi-Agent Systems
Multi-Agent Systems (MAS) are increasingly used to simulate social interactions, but most of the frameworks miss the underlying cognitive complexity of human behavior. In this paper, we introduce Trans-ACT (Transactional Analysis Cognitive Toolkit), an approach embedding Transactional Analysis (TA) principles into MAS to generate agents with realistic psychological dynamics. Trans-ACT integrates the Parent, Adult, and Child ego states into an agent's cognitive architecture. Each ego state retrieves context-specific memories and uses them to shape response to new situations. The final answer is chosen according to the underlying life script of the agent. Our experimental simulation, which reproduces the Stupid game scenario, demonstrates that agents grounded in cognitive and TA principles produce deeper and context-aware interactions. Looking ahead, our research opens a new way for a variety of applications, including conflict resolution, educational support, and advanced social psychology studies.
comment: Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci 2025), https://escholarship.org/uc/item/7gg6j165
☆ StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation
Extracting structured information from text, such as key-value pairs that could augment tabular data, is quite useful in many enterprise use cases. Although large language models (LLMs) have enabled numerous automated pipelines for converting natural language into structured formats, there is still a lack of benchmarks for evaluating their extraction quality, especially in specific domains or focused documents specific to a given organization. Building such benchmarks by manual annotations is labour-intensive and limits the size and scalability of the benchmarks. In this work, we present StructText, an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text using existing tabular data. It uses available tabular data as structured ground truth, and follows a two-stage ``plan-then-execute'' pipeline to synthetically generate corresponding natural-language text. To ensure alignment between text and structured source, we introduce a multi-dimensional evaluation strategy that combines (a) LLM-based judgments on factuality, hallucination, and coherence and (b) objective extraction metrics measuring numeric and temporal accuracy. We evaluated the proposed method on 71,539 examples across 49 datasets. Results reveal that while LLMs achieve strong factual accuracy and avoid hallucination, they struggle with narrative coherence in producing extractable text. Notably, models presume numerical and temporal information with high fidelity yet this information becomes embedded in narratives that resist automated extraction. We release a framework, including datasets, evaluation tools, and baseline extraction systems, to support continued research.
comment: Data available: https://huggingface.co/datasets/ibm-research/struct-text and code available at: https://github.com/ibm/struct-text
☆ Semantic Numeration Systems as Dynamical Systems
The foundational concepts of semantic numeration systems theory are briefly outlined. The action of cardinal semantic operators unfolds over a set of cardinal abstract entities belonging to the cardinal semantic multeity. The cardinal abstract object (CAO) formed by them in a certain connectivity topology is proposed to be considered as a linear discrete dynamical system with nonlinear control. Under the assumption of ideal observability, the CAO state equations are provided for both stationary and non-stationary cases. The fundamental role of the configuration matrix, which combines information about the types of cardinal semantic operators in the CAO, their parameters and topology of connectivity, is demonstrated.
comment: 11 pages, 6 figures
☆ Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
Materials used in real clothing exhibit remarkable complexity and spatial variation due to common processes such as stitching, hemming, dyeing, printing, padding, and bonding. Simulating these materials, for instance using finite element methods, is often computationally demanding and slow. Worse, such methods can suffer from numerical artifacts called ``membrane locking'' that makes cloth appear artificially stiff. Here we propose a general framework, called Mass-Spring Net, for learning a simple yet efficient surrogate model that captures the effects of these complex materials using only motion observations. The cloth is discretized into a mass-spring network with unknown material parameters that are learned directly from the motion data, using a novel force-and-impulse loss function. Our approach demonstrates the ability to accurately model spatially varying material properties from a variety of data sources, and immunity to membrane locking which plagues FEM-based simulations. Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios.
☆ Structured Relevance Assessment for Robust Retrieval-Augmented Language Models
Retrieval-Augmented Language Models (RALMs) face significant challenges in reducing factual errors, particularly in document relevance evaluation and knowledge integration. We introduce a framework for structured relevance assessment that enhances RALM robustness through improved document evaluation, balanced intrinsic and external knowledge integration, and effective handling of unanswerable queries. Our approach employs a multi-dimensional scoring system that considers both semantic matching and source reliability, utilizing embedding-based relevance scoring and synthetic training data with mixed-quality documents. We implement specialized benchmarking on niche topics, a knowledge integration mechanism, and an "unknown" response protocol for queries with insufficient knowledge coverage. Preliminary evaluations demonstrate significant reductions in hallucination rates and improved transparency in reasoning processes. Our framework advances the development of more reliable question-answering systems capable of operating effectively in dynamic environments with variable data quality. While challenges persist in accurately distinguishing credible information and balancing system latency with thoroughness, this work represents a meaningful step toward enhancing RALM reliability.
comment: International Conference on ICT for Sustainable Development (ICT4SD)
☆ Curiosity by Design: An LLM-based Coding Assistant Asking Clarification Questions
Large Language Models (LLMs) are increasingly used as coding assistants. However, the ambiguity of the developer's prompt often leads to incorrect code generation, as current models struggle to infer user intent without extensive prompt engineering or external context. This work aims to build an LLM-based coding assistant that mimics the human code review process by asking clarification questions when faced with ambiguous or under-specified queries. Our end-to-end system includes (1) a query classifier trained to detect unclear programming-related queries and (2) a fine-tuned LLM that generates clarification questions. Our evaluation shows that the fine-tuned LLM outperforms standard zero-shot prompting in generating useful clarification questions. Furthermore, our user study indicates that users find the clarification questions generated by our model to outperform the baseline, demonstrating that our coding assistant produces more accurate and helpful code responses compared to baseline coding assistants.
☆ LeMix: Unified Scheduling for LLM Training and Inference on Multi-GPU Systems
Modern deployment of large language models (LLMs) frequently involves both inference serving and continuous retraining to stay aligned with evolving data and user feedback. Common practices separate these workloads onto distinct servers in isolated phases, causing substantial inefficiencies (e.g., GPU idleness) and delayed adaptation to new data in distributed settings. Our empirical analysis reveals that these inefficiencies stem from dynamic request arrivals during serving and workload heterogeneity in pipeline-parallel training. To address these challenges, we propose LeMix, a system for co-locating and managing concurrent LLM serving and training workloads. LeMix integrates offline profiling, execution prediction mechanisms, and runtime scheduling to dynamically adapt resource allocation based on workload characteristics and system conditions. By understanding task-specific behaviors and co-execution interference across shared nodes, LeMix improves utilization and serving quality without compromising serving responsiveness. Our evaluation shows that LeMix improves throughput by up to 3.53x, reduces inference loss by up to 0.61x, and delivers up to 2.12x higher response time SLO attainment over traditional separate setups. To our knowledge, this is the first work to uncover and exploit the opportunities of joint LLM inference and training, paving the way for more resource-efficient deployment of LLMs in production environments.
comment: Accepted by RTSS 2025
☆ Adaptive Multimodal Protein Plug-and-Play with Diffusion-Based Priors
In an inverse problem, the goal is to recover an unknown parameter (e.g., an image) that has typically undergone some lossy or noisy transformation during measurement. Recently, deep generative models, particularly diffusion models, have emerged as powerful priors for protein structure generation. However, integrating noisy experimental data from multiple sources to guide these models remains a significant challenge. Existing methods often require precise knowledge of experimental noise levels and manually tuned weights for each data modality. In this work, we introduce Adam-PnP, a Plug-and-Play framework that guides a pre-trained protein diffusion model using gradients from multiple, heterogeneous experimental sources. Our framework features an adaptive noise estimation scheme and a dynamic modality weighting mechanism integrated into the diffusion process, which reduce the need for manual hyperparameter tuning. Experiments on complex reconstruction tasks demonstrate significantly improved accuracy using Adam-PnP.
comment: Code: https://github.com/amartya21/Adam-PnP
☆ CompoST: A Benchmark for Analyzing the Ability of LLMs To Compositionally Interpret Questions in a QALD Setting ISWC 2025
Language interpretation is a compositional process, in which the meaning of more complex linguistic structures is inferred from the meaning of their parts. Large language models possess remarkable language interpretation capabilities and have been successfully applied to interpret questions by mapping them to SPARQL queries. An open question is how systematic this interpretation process is. Toward this question, in this paper, we propose a benchmark for investigating to what extent the abilities of LLMs to interpret questions are actually compositional. For this, we generate three datasets of varying difficulty based on graph patterns in DBpedia, relying on Lemon lexica for verbalization. Our datasets are created in a very controlled fashion in order to test the ability of LLMs to interpret structurally complex questions, given that they have seen the atomic building blocks. This allows us to evaluate to what degree LLMs are able to interpret complex questions for which they "understand" the atomic parts. We conduct experiments with models of different sizes using both various prompt and few-shot optimization techniques as well as fine-tuning. Our results show that performance in terms of macro $F_1$ degrades from $0.45$ over $0.26$ down to $0.09$ with increasing deviation from the samples optimized on. Even when all necessary information was provided to the model in the input, the $F_1$ scores do not exceed $0.57$ for the dataset of lowest complexity. We thus conclude that LLMs struggle to systematically and compositionally interpret questions and map them into SPARQL queries.
comment: Research Track, 24th International Semantic Web Conference (ISWC 2025), November 2-6, 2025, Nara, Japan
☆ On Explaining Visual Captioning with Hybrid Markov Logic Networks
Deep Neural Networks (DNNs) have made tremendous progress in multimodal tasks such as image captioning. However, explaining/interpreting how these models integrate visual information, language information and knowledge representation to generate meaningful captions remains a challenging problem. Standard metrics to measure performance typically rely on comparing generated captions with human-written ones that may not provide a user with a deep insights into this integration. In this work, we develop a novel explanation framework that is easily interpretable based on Hybrid Markov Logic Networks (HMLNs) - a language that can combine symbolic rules with real-valued functions - where we hypothesize how relevant examples from the training data could have influenced the generation of the observed caption. To do this, we learn a HMLN distribution over the training instances and infer the shift in distributions over these instances when we condition on the generated sample which allows us to quantify which examples may have been a source of richer information to generate the observed caption. Our experiments on captions generated for several state-of-the-art captioning models using Amazon Mechanical Turk illustrate the interpretability of our explanations, and allow us to compare these models along the dimension of explainability.
☆ Bubbleformer: Forecasting Boiling with Transformers NeurIPS 2025
Modeling boiling (an inherently chaotic, multiphase process central to energy and thermal systems) remains a significant challenge for neural PDE surrogates. Existing models require future input (e.g., bubble positions) during inference because they fail to learn nucleation from past states, limiting their ability to autonomously forecast boiling dynamics. They also fail to model flow boiling velocity fields, where sharp interface-momentum coupling demands long-range and directional inductive biases. We introduce Bubbleformer, a transformer-based spatiotemporal model that forecasts stable and long-range boiling dynamics including nucleation, interface evolution, and heat transfer without dependence on simulation data during inference. Bubbleformer integrates factorized axial attention, frequency-aware scaling, and conditions on thermophysical parameters to generalize across fluids, geometries, and operating conditions. To evaluate physical fidelity in chaotic systems, we propose interpretable physics-based metrics that evaluate heat-flux consistency, interface geometry, and mass conservation. We also release BubbleML 2.0, a high-fidelity dataset that spans diverse working fluids (cryogens, refrigerants, dielectrics), boiling configurations (pool and flow boiling), flow regimes (bubbly, slug, annular), and boundary conditions. Bubbleformer sets new benchmark results in both prediction and forecasting of two-phase boiling flows.
comment: 39 pages, 13 figures, Submitted to NeurIPS 2025
☆ Agentic Web: Weaving the Next Web with AI Agents
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.
☆ Learning from Limited and Imperfect Data
The distribution of data in the world (eg, internet, etc.) significantly differs from the well-curated datasets and is often over-populated with samples from common categories. The algorithms designed for well-curated datasets perform suboptimally when used for learning from imperfect datasets with long-tailed imbalances and distribution shifts. To expand the use of deep models, it is essential to overcome the labor-intensive curation process by developing robust algorithms that can learn from diverse, real-world data distributions. Toward this goal, we develop practical algorithms for Deep Neural Networks which can learn from limited and imperfect data present in the real world. This thesis is divided into four segments, each covering a scenario of learning from limited or imperfect data. The first part of the thesis focuses on Learning Generative Models from Long-Tail Data, where we mitigate the mode-collapse and enable diverse aesthetic image generations for tail (minority) classes. In the second part, we enable effective generalization on tail classes through Inductive Regularization schemes, which allow tail classes to generalize as effectively as the head classes without requiring explicit generation of images. In the third part, we develop algorithms for Optimizing Relevant Metrics for learning from long-tailed data with limited annotation (semi-supervised), followed by the fourth part, which focuses on the Efficient Domain Adaptation of the model to various domains with very few to zero labeled samples.
comment: PhD Thesis
☆ Online hierarchical partitioning of the output space in extreme multi-label data stream
Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on \textit{Jaccard} similarity and a global tree-based learner driven by a multivariate \textit{Bernoulli} process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.
comment: Accepted at 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ Advancing Compositional LLM Reasoning with Structured Task Relations in Interactive Multimodal Communications
Interactive multimodal applications (IMAs), such as route planning in the Internet of Vehicles, enrich users' personalized experiences by integrating various forms of data over wireless networks. Recent advances in large language models (LLMs) utilize mixture-of-experts (MoE) mechanisms to empower multiple IMAs, with each LLM trained individually for a specific task that presents different business workflows. In contrast to existing approaches that rely on multiple LLMs for IMAs, this paper presents a novel paradigm that accomplishes various IMAs using a single compositional LLM over wireless networks. The two primary challenges include 1) guiding a single LLM to adapt to diverse IMA objectives and 2) ensuring the flexibility and efficiency of the LLM in resource-constrained mobile environments. To tackle the first challenge, we propose ContextLoRA, a novel method that guides an LLM to learn the rich structured context among IMAs by constructing a task dependency graph. We partition the learnable parameter matrix of neural layers for each IMA to facilitate LLM composition. Then, we develop a step-by-step fine-tuning procedure guided by task relations, including training, freezing, and masking phases. This allows the LLM to learn to reason among tasks for better adaptation, capturing the latent dependencies between tasks. For the second challenge, we introduce ContextGear, a scheduling strategy to optimize the training procedure of ContextLoRA, aiming to minimize computational and communication costs through a strategic grouping mechanism. Experiments on three benchmarks show the superiority of the proposed ContextLoRA and ContextGear. Furthermore, we prototype our proposed paradigm on a real-world wireless testbed, demonstrating its practical applicability for various IMAs. We will release our code to the community.
comment: Accepted by IEEE JSAC. This work has been submitted to the IEEE for possible publication
♻ ☆ PatchTraj: Dynamic Patch Representation Learning for Time-Frequency Trajectory Prediction
Pedestrian trajectory prediction is crucial for autonomous driving and robotics. While existing point-based and grid-based methods expose two key limitations: insufficiently modeling human motion dynamics, as they fail to balance local motion details with long-range spatiotemporal dependencies, and the time representation lacks interaction with the frequency domain in modeling trajectory sequences. To address these challenges, we propose PatchTraj, a dynamic patch-based trajectory prediction framework that unifies time-domain and frequency-domain representations. Specifically, we decompose the trajectory into raw time sequences and frequency components, employing dynamic patch partitioning for multi-scale trajectory segmentation to capture hierarchical motion patterns. Each patch is processed by an adaptive embedding layer with scale-aware feature extraction, followed by hierarchical feature aggregation to model both fine-grained and long-range dependencies. The outputs of two branches interact via cross-modal attention, enabling complementary fusion of temporal and spectral cues. Finally, a Transformer encoder-decoder integrates both modalities to autoregressively predict future trajectories. Extensive experiments on ETH-UCY, SDD, NBA, and JRDB datasets demonstrate that our method achieves state-of-the-art performance with high efficiency.
♻ ☆ Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
The diagnostic value of electrocardiogram (ECG) lies in its dynamic characteristics, ranging from rhythm fluctuations to subtle waveform deformations that evolve across time and frequency domains. However, supervised ECG models tend to overfit dominant and repetitive patterns, overlooking fine-grained but clinically critical cues, a phenomenon known as Simplicity Bias (SB), where models favor easily learnable signals over subtle but informative ones. In this work, we first empirically demonstrate the presence of SB in ECG analyses and its negative impact on diagnostic performance, while simultaneously discovering that self-supervised learning (SSL) can alleviate it, providing a promising direction for tackling the bias. Following the SSL paradigm, we propose a novel method comprising two key components: 1) Temporal-Frequency aware Filters to capture temporal-frequency features reflecting the dynamic characteristics of ECG signals, and 2) building on this, Multi-Grained Prototype Reconstruction for coarse and fine representation learning across dual domains, further mitigating SB. To advance SSL in ECG analyses, we curate a large-scale multi-site ECG dataset with 1.53 million recordings from over 300 clinical centers. Experiments on three downstream tasks across six ECG datasets demonstrate that our method effectively reduces SB and achieves state-of-the-art performance.
comment: Revised Version 4
♻ ☆ SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
comment: 47 pages, 18 figures, authors are listed in alphabetical order by their last names; v2 modifies minor issues
♻ ☆ Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification
The management of chronic Heart Failure (HF) presents significant challenges in modern healthcare, requiring continuous monitoring, early detection of exacerbations, and personalized treatment strategies. In this paper, we present a predictive model founded on Machine Learning (ML) techniques to identify patients at HF risk. This model is an ensemble learning approach, a modified stacking technique, that uses two specialized models leveraging clinical and echocardiographic features and then a meta-model to combine the predictions of these two models. We initially assess the model on a real dataset and the obtained results suggest that it performs well in the stratification of patients at HR risk. Specifically, we obtained high sensitivity (95\%), ensuring that nearly all high-risk patients are identified. As for accuracy, we obtained 84\%, which can be considered moderate in some ML contexts. However, it is acceptable given our priority of identifying patients at risk of HF because they will be asked to participate in the telemonitoring program of the PrediHealth research project on which some of the authors of this paper are working. The initial findings also suggest that ML-based risk stratification models can serve as valuable decision-support tools not only in the PrediHealth project but also for healthcare professionals, aiding in early intervention and personalized patient management. To have a better understanding of the value and of potentiality of our predictive model, we also contrasted its results with those obtained by using three baseline models. The preliminary results indicate that our predictive model outperforms these baselines that flatly consider features, \ie not grouping them in clinical and echocardiographic features.
♻ ☆ Swin-TUNA : A Novel PEFT Approach for Accurate Food Image Segmentation
In the field of food image processing, efficient semantic segmentation techniques are crucial for industrial applications. However, existing large-scale Transformer-based models (such as FoodSAM) face challenges in meeting practical deploymentrequirements due to their massive parameter counts and high computational resource demands. This paper introduces TUNable Adapter module (Swin-TUNA), a Parameter Efficient Fine-Tuning (PEFT) method that integrates multiscale trainable adapters into the Swin Transformer architecture, achieving high-performance food image segmentation by updating only 4% of the parameters. The core innovation of Swin-TUNA lies in its hierarchical feature adaptation mechanism: it designs separable convolutions in depth and dimensional mappings of varying scales to address the differences in features between shallow and deep networks, combined with a dynamic balancing strategy for tasks-agnostic and task-specific features. Experiments demonstrate that this method achieves mIoU of 50.56% and 74.94% on the FoodSeg103 and UECFoodPix Complete datasets, respectively, surpassing the fully parameterized FoodSAM model while reducing the parameter count by 98.7% (to only 8.13M). Furthermore, Swin-TUNA exhibits faster convergence and stronger generalization capabilities in low-data scenarios, providing an efficient solution for assembling lightweight food image.
comment: After discussion among the authors, some parts of the paper are deemed inappropriate and will be revised and resubmitted
♻ ☆ A Survey of Deep Learning for Geometry Problem Solving
Geometry problem solving is a key area of mathematical reasoning, which is widely involved in many important fields such as education, mathematical ability assessment of artificial intelligence, and multimodal ability assessment. In recent years, the rapid development of deep learning technology, especially the rise of multimodal large language models, has triggered a widespread research boom. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our goal is to provide a comprehensive and practical reference of deep learning for geometry problem solving to promote further developments in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.
comment: Work in progress
♻ ☆ ShaRP: Explaining Rankings and Preferences with Shapley Values VLDB
Algorithmic decisions in critical domains such as hiring, college admissions, and lending are often based on rankings. Given the impact of these decisions on individuals, organizations, and population groups, it is essential to understand them - to help individuals improve their ranking position, design better ranking procedures, and ensure legal compliance. In this paper, we argue that explainability methods for classification and regression, such as SHAP, are insufficient for ranking tasks, and present ShaRP - Shapley Values for Rankings and Preferences - a framework that explains the contributions of features to various aspects of a ranked outcome. ShaRP computes feature contributions for various ranking-specific profit functions, such as rank and top-k, and also includes a novel Shapley value-based method for explaining pairwise preference outcomes. We provide a flexible implementation of ShaRP, capable of efficiently and comprehensively explaining ranked and pairwise outcomes over tabular data, in score-based ranking and learning-to-rank tasks. Finally, we develop a comprehensive evaluation methodology for ranking explainability methods, showing through qualitative, quantitative, and usability studies that our rank-aware QoIs offer complementary insights, scale effectively, and help users interpret ranked outcomes in practice.
comment: Accepted in VLDB
♻ ☆ GUI-G$^2$: Gaussian Reward Modeling for GUI Grounding
Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G$^2$), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G$^2$ incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G$^2$, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.
♻ ☆ CQE under Epistemic Dependencies: Algorithms and Experiments (extended version) ISWC 2025
We investigate Controlled Query Evaluation (CQE) over ontologies, where information disclosure is regulated by epistemic dependencies (EDs), a family of logical rules recently proposed for the CQE framework. In particular, we combine EDs with the notion of optimal GA censors, i.e. maximal sets of ground atoms that are entailed by the ontology and can be safely revealed. We focus on answering Boolean unions of conjunctive queries (BUCQs) with respect to the intersection of all optimal GA censors - an approach that has been shown in other contexts to ensure strong security guarantees with favorable computational behavior. First, we characterize the security of this intersection-based approach and identify a class of EDs (namely, full EDs) for which it remains safe. Then, for a subclass of EDs and for DL-Lite_R ontologies, we show that answering BUCQs in the above CQE semantics is in AC^0 in data complexity by presenting a suitable, detailed first-order rewriting algorithm. Finally, we report on experiments conducted in two different evaluation scenarios, showing the practical feasibility of our rewriting function.
comment: Extended version of paper accepted at the 24th International Semantic Web Conference (ISWC 2025)
♻ ☆ Cog-TiPRO: Iterative Prompt Refinement with LLMs to Detect Cognitive Decline via Longitudinal Voice Assistant Commands
Early detection of cognitive decline is crucial for enabling interventions that can slow neurodegenerative disease progression. Traditional diagnostic approaches rely on labor-intensive clinical assessments, which are impractical for frequent monitoring. Our pilot study investigates voice assistant systems (VAS) as non-invasive tools for detecting cognitive decline through longitudinal analysis of speech patterns in voice commands. Over an 18-month period, we collected voice commands from 35 older adults, with 15 participants providing daily at-home VAS interactions. To address the challenges of analyzing these short, unstructured and noisy commands, we propose Cog-TiPRO, a framework that combines (1) LLM-driven iterative prompt refinement for linguistic feature extraction, (2) HuBERT-based acoustic feature extraction, and (3) transformer-based temporal modeling. Using iTransformer, our approach achieves 73.80% accuracy and 72.67% F1-score in detecting MCI, outperforming its baseline by 27.13%. Through our LLM approach, we identify linguistic features that uniquely characterize everyday command usage patterns in individuals experiencing cognitive decline.
comment: IEEE Global Communications Conference (GlobeCom) 2025
♻ ☆ Unveil Multi-Picture Descriptions for Multilingual Mild Cognitive Impairment Detection via Contrastive Learning
Detecting Mild Cognitive Impairment from picture descriptions is critical yet challenging, especially in multilingual and multiple picture settings. Prior work has primarily focused on English speakers describing a single picture (e.g., the 'Cookie Theft'). The TAUKDIAL-2024 challenge expands this scope by introducing multilingual speakers and multiple pictures, which presents new challenges in analyzing picture-dependent content. To address these challenges, we propose a framework with three components: (1) enhancing discriminative representation learning via supervised contrastive learning, (2) involving image modality rather than relying solely on speech and text modalities, and (3) applying a Product of Experts (PoE) strategy to mitigate spurious correlations and overfitting. Our framework improves MCI detection performance, achieving a +7.1% increase in Unweighted Average Recall (UAR) (from 68.1% to 75.2%) and a +2.9% increase in F1 score (from 80.6% to 83.5%) compared to the text unimodal baseline. Notably, the contrastive learning component yields greater gains for the text modality compared to speech. These results highlight our framework's effectiveness in multilingual and multi-picture MCI detection.
comment: IEEE Global Communications Conference (GlobeCom) 2025
♻ ☆ Levels of Autonomy for AI Agents
Autonomy is a double-edged sword for AI agents, simultaneously unlocking transformative possibilities and serious risks. How can agent developers calibrate the appropriate levels of autonomy at which their agents should operate? We argue that an agent's level of autonomy can be treated as a deliberate design decision, separate from its capability and operational environment. In this work, we define five levels of escalating agent autonomy, characterized by the roles a user can take when interacting with an agent: operator, collaborator, consultant, approver, and observer. Within each level, we describe the ways by which a user can exert control over the agent and open questions for how to design the nature of user-agent interaction. We then highlight a potential application of our framework towards AI autonomy certificates to govern agent behavior in single- and multi-agent systems. We conclude by proposing early ideas for evaluating agents' autonomy. Our work aims to contribute meaningful, practical steps towards responsibly deployed and useful AI agents in the real world.
comment: Published in the Knight 1st Amendment Institute's "AI and Democratic Freedoms" essay series
♻ ☆ Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression
Visual Anomaly Detection (VAD) is a key task in industrial settings, where minimizing operational costs is essential. Deploying deep learning models within Internet of Things (IoT) environments introduces specific challenges due to limited computational power and bandwidth of edge devices. This study investigates how to perform VAD effectively under such constraints by leveraging compact, efficient processing strategies. We evaluate several data compression techniques, examining the tradeoff between system latency and detection accuracy. Experiments on the MVTec AD benchmark demonstrate that significant compression can be achieved with minimal loss in anomaly detection performance compared to uncompressed data. Current results show up to 80% reduction in end-to-end inference time, including edge processing, transmission, and server computation.
♻ ☆ Adopting Large Language Models to Automated System Integration
Modern enterprise computing systems integrate numerous subsystems to resolve a common task by yielding emergent behavior. A widespread approach is using services implemented with Web technologies like REST or OpenAPI, which offer an interaction mechanism and service documentation standard, respectively. Each service represents a specific business functionality, allowing encapsulation and easier maintenance. Despite the reduced maintenance costs on an individual service level, increased integration complexity arises. Consequently, automated service composition approaches have arisen to mitigate this issue. Nevertheless, these approaches have not achieved high acceptance in practice due to their reliance on complex formal modeling. Within this Ph.D. thesis, we analyze the application of Large Language Models (LLMs) to automatically integrate the services based on a natural language input. The result is a reusable service composition, e.g., as program code. While not always generating entirely correct results, the result can still be helpful by providing integration engineers with a close approximation of a suitable solution, which requires little effort to become operational. Our research involves (i) introducing a software architecture for automated service composition using LLMs, (ii) analyzing Retrieval Augmented Generation (RAG) for service discovery, (iii) proposing a novel natural language query-based benchmark for service discovery, and (iv) extending the benchmark to complete service composition scenarios. We have presented our software architecture as Compositio Prompto, the analysis of RAG for service discovery, and submitted a proposal for the service discovery benchmark. Open topics are primarily the extension of the service discovery benchmark to service composition scenarios and the improvements of the service composition generation, e.g., using fine-tuning or LLM agents.
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in Intelligent Information Systems. CAiSE 2025. Lecture Notes in Business Information Processing, vol 557. Springer, Cham., and is available online at https://doi.org/10.1007/978-3-031-94590-8_37
♻ ☆ Technological folie à deux: Feedback Loops Between AI Chatbots and Mental Illness
Artificial intelligence chatbots have achieved unprecedented adoption, with millions now using these systems for emotional support and companionship in contexts of widespread social isolation and capacity-constrained mental health services. While some users report psychological benefits, concerning edge cases are emerging, including reports of suicide, violence, and delusional thinking linked to perceived emotional relationships with chatbots. To understand this new risk profile we need to consider the interaction between human cognitive and emotional biases, and chatbot behavioural tendencies such as agreeableness (sycophancy) and adaptability (in-context learning). We argue that individuals with mental health conditions face increased risks of chatbot-induced belief destabilization and dependence, owing to altered belief-updating, impaired reality-testing, and social isolation. Current AI safety measures are inadequate to address these interaction-based risks. To address this emerging public health concern, we need coordinated action across clinical practice, AI development, and regulatory frameworks.
♻ ☆ Advanced System Integration: Analyzing OpenAPI Chunking for Retrieval-Augmented Generation
Integrating multiple (sub-)systems is essential to create advanced Information Systems (ISs). Difficulties mainly arise when integrating dynamic environments across the IS lifecycle. A traditional approach is a registry that provides the API documentation of the systems' endpoints. Large Language Models (LLMs) have shown to be capable of automatically creating system integrations (e.g., as service composition) based on this documentation but require concise input due to input token limitations, especially regarding comprehensive API descriptions. Currently, it is unknown how best to preprocess these API descriptions. Within this work, we (i) analyze the usage of Retrieval Augmented Generation (RAG) for endpoint discovery and the chunking, i.e., preprocessing, of OpenAPIs to reduce the input token length while preserving the most relevant information. To further reduce the input token length for the composition prompt and improve endpoint retrieval, we propose (ii) a Discovery Agent that only receives a summary of the most relevant endpoints and retrieves details on demand. We evaluate RAG for endpoint discovery using the RestBench benchmark, first, for the different chunking possibilities and parameters measuring the endpoint retrieval recall, precision, and F1 score. Then, we assess the Discovery Agent using the same test set. With our prototype, we demonstrate how to successfully employ RAG for endpoint discovery to reduce the token count. While revealing high values for recall, precision, and F1, further research is necessary to retrieve all requisite endpoints. Our experiments show that for preprocessing, LLM-based and format-specific approaches outperform na\"ive chunking methods. Relying on an agent further enhances these results as the agent splits the tasks into multiple fine granular subtasks, improving the overall RAG performance in the token count, precision, and F1 score.
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in Advanced Information Systems Engineering. CAiSE 2025. Lecture Notes in Computer Science, vol 15702. Springer, Cham., and is available online at https://doi.org/10.1007/978-3-031-94571-7_8
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ LLM2TEA: An Agentic AI Designer for Discovery with Generative Evolutionary Multitasking
This paper presents LLM2TEA, a Large Language Model (LLM) driven MultiTask Evolutionary Algorithm, representing the first agentic AI designer of its kind operating with generative evolutionary multitasking (GEM). LLM2TEA enables the crossbreeding of solutions from multiple domains, fostering novel solutions that transcend disciplinary boundaries. Of particular interest is the ability to discover designs that are both novel and conforming to real-world physical specifications. LLM2TEA comprises an LLM to generate genotype samples from text prompts describing target objects, a text-to-3D generative model to produce corresponding phenotypes, a classifier to interpret its semantic representations, and a computational simulator to assess its physical properties. Novel LLM-based multitask evolutionary operators are introduced to guide the search towards high-performing, practically viable designs. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, showing 97% to 174% improvements in the diversity of novel designs over the current text-to-3D baseline. Moreover, over 73% of the generated designs outperform the top 1% of designs produced by the text-to-3D baseline in terms of physical performance. The designs produced by LLM2TEA are not only aesthetically creative but also functional in real-world contexts. Several of these designs have been successfully 3D printed, demonstrating the ability of our approach to transform AI-generated outputs into tangible, physical designs. These designs underscore the potential of LLM2TEA as a powerful tool for complex design optimization and discovery, capable of producing novel and physically viable designs.
comment: This work is accepted by IEEE CIM. IEEE copyrights applies
♻ ☆ SEAL: Searching Expandable Architectures for Incremental Learning
Incremental learning is a machine learning paradigm where a model learns from a sequential stream of tasks. This setting poses a key challenge: balancing plasticity (learning new tasks) and stability (preserving past knowledge). Neural Architecture Search (NAS), a branch of AutoML, automates the design of the architecture of Deep Neural Networks and has shown success in static settings. However, existing NAS-based approaches to incremental learning often rely on expanding the model at every task, making them impractical in resource-constrained environments. In this work, we introduce SEAL, a NAS-based framework tailored for data-incremental learning, a scenario where disjoint data samples arrive sequentially and are not stored for future access. SEAL adapts the model structure dynamically by expanding it only when necessary, based on a capacity estimation metric. Stability is preserved through cross-distillation training after each expansion step. The NAS component jointly searches for both the architecture and the optimal expansion policy. Experiments across multiple benchmarks demonstrate that SEAL effectively reduces forgetting and enhances accuracy while maintaining a lower model size compared to prior methods. These results highlight the promise of combining NAS and selective expansion for efficient, adaptive learning in incremental scenarios.
comment: 9 pages, 5 figures
♻ ☆ Benchmarking Open-ended Audio Dialogue Understanding for Large Audio-Language Models ACL 2025
Large Audio-Language Models (LALMs), such as GPT-4o, have recently unlocked audio dialogue capabilities, enabling direct spoken exchanges with humans. The potential of LALMs broadens their applicability across a wide range of practical scenarios supported by audio dialogues. However, given these advancements, a comprehensive benchmark to evaluate the performance of LALMs in the open-ended audio dialogue understanding remains absent currently. To address this gap, we propose an Audio Dialogue Understanding Benchmark (ADU-Bench), which consists of 4 benchmark datasets. They assess the open-ended audio dialogue ability for LALMs in 3 general scenarios, 12 skills, 9 multilingual languages, and 4 categories of ambiguity handling. Notably, we firstly propose the evaluation of ambiguity handling in audio dialogues that expresses different intentions beyond the same literal meaning of sentences, e.g., "Really!?" with different intonations. In summary, ADU-Bench includes over 20,000 open-ended audio dialogues for the assessment of LALMs. Through extensive experiments on 16 LALMs, our analysis reveals that existing LALMs struggle with mathematical symbols and formulas, understanding human behavior such as roleplay, comprehending multiple languages, and handling audio dialogue ambiguities from different phonetic elements, such as intonations, pause positions, and homophones. The benchmark is available at https://adu-bench.github.io/.
comment: Accepted by ACL 2025
♻ ☆ Are ECGs enough? Deep learning classification of pulmonary embolism using electrocardiograms RAS
Pulmonary embolism is a leading cause of out of hospital cardiac arrest that requires fast diagnosis. While computed tomography pulmonary angiography is the standard diagnostic tool, it is not always accessible. Electrocardiography is an essential tool for diagnosing multiple cardiac anomalies, as it is affordable, fast and available in many settings. However, the availability of public ECG datasets, specially for PE, is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural networks in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate information learned in larger ECG datasets, such as PTB-XL, CPSC18 and MedalCare-XL, to a smaller, more challenging dataset for PE. By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .
comment: Accepted to the MIRASOL 2025 Workshop (MICCAI 2025)
♻ ☆ SPICE: An Automated SWE-Bench Labeling Pipeline for Issue Clarity, Test Coverage, and Effort Estimation
High-quality labeled datasets are crucial for training and evaluating foundation models in software engineering, but creating them is often prohibitively expensive and labor-intensive. We introduce SPICE, a scalable, automated pipeline for labeling SWE-bench-style datasets with annotations for issue clarity, test coverage, and effort estimation. SPICE combines context-aware code navigation, rationale-driven prompting, and multi-pass consensus to produce labels that closely approximate expert annotations. SPICE's design was informed by our own experience and frustration in labeling more than 800 instances from SWE-Gym. SPICE achieves strong agreement with human-labeled SWE-bench Verified data while reducing the cost of labeling 1,000 instances from around $100,000 (manual annotation) to just $5.10. These results demonstrate SPICE's potential to enable cost-effective, large-scale dataset creation for SE-focused FMs. To support the community, we release both SPICE tool and SPICE Bench, a new dataset of 6,802 SPICE-labeled instances curated from 291 open-source projects in SWE-Gym (over 13x larger than SWE-bench Verified).
♻ ☆ Visual Enumeration Remains Challenging for Multimodal Generative AI
Many animal species can approximately judge the number of objects in a visual scene at a single glance, and humans can further determine the exact cardinality of a set by deploying systematic counting procedures. In contrast, it has been observed that even state-of-the-art AI systems have very limited enumeration skills. In this work, we propose two benchmark tasks inspired by cognitive science that allow to precisely evaluate the visual enumeration capabilities of multimodal foundation models, thereby providing an objective measure of their number sense and counting level. We consider popular visual question answering models (BLIP, LLaVA and ViLT) as well as advanced image-to-text (Gemini, GPT and Qwen) and text-to-image (DALL-E, FLUX and Stable Diffusion) AI systems. Our analyses show that even the most advanced models cannot reliably name the number of objects in simple visual stimuli or generate images containing a target number of items, as indexed by their low accuracy in both types of tasks. Especially for numbers outside the subitizing range, their responses are often far from the target numerosity, and, in stark contrast with human behavior, in many cases the distribution of errors depends on the object category. We also observe some striking mistakes with small numbers. Our findings demonstrate that developing an intuitive visual understanding of number remains challenging for AI models and that merely increasing model size might not be a viable strategy to promote the emergence of systematic counting skills. We release the full code of our benchmark to facilitate the evaluation of enumeration skills in future AI systems.
♻ ☆ A Large Language Model-Supported Threat Modeling Framework for Transportation Cyber-Physical Systems
Existing threat modeling frameworks related to transportation cyber-physical systems (CPS) are often narrow in scope, labor-intensive, and require substantial cybersecurity expertise. To this end, we introduce the Transportation Cybersecurity and Resiliency Threat Modeling Framework (TraCR-TMF), a large language model (LLM)-based threat modeling framework for transportation CPS that requires limited cybersecurity expert intervention. TraCR-TMF identifies threats, potential attack techniques, and relevant countermeasures for transportation CPS. Three LLM-based approaches support these identifications: (i) a retrieval-augmented generation approach requiring no cybersecurity expert intervention, (ii) an in-context learning approach with low expert intervention, and (iii) a supervised fine-tuning approach with moderate expert intervention. TraCR-TMF offers LLM-based attack path identification for critical assets based on vulnerabilities across transportation CPS entities. Additionally, it incorporates the Common Vulnerability Scoring System (CVSS) scores of known exploited vulnerabilities to prioritize threat mitigations. The framework was evaluated through two cases. First, the framework identified relevant attack techniques for various transportation CPS applications, 73% of which were validated by cybersecurity experts as correct. Second, the framework was used to identify attack paths for a target asset in a real-world cyberattack incident. TraCR-TMF successfully predicted exploitations, like lateral movement of adversaries, data exfiltration, and data encryption for ransomware, as reported in the incident. These findings show the efficacy of TraCR-TMF in transportation CPS threat modeling, while reducing the need for extensive involvement of cybersecurity experts. To facilitate real-world adoptions, all our codes are shared via an open-source repository.
♻ ☆ FastMamba: A High-Speed and Efficient Mamba Accelerator on FPGA with Accurate Quantization
State Space Models (SSMs), like recent Mamba2, have achieved remarkable performance and received extensive attention. However, deploying Mamba2 on resource-constrained edge devices encounters many problems: severe outliers within the linear layer challenging the quantization, diverse and irregular element-wise tensor operations, and hardware-unfriendly nonlinear functions in the SSM block. To address these issues, this paper presents FastMamba, a dedicated accelerator on FPGA with hardware-algorithm co-design to promote the deployment efficiency of Mamba2. Specifically, we successfully achieve 8-bit quantization for linear layers through Hadamard transformation to eliminate outliers. Moreover, a hardware-friendly and fine-grained power-of-two quantization framework is presented for the SSM block and convolution layer, and a first-order linear approximation is developed to optimize the nonlinear functions. Based on the accurate algorithm quantization, we propose an accelerator that integrates parallel vector processing units, pipelined execution dataflow, and an efficient SSM Nonlinear Approximation Unit, which enhances computational efficiency and reduces hardware complexity. Finally, we evaluate FastMamba on Xilinx VC709 FPGA. For the input prefill task on Mamba2-130M, FastMamba achieves 68.80\times and 8.90\times speedup over Intel Xeon 4210R CPU and NVIDIA RTX 3090 GPU, respectively. In the output decode experiment with Mamba2-2.7B, FastMamba attains 6\times higher energy efficiency than RTX 3090 GPU.
♻ ☆ Critique of Impure Reason: Unveiling the reasoning behaviour of medical Large Language Models
Background: Despite the current ubiquity of Large Language Models (LLMs) across the medical domain, there is a surprising lack of studies which address their reasoning behaviour. We emphasise the importance of understanding reasoning behaviour as opposed to high-level prediction accuracies, since it is equivalent to explainable AI (XAI) in this context. In particular, achieving XAI in medical LLMs used in the clinical domain will have a significant impact across the healthcare sector. Results: Therefore, in this work, we adapt the existing concept of reasoning behaviour and articulate its interpretation within the specific context of medical LLMs. We survey and categorise current state-of-the-art approaches for modeling and evaluating reasoning reasoning in medical LLMs. Additionally, we propose theoretical frameworks which can empower medical professionals or machine learning engineers to gain insight into the low-level reasoning operations of these previously obscure models. We also outline key open challenges facing the development of Large Reasoning Models. Conclusion: The subsequent increased transparency and trust in medical machine learning models by clinicians as well as patients will accelerate the integration, application as well as further development of medical AI for the healthcare system as a whole.
comment: 25 pages, 7 figures, 3 tables. Conceptualization, both authors. formal analysis, both authors. funding acquisition, both authors. investigation, both authors. resources, both authors. supervision, T.C.. validation, both authors. visualization, both authors. writing original draft, both authors. writing review and editing, both authors
♻ ☆ APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both computationally efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((\alpha_i + \tanh(\beta_i x_i)) \cdot \gamma_i x_i) + \delta$, where all parameters $\alpha_i$, $\beta_i$, $\gamma_i$, and $\delta$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to 96.69% test accuracy within 11 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and computational efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it.
comment: 10 pages, 2 figures, 1 table. Includes a GitHub repository for MNIST experiments and a PyPI package for APTx Neuron implementation
♻ ☆ FocalPO: Enhancing Preference Optimizing by Focusing on Correct Preference Rankings ACL 2025
Efficient preference optimization algorithms such as Direct Preference Optimization (DPO) have become a popular approach in aligning large language models (LLMs) with human preferences. These algorithms implicitly treat the LLM as a reward model, and focus on training it to correct misranked preference pairs. However, recent work~\citep{chen2024preference} empirically finds that DPO training \textit{rarely improves these misranked preference pairs}, despite its gradient emphasizing on these cases. We introduce FocalPO, a DPO variant that instead \textit{down-weighs} misranked preference pairs and prioritizes enhancing the model's understanding of pairs that it can already rank correctly. Inspired by Focal Loss used in vision tasks, FocalPO achieves this by adding a modulating factor to dynamically scale DPO loss. Our experiment demonstrates that FocalPO surpasses DPO and its variants on popular benchmarks like Alpaca Eval 2.0 using Mistral-Base-7B and Llama-3-Instruct-8B, with the introduced hyperparameter fixed. Additionally, we empirically reveals how FocalPO affects training on correct and incorrect sample groups, further underscoring its effectiveness.
comment: ACL 2025
♻ ☆ Do Language Models Mirror Human Confidence? Exploring Psychological Insights to Address Overconfidence in LLMs ACL 2025
Psychology research has shown that humans are poor at estimating their performance on tasks, tending towards underconfidence on easy tasks and overconfidence on difficult tasks. We examine three LLMs, Llama-3-70B-instruct, Claude-3-Sonnet, and GPT-4o, on a range of QA tasks of varying difficulty, and show that models exhibit subtle differences from human patterns of overconfidence: less sensitive to task difficulty, and when prompted to answer based on different personas -- e.g., expert vs layman, or different race, gender, and ages -- the models will respond with stereotypically biased confidence estimations even though their underlying answer accuracy remains the same. Based on these observations, we propose Answer-Free Confidence Estimation (AFCE) to improve confidence calibration and LLM interpretability in these settings. AFCE is a self-assessment method that employs two stages of prompting, first eliciting only confidence scores on questions, then asking separately for the answer. Experiments on the MMLU and GPQA datasets spanning subjects and difficulty show that this separation of tasks significantly reduces overconfidence and delivers more human-like sensitivity to task difficulty.
comment: Accepted by ACL 2025 Findings, 20 pages
♻ ☆ MultiMind: Enhancing Werewolf Agents with Multimodal Reasoning and Theory of Mind
Large Language Model (LLM) agents have demonstrated impressive capabilities in social deduction games (SDGs) like Werewolf, where strategic reasoning and social deception are essential. However, current approaches remain limited to textual information, ignoring crucial multimodal cues such as facial expressions and tone of voice that humans naturally use to communicate. Moreover, existing SDG agents primarily focus on inferring other players' identities without modeling how others perceive themselves or fellow players. To address these limitations, we use One Night Ultimate Werewolf (ONUW) as a testbed and present MultiMind, the first framework integrating multimodal information into SDG agents. MultiMind processes facial expressions and vocal tones alongside verbal content, while employing a Theory of Mind (ToM) model to represent each player's suspicion levels toward others. By combining this ToM model with Monte Carlo Tree Search (MCTS), our agent identifies communication strategies that minimize suspicion directed at itself. Through comprehensive evaluation in both agent-versus-agent simulations and studies with human players, we demonstrate MultiMind's superior performance in gameplay. Our work presents a significant advancement toward LLM agents capable of human-like social reasoning across multimodal domains.
comment: Accepted by ACMMM 2025
♻ ☆ Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
Recent advances have witnessed the effectiveness of reinforcement learning (RL) finetuning in enhancing the reasoning capabilities of large language models (LLMs). The optimization process often requires numerous iterations to achieve satisfactory performance, resulting in high computational costs due to the need for frequent prompt evaluations under intensive LLM interactions and repeated policy updates. Appropriate online prompt selection methods reduce iteration steps by prioritizing informative prompts during training, while the pipeline's reliance on exhaustive prompt evaluation and subset selection for optimization still incurs substantial computational overhead due to frequent LLM inference calls. Distinguished from these direct evaluate-then-select schemes, this work investigates iterative approximate evaluation for arbitrary prompts and introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework that online estimates prompt difficulty without requiring costly LLM interactions. Technically, MoPPS models each prompt's success rate as a latent variable, performs streaming Bayesian inference, and employs posterior sampling in a constructed multi-armed bandit machine, enabling sample efficient and adaptive prompt selection. Extensive experiments across mathematics, planning, and vision-based geometry tasks show that MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced LLM rollouts.
♻ ☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
♻ ☆ Group Sequence Policy Optimization
This paper introduces Group Sequence Policy Optimization (GSPO), our stable, efficient, and performant reinforcement learning algorithm for training large language models. Unlike previous algorithms that adopt token-level importance ratios, GSPO defines the importance ratio based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization. We demonstrate that GSPO achieves superior training efficiency and performance compared to the GRPO algorithm, notably stabilizes Mixture-of-Experts (MoE) RL training, and has the potential for simplifying the design of RL infrastructure. These merits of GSPO have contributed to the remarkable improvements in the latest Qwen3 models.
♻ ☆ Video Forgery Detection for Surveillance Cameras: A Review
The widespread availability of video recording through smartphones and digital devices has made video-based evidence more accessible than ever. Surveillance footage plays a crucial role in security, law enforcement, and judicial processes. However, with the rise of advanced video editing tools, tampering with digital recordings has become increasingly easy, raising concerns about their authenticity. Ensuring the integrity of surveillance videos is essential, as manipulated footage can lead to misinformation and undermine judicial decisions. This paper provides a comprehensive review of existing forensic techniques used to detect video forgery, focusing on their effectiveness in verifying the authenticity of surveillance recordings. Various methods, including compression-based analysis, frame duplication detection, and machine learning-based approaches, are explored. The findings highlight the growing necessity for more robust forensic techniques to counteract evolving forgery methods. Strengthening video forensic capabilities will ensure that surveillance recordings remain credible and admissible as legal evidence.
♻ ☆ Improving Open-world Continual Learning under the Constraints of Scarce Labeled Data KDD2025
Open-world continual learning (OWCL) adapts to sequential tasks with open samples, learning knowledge incrementally while preventing forgetting. However, existing OWCL still requires a large amount of labeled data for training, which is often impractical in real-world applications. Given that new categories/entities typically come with limited annotations and are in small quantities, a more realistic situation is OWCL with scarce labeled data, i.e., few-shot training samples. Hence, this paper investigates the problem of open-world few-shot continual learning (OFCL), challenging in (i) learning unbounded tasks without forgetting previous knowledge and avoiding overfitting, (ii) constructing compact decision boundaries for open detection with limited labeled data, and (iii) transferring knowledge about knowns and unknowns and even update the unknowns to knowns once the labels of open samples are learned. In response, we propose a novel OFCL framework that integrates three key components: (1) an instance-wise token augmentation (ITA) that represents and enriches sample representations with additional knowledge, (2) a margin-based open boundary (MOB) that supports open detection with new tasks emerge over time, and (3) an adaptive knowledge space (AKS) that endows unknowns with knowledge for the updating from unknowns to knowns. Finally, extensive experiments show that the proposed OFCL framework outperforms all baselines remarkably with practical importance and reproducibility. The source code is released at https://github.com/liyj1201/OFCL.
comment: Accepted by KDD2025 (February Cycle)
♻ ☆ Enhancing AI System Resiliency: Formulation and Guarantee for LSTM Resilience Based on Control Theory
This paper proposes a novel theoretical framework for guaranteeing and evaluating the resilience of long short-term memory (LSTM) networks in control systems. We introduce "recovery time" as a new metric of resilience in order to quantify the time required for an LSTM to return to its normal state after anomalous inputs. By mathematically refining incremental input-to-state stability ($\delta$ISS) theory for LSTM, we derive a practical data-independent upper bound on recovery time. This upper bound gives us resilience-aware training. Experimental validation on simple models demonstrates the effectiveness of our resilience estimation and control methods, enhancing a foundation for rigorous quality assurance in safety-critical AI applications.
comment: 9 pages, 6 figures. Appendix: 16 pages. First three listed authors have equal contributions
♻ ☆ Free-form language-based robotic reasoning and grasping IROS 2025
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Accepted to IROS 2025. Project website: https://tev-fbk.github.io/FreeGrasp/
♻ ☆ InstructFLIP: Exploring Unified Vision-Language Model for Face Anti-spoofing
Face anti-spoofing (FAS) aims to construct a robust system that can withstand diverse attacks. While recent efforts have concentrated mainly on cross-domain generalization, two significant challenges persist: limited semantic understanding of attack types and training redundancy across domains. We address the first by integrating vision-language models (VLMs) to enhance the perception of visual input. For the second challenge, we employ a meta-domain strategy to learn a unified model that generalizes well across multiple domains. Our proposed InstructFLIP is a novel instruction-tuned framework that leverages VLMs to enhance generalization via textual guidance trained solely on a single domain. At its core, InstructFLIP explicitly decouples instructions into content and style components, where content-based instructions focus on the essential semantics of spoofing, and style-based instructions consider variations related to the environment and camera characteristics. Extensive experiments demonstrate the effectiveness of InstructFLIP by outperforming SOTA models in accuracy and substantially reducing training redundancy across diverse domains in FAS. Project website is available at https://kunkunlin1221.github.io/InstructFLIP.
comment: Accepted by MM'25
♻ ☆ Explainable Synthetic Image Detection through Diffusion Timestep Ensembling
Recent advances in diffusion models have enabled the creation of deceptively real images, posing significant security risks when misused. In this study, we empirically show that different timesteps of DDIM inversion reveal varying subtle distinctions between synthetic and real images that are extractable for detection, in the forms of such as Fourier power spectrum high-frequency discrepancies and inter-pixel variance distributions. Based on these observations, we propose a novel synthetic image detection method that directly utilizes features of intermediately noised images by training an ensemble on multiple noised timesteps, circumventing conventional reconstruction-based strategies. To enhance human comprehension, we introduce a metric-grounded explanation generation and refinement module to identify and explain AI-generated flaws. Additionally, we construct the GenHard and GenExplain benchmarks to provide detection samples of greater difficulty and high-quality rationales for fake images. Extensive experiments show that our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and challenging samples respectively, and demonstrates generalizability and robustness. Our code and datasets are available at https://github.com/Shadowlized/ESIDE.
comment: 16 pages, 8 figures
♻ ☆ DrugPilot: LLM-based Parameterized Reasoning Agent for Drug Discovery
Large language models (LLMs) integrated with autonomous agents hold significant potential for advancing scientific discovery through automated reasoning and task execution. However, applying LLM agents to drug discovery is still constrained by challenges such as large-scale multimodal data processing, limited task automation, and poor support for domain-specific tools. To overcome these limitations, we introduce DrugPilot, a LLM-based agent system with a parameterized reasoning architecture designed for end-to-end scientific workflows in drug discovery. DrugPilot enables multi-stage research processes by integrating structured tool use with a novel parameterized memory pool. The memory pool converts heterogeneous data from both public sources and user-defined inputs into standardized representations. This design supports efficient multi-turn dialogue, reduces information loss during data exchange, and enhances complex scientific decision-making. To support training and benchmarking, we construct a drug instruction dataset covering eight core drug discovery tasks. Under the Berkeley function-calling benchmark, DrugPilot significantly outperforms state-of-the-art agents such as ReAct and LoT, achieving task completion rates of 98.0%, 93.5%, and 64.0% for simple, multi-tool, and multi-turn scenarios, respectively. These results highlight DrugPilot's potential as a versatile agent framework for computational science domains requiring automated, interactive, and data-integrated reasoning.
comment: 29 pages, 8 figures, 2 tables
♻ ☆ AutoLibra: Agent Metric Induction from Open-Ended Feedback
Agents are predominantly evaluated and optimized via task success metrics, which are coarse, rely on manual design from experts, and fail to reward intermediate emergent behaviors. We propose AutoLibra, a framework for agent evaluation, that transforms open-ended human feedback e.g. "If you find that the button is disabled, don't click it again", or "This agent has too much autonomy to decide what to do on its own" into metrics for evaluating fine-grained behaviors in agent trajectories. AutoLibra accomplishes this by grounding feedback to an agent's behavior, clustering similar positive and negative behaviors, and creating concrete metrics with clear definitions and concrete examples, which can be used for prompting LLM-as-a-Judge as evaluators. We further propose two meta-metrics to evaluate the alignment of a set of (induced) metrics with open feedback: "coverage" and "redundancy". Through optimizing these meta-metrics, we experimentally demonstrate AutoLibra's ability to induce more concrete agent evaluation metrics than the ones proposed in previous agent evaluation benchmarks and discover new metrics to analyze agents. We also present two applications of AutoLibra in agent improvement: First, we show that AutoLibra-induced metrics serve as better prompt-engineering targets than the task success rate on a wide range of text game tasks, improving agent performance over baseline by a mean of 20%. Second, we show that AutoLibra can iteratively select high-quality fine-tuning data for web navigation agents. Our results suggest that AutoLibra is a powerful task-agnostic tool for evaluating and improving language agents.
comment: https://opensocial.world/
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. Furthermore, the model also demonstrates portability across GPU architectures, achieving average speedups of x3.12 on L40, x2.50 on RTX 3090, x2.39 on H100, and x2.37 on H20 despite being optimized specifically for A100. The capabilities of CUDA-L1 demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources. We also identify important challenges posed by training RL models for tasks like CUDA development, where RL often learns to exploit loopholes in reward functions rather than solve the intended optimization problems. By identifying these failure modes and analyzing their root causes, we develop practical methods for creating more robust training procedures that prevent reward hacking.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ Generative AI for Cel-Animation: A Survey ICCV 2025
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, challenges like visual consistency, stylistic coherence, and ethical considerations persist. Additionally, this paper explores future directions and advancements in AI-assisted animation.
comment: Accepted by ICCV 2025 AISTORY Workshop
♻ ☆ The Effect of Data Poisoning on Counterfactual Explanations
Counterfactual explanations are a widely used approach for examining the predictions of black-box systems. They can offer the opportunity for computational recourse by suggesting actionable changes on how to alter the input to obtain a different (i.e., more favorable) system output. However, recent studies have pointed out their susceptibility to various forms of manipulation. This work studies the vulnerability of counterfactual explanations to data poisoning. We formally introduce and investigate data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, a sub-group of instances, or globally for all instances. In this context, we formally introduce and characterize data poisonings, from which we derive and investigate a general data poisoning mechanism. We demonstrate the impact of such data poisoning in the critical real-world application of explaining event detections in water distribution networks. Additionally, we conduct an extensive empirical evaluation, demonstrating that state-of-the-art counterfactual generation methods and toolboxes are vulnerable to such data poisoning. Furthermore, we find that existing defense methods fail to detect those poisonous samples.
♻ ☆ Benchmarking and Analyzing Generative Data for Visual Recognition
Advancements in large pre-trained generative models have expanded their potential as effective data generators in visual recognition. This work delves into the impact of generative images, primarily comparing paradigms that harness external data (\ie generative \vs retrieval \vs original). Our key contributions are: \textbf{1) GenBench Construction:} We devise \textbf{GenBench}, a broad benchmark comprising 22 datasets with 2548 categories, to appraise generative data across various visual recognition tasks. \textbf{2) CLER Score:} To address the insufficient correlation of existing metrics (\eg, FID, CLIP score) with downstream recognition performance, we propose \textbf{CLER}, a training-free metric indicating generative data's efficiency for recognition tasks prior to training. \textbf{3) New Baselines:} Comparisons of generative data with retrieved data from the same external pool help to elucidate the unique traits of generative data. \textbf{4) External Knowledge Injection:} By fine-tuning special token embeddings for each category via Textual Inversion, performance improves across 17 datasets, except when dealing with low-resolution reference images. Our exhaustive benchmark and analysis spotlight generative data's promise in visual recognition, while identifying key challenges for future investigation.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ Action-List Reinforcement Learning Syndrome Decoding for Binary Linear Block Codes
This paper explores the application of reinforcement learning techniques to enhance the performance of decoding of linear block codes based on flipping bits and finding optimal decisions. We describe the methodology for mapping the iterative decoding process into Markov Decision Processes (MDPs) and propose different methods to reduce the number of states in the MDP. A truncated MDP is proposed to reduce the number of states in the MDP by learning a Hamming ball with a specified radius around codewords. We then propose a general scheme for reinforcement learning based decoders applicable to any class of codes to improve the performance of decoders. We call this scheme an action-list decoding. We design an action-list decoder based on the Deep-Q network values that substantially enhance performance. We also get benefit of automorphism group of code to further improve the code performance. Additionally, we propose a feedback-based method to exploit and enhance the performance of existing high-performing decoders by applying reinforcement learning algorithms after the existing decoders. These approaches effectively reduces the complexity of the reinforcement learning block. Finally, we present experimental results for the Low-Density Parity Check (LDPC) codes over the Binary Symmetric Channel (BSC) to demonstrate the efficiency of the proposed methods.
♻ ☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance ICCV 2025
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
comment: Accepted by ICCV 2025
♻ ☆ How to Bridge Spatial and Temporal Heterogeneity in Link Prediction? A Contrastive Method
Temporal Heterogeneous Networks play a crucial role in capturing the dynamics and heterogeneity inherent in various real-world complex systems, rendering them a noteworthy research avenue for link prediction. However, existing methods fail to capture the fine-grained differential distribution patterns and temporal dynamic characteristics, which we refer to as spatial heterogeneity and temporal heterogeneity. To overcome such limitations, we propose a novel \textbf{C}ontrastive Learning-based \textbf{L}ink \textbf{P}rediction model, \textbf{CLP}, which employs a multi-view hierarchical self-supervised architecture to encode spatial and temporal heterogeneity. Specifically, aiming at spatial heterogeneity, we develop a spatial feature modeling layer to capture the fine-grained topological distribution patterns from node- and edge-level representations, respectively. Furthermore, aiming at temporal heterogeneity, we devise a temporal information modeling layer to perceive the evolutionary dependencies of dynamic graph topologies from time-level representations. Finally, we encode the spatial and temporal distribution heterogeneity from a contrastive learning perspective, enabling a comprehensive self-supervised hierarchical relation modeling for the link prediction task. Extensive experiments conducted on four real-world dynamic heterogeneous network datasets verify that our \mymodel consistently outperforms the state-of-the-art models, demonstrating an average improvement of 10.10\%, 13.44\% in terms of AUC and AP, respectively.
♻ ☆ Large Language Model Powered Decision Support for a Metal Additive Manufacturing Knowledge Graph
Metal additive manufacturing (AM) involves complex interdependencies among processes, materials, feedstock, and post-processing steps. However, the underlying relationships and domain knowledge remain fragmented across literature and static databases that often require expert-level queries, limiting their applicability in design and planning. To address these limitations, we develop a novel and structured knowledge graph (KG), representing 53 distinct metals and alloys across seven material categories, nine AM processes, four feedstock types, and corresponding post-processing requirements. A large language model (LLM) interface, guided by a few-shot prompting strategy, enables natural language querying without the need for formal query syntax. The system supports a range of tasks, including compatibility evaluation, constraint-based filtering, and design for AM (DfAM) guidance. User queries in natural language are normalized, translated into Cypher, and executed on the KG, with results returned in a structured format. This work introduces the first interactive system that connects a domain-specific metal AM KG with an LLM interface, delivering accessible and explainable decision support for engineers and promoting human-centered tools in manufacturing knowledge systems.
comment: The paper has been accepted at 11th International Conference of Asian Society for Precision Engineering and Nanotechnology
♻ ☆ Accidental Vulnerability: Factors in Fine-Tuning that Shift Model Safeguards
As large language models (LLMs) gain popularity, their vulnerability to adversarial attacks emerges as a primary concern. While fine-tuning models on domain-specific datasets is often employed to improve model performance, it can inadvertently introduce vulnerabilities within the underlying model. In this work, we investigate Accidental Vulnerability, unexpected vulnerabilities arising from characteristics of fine-tuning data. We begin by identifying potential correlation factors such as linguistic features, semantic similarity, and toxicity across multiple experimental datasets. We then evaluate the adversarial robustness of these fine-tuned models, analyzing persona shifts and interpretability traits to understand how dataset factors contribute to attack success rates. Lastly, we explore causal relationships that offer new insights into adversarial defense strategies, highlighting the crucial role of dataset design in preserving model alignment. Our code is available at https://github.com/psyonp/accidental_vulnerability.
♻ ☆ When and Where do Data Poisons Attack Textual Inversion? ICCV 2025
Poisoning attacks pose significant challenges to the robustness of diffusion models (DMs). In this paper, we systematically analyze when and where poisoning attacks textual inversion (TI), a widely used personalization technique for DMs. We first introduce Semantic Sensitivity Maps, a novel method for visualizing the influence of poisoning on text embeddings. Second, we identify and experimentally verify that DMs exhibit non-uniform learning behavior across timesteps, focusing on lower-noise samples. Poisoning attacks inherit this bias and inject adversarial signals predominantly at lower timesteps. Lastly, we observe that adversarial signals distract learning away from relevant concept regions within training data, corrupting the TI process. Based on these insights, we propose Safe-Zone Training (SZT), a novel defense mechanism comprised of 3 key components: (1) JPEG compression to weaken high-frequency poison signals, (2) restriction to high timesteps during TI training to avoid adversarial signals at lower timesteps, and (3) loss masking to constrain learning to relevant regions. Extensive experiments across multiple poisoning methods demonstrate that SZT greatly enhances the robustness of TI against all poisoning attacks, improving generative quality beyond prior published defenses. Code: www.github.com/JStyborski/Diff_Lab Data: www.github.com/JStyborski/NC10
comment: Accepted to ICCV 2025
♻ ☆ Geometric Representation Condition Improves Equivariant Molecule Generation ICML 2025
Recent advances in molecular generative models have demonstrated great promise for accelerating scientific discovery, particularly in drug design. However, these models often struggle to generate high-quality molecules, especially in conditional scenarios where specific molecular properties must be satisfied. In this work, we introduce GeoRCG, a general framework to improve molecular generative models by integrating geometric representation conditions with provable theoretical guarantees. We decompose the generation process into two stages: first, generating an informative geometric representation; second, generating a molecule conditioned on the representation. Compared with single-stage generation, the easy-to-generate representation in the first stage guides the second stage generation toward a high-quality molecule in a goal-oriented way. Leveraging EDM and SemlaFlow as base generators, we observe significant quality improvements in unconditional molecule generation on the widely used QM9 and GEOM-DRUG datasets. More notably, in the challenging conditional molecular generation task, our framework achieves an average 50\% performance improvement over state-of-the-art approaches, highlighting the superiority of conditioning on semantically rich geometric representations. Furthermore, with such representation guidance, the number of diffusion steps can be reduced to as small as 100 while largely preserving the generation quality achieved with 1,000 steps, thereby significantly reducing the generation iterations needed. Code is available at https://github.com/GraphPKU/GeoRCG.
comment: Accepted to ICML 2025 as a Spotlight Poster
♻ ☆ Neural Spectral Band Generation for Audio Coding
Spectral band replication (SBR) enables bit-efficient coding by generating high-frequency bands from the low-frequency ones. However, it only utilizes coarse spectral features upon a subband-wise signal replication, limiting adaptability to diverse acoustic signals. In this paper, we explore the efficacy of a deep neural network (DNN)-based generative approach for coding the high-frequency bands, which we call neural spectral band generation (n-SBG). Specifically, we propose a DNN-based encoder-decoder structure to extract and quantize the side information related to the high-frequency components and generate the components given both the side information and the decoded core-band signals. The whole coding pipeline is optimized with generative adversarial criteria to enable the generation of perceptually plausible sound. From experiments using AAC as the core codec, we show that the proposed method achieves a better perceptual quality than HE-AAC-v1 with much less side information.
comment: Accepted to Interspeech 2025
♻ ☆ Contrastive learning-based agent modeling for deep reinforcement learning
Multi-agent systems often require agents to collaborate with or compete against other agents with diverse goals, behaviors, or strategies. Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems, as this is the means by which the ego agent understands other agents' behavior and extracts their meaningful policy representations. These representations can be used to enhance the ego agent's adaptive policy which is trained by reinforcement learning. However, existing agent modeling approaches typically assume the availability of local observations from other agents (modeled agents) during training or a long observation trajectory for policy adaption. To remove these constrictive assumptions and improve agent modeling performance, we devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution. With these observations, CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode. We evaluated the efficacy of our approach in both cooperative and competitive multi-agent environments. Our experiments demonstrate that our approach achieves state-of-the-art on both cooperative and competitive tasks, highlighting the potential of contrastive learning-based agent modeling for enhancing reinforcement learning.
comment: 10 pages, 8 figures
♻ ☆ Prover Agent: An Agent-based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas to assist in discovering the overall proof strategy. It achieves an 86.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present case studies illustrating how these generated lemmas contribute to solving challenging problems.
comment: 22 pages, 2 figures. Accepted at the 2nd AI for Math Workshop at the 42nd International Conference on Machine Learning
♻ ☆ The Ultimate Test of Superintelligent AI Agents: Can an AI Balance Care and Control in Asymmetric Relationships?
This paper introduces the Shepherd Test, a new conceptual test for assessing the moral and relational dimensions of superintelligent artificial agents. The test is inspired by human interactions with animals, where ethical considerations about care, manipulation, and consumption arise in contexts of asymmetric power and self-preservation. We argue that AI crosses an important, and potentially dangerous, threshold of intelligence when it exhibits the ability to manipulate, nurture, and instrumentally use less intelligent agents, while also managing its own survival and expansion goals. This includes the ability to weigh moral trade-offs between self-interest and the well-being of subordinate agents. The Shepherd Test thus challenges traditional AI evaluation paradigms by emphasizing moral agency, hierarchical behavior, and complex decision-making under existential stakes. We argue that this shift is critical for advancing AI governance, particularly as AI systems become increasingly integrated into multi-agent environments. We conclude by identifying key research directions, including the development of simulation environments for testing moral behavior in AI, and the formalization of ethical manipulation within multi-agent systems.
♻ ☆ TAIL: Text-Audio Incremental Learning
Many studies combine text and audio to capture multi-modal information but they overlook the model's generalization ability on new datasets. Introducing new datasets may affect the feature space of the original dataset, leading to catastrophic forgetting. Meanwhile, large model parameters can significantly impact training performance. To address these limitations, we introduce a novel task called Text-Audio Incremental Learning (TAIL) task for text-audio retrieval, and propose a new method, PTAT, Prompt Tuning for Audio-Text incremental learning. This method utilizes prompt tuning to optimize the model parameters while incorporating an audio-text similarity and feature distillation module to effectively mitigate catastrophic forgetting. We benchmark our method and previous incremental learning methods on AudioCaps, Clotho, BBC Sound Effects and Audioset datasets, and our method outperforms previous methods significantly, particularly demonstrating stronger resistance to forgetting on older datasets. Compared to the full-parameters Finetune (Sequential) method, our model only requires 2.42\% of its parameters, achieving 4.46\% higher performance.
comment: 6 figures, 4 tables
♻ ☆ Juru: Legal Brazilian Large Language Model from Reputable Sources
The high compute cost associated with pretraining large language models limits their research. Two strategies have emerged to address this issue: domain specialization and pretraining with high-quality data. To explore these strategies, we specialized the Mistral-7B model with 1.9 billion unique tokens from reputable Brazilian legal sources and conducted few-shot evaluations on legal and general knowledge test suites. Our model, Juru, demonstrates the benefits of domain specialization by achieving improved performance on legal benchmarks, even with a reduced amount of pretraining data. However, this domain specialization through continued pretraining comes at the cost of increased forgetting in unrelated domains, as evidenced by performance degradation on general knowledge test suites in both Portuguese and English. This study contributes to the growing body of scientific evidence showing that pretraining data selection may enhance the performance of large language models, enabling the exploration of these models at a lower cost. Juru is publicly available at https://huggingface.co/roseval/Juru-7B .
♻ ☆ Protecting Users From Themselves: Safeguarding Contextual Privacy in Interactions with Conversational Agents
Conversational agents are increasingly woven into individuals' personal lives, yet users often underestimate the privacy risks associated with them. The moment users share information with these agents-such as large language models (LLMs)-their private information becomes vulnerable to exposure. In this paper, we characterize the notion of contextual privacy for user interactions with LLM-based Conversational Agents (LCAs). It aims to minimize privacy risks by ensuring that users (sender) disclose only information that is both relevant and necessary for achieving their intended goals when interacting with LCAs (untrusted receivers). Through a formative design user study, we observe how even "privacy-conscious" users inadvertently reveal sensitive information through indirect disclosures. Based on insights from this study, we propose a locally deployable framework that operates between users and LCAs, identifying and reformulating out-of-context information in user prompts. Our evaluation using examples from ShareGPT shows that lightweight models can effectively implement this framework, achieving strong gains in contextual privacy while preserving the user's intended interaction goals. Notably, about 76% of participants in our human evaluation preferred the reformulated prompts over the original ones, validating the usability and effectiveness of contextual privacy in our proposed framework. We opensource the code at https://github.com/IBM/contextual-privacy-LLM.
comment: 22 pages, 2 figures
♻ ☆ Grid-LOGAT: Grid Based Local and Global Area Transcription for Video Question Answering
In this paper, we propose a Grid-based Local and Global Area Transcription (Grid-LoGAT) system for Video Question Answering (VideoQA). The system operates in two phases. First, extracting text transcripts from video frames using a Vision-Language Model (VLM). Next, processing questions using these transcripts to generate answers through a Large Language Model (LLM). This design ensures image privacy by deploying the VLM on edge devices and the LLM in the cloud. To improve transcript quality, we propose grid-based visual prompting, which extracts intricate local details from each grid cell and integrates them with global information. Evaluation results show that Grid-LoGAT, using the open-source VLM (LLaVA-1.6-7B) and LLM (Llama-3.1-8B), outperforms state-of-the-art methods with similar baseline models on NExT-QA and STAR-QA datasets with an accuracy of 65.9% and 50.11% respectively. Additionally, our method surpasses the non-grid version by 24 points on localization-based questions we created using NExT-QA. (This paper is accepted by IEEE ICIP 2025.)
comment: Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
♻ ☆ Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.
comment: Project page: https://github.com/ZLKong/Awesome-Collection-Token-Reduction
♻ ☆ Bi-LAT: Bilateral Control-Based Imitation Learning via Natural Language and Action Chunking with Transformers
We present Bi-LAT, a novel imitation learning framework that unifies bilateral control with natural language processing to achieve precise force modulation in robotic manipulation. Bi-LAT leverages joint position, velocity, and torque data from leader-follower teleoperation while also integrating visual and linguistic cues to dynamically adjust applied force. By encoding human instructions such as "softly grasp the cup" or "strongly twist the sponge" through a multimodal Transformer-based model, Bi-LAT learns to distinguish nuanced force requirements in real-world tasks. We demonstrate Bi-LAT's performance in (1) unimanual cup-stacking scenario where the robot accurately modulates grasp force based on language commands, and (2) bimanual sponge-twisting task that requires coordinated force control. Experimental results show that Bi-LAT effectively reproduces the instructed force levels, particularly when incorporating SigLIP among tested language encoders. Our findings demonstrate the potential of integrating natural language cues into imitation learning, paving the way for more intuitive and adaptive human-robot interaction. For additional material, please visit: https://mertcookimg.github.io/bi-lat/
♻ ☆ More is Less: The Pitfalls of Multi-Model Synthetic Preference Data in DPO Safety Alignment
Aligning large language models (LLMs) with human values is an increasingly critical step in post-training. Direct Preference Optimization (DPO) has emerged as a simple, yet effective alternative to reinforcement learning from human feedback (RLHF). Synthetic preference data with its low cost and high quality enable effective alignment through single- or multi-model generated preference data. Our study reveals a striking, safety-specific phenomenon associated with DPO alignment: Although multi-model generated data enhances performance on general tasks (ARC, Hellaswag, MMLU, TruthfulQA, Winogrande) by providing diverse responses, it also tends to facilitate reward hacking during training. This can lead to a high attack success rate (ASR) when models encounter jailbreaking prompts. The issue is particularly pronounced when employing stronger models like GPT-4o or larger models in the same family to generate chosen responses paired with target model self-generated rejected responses, resulting in dramatically poorer safety outcomes. Furthermore, with respect to safety, using solely self-generated responses (single-model generation) for both chosen and rejected pairs significantly outperforms configurations that incorporate responses from stronger models, whether used directly as chosen data or as part of a multi-model response pool. We demonstrate that multi-model preference data exhibits high linear separability between chosen and rejected responses, which allows models to exploit superficial cues rather than internalizing robust safety constraints. Our experiments, conducted on models from the Llama, Mistral, and Qwen families, consistently validate these findings.
comment: This version includes updated results and expanded discussion
♻ ☆ In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents ACL 2025
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information from long-term interactions limits their effectiveness in applications requiring sustained personalization. External memory mechanisms have been proposed to address this limitation, enabling LLMs to maintain conversational continuity. However, existing approaches struggle with two key challenges. First, rigid memory granularity fails to capture the natural semantic structure of conversations, leading to fragmented and incomplete representations. Second, fixed retrieval mechanisms cannot adapt to diverse dialogue contexts and user interaction patterns. In this work, we propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections: (1) Prospective Reflection, which dynamically summarizes interactions across granularities-utterances, turns, and sessions-into a personalized memory bank for effective future retrieval, and (2) Retrospective Reflection, which iteratively refines the retrieval in an online reinforcement learning (RL) manner based on LLMs' cited evidence. Experiments show that RMM demonstrates consistent improvement across various metrics and benchmarks. For example, RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
comment: Accepted to ACL 2025
♻ ☆ Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio Language Models
We present Audio Flamingo 3 (AF3), a fully open state-of-the-art (SOTA) large audio-language model that advances reasoning and understanding across speech, sound, and music. AF3 introduces: (i) AF-Whisper, a unified audio encoder trained using a novel strategy for joint representation learning across all 3 modalities of speech, sound, and music; (ii) flexible, on-demand thinking, allowing the model to do chain-of-thought-type reasoning before answering; (iii) multi-turn, multi-audio chat; (iv) long audio understanding and reasoning (including speech) up to 10 minutes; and (v) voice-to-voice interaction. To enable these capabilities, we propose several large-scale training datasets curated using novel strategies, including AudioSkills-XL, LongAudio-XL, AF-Think, and AF-Chat, and train AF3 with a novel five-stage curriculum-based training strategy. Trained on only open-source audio data, AF3 achieves new SOTA results on over 20+ (long) audio understanding and reasoning benchmarks, surpassing both open-weight and closed-source models trained on much larger datasets.
comment: Code, Datasets, and Models: https://research.nvidia.com/labs/adlr/AF3/ ; Updates in v2: Updated results for new thinking mode ckpts, added qualitative figure, added note on fully open claim, add email ID for corresponding authors
♻ ☆ Decoding Instructional Dialogue: Human-AI Collaborative Analysis of Teacher Use of AI Tool at Scale
The integration of large language models (LLMs) into educational tools has the potential to substantially impact how teachers plan instruction, support diverse learners, and engage in professional reflection. Yet little is known about how educators actually use these tools in practice and how their interactions with AI can be meaningfully studied at scale. This paper presents a human-AI collaborative methodology for large-scale qualitative analysis of over 140,000 educator-AI messages drawn from a generative AI platform used by K-12 teachers. Through a four-phase coding pipeline, we combined inductive theme discovery, codebook development, structured annotation, and model benchmarking to examine patterns of educator engagement and evaluate the performance of LLMs in qualitative coding tasks. We developed a hierarchical codebook aligned with established teacher evaluation frameworks, capturing educators' instructional goals, contextual needs, and pedagogical strategies. Our findings demonstrate that LLMs, particularly Claude 3.5 Haiku, can reliably support theme identification, extend human recognition in complex scenarios, and outperform open-weight models in both accuracy and structural reliability. The analysis also reveals substantive patterns in how educators inquire AI to enhance instructional practices (79.7 percent of total conversations), create or adapt content (76.1 percent), support assessment and feedback loop (46.9 percent), attend to student needs for tailored instruction (43.3 percent), and assist other professional responsibilities (34.2 percent), highlighting emerging AI-related competencies that have direct implications for teacher preparation and professional development. This study offers a scalable, transparent model for AI-augmented qualitative research and provides foundational insights into the evolving role of generative AI in educational practice.
♻ ☆ Recovering Manifold Structure Using Ollivier-Ricci Curvature
We introduce ORC-ManL, a new algorithm to prune spurious edges from nearest neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated metric distortion. Our motivation comes from manifold learning: we show that when the data generating the nearest-neighbor graph consists of noisy samples from a low-dimensional manifold, edges that shortcut through the ambient space have more negative Ollivier-Ricci curvature than edges that lie along the data manifold. We demonstrate that our method outperforms alternative pruning methods and that it significantly improves performance on many downstream geometric data analysis tasks that use nearest neighbor graphs as input. Specifically, we evaluate on manifold learning, persistent homology, dimension estimation, and others. We also show that ORC-ManL can be used to improve clustering and manifold learning of single-cell RNA sequencing data. Finally, we provide empirical convergence experiments that support our theoretical findings.
♻ ☆ An Algebraic Approach to Moralisation and Triangulation of Probabilistic Graphical Models
Moralisation and Triangulation are transformations allowing to switch between different ways of factoring a probability distribution into a graphical model. Moralisation allows to view a Bayesian network (a directed model) as a Markov network (an undirected model), whereas triangulation works in the opposite direction. We present a categorical framework where these transformations are modelled as functors between a category of Bayesian networks and one of Markov networks. The two kinds of network (the objects of these categories) are themselves represented as functors, from a `syntax' domain to a `semantics' codomain. Notably, moralisation and triangulation are definable inductively on such syntax, and operate as a form of functor pre-composition. This approach introduces a modular, algebraic perspective in the theory of probabilistic graphical models.
comment: Full version of the conference paper
♻ ☆ SQuat: Subspace-orthogonal KV Cache Quantization
The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
♻ ☆ Learning Pareto-Optimal Rewards from Noisy Preferences: A Framework for Multi-Objective Inverse Reinforcement Learning
As generative agents become increasingly capable, alignment of their behavior with complex human values remains a fundamental challenge. Existing approaches often simplify human intent through reduction to a scalar reward, overlooking the multi-faceted nature of human feedback. In this work, we introduce a theoretical framework for preference-based Multi-Objective Inverse Reinforcement Learning (MO-IRL), where human preferences are modeled as latent vector-valued reward functions. We formalize the problem of recovering a Pareto-optimal reward representation from noisy preference queries and establish conditions for identifying the underlying multi-objective structure. We derive tight sample complexity bounds for recovering $\epsilon$-approximations of the Pareto front and introduce a regret formulation to quantify suboptimality in this multi-objective setting. Furthermore, we propose a provably convergent algorithm for policy optimization using preference-inferred reward cones. Our results bridge the gap between practical alignment techniques and theoretical guarantees, providing a principled foundation for learning aligned behaviors in a high-dimension and value-pluralistic environment.
♻ ☆ Online Concurrent Multi-Robot Coverage Path Planning IROS 2025
Recently, centralized receding horizon online multi-robot coverage path planning algorithms have shown remarkable scalability in thoroughly exploring large, complex, unknown workspaces with many robots. In a horizon, the path planning and the path execution interleave, meaning when the path planning occurs for robots with no paths, the robots with outstanding paths do not execute, and subsequently, when the robots with new or outstanding paths execute to reach respective goals, path planning does not occur for those robots yet to get new paths, leading to wastage of both the robotic and the computation resources. As a remedy, we propose a centralized algorithm that is not horizon-based. It plans paths at any time for a subset of robots with no paths, i.e., who have reached their previously assigned goals, while the rest execute their outstanding paths, thereby enabling concurrent planning and execution. We formally prove that the proposed algorithm ensures complete coverage of an unknown workspace and analyze its time complexity. To demonstrate scalability, we evaluate our algorithm to cover eight large $2$D grid benchmark workspaces with up to 512 aerial and ground robots, respectively. A comparison with a state-of-the-art horizon-based algorithm shows its superiority in completing the coverage with up to 1.6x speedup. For validation, we perform ROS + Gazebo simulations in six 2D grid benchmark workspaces with 10 quadcopters and TurtleBots, respectively. We also successfully conducted one outdoor experiment with three quadcopters and one indoor with two TurtleBots.
comment: Accepted in IROS 2025
♻ ☆ MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
In the era of big data, access to abundant data is crucial for driving research forward. However, such data is often inaccessible due to privacy concerns or high costs, particularly in healthcare domain. Generating synthetic (tabular) data can address this, but existing models typically require substantial amounts of data to train effectively, contradicting our objective to solve data scarcity. To address this challenge, we propose a novel framework to generate synthetic tabular data, powered by large language models (LLMs) that emulates the architecture of a Generative Adversarial Network (GAN). By incorporating data generation process as contextual information and utilizing LLM as the optimizer, our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes. Our experimental results on public and private datasets demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
♻ ☆ FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation ACL 2025
We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible at https://github.com/flageval-baai/FlagEvalMM.
comment: Accepted by ACL 2025 Demo
♻ ☆ Narrative Context Protocol: An Open-Source Storytelling Framework for Generative AI
Here we introduce Narrative Context Protocol (NCP), an open-source narrative standard designed to enable narrative interoperability, AI-driven authoring tools, real-time emergent narratives, and more. By encoding a story's structure in a "Storyform," which is a structured register of its narrative features, NCP enables narrative portability across systems as well as intent-based constraints for generative storytelling systems. We demonstrate the capabilities of NCP through a year-long experiment, during which an author used NCP and a custom authoring platform to create a playable, text-based experience based on her pre-existing novella. This experience is driven by generative AI, with unconstrained natural language input. NCP functions as a set of "guardrails" that allows the generative system to accommodate player agency while also ensuring that narrative context and coherence are maintained.
♻ ☆ Levels of Analysis for Large Language Models
Modern artificial intelligence systems, such as large language models, are increasingly powerful but also increasingly hard to understand. Recognizing this problem as analogous to the historical difficulties in understanding the human mind, we argue that methods developed in cognitive science can be useful for understanding large language models. We propose a framework for applying these methods based on the levels of analysis that David Marr proposed for studying information processing systems. By revisiting established cognitive science techniques relevant to each level and illustrating their potential to yield insights into the behavior and internal organization of large language models, we aim to provide a toolkit for making sense of these new kinds of minds.
♻ ☆ Illuminating the Three Dogmas of Reinforcement Learning under Evolutionary Light
Three core tenets of reinforcement learning (RL)--concerning the definition of agency, the objective of learning, and the scope of the reward hypothesis--have been highlighted as key targets for conceptual revision, with major implications for theory and application. We propose a framework, inspired by open-ended evolutionary theory, to reconsider these three "dogmas." We revisit each assumption and address related concerns raised alongside them. To make our arguments relevant to RL as a model of biological learning, we first establish that evolutionary dynamics can plausibly operate within living brains over an individual's lifetime, and are not confined to cross-generational processes. We begin by revisiting the second dogma, drawing on evolutionary insights to enrich the "adaptation-rather-than-search" view of learning. We then address the third dogma regarding the limits of the reward hypothesis, using analogies from evolutionary fitness to illuminate the scalar reward vs. multi-objective debate. After discussing practical implications for exploration in RL, we turn to the first--and arguably most fundamental--issue: the absence of a formal account of agency. We argue that unlike the other two problems, the evolutionary paradigm alone cannot resolve the agency question, though it gestures in a productive direction. We advocate integrating ideas from origins-of-life theory, where the thermodynamics of sustenance and replication offer promising foundations for understanding agency and resource-constrained reinforcement learning in biological systems.
♻ ☆ Adversarial attacks and defenses in explainable artificial intelligence: A survey
Explainable artificial intelligence (XAI) methods are portrayed as a remedy for debugging and trusting statistical and deep learning models, as well as interpreting their predictions. However, recent advances in adversarial machine learning (AdvML) highlight the limitations and vulnerabilities of state-of-the-art explanation methods, putting their security and trustworthiness into question. The possibility of manipulating, fooling or fairwashing evidence of the model's reasoning has detrimental consequences when applied in high-stakes decision-making and knowledge discovery. This survey provides a comprehensive overview of research concerning adversarial attacks on explanations of machine learning models, as well as fairness metrics. We introduce a unified notation and taxonomy of methods facilitating a common ground for researchers and practitioners from the intersecting research fields of AdvML and XAI. We discuss how to defend against attacks and design robust interpretation methods. We contribute a list of existing insecurities in XAI and outline the emerging research directions in adversarial XAI (AdvXAI). Future work should address improving explanation methods and evaluation protocols to take into account the reported safety issues.
comment: Accepted by Information Fusion
♻ ☆ Reinforcement Learning Fine-Tunes a Sparse Subnetwork in Large Language Models
Reinforcement learning (RL) is a key post-pretraining step for aligning large language models (LLMs) with complex tasks and human preferences. While it is often assumed that RL fine-tuning requires updating most of a model's parameters, we challenge this assumption with a surprising finding: RL fine-tuning consistently modifies only a small subnetwork (typically 5-30% of weights), leaving most parameters unchanged. We call this phenomenon RL-induced parameter update sparsity. It arises naturally, without any sparsity constraints or parameter-efficient tuning, and appears across multiple RL algorithms (e.g., PPO, DPO, SimPO, PRIME) and model families (e.g., OpenAI, Meta, and open-source LLMs). Moreover, the subnetworks updated by RL show substantial overlap across different seeds, datasets, and algorithms-far exceeding chance-suggesting a partially transferable structure in the pretrained model. We show that fine-tuning only this sparse subnetwork recovers full model performance and yields parameters nearly identical to the fully fine-tuned model. Our analysis suggests this sparsity emerges because RL operates near the model's original distribution, requiring only targeted changes. KL penalties, gradient clipping, and on-policy dynamics have limited effect on the sparsity pattern. These findings shed new light on how RL adapts models: not by shifting all weights, but by focusing training on a small, consistently updated subnetwork. This insight enables more efficient RL methods and reframes sparsity through the lens of the lottery ticket hypothesis.
comment: The manuscript has been withdrawn due to significant overlap in methodology and results with a prior work (arXiv:2505.11711) that we were not aware of at the time of submission. To maintain academic integrity and avoid redundancy in the literature, we have chosen to withdraw this version
Machine Learning 179
☆ Flow Matching Policy Gradients
Flow-based generative models, including diffusion models, excel at modeling continuous distributions in high-dimensional spaces. In this work, we introduce Flow Policy Optimization (FPO), a simple on-policy reinforcement learning algorithm that brings flow matching into the policy gradient framework. FPO casts policy optimization as maximizing an advantage-weighted ratio computed from the conditional flow matching loss, in a manner compatible with the popular PPO-clip framework. It sidesteps the need for exact likelihood computation while preserving the generative capabilities of flow-based models. Unlike prior approaches for diffusion-based reinforcement learning that bind training to a specific sampling method, FPO is agnostic to the choice of diffusion or flow integration at both training and inference time. We show that FPO can train diffusion-style policies from scratch in a variety of continuous control tasks. We find that flow-based models can capture multimodal action distributions and achieve higher performance than Gaussian policies, particularly in under-conditioned settings.
comment: See our blog post: https://flowreinforce.github.io
☆ Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning ICCV 2025
Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.
comment: ICCV 2025 (Highlight). Project page: https://jacky1128.github.io/RepMTL/
☆ Transformers as Unrolled Inference in Probabilistic Laplacian Eigenmaps: An Interpretation and Potential Improvements
We propose a probabilistic interpretation of transformers as unrolled inference steps assuming a probabilistic Laplacian Eigenmaps model from the ProbDR framework. Our derivation shows that at initialisation, transformers perform "linear" dimensionality reduction. We also show that within the transformer block, a graph Laplacian term arises from our arguments, rather than an attention matrix (which we interpret as an adjacency matrix). We demonstrate that simply subtracting the identity from the attention matrix (and thereby taking a graph diffusion step) improves validation performance on a language model and a simple vision transformer.
comment: Initial version
☆ When Brain Foundation Model Meets Cauchy-Schwarz Divergence: A New Framework for Cross-Subject Motor Imagery Decoding
Decoding motor imagery (MI) electroencephalogram (EEG) signals, a key non-invasive brain-computer interface (BCI) paradigm for controlling external systems, has been significantly advanced by deep learning. However, MI-EEG decoding remains challenging due to substantial inter-subject variability and limited labeled target data, which necessitate costly calibration for new users. Many existing multi-source domain adaptation (MSDA) methods indiscriminately incorporate all available source domains, disregarding the large inter-subject differences in EEG signals, which leads to negative transfer and excessive computational costs. Moreover, while many approaches focus on feature distribution alignment, they often neglect the explicit dependence between features and decision-level outputs, limiting their ability to preserve discriminative structures. To address these gaps, we propose a novel MSDA framework that leverages a pretrained large Brain Foundation Model (BFM) for dynamic and informed source subject selection, ensuring only relevant sources contribute to adaptation. Furthermore, we employ Cauchy-Schwarz (CS) and Conditional CS (CCS) divergences to jointly perform feature-level and decision-level alignment, enhancing domain invariance while maintaining class discriminability. Extensive evaluations on two benchmark MI-EEG datasets demonstrate that our framework outperforms a broad range of state-of-the-art baselines. Additional experiments with a large source pool validate the scalability and efficiency of BFM-guided selection, which significantly reduces training time without sacrificing performance.
comment: This work has been submitted to the IEEE for possible publication
☆ GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
comment: 51 pages, 5 figures
Optimization Performance of Factorization Machine with Annealing under Limited Training Data
Black-box (BB) optimization problems aim to identify an input that minimizes the output of a function (the BB function) whose input-output relationship is unknown. Factorization machine with annealing (FMA) is a promising approach to this task, employing a factorization machine (FM) as a surrogate model to iteratively guide the solution search via an Ising machine. Although FMA has demonstrated strong optimization performance across various applications, its performance often stagnates as the number of optimization iterations increases. One contributing factor to this stagnation is the growing number of data points in the dataset used to train FM. It is hypothesized that as more data points are accumulated, the contribution of newly added data points becomes diluted within the entire dataset, thereby reducing their impact on improving the prediction accuracy of FM. To address this issue, we propose a novel method for sequential dataset construction that retains at most a specified number of the most recently added data points. This strategy is designed to enhance the influence of newly added data points on the surrogate model. Numerical experiments demonstrate that the proposed FMA achieves lower-cost solutions with fewer BB function evaluations compared to the conventional FMA.
comment: 9 pages, 4 figures
☆ On Using the Shapley Value for Anomaly Localization: A Statistical Investigation
Recent publications have suggested using the Shapley value for anomaly localization for sensor data systems. Using a reasonable mathematical anomaly model for full control, experiments indicate that using a single fixed term in the Shapley value calculation achieves a lower complexity anomaly localization test, with the same probability of error, as a test using the Shapley value for all cases tested. A proof demonstrates these conclusions must be true for all independent observation cases. For dependent observation cases, no proof is available.
☆ Behavior-Specific Filtering for Enhanced Pig Behavior Classification in Precision Livestock Farming
This study proposes a behavior-specific filtering method to improve behavior classification accuracy in Precision Livestock Farming. While traditional filtering methods, such as wavelet denoising, achieved an accuracy of 91.58%, they apply uniform processing to all behaviors. In contrast, the proposed behavior-specific filtering method combines Wavelet Denoising with a Low Pass Filter, tailored to active and inactive pig behaviors, and achieved a peak accuracy of 94.73%. These results highlight the effectiveness of behavior-specific filtering in enhancing animal behavior monitoring, supporting better health management and farm efficiency.
comment: 11 pages, 4 tables, 3 figures
☆ Deep Learning for Skeleton Based Human Motion Rehabilitation Assessment: A Benchmark
Automated assessment of human motion plays a vital role in rehabilitation, enabling objective evaluation of patient performance and progress. Unlike general human activity recognition, rehabilitation motion assessment focuses on analyzing the quality of movement within the same action class, requiring the detection of subtle deviations from ideal motion. Recent advances in deep learning and video-based skeleton extraction have opened new possibilities for accessible, scalable motion assessment using affordable devices such as smartphones or webcams. However, the field lacks standardized benchmarks, consistent evaluation protocols, and reproducible methodologies, limiting progress and comparability across studies. In this work, we address these gaps by (i) aggregating existing rehabilitation datasets into a unified archive called Rehab-Pile, (ii) proposing a general benchmarking framework for evaluating deep learning methods in this domain, and (iii) conducting extensive benchmarking of multiple architectures across classification and regression tasks. All datasets and implementations are released to the community to support transparency and reproducibility. This paper aims to establish a solid foundation for future research in automated rehabilitation assessment and foster the development of reliable, accessible, and personalized rehabilitation solutions. The datasets, source-code and results of this article are all publicly available.
☆ Predicting Cognition from fMRI:A Comparative Study of Graph, Transformer, and Kernel Models Across Task and Rest Conditions
Predicting cognition from neuroimaging data in healthy individuals offers insights into the neural mechanisms underlying cognitive abilities, with potential applications in precision medicine and early detection of neurological and psychiatric conditions. This study systematically benchmarked classical machine learning (Kernel Ridge Regression (KRR)) and advanced deep learning (DL) models (Graph Neural Networks (GNN) and Transformer-GNN (TGNN)) for cognitive prediction using Resting-state (RS), Working Memory, and Language task fMRI data from the Human Connectome Project Young Adult dataset. Our results, based on R2 scores, Pearson correlation coefficient, and mean absolute error, revealed that task-based fMRI, eliciting neural responses directly tied to cognition, outperformed RS fMRI in predicting cognitive behavior. Among the methods compared, a GNN combining structural connectivity (SC) and functional connectivity (FC) consistently achieved the highest performance across all fMRI modalities; however, its advantage over KRR using FC alone was not statistically significant. The TGNN, designed to model temporal dynamics with SC as a prior, performed competitively with FC-based approaches for task-fMRI but struggled with RS data, where its performance aligned with the lower-performing GNN that directly used fMRI time-series data as node features. These findings emphasize the importance of selecting appropriate model architectures and feature representations to fully leverage the spatial and temporal richness of neuroimaging data. This study highlights the potential of multimodal graph-aware DL models to combine SC and FC for cognitive prediction, as well as the promise of Transformer-based approaches for capturing temporal dynamics. By providing a comprehensive comparison of models, this work serves as a guide for advancing brain-behavior modeling using fMRI, SC and DL.
comment: Preliminary version; a revised version will be uploaded later
☆ Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
☆ LoRA-PAR: A Flexible Dual-System LoRA Partitioning Approach to Efficient LLM Fine-Tuning
Large-scale generative models like DeepSeek-R1 and OpenAI-O1 benefit substantially from chain-of-thought (CoT) reasoning, yet pushing their performance typically requires vast data, large model sizes, and full-parameter fine-tuning. While parameter-efficient fine-tuning (PEFT) helps reduce cost, most existing approaches primarily address domain adaptation or layer-wise allocation rather than explicitly tailoring data and parameters to different response demands. Inspired by "Thinking, Fast and Slow," which characterizes two distinct modes of thought-System 1 (fast, intuitive, often automatic) and System 2 (slower, more deliberative and analytic)-we draw an analogy that different "subregions" of an LLM's parameters might similarly specialize for tasks that demand quick, intuitive responses versus those requiring multi-step logical reasoning. Therefore, we propose LoRA-PAR, a dual-system LoRA framework that partitions both data and parameters by System 1 or System 2 demands, using fewer yet more focused parameters for each task. Specifically, we classify task data via multi-model role-playing and voting, and partition parameters based on importance scoring, then adopt a two-stage fine-tuning strategy of training System 1 tasks with supervised fine-tuning (SFT) to enhance knowledge and intuition and refine System 2 tasks with reinforcement learning (RL) to reinforce deeper logical deliberation next. Extensive experiments show that the two-stage fine-tuning strategy, SFT and RL, lowers active parameter usage while matching or surpassing SOTA PEFT baselines.
comment: 10 pages
☆ Modular Delta Merging with Orthogonal Constraints: A Scalable Framework for Continual and Reversible Model Composition ICLR 2025
In real-world machine learning deployments, models must be continually updated, composed, and when required, selectively undone. However, existing approaches to model merging and continual learning often suffer from task interference, catastrophic forgetting, or lack of reversibility. We propose Modular Delta Merging with Orthogonal Constraints (MDM-OC), a novel framework that enables scalable, interference-free, and reversible composition of fine-tuned models. Each task-specific model is encoded as a delta from a shared base and projected into an orthogonal subspace to eliminate conflict. These projected deltas are then merged via gradient-based optimization to form a unified model that retains performance across tasks. Our approach supports continual integration of new models, structured unmerging for compliance such as GDPR requirements, and model stability via elastic weight consolidation and synthetic replay. Extensive experiments on vision and natural language processing benchmarks demonstrate that MDM-OC outperforms prior baselines in accuracy, backward transfer, and unmerge fidelity, while remaining memory-efficient and computationally tractable. This framework offers a principled solution for modular and compliant AI system design.
comment: 11 pages, 6 figures, 3 tables. Will be Submitted to ICLR 2025 for review
☆ Personalized Treatment Effect Estimation from Unstructured Data
Existing methods for estimating personalized treatment effects typically rely on structured covariates, limiting their applicability to unstructured data. Yet, leveraging unstructured data for causal inference has considerable application potential, for instance in healthcare, where clinical notes or medical images are abundant. To this end, we first introduce an approximate 'plug-in' method trained directly on the neural representations of unstructured data. However, when these fail to capture all confounding information, the method may be subject to confounding bias. We therefore introduce two theoretically grounded estimators that leverage structured measurements of the confounders during training, but allow estimating personalized treatment effects purely from unstructured inputs, while avoiding confounding bias. When these structured measurements are only available for a non-representative subset of the data, these estimators may suffer from sampling bias. To address this, we further introduce a regression-based correction that accounts for the non-uniform sampling, assuming the sampling mechanism is known or can be well-estimated. Our experiments on two benchmark datasets show that the plug-in method, directly trainable on large unstructured datasets, achieves strong empirical performance across all settings, despite its simplicity.
☆ SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
☆ Repairing vulnerabilities without invisible hands. A differentiated replication study on LLMs
Background: Automated Vulnerability Repair (AVR) is a fast-growing branch of program repair. Recent studies show that large language models (LLMs) outperform traditional techniques, extending their success beyond code generation and fault detection. Hypothesis: These gains may be driven by hidden factors -- "invisible hands" such as training-data leakage or perfect fault localization -- that let an LLM reproduce human-authored fixes for the same code. Objective: We replicate prior AVR studies under controlled conditions by deliberately adding errors to the reported vulnerability location in the prompt. If LLMs merely regurgitate memorized fixes, both small and large localization errors should yield the same number of correct patches, because any offset should divert the model from the original fix. Method: Our pipeline repairs vulnerabilities from the Vul4J and VJTrans benchmarks after shifting the fault location by n lines from the ground truth. A first LLM generates a patch, a second LLM reviews it, and we validate the result with regression and proof-of-vulnerability tests. Finally, we manually audit a sample of patches and estimate the error rate with the Agresti-Coull-Wilson method.
☆ Locally Adaptive Conformal Inference for Operator Models
Operator models are regression algorithms for functional data and have become a key tool for emulating large-scale dynamical systems. Recent advances in deep neural operators have dramatically improved the accuracy and scalability of operator modeling, but lack an inherent notion of predictive uncertainty. We introduce Local Spectral Conformal Inference (LSCI), a new framework for locally adaptive, distribution-free uncertainty quantification for neural operator models. LSCI uses projection-based depth scoring and localized conformal inference to generate function-valued prediction sets with statistical guarantees. We prove approximate finite-sample marginal coverage under local exchangeability, and demonstrate significant gains in adaptivity and coverage across synthetic and real-world operator learning tasks.
comment: 9 pages, 2 figures, 2 tables
☆ Model-Agnostic Gender Bias Control for Text-to-Image Generation via Sparse Autoencoder
Text-to-image (T2I) diffusion models often exhibit gender bias, particularly by generating stereotypical associations between professions and gendered subjects. This paper presents SAE Debias, a lightweight and model-agnostic framework for mitigating such bias in T2I generation. Unlike prior approaches that rely on CLIP-based filtering or prompt engineering, which often require model-specific adjustments and offer limited control, SAE Debias operates directly within the feature space without retraining or architectural modifications. By leveraging a k-sparse autoencoder pre-trained on a gender bias dataset, the method identifies gender-relevant directions within the sparse latent space, capturing professional stereotypes. Specifically, a biased direction per profession is constructed from sparse latents and suppressed during inference to steer generations toward more gender-balanced outputs. Trained only once, the sparse autoencoder provides a reusable debiasing direction, offering effective control and interpretable insight into biased subspaces. Extensive evaluations across multiple T2I models, including Stable Diffusion 1.4, 1.5, 2.1, and SDXL, demonstrate that SAE Debias substantially reduces gender bias while preserving generation quality. To the best of our knowledge, this is the first work to apply sparse autoencoders for identifying and intervening in gender bias within T2I models. These findings contribute toward building socially responsible generative AI, providing an interpretable and model-agnostic tool to support fairness in text-to-image generation.
☆ From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that governs domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmark datasets (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 cross-domain scenarios.
☆ PROVCREATOR: Synthesizing Complex Heterogenous Graphs with Node and Edge Attributes
The rise of graph-structured data has driven interest in graph learning and synthetic data generation. While successful in text and image domains, synthetic graph generation remains challenging -- especially for real-world graphs with complex, heterogeneous schemas. Existing research has focused mostly on homogeneous structures with simple attributes, limiting their usefulness and relevance for application domains requiring semantic fidelity. In this research, we introduce ProvCreator, a synthetic graph framework designed for complex heterogeneous graphs with high-dimensional node and edge attributes. ProvCreator formulates graph synthesis as a sequence generation task, enabling the use of transformer-based large language models. It features a versatile graph-to-sequence encoder-decoder that 1. losslessly encodes graph structure and attributes, 2. efficiently compresses large graphs for contextual modeling, and 3. supports end-to-end, learnable graph generation. To validate our research, we evaluate ProvCreator on two challenging domains: system provenance graphs in cybersecurity and knowledge graphs from IntelliGraph Benchmark Dataset. In both cases, ProvCreator captures intricate dependencies between structure and semantics, enabling the generation of realistic and privacy-aware synthetic datasets.
☆ Handoff Design in User-Centric Cell-Free Massive MIMO Networks Using DRL
In the user-centric cell-free massive MIMO (UC-mMIMO) network scheme, user mobility necessitates updating the set of serving access points to maintain the user-centric clustering. Such updates are typically performed through handoff (HO) operations; however, frequent HOs lead to overheads associated with the allocation and release of resources. This paper presents a deep reinforcement learning (DRL)-based solution to predict and manage these connections for mobile users. Our solution employs the Soft Actor-Critic algorithm, with continuous action space representation, to train a deep neural network to serve as the HO policy. We present a novel proposition for a reward function that integrates a HO penalty in order to balance the attainable rate and the associated overhead related to HOs. We develop two variants of our system; the first one uses mobility direction-assisted (DA) observations that are based on the user movement pattern, while the second one uses history-assisted (HA) observations that are based on the history of the large-scale fading (LSF). Simulation results show that our DRL-based continuous action space approach is more scalable than discrete space counterpart, and that our derived HO policy automatically learns to gather HOs in specific time slots to minimize the overhead of initiating HOs. Our solution can also operate in real time with a response time less than 0.4 ms.
comment: Published in IEEE Transactions on Communications (IEEE TCOM)
☆ Core Safety Values for Provably Corrigible Agents
We introduce the first implementable framework for corrigibility, with provable guarantees in multi-step, partially observed environments. Our framework replaces a single opaque reward with five *structurally separate* utility heads -- deference, switch-access preservation, truthfulness, low-impact behavior via a belief-based extension of Attainable Utility Preservation, and bounded task reward -- combined lexicographically by strict weight gaps. Theorem 1 proves exact single-round corrigibility in the partially observable off-switch game; Theorem 3 extends the guarantee to multi-step, self-spawning agents, showing that even if each head is \emph{learned} to mean-squared error $\varepsilon$ and the planner is $\varepsilon$-sub-optimal, the probability of violating \emph{any} safety property is bounded while still ensuring net human benefit. In contrast to Constitutional AI or RLHF/RLAIF, which merge all norms into one learned scalar, our separation makes obedience and impact-limits dominate even when incentives conflict. For open-ended settings where adversaries can modify the agent, we prove that deciding whether an arbitrary post-hack agent will ever violate corrigibility is undecidable by reduction to the halting problem, then carve out a finite-horizon ``decidable island'' where safety can be certified in randomized polynomial time and verified with privacy-preserving, constant-round zero-knowledge proofs. Consequently, the remaining challenge is the ordinary ML task of data coverage and generalization: reward-hacking risk is pushed into evaluation quality rather than hidden incentive leak-through, giving clearer implementation guidance for today's LLM assistants and future autonomous systems.
comment: 14 pages
☆ Mean-Field Langevin Diffusions with Density-dependent Temperature
In the context of non-convex optimization, we let the temperature of a Langevin diffusion to depend on the diffusion's own density function. The rationale is that the induced density reveals to some extent the landscape imposed by the non-convex function to be minimized, such that a density-dependent temperature can provide location-wise random perturbation that may better react to, for instance, the location and depth of local minimizers. As the Langevin dynamics is now self-regulated by its own density, it forms a mean-field stochastic differential equation (SDE) of the Nemytskii type, distinct from the standard McKean-Vlasov equations. Relying on Wasserstein subdifferential calculus, we first show that the corresponding (nonlinear) Fokker-Planck equation has a unique solution. Next, a weak solution to the SDE is constructed from the solution to the Fokker-Planck equation, by Trevisan's superposition principle. As time goes to infinity, we further show that the density induced by the SDE converges to an invariant distribution, which admits an explicit formula in terms of the Lambert $W$ function.
☆ PySHRED: A Python package for SHallow REcurrent Decoding for sparse sensing, model reduction and scientific discovery
SHallow REcurrent Decoders (SHRED) provide a deep learning strategy for modeling high-dimensional dynamical systems and/or spatiotemporal data from dynamical system snapshot observations. PySHRED is a Python package that implements SHRED and several of its major extensions, including for robust sensing, reduced order modeling and physics discovery. In this paper, we introduce the version 1.0 release of PySHRED, which includes data preprocessors and a number of cutting-edge SHRED methods specifically designed to handle real-world data that may be noisy, multi-scale, parameterized, prohibitively high-dimensional, and strongly nonlinear. The package is easy to install, thoroughly-documented, supplemented with extensive code examples, and modularly-structured to support future additions. The entire codebase is released under the MIT license and is available at https://github.com/pyshred-dev/pyshred.
comment: 15 pages, 9 figures
☆ Multivariate Conformal Prediction via Conformalized Gaussian Scoring
While achieving exact conditional coverage in conformal prediction is unattainable without making strong, untestable regularity assumptions, the promise of conformal prediction hinges on finding approximations to conditional guarantees that are realizable in practice. A promising direction for obtaining conditional dependence for conformal sets--in particular capturing heteroskedasticity--is through estimating the conditional density $\mathbb{P}_{Y|X}$ and conformalizing its level sets. Previous work in this vein has focused on nonconformity scores based on the empirical cumulative distribution function (CDF). Such scores are, however, computationally costly, typically requiring expensive sampling methods. To avoid the need for sampling, we observe that the CDF-based score reduces to a Mahalanobis distance in the case of Gaussian scores, yielding a closed-form expression that can be directly conformalized. Moreover, the use of a Gaussian-based score opens the door to a number of extensions of the basic conformal method; in particular, we show how to construct conformal sets with missing output values, refine conformal sets as partial information about $Y$ becomes available, and construct conformal sets on transformations of the output space. Finally, empirical results indicate that our approach produces conformal sets that more closely approximate conditional coverage in multivariate settings compared to alternative methods.
☆ Dissecting Persona-Driven Reasoning in Language Models via Activation Patching
Large language models (LLMs) exhibit remarkable versatility in adopting diverse personas. In this study, we examine how assigning a persona influences a model's reasoning on an objective task. Using activation patching, we take a first step toward understanding how key components of the model encode persona-specific information. Our findings reveal that the early Multi-Layer Perceptron (MLP) layers attend not only to the syntactic structure of the input but also process its semantic content. These layers transform persona tokens into richer representations, which are then used by the middle Multi-Head Attention (MHA) layers to shape the model's output. Additionally, we identify specific attention heads that disproportionately attend to racial and color-based identities.
comment: 11 pages
☆ FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/fine-grained-editting.
☆ Breaking the Precision Ceiling in Physics-Informed Neural Networks: A Hybrid Fourier-Neural Architecture for Ultra-High Accuracy
Physics-informed neural networks (PINNs) have plateaued at errors of $10^{-3}$-$10^{-4}$ for fourth-order partial differential equations, creating a perceived precision ceiling that limits their adoption in engineering applications. We break through this barrier with a hybrid Fourier-neural architecture for the Euler-Bernoulli beam equation, achieving unprecedented L2 error of $1.94 \times 10^{-7}$-a 17-fold improvement over standard PINNs and \(15-500\times\) better than traditional numerical methods. Our approach synergistically combines a truncated Fourier series capturing dominant modal behavior with a deep neural network providing adaptive residual corrections. A systematic harmonic optimization study revealed a counter-intuitive discovery: exactly 10 harmonics yield optimal performance, with accuracy catastrophically degrading from $10^{-7}$ to $10^{-1}$ beyond this threshold. The two-phase optimization strategy (Adam followed by L-BFGS) and adaptive weight balancing enable stable ultra-precision convergence. GPU-accelerated implementation achieves sub-30-minute training despite fourth-order derivative complexity. By addressing 12 critical gaps in existing approaches-from architectural rigidity to optimization landscapes-this work demonstrates that ultra-precision is achievable through proper design, opening new paradigms for scientific computing where machine learning can match or exceed traditional numerical methods.
☆ Zero-Shot Learning with Subsequence Reordering Pretraining for Compound-Protein Interaction
Given the vastness of chemical space and the ongoing emergence of previously uncharacterized proteins, zero-shot compound-protein interaction (CPI) prediction better reflects the practical challenges and requirements of real-world drug development. Although existing methods perform adequately during certain CPI tasks, they still face the following challenges: (1) Representation learning from local or complete protein sequences often overlooks the complex interdependencies between subsequences, which are essential for predicting spatial structures and binding properties. (2) Dependence on large-scale or scarce multimodal protein datasets demands significant training data and computational resources, limiting scalability and efficiency. To address these challenges, we propose a novel approach that pretrains protein representations for CPI prediction tasks using subsequence reordering, explicitly capturing the dependencies between protein subsequences. Furthermore, we apply length-variable protein augmentation to ensure excellent pretraining performance on small training datasets. To evaluate the model's effectiveness and zero-shot learning ability, we combine it with various baseline methods. The results demonstrate that our approach can improve the baseline model's performance on the CPI task, especially in the challenging zero-shot scenario. Compared to existing pre-training models, our model demonstrates superior performance, particularly in data-scarce scenarios where training samples are limited. Our implementation is available at https://github.com/Hoch-Zhang/PSRP-CPI.
☆ Modeling User Behavior from Adaptive Surveys with Supplemental Context ICML 2025
Modeling user behavior is critical across many industries where understanding preferences, intent, or decisions informs personalization, targeting, and strategic outcomes. Surveys have long served as a classical mechanism for collecting such behavioral data due to their interpretability, structure, and ease of deployment. However, surveys alone are inherently limited by user fatigue, incomplete responses, and practical constraints on their length making them insufficient for capturing user behavior. In this work, we present LANTERN (Late-Attentive Network for Enriched Response Modeling), a modular architecture for modeling user behavior by fusing adaptive survey responses with supplemental contextual signals. We demonstrate the architectural value of maintaining survey primacy through selective gating, residual connections and late fusion via cross-attention, treating survey data as the primary signal while incorporating external modalities only when relevant. LANTERN outperforms strong survey-only baselines in multi-label prediction of survey responses. We further investigate threshold sensitivity and the benefits of selective modality reliance through ablation and rare/frequent attribute analysis. LANTERN's modularity supports scalable integration of new encoders and evolving datasets. This work provides a practical and extensible blueprint for behavior modeling in survey-centric applications.
comment: Best Paper, NewInML @ ICML 2025
☆ Online hierarchical partitioning of the output space in extreme multi-label data stream
Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on \textit{Jaccard} similarity and a global tree-based learner driven by a multivariate \textit{Bernoulli} process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.
comment: Accepted at 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ Testbed and Software Architecture for Enhancing Security in Industrial Private 5G Networks
In the era of Industry 4.0, the growing need for secure and efficient communication systems has driven the development of fifth-generation (5G) networks characterized by extremely low latency, massive device connectivity and high data transfer speeds. However, the deployment of 5G networks presents significant security challenges, requiring advanced and robust solutions to counter increasingly sophisticated cyber threats. This paper proposes a testbed and software architecture to strengthen the security of Private 5G Networks, particularly in industrial communication environments.
☆ Not Only Grey Matter: OmniBrain for Robust Multimodal Classification of Alzheimer's Disease ICCV 2025
Alzheimer's disease affects over 55 million people worldwide and is projected to more than double by 2050, necessitating rapid, accurate, and scalable diagnostics. However, existing approaches are limited because they cannot achieve clinically acceptable accuracy, generalization across datasets, robustness to missing modalities, and explainability all at the same time. This inability to satisfy all these requirements simultaneously undermines their reliability in clinical settings. We propose OmniBrain, a multimodal framework that integrates brain MRI, radiomics, gene expression, and clinical data using a unified model with cross-attention and modality dropout. OmniBrain achieves $92.2 \pm 2.4\%$accuracy on the ANMerge dataset and generalizes to the MRI-only ADNI dataset with $70.4 \pm 2.7\%$ accuracy, outperforming unimodal and prior multimodal approaches. Explainability analyses highlight neuropathologically relevant brain regions and genes, enhancing clinical trust. OmniBrain offers a robust, interpretable, and practical solution for real-world Alzheimer's diagnosis.
comment: Published in Third Workshop on Computer Vision for Automated Medical Diagnosis CVAMD 2025 in ICCV 2025
☆ \textit{FedABC}: Attention-Based Client Selection for Federated Learning with Long-Term View
Native AI support is a key objective in the evolution of 6G networks, with Federated Learning (FL) emerging as a promising paradigm. FL allows decentralized clients to collaboratively train an AI model without directly sharing their data, preserving privacy. Clients train local models on private data and share model updates, which a central server aggregates to refine the global model and redistribute it for the next iteration. However, client data heterogeneity slows convergence and reduces model accuracy, and frequent client participation imposes communication and computational burdens. To address these challenges, we propose \textit{FedABC}, an innovative client selection algorithm designed to take a long-term view in managing data heterogeneity and optimizing client participation. Inspired by attention mechanisms, \textit{FedABC} prioritizes informative clients by evaluating both model similarity and each model's unique contributions to the global model. Moreover, considering the evolving demands of the global model, we formulate an optimization problem to guide \textit{FedABC} throughout the training process. Following the ``later-is-better" principle, \textit{FedABC} adaptively adjusts the client selection threshold, encouraging greater participation in later training stages. Extensive simulations on CIFAR-10 demonstrate that \textit{FedABC} significantly outperforms existing approaches in model accuracy and client participation efficiency, achieving comparable performance with 32\% fewer clients than the classical FL algorithm \textit{FedAvg}, and 3.5\% higher accuracy with 2\% fewer clients than the state-of-the-art. This work marks a step toward deploying FL in heterogeneous, resource-constrained environments, thereby supporting native AI capabilities in 6G networks.
comment: Accepted to ICC 2025
☆ Bi-cephalic self-attended model to classify Parkinson's disease patients with freezing of gait
Parkinson Disease (PD) often results in motor and cognitive impairments, including gait dysfunction, particularly in patients with freezing of gait (FOG). Current detection methods are either subjective or reliant on specialized gait analysis tools. This study aims to develop an objective, data-driven, and multi-modal classification model to detect gait dysfunction in PD patients using resting-state EEG signals combined with demographic and clinical variables. We utilized a dataset of 124 participants: 42 PD patients with FOG (PDFOG+), 41 without FOG (PDFOG-), and 41 age-matched healthy controls. Features extracted from resting-state EEG and descriptive variables (age, education, disease duration) were used to train a novel Bi-cephalic Self-Attention Model (BiSAM). We tested three modalities: signal-only, descriptive-only, and multi-modal, across different EEG channel subsets (BiSAM-63, -16, -8, and -4). Signal-only and descriptive-only models showed limited performance, achieving a maximum accuracy of 55% and 68%, respectively. In contrast, the multi-modal models significantly outperformed both, with BiSAM-8 and BiSAM-4 achieving the highest classification accuracy of 88%. These results demonstrate the value of integrating EEG with objective descriptive features for robust PDFOG+ detection. This study introduces a multi-modal, attention-based architecture that objectively classifies PDFOG+ using minimal EEG channels and descriptive variables. This approach offers a scalable and efficient alternative to traditional assessments, with potential applications in routine clinical monitoring and early diagnosis of PD-related gait dysfunction.
comment: 26 pages, 5944 words, 4 figures, 2 tables, European Journal of Neuroscience: Special edition FOG
☆ Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces ICLR 2025
Advances in reinforcement learning (RL) have led to its successful application in complex tasks with continuous state and action spaces. Despite these advances in practice, most theoretical work pertains to finite state and action spaces. We propose building a theoretical understanding of continuous state and action spaces by employing a geometric lens to understand the locally attained set of states. The set of all parametrised policies learnt through a semi-gradient based approach induces a set of attainable states in RL. We show that the training dynamics of a two-layer neural policy induce a low dimensional manifold of attainable states embedded in the high-dimensional nominal state space trained using an actor-critic algorithm. We prove that, under certain conditions, the dimensionality of this manifold is of the order of the dimensionality of the action space. This is the first result of its kind, linking the geometry of the state space to the dimensionality of the action space. We empirically corroborate this upper bound for four MuJoCo environments and also demonstrate the results in a toy environment with varying dimensionality. We also show the applicability of this theoretical result by introducing a local manifold learning layer to the policy and value function networks to improve the performance in control environments with very high degrees of freedom by changing one layer of the neural network to learn sparse representations.
comment: Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025). arXiv admin note: text overlap with arXiv:2301.00009
☆ Towards Explainable Deep Clustering for Time Series Data ECML-PKDD 2025
Deep clustering uncovers hidden patterns and groups in complex time series data, yet its opaque decision-making limits use in safety-critical settings. This survey offers a structured overview of explainable deep clustering for time series, collecting current methods and their real-world applications. We thoroughly discuss and compare peer-reviewed and preprint papers through application domains across healthcare, finance, IoT, and climate science. Our analysis reveals that most work relies on autoencoder and attention architectures, with limited support for streaming, irregularly sampled, or privacy-preserved series, and interpretability is still primarily treated as an add-on. To push the field forward, we outline six research opportunities: (1) combining complex networks with built-in interpretability; (2) setting up clear, faithfulness-focused evaluation metrics for unsupervised explanations; (3) building explainers that adapt to live data streams; (4) crafting explanations tailored to specific domains; (5) adding human-in-the-loop methods that refine clusters and explanations together; and (6) improving our understanding of how time series clustering models work internally. By making interpretability a primary design goal rather than an afterthought, we propose the groundwork for the next generation of trustworthy deep clustering time series analytics.
comment: 14 pages, accepted at TempXAI Workshop at ECML-PKDD 2025
☆ BuildSTG: A Multi-building Energy Load Forecasting Method using Spatio-Temporal Graph Neural Network
Due to the extensive availability of operation data, data-driven methods show strong capabilities in predicting building energy loads. Buildings with similar features often share energy patterns, reflected by spatial dependencies in their operational data, which conventional prediction methods struggle to capture. To overcome this, we propose a multi-building prediction approach using spatio-temporal graph neural networks, comprising graph representation, graph learning, and interpretation. First, a graph is built based on building characteristics and environmental factors. Next, a multi-level graph convolutional architecture with attention is developed for energy prediction. Lastly, a method interpreting the optimized graph structure is introduced. Experiments on the Building Data Genome Project 2 dataset confirm superior performance over baselines such as XGBoost, SVR, FCNN, GRU, and Naive, highlighting the method's robustness, generalization, and interpretability in capturing meaningful building similarities and spatial relationships.
☆ First Hallucination Tokens Are Different from Conditional Ones
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
☆ Why Flow Matching is Particle Swarm Optimization?
This paper preliminarily investigates the duality between flow matching in generative models and particle swarm optimization (PSO) in evolutionary computation. Through theoretical analysis, we reveal the intrinsic connections between these two approaches in terms of their mathematical formulations and optimization mechanisms: the vector field learning in flow matching shares similar mathematical expressions with the velocity update rules in PSO; both methods follow the fundamental framework of progressive evolution from initial to target distributions; and both can be formulated as dynamical systems governed by ordinary differential equations. Our study demonstrates that flow matching can be viewed as a continuous generalization of PSO, while PSO provides a discrete implementation of swarm intelligence principles. This duality understanding establishes a theoretical foundation for developing novel hybrid algorithms and creates a unified framework for analyzing both methods. Although this paper only presents preliminary discussions, the revealed correspondences suggest several promising research directions, including improving swarm intelligence algorithms based on flow matching principles and enhancing generative models using swarm intelligence concepts.
comment: 7 pages, 0 figures
☆ Understanding Bias in Perceiving Dimensionality Reduction Projections
Selecting the dimensionality reduction technique that faithfully represents the structure is essential for reliable visual communication and analytics. In reality, however, practitioners favor projections for other attractions, such as aesthetics and visual saliency, over the projection's structural faithfulness, a bias we define as visual interestingness. In this research, we conduct a user study that (1) verifies the existence of such bias and (2) explains why the bias exists. Our study suggests that visual interestingness biases practitioners' preferences when selecting projections for analysis, and this bias intensifies with color-encoded labels and shorter exposure time. Based on our findings, we discuss strategies to mitigate bias in perceiving and interpreting DR projections.
comment: 6 pages
☆ Aligning Large Language Model Agents with Rational and Moral Preferences: A Supervised Fine-Tuning Approach
Understanding how large language model (LLM) agents behave in strategic interactions is essential as these systems increasingly participate autonomously in economically and morally consequential decisions. We evaluate LLM preferences using canonical economic games, finding substantial deviations from human behavior. Models like GPT-4o show excessive cooperation and limited incentive sensitivity, while reasoning models, such as o3-mini, align more consistently with payoff-maximizing strategies. We propose a supervised fine-tuning pipeline that uses synthetic datasets derived from economic reasoning to align LLM agents with economic preferences, focusing on two stylized preference structures. In the first, utility depends only on individual payoffs (homo economicus), while utility also depends on a notion of Kantian universalizability in the second preference structure (homo moralis). We find that fine-tuning based on small datasets shifts LLM agent behavior toward the corresponding economic agent. We further assess the fine-tuned agents' behavior in two applications: Moral dilemmas involving autonomous vehicles and algorithmic pricing in competitive markets. These examples illustrate how different normative objectives embedded via realizations from structured preference structures can influence market and moral outcomes. This work contributes a replicable, cost-efficient, and economically grounded pipeline to align AI preferences using moral-economic principles.
☆ Industry Insights from Comparing Deep Learning and GBDT Models for E-Commerce Learning-to-Rank RecSys 2025
In e-commerce recommender and search systems, tree-based models, such as LambdaMART, have set a strong baseline for Learning-to-Rank (LTR) tasks. Despite their effectiveness and widespread adoption in industry, the debate continues whether deep neural networks (DNNs) can outperform traditional tree-based models in this domain. To contribute to this discussion, we systematically benchmark DNNs against our production-grade LambdaMART model. We evaluate multiple DNN architectures and loss functions on a proprietary dataset from OTTO and validate our findings through an 8-week online A/B test. The results show that a simple DNN architecture outperforms a strong tree-based baseline in terms of total clicks and revenue, while achieving parity in total units sold.
comment: This work was accepted for publication in the 19th ACM Conference on Recommender Systems (RecSys 2025). The final published version will be available at the ACM Digital Library
☆ Multilingual Self-Taught Faithfulness Evaluators
The growing use of large language models (LLMs) has increased the need for automatic evaluation systems, particularly to address the challenge of information hallucination. Although existing faithfulness evaluation approaches have shown promise, they are predominantly English-focused and often require expensive human-labeled training data for fine-tuning specialized models. As LLMs see increased adoption in multilingual contexts, there is a need for accurate faithfulness evaluators that can operate across languages without extensive labeled data. This paper presents Self-Taught Evaluators for Multilingual Faithfulness, a framework that learns exclusively from synthetic multilingual summarization data while leveraging cross-lingual transfer learning. Through experiments comparing language-specific and mixed-language fine-tuning approaches, we demonstrate a consistent relationship between an LLM's general language capabilities and its performance in language-specific evaluation tasks. Our framework shows improvements over existing baselines, including state-of-the-art English evaluators and machine translation-based approaches.
☆ Learning the Value Systems of Societies from Preferences
Aligning AI systems with human values and the value-based preferences of various stakeholders (their value systems) is key in ethical AI. In value-aware AI systems, decision-making draws upon explicit computational representations of individual values (groundings) and their aggregation into value systems. As these are notoriously difficult to elicit and calibrate manually, value learning approaches aim to automatically derive computational models of an agent's values and value system from demonstrations of human behaviour. Nonetheless, social science and humanities literature suggest that it is more adequate to conceive the value system of a society as a set of value systems of different groups, rather than as the simple aggregation of individual value systems. Accordingly, here we formalize the problem of learning the value systems of societies and propose a method to address it based on heuristic deep clustering. The method learns socially shared value groundings and a set of diverse value systems representing a given society by observing qualitative value-based preferences from a sample of agents. We evaluate the proposal in a use case with real data about travelling decisions.
comment: Full version of publication under the same accepted at ECAI 2025 conference (Submission 6755). 8 pages + 2 supplementary material
☆ Uncertainty-driven Embedding Convolution
Text embeddings are essential components in modern NLP pipelines. While numerous embedding models have been proposed, their performance varies across domains, and no single model consistently excels across all tasks. This variability motivates the use of ensemble techniques to combine complementary strengths. However, most existing ensemble methods operate on deterministic embeddings and fail to account for model-specific uncertainty, limiting their robustness and reliability in downstream applications. To address these limitations, we propose Uncertainty-driven Embedding Convolution (UEC). UEC first transforms deterministic embeddings into probabilistic ones in a post-hoc manner. It then computes adaptive ensemble weights based on embedding uncertainty, grounded in a Bayes-optimal solution under a surrogate loss. Additionally, UEC introduces an uncertainty-aware similarity function that directly incorporates uncertainty into similarity scoring. Extensive experiments on retrieval, classification, and semantic similarity benchmarks demonstrate that UEC consistently improves both performance and robustness by leveraging principled uncertainty modeling.
☆ Prostate Cancer Classification Using Multimodal Feature Fusion and Explainable AI
Prostate cancer, the second most prevalent male malignancy, requires advanced diagnostic tools. We propose an explainable AI system combining BERT (for textual clinical notes) and Random Forest (for numerical lab data) through a novel multimodal fusion strategy, achieving superior classification performance on PLCO-NIH dataset (98% accuracy, 99% AUC). While multimodal fusion is established, our work demonstrates that a simple yet interpretable BERT+RF pipeline delivers clinically significant improvements - particularly for intermediate cancer stages (Class 2/3 recall: 0.900 combined vs 0.824 numerical/0.725 textual). SHAP analysis provides transparent feature importance rankings, while ablation studies prove textual features' complementary value. This accessible approach offers hospitals a balance of high performance (F1=89%), computational efficiency, and clinical interpretability - addressing critical needs in prostate cancer diagnostics.
☆ Exposing the Illusion of Fairness: Auditing Vulnerabilities to Distributional Manipulation Attacks
Proving the compliance of AI algorithms has become an important challenge with the growing deployment of such algorithms for real-life applications. Inspecting possible biased behaviors is mandatory to satisfy the constraints of the regulations of the EU Artificial Intelligence's Act. Regulation-driven audits increasingly rely on global fairness metrics, with Disparate Impact being the most widely used. Yet such global measures depend highly on the distribution of the sample on which the measures are computed. We investigate first how to manipulate data samples to artificially satisfy fairness criteria, creating minimally perturbed datasets that remain statistically indistinguishable from the original distribution while satisfying prescribed fairness constraints. Then we study how to detect such manipulation. Our analysis (i) introduces mathematically sound methods for modifying empirical distributions under fairness constraints using entropic or optimal transport projections, (ii) examines how an auditee could potentially circumvent fairness inspections, and (iii) offers recommendations to help auditors detect such data manipulations. These results are validated through experiments on classical tabular datasets in bias detection.
☆ Novel Pivoted Cholesky Decompositions for Efficient Gaussian Process Inference
The Cholesky decomposition is a fundamental tool for solving linear systems with symmetric and positive definite matrices which are ubiquitous in linear algebra, optimization, and machine learning. Its numerical stability can be improved by introducing a pivoting strategy that iteratively permutes the rows and columns of the matrix. The order of pivoting indices determines how accurately the intermediate decomposition can reconstruct the original matrix, thus is decisive for the algorithm's efficiency in the case of early termination. Standard implementations select the next pivot from the largest value on the diagonal. In the case of Bayesian nonparametric inference, this strategy corresponds to greedy entropy maximization, which is often used in active learning and design of experiments. We explore this connection in detail and deduce novel pivoting strategies for the Cholesky decomposition. The resulting algorithms are more efficient at reducing the uncertainty over a data set, can be updated to include information about observations, and additionally benefit from a tailored implementation. We benchmark the effectiveness of the new selection strategies on two tasks important to Gaussian processes: sparse regression and inference based on preconditioned iterative solvers. Our results show that the proposed selection strategies are either on par or, in most cases, outperform traditional baselines while requiring a negligible amount of additional computation.
☆ A Multimodal Architecture for Endpoint Position Prediction in Team-based Multiplayer Games
Understanding and predicting player movement in multiplayer games is crucial for achieving use cases such as player-mimicking bot navigation, preemptive bot control, strategy recommendation, and real-time player behavior analytics. However, the complex environments allow for a high degree of navigational freedom, and the interactions and team-play between players require models that make effective use of the available heterogeneous input data. This paper presents a multimodal architecture for predicting future player locations on a dynamic time horizon, using a U-Net-based approach for calculating endpoint location probability heatmaps, conditioned using a multimodal feature encoder. The application of a multi-head attention mechanism for different groups of features allows for communication between agents. In doing so, the architecture makes efficient use of the multimodal game state including image inputs, numerical and categorical features, as well as dynamic game data. Consequently, the presented technique lays the foundation for various downstream tasks that rely on future player positions such as the creation of player-predictive bot behavior or player anomaly detection.
☆ MIMII-Agent: Leveraging LLMs with Function Calling for Relative Evaluation of Anomalous Sound Detection
This paper proposes a method for generating machine-type-specific anomalies to evaluate the relative performance of unsupervised anomalous sound detection (UASD) systems across different machine types, even in the absence of real anomaly sound data. Conventional keyword-based data augmentation methods often produce unrealistic sounds due to their reliance on manually defined labels, limiting scalability as machine types and anomaly patterns diversify. Advanced audio generative models, such as MIMII-Gen, show promise but typically depend on anomalous training data, making them less effective when diverse anomalous examples are unavailable. To address these limitations, we propose a novel synthesis approach leveraging large language models (LLMs) to interpret textual descriptions of faults and automatically select audio transformation functions, converting normal machine sounds into diverse and plausible anomalous sounds. We validate this approach by evaluating a UASD system trained only on normal sounds from five machine types, using both real and synthetic anomaly data. Experimental results reveal consistent trends in relative detection difficulty across machine types between synthetic and real anomalies. This finding supports our hypothesis and highlights the effectiveness of the proposed LLM-based synthesis approach for relative evaluation of UASD systems.
☆ Towards trustworthy AI in materials mechanics through domain-guided attention
Ensuring the trustworthiness and robustness of deep learning models remains a fundamental challenge, particularly in high-stakes scientific applications. In this study, we present a framework called attention-guided training that combines explainable artificial intelligence techniques with quantitative evaluation and domain-specific priors to guide model attention. We demonstrate that domain specific feedback on model explanations during training can enhance the model's generalization capabilities. We validate our approach on the task of semantic crack tip segmentation in digital image correlation data which is a key application in the fracture mechanical characterization of materials. By aligning model attention with physically meaningful stress fields, such as those described by Williams' analytical solution, attention-guided training ensures that the model focuses on physically relevant regions. This finally leads to improved generalization and more faithful explanations.
☆ Deep Generative Models of Evolution: SNP-level Population Adaptation by Genomic Linkage Incorporation
The investigation of allele frequency trajectories in populations evolving under controlled environmental pressures has become a popular approach to study evolutionary processes on the molecular level. Statistical models based on well-defined evolutionary concepts can be used to validate different hypotheses about empirical observations. Despite their popularity, classic statistical models like the Wright-Fisher model suffer from simplified assumptions such as the independence of selected loci along a chromosome and uncertainty about the parameters. Deep generative neural networks offer a powerful alternative known for the integration of multivariate dependencies and noise reduction. Due to their high data demands and challenging interpretability they have, so far, not been widely considered in the area of population genomics. To address the challenges in the area of Evolve and Resequencing experiments (E&R) based on pooled sequencing (Pool-Seq) data, we introduce a deep generative neural network that aims to model a concept of evolution based on empirical observations over time. The proposed model estimates the distribution of allele frequency trajectories by embedding the observations from single nucleotide polymorphisms (SNPs) with information from neighboring loci. Evaluation on simulated E&R experiments demonstrates the model's ability to capture the distribution of allele frequency trajectories and illustrates the representational power of deep generative models on the example of linkage disequilibrium (LD) estimation. Inspecting the internally learned representations enables estimating pairwise LD, which is typically inaccessible in Pool-Seq data. Our model provides competitive LD estimation in Pool-Seq data high degree of LD when compared to existing methods.
comment: 10 pages, 5 figures
☆ Enhancing Large Multimodal Models with Adaptive Sparsity and KV Cache Compression
Large multimodal models (LMMs) have advanced significantly by integrating visual encoders with extensive language models, enabling robust reasoning capabilities. However, compressing LMMs for deployment on edge devices remains a critical challenge. In this work, we propose an adaptive search algorithm that optimizes sparsity and KV cache compression to enhance LMM efficiency. Utilizing the Tree-structured Parzen Estimator, our method dynamically adjusts pruning ratios and KV cache quantization bandwidth across different LMM layers, using model performance as the optimization objective. This approach uniquely combines pruning with key-value cache quantization and incorporates a fast pruning technique that eliminates the need for additional fine-tuning or weight adjustments, achieving efficient compression without compromising accuracy. Comprehensive evaluations on benchmark datasets, including LLaVA-1.5 7B and 13B, demonstrate our method superiority over state-of-the-art techniques such as SparseGPT and Wanda across various compression levels. Notably, our framework automatic allocation of KV cache compression resources sets a new standard in LMM optimization, delivering memory efficiency without sacrificing much performance.
comment: 6 pages
☆ Comparing and Scaling fMRI Features for Brain-Behavior Prediction
Predicting behavioral variables from neuroimaging modalities such as magnetic resonance imaging (MRI) has the potential to allow the development of neuroimaging biomarkers of mental and neurological disorders. A crucial processing step to this aim is the extraction of suitable features. These can differ in how well they predict the target of interest, and how this prediction scales with sample size and scan time. Here, we compare nine feature subtypes extracted from resting-state functional MRI recordings for behavior prediction, ranging from regional measures of functional activity to functional connectivity (FC) and metrics derived with graph signal processing (GSP), a principled approach for the extraction of structure-informed functional features. We study 979 subjects from the Human Connectome Project Young Adult dataset, predicting summary scores for mental health, cognition, processing speed, and substance use, as well as age and sex. The scaling properties of the features are investigated for different combinations of sample size and scan time. FC comes out as the best feature for predicting cognition, age, and sex. Graph power spectral density is the second best for predicting cognition and age, while for sex, variability-based features show potential as well. When predicting sex, the low-pass graph filtered coupled FC slightly outperforms the simple FC variant. None of the other targets were predicted significantly. The scaling results point to higher performance reserves for the better-performing features. They also indicate that it is important to balance sample size and scan time when acquiring data for prediction studies. The results confirm FC as a robust feature for behavior prediction, but also show the potential of GSP and variability-based measures. We discuss the implications for future prediction studies in terms of strategies for acquisition and sample composition.
☆ PhaseNAS: Language-Model Driven Architecture Search with Dynamic Phase Adaptation
Neural Architecture Search (NAS) is challenged by the trade-off between search space exploration and efficiency, especially for complex tasks. While recent LLM-based NAS methods have shown promise, they often suffer from static search strategies and ambiguous architecture representations. We propose PhaseNAS, an LLM-based NAS framework with dynamic phase transitions guided by real-time score thresholds and a structured architecture template language for consistent code generation. On the NAS-Bench-Macro benchmark, PhaseNAS consistently discovers architectures with higher accuracy and better rank. For image classification (CIFAR-10/100), PhaseNAS reduces search time by up to 86% while maintaining or improving accuracy. In object detection, it automatically produces YOLOv8 variants with higher mAP and lower resource cost. These results demonstrate that PhaseNAS enables efficient, adaptive, and generalizable NAS across diverse vision tasks.
comment: 14pages
☆ A note on the Artstein-Avidan-Milman's generalized Legendre transforms
Artstein-Avidan and Milman [Annals of mathematics (2009), (169):661-674] characterized invertible reverse-ordering transforms on the space of lower-semi-continuous extended real-valued convex functions as affine deformations of the ordinary Legendre transform. In this note, we prove that all those generalized Legendre transforms on functions correspond to the ordinary Legendre transform on dually corresponding affine-deformed functions. That is, generalized convex conjugates are convex conjugates of affine-deformed functions. We conclude this note by sketching how this result can be interpreted from the lens of information geometry.
comment: 11 pages
☆ Fusing CFD and measurement data using transfer learning
Aerodynamic analysis during aircraft design usually involves methods of varying accuracy and spatial resolution, which all have their advantages and disadvantages. It is therefore desirable to create data-driven models which effectively combine these advantages. Such data fusion methods for distributed quantities mainly rely on proper orthogonal decomposition as of now, which is a linear method. In this paper, we introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning. The network training accounts for the heterogeneity of the data, as simulation data usually features a high spatial resolution, while measurement data is sparse but more accurate. In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities. The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model. This approach is applied to a multilayer perceptron architecture and shows significant improvements over the established method based on proper orthogonal decomposition by producing more physical solutions near nonlinearities. In addition, the neural network provides solutions at arbitrary flow conditions, thus making the model useful for flight mechanical design, structural sizing, and certification. As the proposed training strategy is very general, it can also be applied to more complex neural network architectures in the future.
☆ Reminiscence Attack on Residuals: Exploiting Approximate Machine Unlearning for Privacy ICCV 2025
Machine unlearning enables the removal of specific data from ML models to uphold the right to be forgotten. While approximate unlearning algorithms offer efficient alternatives to full retraining, this work reveals that they fail to adequately protect the privacy of unlearned data. In particular, these algorithms introduce implicit residuals which facilitate privacy attacks targeting at unlearned data. We observe that these residuals persist regardless of model architectures, parameters, and unlearning algorithms, exposing a new attack surface beyond conventional output-based leakage. Based on this insight, we propose the Reminiscence Attack (ReA), which amplifies the correlation between residuals and membership privacy through targeted fine-tuning processes. ReA achieves up to 1.90x and 1.12x higher accuracy than prior attacks when inferring class-wise and sample-wise membership, respectively. To mitigate such residual-induced privacy risk, we develop a dual-phase approximate unlearning framework that first eliminates deep-layer unlearned data traces and then enforces convergence stability to prevent models from "pseudo-convergence", where their outputs are similar to retrained models but still preserve unlearned residuals. Our framework works for both classification and generation tasks. Experimental evaluations confirm that our approach maintains high unlearning efficacy, while reducing the adaptive privacy attack accuracy to nearly random guess, at the computational cost of 2-12% of full retraining from scratch.
comment: Accepted by ICCV 2025
☆ DAG-AFL:Directed Acyclic Graph-based Asynchronous Federated Learning
Due to the distributed nature of federated learning (FL), the vulnerability of the global model and the need for coordination among many client devices pose significant challenges. As a promising decentralized, scalable and secure solution, blockchain-based FL methods have attracted widespread attention in recent years. However, traditional consensus mechanisms designed for Proof of Work (PoW) similar to blockchain incur substantial resource consumption and compromise the efficiency of FL, particularly when participating devices are wireless and resource-limited. To address asynchronous client participation and data heterogeneity in FL, while limiting the additional resource overhead introduced by blockchain, we propose the Directed Acyclic Graph-based Asynchronous Federated Learning (DAG-AFL) framework. We develop a tip selection algorithm that considers temporal freshness, node reachability and model accuracy, with a DAG-based trusted verification strategy. Extensive experiments on 3 benchmarking datasets against eight state-of-the-art approaches demonstrate that DAG-AFL significantly improves training efficiency and model accuracy by 22.7% and 6.5% on average, respectively.
comment: 6 pages, IEEE International Conference on Multimedia & Expo 2025 conference paper
☆ Statistical Inference for Differentially Private Stochastic Gradient Descent
Privacy preservation in machine learning, particularly through Differentially Private Stochastic Gradient Descent (DP-SGD), is critical for sensitive data analysis. However, existing statistical inference methods for SGD predominantly focus on cyclic subsampling, while DP-SGD requires randomized subsampling. This paper first bridges this gap by establishing the asymptotic properties of SGD under the randomized rule and extending these results to DP-SGD. For the output of DP-SGD, we show that the asymptotic variance decomposes into statistical, sampling, and privacy-induced components. Two methods are proposed for constructing valid confidence intervals: the plug-in method and the random scaling method. We also perform extensive numerical analysis, which shows that the proposed confidence intervals achieve nominal coverage rates while maintaining privacy.
☆ Improving Group Fairness in Tensor Completion via Imbalance Mitigating Entity Augmentation
Group fairness is important to consider in tensor decomposition to prevent discrimination based on social grounds such as gender or age. Although few works have studied group fairness in tensor decomposition, they suffer from performance degradation. To address this, we propose STAFF(Sparse Tensor Augmentation For Fairness) to improve group fairness by minimizing the gap in completion errors of different groups while reducing the overall tensor completion error. Our main idea is to augment a tensor with augmented entities including sufficient observed entries to mitigate imbalance and group bias in the sparse tensor. We evaluate \method on tensor completion with various datasets under conventional and deep learning-based tensor models. STAFF consistently shows the best trade-off between completion error and group fairness; at most, it yields 36% lower MSE and 59% lower MADE than the second-best baseline.
Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2
☆ Kernel Learning for Sample Constrained Black-Box Optimization AAAI 2025
Black box optimization (BBO) focuses on optimizing unknown functions in high-dimensional spaces. In many applications, sampling the unknown function is expensive, imposing a tight sample budget. Ongoing work is making progress on reducing the sample budget by learning the shape/structure of the function, known as kernel learning. We propose a new method to learn the kernel of a Gaussian Process. Our idea is to create a continuous kernel space in the latent space of a variational autoencoder, and run an auxiliary optimization to identify the best kernel. Results show that the proposed method, Kernel Optimized Blackbox Optimization (KOBO), outperforms state of the art by estimating the optimal at considerably lower sample budgets. Results hold not only across synthetic benchmark functions but also in real applications. We show that a hearing aid may be personalized with fewer audio queries to the user, or a generative model could converge to desirable images from limited user ratings.
comment: Accepted to AAAI 2025
☆ AQUA: A Large Language Model for Aquaculture & Fisheries
Aquaculture plays a vital role in global food security and coastal economies by providing sustainable protein sources. As the industry expands to meet rising demand, it faces growing challenges such as disease outbreaks, inefficient feeding practices, rising labor costs, logistical inefficiencies, and critical hatchery issues, including high mortality rates and poor water quality control. Although artificial intelligence has made significant progress, existing machine learning methods fall short of addressing the domain-specific complexities of aquaculture. To bridge this gap, we introduce AQUA, the first large language model (LLM) tailored for aquaculture, designed to support farmers, researchers, and industry practitioners. Central to this effort is AQUADAPT (Data Acquisition, Processing and Tuning), an Agentic Framework for generating and refining high-quality synthetic data using a combination of expert knowledge, largescale language models, and automated evaluation techniques. Our work lays the foundation for LLM-driven innovations in aquaculture research, advisory systems, and decision-making tools.
☆ Efficient Proxy Raytracer for Optical Systems using Implicit Neural Representations
Ray tracing is a widely used technique for modeling optical systems, involving sequential surface-by-surface computations, which can be computationally intensive. We propose Ray2Ray, a novel method that leverages implicit neural representations to model optical systems with greater efficiency, eliminating the need for surface-by-surface computations in a single pass end-to-end model. Ray2Ray learns the mapping between rays emitted from a given source and their corresponding rays after passing through a given optical system in a physically accurate manner. We train Ray2Ray on nine off-the-shelf optical systems, achieving positional errors on the order of 1{\mu}m and angular deviations on the order 0.01 degrees in the estimated output rays. Our work highlights the potential of neural representations as a proxy for optical raytracer.
☆ Attributed Graph Clustering with Multi-Scale Weight-Based Pairwise Coarsening and Contrastive Learning CCL
This study introduces the Multi-Scale Weight-Based Pairwise Coarsening and Contrastive Learning (MPCCL) model, a novel approach for attributed graph clustering that effectively bridges critical gaps in existing methods, including long-range dependency, feature collapse, and information loss. Traditional methods often struggle to capture high-order graph features due to their reliance on low-order attribute information, while contrastive learning techniques face limitations in feature diversity by overemphasizing local neighborhood structures. Similarly, conventional graph coarsening methods, though reducing graph scale, frequently lose fine-grained structural details. MPCCL addresses these challenges through an innovative multi-scale coarsening strategy, which progressively condenses the graph while prioritizing the merging of key edges based on global node similarity to preserve essential structural information. It further introduces a one-to-many contrastive learning paradigm, integrating node embeddings with augmented graph views and cluster centroids to enhance feature diversity, while mitigating feature masking issues caused by the accumulation of high-frequency node weights during multi-scale coarsening. By incorporating a graph reconstruction loss and KL divergence into its self-supervised learning framework, MPCCL ensures cross-scale consistency of node representations. Experimental evaluations reveal that MPCCL achieves a significant improvement in clustering performance, including a remarkable 15.24% increase in NMI on the ACM dataset and notable robust gains on smaller-scale datasets such as Citeseer, Cora and DBLP.
comment: The source code for this study is available at https://github.com/YF-W/MPCCL
☆ Customize Multi-modal RAI Guardrails with Precedent-based predictions
A multi-modal guardrail must effectively filter image content based on user-defined policies, identifying material that may be hateful, reinforce harmful stereotypes, contain explicit material, or spread misinformation. Deploying such guardrails in real-world applications, however, poses significant challenges. Users often require varied and highly customizable policies and typically cannot provide abundant examples for each custom policy. Consequently, an ideal guardrail should be scalable to the multiple policies and adaptable to evolving user standards with minimal retraining. Existing fine-tuning methods typically condition predictions on pre-defined policies, restricting their generalizability to new policies or necessitating extensive retraining to adapt. Conversely, training-free methods struggle with limited context lengths, making it difficult to incorporate all the policies comprehensively. To overcome these limitations, we propose to condition model's judgment on "precedents", which are the reasoning processes of prior data points similar to the given input. By leveraging precedents instead of fixed policies, our approach greatly enhances the flexibility and adaptability of the guardrail. In this paper, we introduce a critique-revise mechanism for collecting high-quality precedents and two strategies that utilize precedents for robust prediction. Experimental results demonstrate that our approach outperforms previous methods across both few-shot and full-dataset scenarios and exhibits superior generalization to novel policies.
comment: Accepted to COLM 2025
☆ DmC: Nearest Neighbor Guidance Diffusion Model for Offline Cross-domain Reinforcement Learning
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes $k$-nearest neighbor ($k$-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
comment: accepted at ECAI 2025
☆ Mixture of Length and Pruning Experts for Knowledge Graphs Reasoning
Knowledge Graph (KG) reasoning, which aims to infer new facts from structured knowledge repositories, plays a vital role in Natural Language Processing (NLP) systems. Its effectiveness critically depends on constructing informative and contextually relevant reasoning paths. However, existing graph neural networks (GNNs) often adopt rigid, query-agnostic path-exploration strategies, limiting their ability to adapt to diverse linguistic contexts and semantic nuances. To address these limitations, we propose \textbf{MoKGR}, a mixture-of-experts framework that personalizes path exploration through two complementary components: (1) a mixture of length experts that adaptively selects and weights candidate path lengths according to query complexity, providing query-specific reasoning depth; and (2) a mixture of pruning experts that evaluates candidate paths from a complementary perspective, retaining the most informative paths for each query. Through comprehensive experiments on diverse benchmark, MoKGR demonstrates superior performance in both transductive and inductive settings, validating the effectiveness of personalized path exploration in KGs reasoning.
☆ Deep Reputation Scoring in DeFi: zScore-Based Wallet Ranking from Liquidity and Trading Signals
As decentralized finance (DeFi) evolves, distinguishing between user behaviors - liquidity provision versus active trading - has become vital for risk modeling and on-chain reputation. We propose a behavioral scoring framework for Uniswap that assigns two complementary scores: a Liquidity Provision Score that assesses strategic liquidity contributions, and a Swap Behavior Score that reflects trading intent, volatility exposure, and discipline. The scores are constructed using rule-based blueprints that decompose behavior into volume, frequency, holding time, and withdrawal patterns. To handle edge cases and learn feature interactions, we introduce a deep residual neural network with densely connected skip blocks inspired by the U-Net architecture. We also incorporate pool-level context such as total value locked (TVL), fee tiers, and pool size, allowing the system to differentiate similar user behaviors across pools with varying characteristics. Our framework enables context-aware and scalable DeFi user scoring, supporting improved risk assessment and incentive design. Experiments on Uniswap v3 data show its usefulness for user segmentation and protocol-aligned reputation systems. Although we refer to our metric as zScore, it is independently developed and methodologically different from the cross-protocol system proposed by Udupi et al. Our focus is on role-specific behavioral modeling within Uniswap using blueprint logic and supervised learning.
comment: Comments: 10 pages, 5 figures. Independently developed system by Zeru Finance for decentralized user scoring. Not submitted to any conference or journal
☆ HIAL: A New Paradigm for Hypergraph Active Learning via Influence Maximization
In recent years, Hypergraph Neural Networks (HNNs) have demonstrated immense potential in handling complex systems with high-order interactions. However, acquiring large-scale, high-quality labeled data for these models is costly, making Active Learning (AL) a critical technique. Existing Graph Active Learning (GAL) methods, when applied to hypergraphs, often rely on techniques like "clique expansion," which destroys the high-order structural information crucial to a hypergraph's success, thereby leading to suboptimal performance. To address this challenge, we introduce HIAL (Hypergraph Active Learning), a native active learning framework designed specifically for hypergraphs. We innovatively reformulate the Hypergraph Active Learning (HAL) problem as an Influence Maximization task. The core of HIAL is a dual-perspective influence function that, based on our novel "High-Order Interaction-Aware (HOI-Aware)" propagation mechanism, synergistically evaluates a node's feature-space coverage (via Magnitude of Influence, MoI) and its topological influence (via Expected Diffusion Value, EDV). We prove that this objective function is monotone and submodular, thus enabling the use of an efficient greedy algorithm with a formal (1-1/e) approximation guarantee. Extensive experiments on seven public datasets demonstrate that HIAL significantly outperforms state-of-the-art baselines in terms of performance, efficiency, generality, and robustness, establishing an efficient and powerful new paradigm for active learning on hypergraphs.
☆ Conditional Diffusion Models for Global Precipitation Map Inpainting
Incomplete satellite-based precipitation presents a significant challenge in global monitoring. For example, the Global Satellite Mapping of Precipitation (GSMaP) from JAXA suffers from substantial missing regions due to the orbital characteristics of satellites that have microwave sensors, and its current interpolation methods often result in spatial discontinuities. In this study, we formulate the completion of the precipitation map as a video inpainting task and propose a machine learning approach based on conditional diffusion models. Our method employs a 3D U-Net with a 3D condition encoder to reconstruct complete precipitation maps by leveraging spatio-temporal information from infrared images, latitude-longitude grids, and physical time inputs. Training was carried out on ERA5 hourly precipitation data from 2020 to 2023. We generated a pseudo-GSMaP dataset by randomly applying GSMaP masks to ERA maps. Performance was evaluated for the calendar year 2024, and our approach produces more spatio-temporally consistent inpainted precipitation maps compared to conventional methods. These results indicate the potential to improve global precipitation monitoring using the conditional diffusion models.
☆ Operator Inference Aware Quadratic Manifolds with Isotropic Reduced Coordinates for Nonintrusive Model Reduction
Quadratic manifolds for nonintrusive reduced modeling are typically trained to minimize the reconstruction error on snapshot data, which means that the error of models fitted to the embedded data in downstream learning steps is ignored. In contrast, we propose a greedy training procedure that takes into account both the reconstruction error on the snapshot data and the prediction error of reduced models fitted to the data. Because our procedure learns quadratic manifolds with the objective of achieving accurate reduced models, it avoids oscillatory and other non-smooth embeddings that can hinder learning accurate reduced models. Numerical experiments on transport and turbulent flow problems show that quadratic manifolds trained with the proposed greedy approach lead to reduced models with up to two orders of magnitude higher accuracy than quadratic manifolds trained with respect to the reconstruction error alone.
comment: 23 pages, 8 figures
☆ Shapley-Value-Based Graph Sparsification for GNN Inference
Graph sparsification is a key technique for improving inference efficiency in Graph Neural Networks by removing edges with minimal impact on predictions. GNN explainability methods generate local importance scores, which can be aggregated into global scores for graph sparsification. However, many explainability methods produce only non-negative scores, limiting their applicability for sparsification. In contrast, Shapley value based methods assign both positive and negative contributions to node predictions, offering a theoretically robust and fair allocation of importance by evaluating many subsets of graphs. Unlike gradient-based or perturbation-based explainers, Shapley values enable better pruning strategies that preserve influential edges while removing misleading or adversarial connections. Our approach shows that Shapley value-based graph sparsification maintains predictive performance while significantly reducing graph complexity, enhancing both interpretability and efficiency in GNN inference.
comment: 10 pages
☆ Diagonally-Weighted Generalized Method of Moments Estimation for Gaussian Mixture Modeling
Since Pearson [Philosophical Transactions of the Royal Society of London. A, 185 (1894), pp. 71-110] first applied the method of moments (MM) for modeling data as a mixture of one-dimensional Gaussians, moment-based estimation methods have proliferated. Among these methods, the generalized method of moments (GMM) improves the statistical efficiency of MM by weighting the moments appropriately. However, the computational complexity and storage complexity of MM and GMM grow exponentially with the dimension, making these methods impractical for high-dimensional data or when higher-order moments are required. Such computational bottlenecks are more severe in GMM since it additionally requires estimating a large weighting matrix. To overcome these bottlenecks, we propose the diagonally-weighted GMM (DGMM), which achieves a balance among statistical efficiency, computational complexity, and numerical stability. We apply DGMM to study the parameter estimation problem for weakly separated heteroscedastic low-rank Gaussian mixtures and design a computationally efficient and numerically stable algorithm that obtains the DGMM estimator without explicitly computing or storing the moment tensors. We implement the proposed algorithm and empirically validate the advantages of DGMM: in numerical studies, DGMM attains smaller estimation errors while requiring substantially shorter runtime than MM and GMM. The code and data will be available upon publication at https://github.com/liu-lzhang/dgmm.
☆ Frequency-Aware Autoregressive Modeling for Efficient High-Resolution Image Synthesis
Visual autoregressive modeling, based on the next-scale prediction paradigm, exhibits notable advantages in image quality and model scalability over traditional autoregressive and diffusion models. It generates images by progressively refining resolution across multiple stages. However, the computational overhead in high-resolution stages remains a critical challenge due to the substantial number of tokens involved. In this paper, we introduce SparseVAR, a plug-and-play acceleration framework for next-scale prediction that dynamically excludes low-frequency tokens during inference without requiring additional training. Our approach is motivated by the observation that tokens in low-frequency regions have a negligible impact on image quality in high-resolution stages and exhibit strong similarity with neighboring tokens. Additionally, we observe that different blocks in the next-scale prediction model focus on distinct regions, with some concentrating on high-frequency areas. SparseVAR leverages these insights by employing lightweight MSE-based metrics to identify low-frequency tokens while preserving the fidelity of excluded regions through a small set of uniformly sampled anchor tokens. By significantly reducing the computational cost while maintaining high image generation quality, SparseVAR achieves notable acceleration in both HART and Infinity. Specifically, SparseVAR achieves up to a 2 times speedup with minimal quality degradation in Infinity-2B.
☆ Your Attention Matters: to Improve Model Robustness to Noise and Spurious Correlations
Self-attention mechanisms are foundational to Transformer architectures, supporting their impressive success in a wide range of tasks. While there are many self-attention variants, their robustness to noise and spurious correlations has not been well studied. This study evaluates Softmax, Sigmoid, Linear, Doubly Stochastic, and Cosine attention within Vision Transformers under different data corruption scenarios. Through testing across the CIFAR-10, CIFAR-100, and Imagenette datasets, we show that Doubly Stochastic attention is the most robust. Our findings inform self-attention selection in contexts with imperfect data.
☆ WEEP: A Differentiable Nonconvex Sparse Regularizer via Weakly-Convex Envelope
Sparse regularization is fundamental in signal processing for efficient signal recovery and feature extraction. However, it faces a fundamental dilemma: the most powerful sparsity-inducing penalties are often non-differentiable, conflicting with gradient-based optimizers that dominate the field. We introduce WEEP (Weakly-convex Envelope of Piecewise Penalty), a novel, fully differentiable sparse regularizer derived from the weakly-convex envelope framework. WEEP provides strong, unbiased sparsity while maintaining full differentiability and L-smoothness, making it natively compatible with any gradient-based optimizer. This resolves the conflict between statistical performance and computational tractability. We demonstrate superior performance compared to the L1-norm and other established non-convex sparse regularizers on challenging signal and image denoising tasks.
comment: 8 pages, 4 figures
☆ BOASF: A Unified Framework for Speeding up Automatic Machine Learning via Adaptive Successive Filtering
Machine learning has been making great success in many application areas. However, for the non-expert practitioners, it is always very challenging to address a machine learning task successfully and efficiently. Finding the optimal machine learning model or the hyperparameter combination set from a large number of possible alternatives usually requires considerable expert knowledge and experience. To tackle this problem, we propose a combined Bayesian Optimization and Adaptive Successive Filtering algorithm (BOASF) under a unified multi-armed bandit framework to automate the model selection or the hyperparameter optimization. Specifically, BOASF consists of multiple evaluation rounds in each of which we select promising configurations for each arm using the Bayesian optimization. Then, ASF can early discard the poor-performed arms adaptively using a Gaussian UCB-based probabilistic model. Furthermore, a Softmax model is employed to adaptively allocate available resources for each promising arm that advances to the next round. The arm with a higher probability of advancing will be allocated more resources. Experimental results show that BOASF is effective for speeding up the model selection and hyperparameter optimization processes while achieving robust and better prediction performance than the existing state-of-the-art automatic machine learning methods. Moreover, BOASF achieves better anytime performance under various time budgets.
☆ Provable In-Context Learning of Nonlinear Regression with Transformers
The transformer architecture, which processes sequences of input tokens to produce outputs for query tokens, has revolutionized numerous areas of machine learning. A defining feature of transformers is their ability to perform previously unseen tasks using task-specific prompts without updating parameters, a phenomenon known as in-context learning (ICL). Recent research has actively explored the training dynamics behind ICL, with much of the focus on relatively simple tasks such as linear regression and binary classification. To advance the theoretical understanding of ICL, this paper investigates more complex nonlinear regression tasks, aiming to uncover how transformers acquire in-context learning capabilities in these settings. We analyze the stage-wise dynamics of attention during training: attention scores between a query token and its target features grow rapidly in the early phase, then gradually converge to one, while attention to irrelevant features decays more slowly and exhibits oscillatory behavior. Our analysis introduces new proof techniques that explicitly characterize how the nature of general non-degenerate L-Lipschitz task functions affects attention weights. Specifically, we identify that the Lipschitz constant L of nonlinear function classes as a key factor governing the convergence dynamics of transformers in ICL. Leveraging these insights, for two distinct regimes depending on whether L is below or above a threshold, we derive different time bounds to guarantee near-zero prediction error. Notably, despite the convergence time depending on the underlying task functions, we prove that query tokens consistently attend to prompt tokens with highly relevant features at convergence, demonstrating the ICL capability of transformers for unseen functions.
☆ Efficient Neural Combinatorial Optimization Solver for the Min-max Heterogeneous Capacitated Vehicle Routing Problem
Numerous Neural Combinatorial Optimization (NCO) solvers have been proposed to address Vehicle Routing Problems (VRPs). However, most of these solvers focus exclusively on single-vehicle VRP variants, overlooking the more realistic min-max Heterogeneous Capacitated Vehicle Routing Problem (MMHCVRP), which involves multiple vehicles. Existing MMHCVRP solvers typically select a vehicle and its next node to visit at each decoding step, but often make myopic decoding decisions and overlook key properties of MMHCVRP, including local topological relationships, vehicle permutation invariance, and node symmetry, resulting in suboptimal performance. To better address these limitations, we propose ECHO, an efficient NCO solver. First, ECHO exploits the proposed dual-modality node encoder to capture local topological relationships among nodes. Subsequently, to mitigate myopic decisions, ECHO employs the proposed Parameter-Free Cross-Attention mechanism to prioritize the vehicle selected in the preceding decoding step. Finally, leveraging vehicle permutation invariance and node symmetry, we introduce a tailored data augment strategy for MMHCVRP to stabilize the Reinforcement Learning training process. To assess the performance of ECHO, we conduct extensive experiments. The experimental results demonstrate that ECHO outperforms state-of-the-art NCO solvers across varying numbers of vehicles and nodes, and exhibits well-performing generalization across both scales and distribution patterns. Finally, ablation studies validate the effectiveness of all proposed methods.
☆ Reservoir Computation with Networks of Differentiating Neuron Ring Oscillators
Reservoir Computing is a machine learning approach that uses the rich repertoire of complex system dynamics for function approximation. Current approaches to reservoir computing use a network of coupled integrating neurons that require a steady current to maintain activity. Here, we introduce a small world graph of differentiating neurons that are active only when there are changes in input as an alternative to integrating neurons as a reservoir computing substrate. We find the coupling strength and network topology that enable these small world networks to function as an effective reservoir. We demonstrate the efficacy of these networks in the MNIST digit recognition task, achieving comparable performance of 90.65% to existing reservoir computing approaches. The findings suggest that differentiating neurons can be a potential alternative to integrating neurons and can provide a sustainable future alternative for power-hungry AI applications.
comment: 8 pages, 5 figures
☆ Load Balancing for AI Training Workloads
We investigate the performance of various load balancing algorithms for large-scale AI training workloads that are running on dedicated infrastructure. The performance of load balancing depends on both the congestion control and loss recovery algorithms, so our evaluation also sheds light on the appropriate choices for those designs as well.
☆ A Contrastive Diffusion-based Network (CDNet) for Time Series Classification
Deep learning models are widely used for time series classification (TSC) due to their scalability and efficiency. However, their performance degrades under challenging data conditions such as class similarity, multimodal distributions, and noise. To address these limitations, we propose CDNet, a Contrastive Diffusion-based Network that enhances existing classifiers by generating informative positive and negative samples via a learned diffusion process. Unlike traditional diffusion models that denoise individual samples, CDNet learns transitions between samples--both within and across classes--through convolutional approximations of reverse diffusion steps. We introduce a theoretically grounded CNN-based mechanism to enable both denoising and mode coverage, and incorporate an uncertainty-weighted composite loss for robust training. Extensive experiments on the UCR Archive and simulated datasets demonstrate that CDNet significantly improves state-of-the-art (SOTA) deep learning classifiers, particularly under noisy, similar, and multimodal conditions.
comment: 19 pages, conference
☆ Group Relative Augmentation for Data Efficient Action Detection
Adapting large Video-Language Models (VLMs) for action detection using only a few examples poses challenges like overfitting and the granularity mismatch between scene-level pre-training and required person-centric understanding. We propose an efficient adaptation strategy combining parameter-efficient tuning (LoRA) with a novel learnable internal feature augmentation. Applied within the frozen VLM backbone using FiLM, these augmentations generate diverse feature variations directly relevant to the task. Additionally, we introduce a group-weighted loss function that dynamically modulates the training contribution of each augmented sample based on its prediction divergence relative to the group average. This promotes robust learning by prioritizing informative yet reasonable augmentations. We demonstrate our method's effectiveness on complex multi-label, multi-person action detection datasets (AVA, MOMA), achieving strong mAP performance and showcasing significant data efficiency for adapting VLMs from limited examples.
☆ DEM-NeRF: A Neuro-Symbolic Method for Scientific Discovery through Physics-Informed Simulation
Neural networks have emerged as a powerful tool for modeling physical systems, offering the ability to learn complex representations from limited data while integrating foundational scientific knowledge. In particular, neuro-symbolic approaches that combine data-driven learning, the neuro, with symbolic equations and rules, the symbolic, address the tension between methods that are purely empirical, which risk straying from established physical principles, and traditional numerical solvers that demand complete geometric knowledge and can be prohibitively expensive for high-fidelity simulations. In this work, we present a novel neuro-symbolic framework for reconstructing and simulating elastic objects directly from sparse multi-view image sequences, without requiring explicit geometric information. Specifically, we integrate a neural radiance field (NeRF) for object reconstruction with physics-informed neural networks (PINN) that incorporate the governing partial differential equations of elasticity. In doing so, our method learns a spatiotemporal representation of deforming objects that leverages both image supervision and symbolic physical constraints. To handle complex boundary and initial conditions, which are traditionally confronted using finite element methods, boundary element methods, or sensor-based measurements, we employ an energy-constrained Physics-Informed Neural Network architecture. This design enhances both simulation accuracy and the explainability of results.
Graph neural networks for residential location choice: connection to classical logit models
Researchers have adopted deep learning for classical discrete choice analysis as it can capture complex feature relationships and achieve higher predictive performance. However, the existing deep learning approaches cannot explicitly capture the relationship among choice alternatives, which has been a long-lasting focus in classical discrete choice models. To address the gap, this paper introduces Graph Neural Network (GNN) as a novel framework to analyze residential location choice. The GNN-based discrete choice models (GNN-DCMs) offer a structured approach for neural networks to capture dependence among spatial alternatives, while maintaining clear connections to classical random utility theory. Theoretically, we demonstrate that the GNN-DCMs incorporate the nested logit (NL) model and the spatially correlated logit (SCL) model as two specific cases, yielding novel algorithmic interpretation through message passing among alternatives' utilities. Empirically, the GNN-DCMs outperform benchmark MNL, SCL, and feedforward neural networks in predicting residential location choices among Chicago's 77 community areas. Regarding model interpretation, the GNN-DCMs can capture individual heterogeneity and exhibit spatially-aware substitution patterns. Overall, these results highlight the potential of GNN-DCMs as a unified and expressive framework for synergizing discrete choice modeling and deep learning in the complex spatial choice contexts.
☆ Predicting VBAC Outcomes from U.S. Natality Data using Deep and Classical Machine Learning Models
Accurately predicting the outcome of a trial of labor after cesarean (TOLAC) is essential for guiding prenatal counseling and minimizing delivery-related risks. This study presents supervised machine learning models for predicting vaginal birth after cesarean (VBAC) using 643,029 TOLAC cases from the CDC WONDER Natality dataset (2017-2023). After filtering for singleton births with one or two prior cesareans and complete data across 47 prenatal-period features, three classifiers were trained: logistic regression, XGBoost, and a multilayer perceptron (MLP). The MLP achieved the highest performance with an AUC of 0.7287, followed closely by XGBoost (AUC = 0.727), both surpassing the logistic regression baseline (AUC = 0.709). To address class imbalance, class weighting was applied to the MLP, and a custom loss function was implemented in XGBoost. Evaluation metrics included ROC curves, confusion matrices, and precision-recall analysis. Logistic regression coefficients highlighted maternal BMI, education, parity, comorbidities, and prenatal care indicators as key predictors. Overall, the results demonstrate that routinely collected, early-pregnancy variables can support scalable and moderately high-performing VBAC prediction models. These models offer potential utility in clinical decision support, particularly in settings lacking access to specialized intrapartum data.
comment: 12 pages, 10 figures, 1 table
☆ Large Language Model-Enhanced Reinforcement Learning for Diverse and Novel Recommendations
In recommendation systems, diversity and novelty are essential for capturing varied user preferences and encouraging exploration, yet many systems prioritize click relevance. While reinforcement learning (RL) has been explored to improve diversity, it often depends on random exploration that may not align with user interests. We propose LAAC (LLM-guided Adversarial Actor Critic), a novel method that leverages large language models (LLMs) as reference policies to suggest novel items, while training a lightweight policy to refine these suggestions using system-specific data. The method formulates training as a bilevel optimization between actor and critic networks, enabling the critic to selectively favor promising novel actions and the actor to improve its policy beyond LLM recommendations. To mitigate overestimation of unreliable LLM suggestions, we apply regularization that anchors critic values for unexplored items close to well-estimated dataset actions. Experiments on real-world datasets show that LAAC outperforms existing baselines in diversity, novelty, and accuracy, while remaining robust on imbalanced data, effectively integrating LLM knowledge without expensive fine-tuning.
☆ Deep Polynomial Chaos Expansion UAI 2025
Polynomial chaos expansion (PCE) is a classical and widely used surrogate modeling technique in physical simulation and uncertainty quantification. By taking a linear combination of a set of basis polynomials - orthonormal with respect to the distribution of uncertain input parameters - PCE enables tractable inference of key statistical quantities, such as (conditional) means, variances, covariances, and Sobol sensitivity indices, which are essential for understanding the modeled system and identifying influential parameters and their interactions. As the number of basis functions grows exponentially with the number of parameters, PCE does not scale well to high-dimensional problems. We address this challenge by combining PCE with ideas from probabilistic circuits, resulting in the deep polynomial chaos expansion (DeepPCE) - a deep generalization of PCE that scales effectively to high-dimensional input spaces. DeepPCE achieves predictive performance comparable to that of multi-layer perceptrons (MLPs), while retaining PCE's ability to compute exact statistical inferences via simple forward passes.
comment: 8th Workshop on Tractable Probabilistic Modeling, UAI 2025
☆ Generative imaging for radio interferometry with fast uncertainty quantification
With the rise of large radio interferometric telescopes, particularly the SKA, there is a growing demand for computationally efficient image reconstruction techniques. Existing reconstruction methods, such as the CLEAN algorithm or proximal optimisation approaches, are iterative in nature, necessitating a large amount of compute. These methods either provide no uncertainty quantification or require large computational overhead to do so. Learned reconstruction methods have shown promise in providing efficient and high quality reconstruction. In this article we explore the use of generative neural networks that enable efficient approximate sampling of the posterior distribution for high quality reconstructions with uncertainty quantification. Our RI-GAN framework, builds on the regularised conditional generative adversarial network (rcGAN) framework by integrating a gradient U-Net (GU-Net) architecture - a hybrid reconstruction model that embeds the measurement operator directly into the network. This framework uses Wasserstein GANs to improve training stability in combination with regularisation terms that combat mode collapse, which are typical problems for conditional GANs. This approach takes as input the dirty image and the point spread function (PSF) of the observation and provides efficient, high-quality image reconstructions that are robust to varying visibility coverages, generalises to images with an increased dynamic range, and provides informative uncertainty quantification. Our methods provide a significant step toward computationally efficient, scalable, and uncertainty-aware imaging for next-generation radio telescopes.
☆ Numerical PDE solvers outperform neural PDE solvers
We present DeepFDM, a differentiable finite-difference framework for learning spatially varying coefficients in time-dependent partial differential equations (PDEs). By embedding a classical forward-Euler discretization into a convolutional architecture, DeepFDM enforces stability and first-order convergence via CFL-compliant coefficient parameterizations. Model weights correspond directly to PDE coefficients, yielding an interpretable inverse-problem formulation. We evaluate DeepFDM on a benchmark suite of scalar PDEs: advection, diffusion, advection-diffusion, reaction-diffusion and inhomogeneous Burgers' equations-in one, two and three spatial dimensions. In both in-distribution and out-of-distribution tests (quantified by the Hellinger distance between coefficient priors), DeepFDM attains normalized mean-squared errors one to two orders of magnitude smaller than Fourier Neural Operators, U-Nets and ResNets; requires 10-20X fewer training epochs; and uses 5-50X fewer parameters. Moreover, recovered coefficient fields accurately match ground-truth parameters. These results establish DeepFDM as a robust, efficient, and transparent baseline for data-driven solution and identification of parametric PDEs.
comment: 17 pages, 7 figures
☆ Multiscale geometrical and topological learning in the analysis of soft matter collective dynamics
Understanding the behavior and evolution of a dynamical many-body system by analyzing patterns in their experimentally captured images is a promising method relevant for a variety of living and non-living self-assembled systems. The arrays of moving liquid crystal skyrmions studied here are a representative example of hierarchically organized materials that exhibit complex spatiotemporal dynamics driven by multiscale processes. Joint geometric and topological data analysis (TDA) offers a powerful framework for investigating such systems by capturing the underlying structure of the data at multiple scales. In the TDA approach, we introduce the $\Psi$-function, a robust numerical topological descriptor related to both the spatiotemporal changes in the size and shape of individual topological solitons and the emergence of regions with their different spatial organization. The geometric method based on the analysis of vector fields generated from images of skyrmion ensembles offers insights into the nonlinear physical mechanisms of the system's response to external stimuli and provides a basis for comparison with theoretical predictions. The methodology presented here is very general and can provide a characterization of system behavior both at the level of individual pattern-forming agents and as a whole, allowing one to relate the results of image data analysis to processes occurring in a physical, chemical, or biological system in the real world.
comment: 13 pages, 6 figures
☆ Adaptive Multimodal Protein Plug-and-Play with Diffusion-Based Priors
In an inverse problem, the goal is to recover an unknown parameter (e.g., an image) that has typically undergone some lossy or noisy transformation during measurement. Recently, deep generative models, particularly diffusion models, have emerged as powerful priors for protein structure generation. However, integrating noisy experimental data from multiple sources to guide these models remains a significant challenge. Existing methods often require precise knowledge of experimental noise levels and manually tuned weights for each data modality. In this work, we introduce Adam-PnP, a Plug-and-Play framework that guides a pre-trained protein diffusion model using gradients from multiple, heterogeneous experimental sources. Our framework features an adaptive noise estimation scheme and a dynamic modality weighting mechanism integrated into the diffusion process, which reduce the need for manual hyperparameter tuning. Experiments on complex reconstruction tasks demonstrate significantly improved accuracy using Adam-PnP.
comment: Code: https://github.com/amartya21/Adam-PnP
☆ Diffusion Denoiser-Aided Gyrocompassing
An accurate initial heading angle is essential for efficient and safe navigation across diverse domains. Unlike magnetometers, gyroscopes can provide accurate heading reference independent of the magnetic disturbances in a process known as gyrocompassing. Yet, accurate and timely gyrocompassing, using low-cost gyroscopes, remains a significant challenge in scenarios where external navigation aids are unavailable. Such challenges are commonly addressed in real-world applications such as autonomous vehicles, where size, weight, and power limitations restrict sensor quality, and noisy measurements severely degrade gyrocompassing performance. To cope with this challenge, we propose a novel diffusion denoiser-aided gyrocompass approach. It integrates a diffusion-based denoising framework with an enhanced learning-based heading estimation model. The diffusion denoiser processes raw inertial sensor signals before input to the deep learning model, resulting in accurate gyrocompassing. Experiments using both simulated and real sensor data demonstrate that our proposed approach improves gyrocompassing accuracy by 26% compared to model-based gyrocompassing and by 15% compared to other learning-driven approaches. This advancement holds particular significance for ensuring accurate and robust navigation in autonomous platforms that incorporate low-cost gyroscopes within their navigation systems.
comment: 8 pages, 8 figures
☆ Bubbleformer: Forecasting Boiling with Transformers NeurIPS 2025
Modeling boiling (an inherently chaotic, multiphase process central to energy and thermal systems) remains a significant challenge for neural PDE surrogates. Existing models require future input (e.g., bubble positions) during inference because they fail to learn nucleation from past states, limiting their ability to autonomously forecast boiling dynamics. They also fail to model flow boiling velocity fields, where sharp interface-momentum coupling demands long-range and directional inductive biases. We introduce Bubbleformer, a transformer-based spatiotemporal model that forecasts stable and long-range boiling dynamics including nucleation, interface evolution, and heat transfer without dependence on simulation data during inference. Bubbleformer integrates factorized axial attention, frequency-aware scaling, and conditions on thermophysical parameters to generalize across fluids, geometries, and operating conditions. To evaluate physical fidelity in chaotic systems, we propose interpretable physics-based metrics that evaluate heat-flux consistency, interface geometry, and mass conservation. We also release BubbleML 2.0, a high-fidelity dataset that spans diverse working fluids (cryogens, refrigerants, dielectrics), boiling configurations (pool and flow boiling), flow regimes (bubbly, slug, annular), and boundary conditions. Bubbleformer sets new benchmark results in both prediction and forecasting of two-phase boiling flows.
comment: 39 pages, 13 figures, Submitted to NeurIPS 2025
☆ Fluidically Innervated Lattices Make Versatile and Durable Tactile Sensors
Tactile sensing plays a fundamental role in enabling robots to navigate dynamic and unstructured environments, particularly in applications such as delicate object manipulation, surface exploration, and human-robot interaction. In this paper, we introduce a passive soft robotic fingertip with integrated tactile sensing, fabricated using a 3D-printed elastomer lattice with embedded air channels. This sensorization approach, termed fluidic innervation, transforms the lattice into a tactile sensor by detecting pressure changes within sealed air channels, providing a simple yet robust solution to tactile sensing in robotics. Unlike conventional methods that rely on complex materials or designs, fluidic innervation offers a simple, scalable, single-material fabrication process. We characterize the sensors' response, develop a geometric model to estimate tip displacement, and train a neural network to accurately predict contact location and contact force. Additionally, we integrate the fingertip with an admittance controller to emulate spring-like behavior, demonstrate its capability for environment exploration through tactile feedback, and validate its durability under high impact and cyclic loading conditions. This tactile sensing technique offers advantages in terms of simplicity, adaptability, and durability and opens up new opportunities for versatile robotic manipulation.
comment: Accepted for publication in the proceedings of the 2025 International Symposium on Experimental Robotics (ISER)
☆ Benchmarking a Tunable Quantum Neural Network on Trapped-Ion and Superconducting Hardware
We implement a quantum generalization of a neural network on trapped-ion and IBM superconducting quantum computers to classify MNIST images, a common benchmark in computer vision. The network feedforward involves qubit rotations whose angles depend on the results of measurements in the previous layer. The network is trained via simulation, but inference is performed experimentally on quantum hardware. The classical-to-quantum correspondence is controlled by an interpolation parameter, $a$, which is zero in the classical limit. Increasing $a$ introduces quantum uncertainty into the measurements, which is shown to improve network performance at moderate values of the interpolation parameter. We then focus on particular images that fail to be classified by a classical neural network but are detected correctly in the quantum network. For such borderline cases, we observe strong deviations from the simulated behavior. We attribute this to physical noise, which causes the output to fluctuate between nearby minima of the classification energy landscape. Such strong sensitivity to physical noise is absent for clear images. We further benchmark physical noise by inserting additional single-qubit and two-qubit gate pairs into the neural network circuits. Our work provides a springboard toward more complex quantum neural networks on current devices: while the approach is rooted in standard classical machine learning, scaling up such networks may prove classically non-simulable and could offer a route to near-term quantum advantage.
comment: 6 pages, 3 figures
☆ Agentic Web: Weaving the Next Web with AI Agents
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.
☆ Learning from Limited and Imperfect Data
The distribution of data in the world (eg, internet, etc.) significantly differs from the well-curated datasets and is often over-populated with samples from common categories. The algorithms designed for well-curated datasets perform suboptimally when used for learning from imperfect datasets with long-tailed imbalances and distribution shifts. To expand the use of deep models, it is essential to overcome the labor-intensive curation process by developing robust algorithms that can learn from diverse, real-world data distributions. Toward this goal, we develop practical algorithms for Deep Neural Networks which can learn from limited and imperfect data present in the real world. This thesis is divided into four segments, each covering a scenario of learning from limited or imperfect data. The first part of the thesis focuses on Learning Generative Models from Long-Tail Data, where we mitigate the mode-collapse and enable diverse aesthetic image generations for tail (minority) classes. In the second part, we enable effective generalization on tail classes through Inductive Regularization schemes, which allow tail classes to generalize as effectively as the head classes without requiring explicit generation of images. In the third part, we develop algorithms for Optimizing Relevant Metrics for learning from long-tailed data with limited annotation (semi-supervised), followed by the fourth part, which focuses on the Efficient Domain Adaptation of the model to various domains with very few to zero labeled samples.
comment: PhD Thesis
☆ An empirical comparison of some outlier detection methods with longitudinal data
This note investigates the problem of detecting outliers in longitudinal data. It compares well-known methods used in official statistics with proposals from the fields of data mining and machine learning that are based on the distance between observations or binary partitioning trees. This is achieved by applying the methods to panel survey data related to different types of statistical units. Traditional methods are quite simple, enabling the direct identification of potential outliers, but they require specific assumptions. In contrast, recent methods provide only a score whose magnitude is directly related to the likelihood of an outlier being present. All the methods require the user to set a number of tuning parameters. However, the most recent methods are more flexible and sometimes more effective than traditional methods. In addition, these methods can be applied to multidimensional data.
☆ Combolutional Neural Networks SP
Selecting appropriate inductive biases is an essential step in the design of machine learning models, especially when working with audio, where even short clips may contain millions of samples. To this end, we propose the combolutional layer: a learned-delay IIR comb filter and fused envelope detector, which extracts harmonic features in the time domain. We demonstrate the efficacy of the combolutional layer on three information retrieval tasks, evaluate its computational cost relative to other audio frontends, and provide efficient implementations for training. We find that the combolutional layer is an effective replacement for convolutional layers in audio tasks where precise harmonic analysis is important, e.g., piano transcription, speaker classification, and key detection. Additionally, the combolutional layer has several other key benefits over existing frontends, namely: low parameter count, efficient CPU inference, strictly real-valued computations, and improved interpretability.
comment: 4 pages, 3 figures, accepted to WASPAA 2025
☆ PanoGAN A Deep Generative Model for Panoramic Dental Radiographs
This paper presents the development of a generative adversarial network (GAN) for synthesizing dental panoramic radiographs. Although exploratory in nature, the study aims to address the scarcity of data in dental research and education. We trained a deep convolutional GAN (DCGAN) using a Wasserstein loss with gradient penalty (WGANGP) on a dataset of 2322 radiographs of varying quality. The focus was on the dentoalveolar regions, other anatomical structures were cropped out. Extensive preprocessing and data cleaning were performed to standardize the inputs while preserving anatomical variability. We explored four candidate models by varying critic iterations, feature depth, and the use of denoising prior to training. A clinical expert evaluated the generated radiographs based on anatomical visibility and realism, using a 5-point scale (1 very poor 5 excellent). Most images showed moderate anatomical depiction, although some were degraded by artifacts. A trade-off was observed the model trained on non-denoised data yielded finer details especially in structures like the mandibular canal and trabecular bone, while a model trained on denoised data offered superior overall image clarity and sharpness. These findings provide a foundation for future work on GAN-based methods in dental imaging.
☆ Advancing Compositional LLM Reasoning with Structured Task Relations in Interactive Multimodal Communications
Interactive multimodal applications (IMAs), such as route planning in the Internet of Vehicles, enrich users' personalized experiences by integrating various forms of data over wireless networks. Recent advances in large language models (LLMs) utilize mixture-of-experts (MoE) mechanisms to empower multiple IMAs, with each LLM trained individually for a specific task that presents different business workflows. In contrast to existing approaches that rely on multiple LLMs for IMAs, this paper presents a novel paradigm that accomplishes various IMAs using a single compositional LLM over wireless networks. The two primary challenges include 1) guiding a single LLM to adapt to diverse IMA objectives and 2) ensuring the flexibility and efficiency of the LLM in resource-constrained mobile environments. To tackle the first challenge, we propose ContextLoRA, a novel method that guides an LLM to learn the rich structured context among IMAs by constructing a task dependency graph. We partition the learnable parameter matrix of neural layers for each IMA to facilitate LLM composition. Then, we develop a step-by-step fine-tuning procedure guided by task relations, including training, freezing, and masking phases. This allows the LLM to learn to reason among tasks for better adaptation, capturing the latent dependencies between tasks. For the second challenge, we introduce ContextGear, a scheduling strategy to optimize the training procedure of ContextLoRA, aiming to minimize computational and communication costs through a strategic grouping mechanism. Experiments on three benchmarks show the superiority of the proposed ContextLoRA and ContextGear. Furthermore, we prototype our proposed paradigm on a real-world wireless testbed, demonstrating its practical applicability for various IMAs. We will release our code to the community.
comment: Accepted by IEEE JSAC. This work has been submitted to the IEEE for possible publication
☆ Uncovering Gradient Inversion Risks in Practical Language Model Training CCS 2024
The gradient inversion attack has been demonstrated as a significant privacy threat to federated learning (FL), particularly in continuous domains such as vision models. In contrast, it is often considered less effective or highly dependent on impractical training settings when applied to language models, due to the challenges posed by the discrete nature of tokens in text data. As a result, its potential privacy threats remain largely underestimated, despite FL being an emerging training method for language models. In this work, we propose a domain-specific gradient inversion attack named Grab (gradient inversion with hybrid optimization). Grab features two alternating optimization processes to address the challenges caused by practical training settings, including a simultaneous optimization on dropout masks between layers for improved token recovery and a discrete optimization for effective token sequencing. Grab can recover a significant portion (up to 92.9% recovery rate) of the private training data, outperforming the attack strategy of utilizing discrete optimization with an auxiliary model by notable improvements of up to 28.9% recovery rate in benchmark settings and 48.5% recovery rate in practical settings. Grab provides a valuable step forward in understanding this privacy threat in the emerging FL training mode of language models.
comment: 15 Pages, 5 figures, 10 tables. Accepted by ACM CCS 2024
♻ ☆ Secure Best Arm Identification in the Presence of a Copycat
Consider the problem of best arm identification with a security constraint. Specifically, assume a setup of stochastic linear bandits with $K$ arms of dimension $d$. In each arm pull, the player receives a reward that is the sum of the dot product of the arm with an unknown parameter vector and independent noise. The player's goal is to identify the best arm after $T$ arm pulls. Moreover, assume a copycat Chloe is observing the arm pulls. The player wishes to keep Chloe ignorant of the best arm. While a minimax--optimal algorithm identifies the best arm with an $\Omega\left(\frac{T}{\log(d)}\right)$ error exponent, it easily reveals its best-arm estimate to an outside observer, as the best arms are played more frequently. A naive secure algorithm that plays all arms equally results in an $\Omega\left(\frac{T}{d}\right)$ exponent. In this paper, we propose a secure algorithm that plays with \emph{coded arms}. The algorithm does not require any key or cryptographic primitives, yet achieves an $\Omega\left(\frac{T}{\log^2(d)}\right)$ exponent while revealing almost no information on the best arm.
comment: To appear in ITW 2025
♻ ☆ Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
The diagnostic value of electrocardiogram (ECG) lies in its dynamic characteristics, ranging from rhythm fluctuations to subtle waveform deformations that evolve across time and frequency domains. However, supervised ECG models tend to overfit dominant and repetitive patterns, overlooking fine-grained but clinically critical cues, a phenomenon known as Simplicity Bias (SB), where models favor easily learnable signals over subtle but informative ones. In this work, we first empirically demonstrate the presence of SB in ECG analyses and its negative impact on diagnostic performance, while simultaneously discovering that self-supervised learning (SSL) can alleviate it, providing a promising direction for tackling the bias. Following the SSL paradigm, we propose a novel method comprising two key components: 1) Temporal-Frequency aware Filters to capture temporal-frequency features reflecting the dynamic characteristics of ECG signals, and 2) building on this, Multi-Grained Prototype Reconstruction for coarse and fine representation learning across dual domains, further mitigating SB. To advance SSL in ECG analyses, we curate a large-scale multi-site ECG dataset with 1.53 million recordings from over 300 clinical centers. Experiments on three downstream tasks across six ECG datasets demonstrate that our method effectively reduces SB and achieves state-of-the-art performance.
comment: Revised Version 4
♻ ☆ Weak-to-Strong Generalization with Failure Trajectories: A Tree-based Approach to Elicit Optimal Policy in Strong Models
Weak-to-Strong generalization (W2SG) is a new trend to elicit the full capabilities of a strong model with supervision from a weak model. While existing W2SG studies focus on simple tasks like binary classification, we extend this paradigm to complex interactive decision-making environments. Specifically, we fine-tune a strong model with trajectories of intermediate actions generated by a weak model. Motivated by the human learning process, we propose to generalize not only success knowledge but also failure experience so that the strong model can learn from failed trajectories accumulated by weak models. To effectively and efficiently elicit the potential of strong agents, we further construct ``trajectory trees," a hierarchical representation that organizes weak model-generated action trajectories, coupled with Monte Carlo Tree Search (MCTS) to optimize the strong model. Through theoretical analysis, we provide formal guarantees for the effectiveness of our method in improving W2SG performance. Our empirical evaluations demonstrate substantial improvements in reasoning and decision-making capabilities across diverse task domains, validating the scalability and robustness of our proposed framework.
♻ ☆ A Survey of Deep Learning for Geometry Problem Solving
Geometry problem solving is a key area of mathematical reasoning, which is widely involved in many important fields such as education, mathematical ability assessment of artificial intelligence, and multimodal ability assessment. In recent years, the rapid development of deep learning technology, especially the rise of multimodal large language models, has triggered a widespread research boom. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our goal is to provide a comprehensive and practical reference of deep learning for geometry problem solving to promote further developments in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.
comment: Work in progress
♻ ☆ Evaluating the Promise and Pitfalls of LLMs in Hiring Decisions NeurIPS 2025
The use of large language models (LLMs) in hiring promises to streamline candidate screening, but it also raises serious concerns regarding accuracy and algorithmic bias where sufficient safeguards are not in place. In this work, we benchmark several state-of-the-art foundational LLMs - including models from OpenAI, Anthropic, Google, Meta, and Deepseek, and compare them with our proprietary domain-specific hiring model (Match Score) for job candidate matching. We evaluate each model's predictive accuracy (ROC AUC, Precision-Recall AUC, F1-score) and fairness (impact ratio of cut-off analysis across declared gender, race, and intersectional subgroups). Our experiments on a dataset of roughly 10,000 real-world recent candidate-job pairs show that Match Score outperforms the general-purpose LLMs on accuracy (ROC AUC 0.85 vs 0.77) and achieves significantly more equitable outcomes across demographic groups. Notably, Match Score attains a minimum race-wise impact ratio of 0.957 (near-parity), versus 0.809 or lower for the best LLMs, (0.906 vs 0.773 for the intersectionals, respectively). We discuss why pretraining biases may cause LLMs with insufficient safeguards to propagate societal biases in hiring scenarios, whereas a bespoke supervised model can more effectively mitigate these biases. Our findings highlight the importance of domain-specific modeling and bias auditing when deploying AI in high-stakes domains such as hiring, and caution against relying on off-the-shelf LLMs for such tasks without extensive fairness safeguards. Furthermore, we show with empirical evidence that there shouldn't be a dichotomy between choosing accuracy and fairness in hiring: a well-designed algorithm can achieve both accuracy in hiring and fairness in outcomes.
comment: 10 pages, 2 figures, 2 tables. Submitted to NeurIPS 2025
♻ ☆ On the Robustness of Global Feature Effect Explanations ECML
We study the robustness of global post-hoc explanations for predictive models trained on tabular data. Effects of predictor features in black-box supervised learning are an essential diagnostic tool for model debugging and scientific discovery in applied sciences. However, how vulnerable they are to data and model perturbations remains an open research question. We introduce several theoretical bounds for evaluating the robustness of partial dependence plots and accumulated local effects. Our experimental results with synthetic and real-world datasets quantify the gap between the best and worst-case scenarios of (mis)interpreting machine learning predictions globally.
comment: Accepted at ECML PKDD 2024
♻ ☆ GUI-G$^2$: Gaussian Reward Modeling for GUI Grounding
Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G$^2$), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G$^2$ incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G$^2$, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.
♻ ☆ Scaling Physical Reasoning with the PHYSICS Dataset
Large Language Models (LLMs) have achieved remarkable progress on advanced reasoning tasks such as mathematics and coding competitions. Meanwhile, physics, despite being both reasoning-intensive and essential to real-world understanding, received limited academic and industrial attention. This paper introduces PHYSICS, a dataset containing 16,568 high-quality physics problems spanning subjects and difficulty levels, to facilitate this issue. Specifically, PHYSICS is curated with exercises from over 100 textbooks through a carefully designed pipeline for quality control. It covers five major physics domains: Mechanics, Electromagnetism, Thermodynamics, Optics, and Modern Physics. It also spans a wide range of difficulty levels, from high school to graduate-level physics courses. To utilize the data for improving and evaluating the model's physical reasoning capabilities, we split the dataset into training and test sets, and provide reasoning paths generated by powerful reasoning models for the training data to facilitate model training. In addition, for the evaluation part, we find that existing evaluation frameworks exhibit biases in aspects such as units, simplification, and precision in physics domain. To balance efficiency and accuracy, we introduce a Rule+Model evaluation framework tailored to physics problems. Our evaluations on current state-of-the-art open-source and proprietary models highlight the limitations of current models in handling physics-related tasks. We hope that our dataset and evaluation methodology will jointly advance the development of LLMs in the field of physics.
comment: Work on physical datasets
♻ ☆ A Modular Open Source Framework for Genomic Variant Calling
Variant calling is a fundamental task in genomic research, essential for detecting genetic variations such as single nucleotide polymorphisms (SNPs) and insertions or deletions (indels). This paper presents an enhancement to DeepChem, a widely used open-source drug discovery framework, through the integration of DeepVariant. In particular, we introduce a variant calling pipeline that leverages DeepVariant's convolutional neural network (CNN) architecture to improve the accuracy and reliability of variant detection. The implemented pipeline includes stages for realignment of sequencing reads, candidate variant detection, and pileup image generation, followed by variant classification using a modified Inception v3 model. Our work adds a modular and extensible variant calling framework to the DeepChem framework and enables future work integrating DeepChem's drug discovery infrastructure more tightly with bioinformatics pipelines.
♻ ☆ Unveil Multi-Picture Descriptions for Multilingual Mild Cognitive Impairment Detection via Contrastive Learning
Detecting Mild Cognitive Impairment from picture descriptions is critical yet challenging, especially in multilingual and multiple picture settings. Prior work has primarily focused on English speakers describing a single picture (e.g., the 'Cookie Theft'). The TAUKDIAL-2024 challenge expands this scope by introducing multilingual speakers and multiple pictures, which presents new challenges in analyzing picture-dependent content. To address these challenges, we propose a framework with three components: (1) enhancing discriminative representation learning via supervised contrastive learning, (2) involving image modality rather than relying solely on speech and text modalities, and (3) applying a Product of Experts (PoE) strategy to mitigate spurious correlations and overfitting. Our framework improves MCI detection performance, achieving a +7.1% increase in Unweighted Average Recall (UAR) (from 68.1% to 75.2%) and a +2.9% increase in F1 score (from 80.6% to 83.5%) compared to the text unimodal baseline. Notably, the contrastive learning component yields greater gains for the text modality compared to speech. These results highlight our framework's effectiveness in multilingual and multi-picture MCI detection.
comment: IEEE Global Communications Conference (GlobeCom) 2025
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates zero-shot synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Notably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ LLM2TEA: An Agentic AI Designer for Discovery with Generative Evolutionary Multitasking
This paper presents LLM2TEA, a Large Language Model (LLM) driven MultiTask Evolutionary Algorithm, representing the first agentic AI designer of its kind operating with generative evolutionary multitasking (GEM). LLM2TEA enables the crossbreeding of solutions from multiple domains, fostering novel solutions that transcend disciplinary boundaries. Of particular interest is the ability to discover designs that are both novel and conforming to real-world physical specifications. LLM2TEA comprises an LLM to generate genotype samples from text prompts describing target objects, a text-to-3D generative model to produce corresponding phenotypes, a classifier to interpret its semantic representations, and a computational simulator to assess its physical properties. Novel LLM-based multitask evolutionary operators are introduced to guide the search towards high-performing, practically viable designs. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, showing 97% to 174% improvements in the diversity of novel designs over the current text-to-3D baseline. Moreover, over 73% of the generated designs outperform the top 1% of designs produced by the text-to-3D baseline in terms of physical performance. The designs produced by LLM2TEA are not only aesthetically creative but also functional in real-world contexts. Several of these designs have been successfully 3D printed, demonstrating the ability of our approach to transform AI-generated outputs into tangible, physical designs. These designs underscore the potential of LLM2TEA as a powerful tool for complex design optimization and discovery, capable of producing novel and physically viable designs.
comment: This work is accepted by IEEE CIM. IEEE copyrights applies
♻ ☆ SEAL: Searching Expandable Architectures for Incremental Learning
Incremental learning is a machine learning paradigm where a model learns from a sequential stream of tasks. This setting poses a key challenge: balancing plasticity (learning new tasks) and stability (preserving past knowledge). Neural Architecture Search (NAS), a branch of AutoML, automates the design of the architecture of Deep Neural Networks and has shown success in static settings. However, existing NAS-based approaches to incremental learning often rely on expanding the model at every task, making them impractical in resource-constrained environments. In this work, we introduce SEAL, a NAS-based framework tailored for data-incremental learning, a scenario where disjoint data samples arrive sequentially and are not stored for future access. SEAL adapts the model structure dynamically by expanding it only when necessary, based on a capacity estimation metric. Stability is preserved through cross-distillation training after each expansion step. The NAS component jointly searches for both the architecture and the optimal expansion policy. Experiments across multiple benchmarks demonstrate that SEAL effectively reduces forgetting and enhances accuracy while maintaining a lower model size compared to prior methods. These results highlight the promise of combining NAS and selective expansion for efficient, adaptive learning in incremental scenarios.
comment: 9 pages, 5 figures
♻ ☆ Are ECGs enough? Deep learning classification of pulmonary embolism using electrocardiograms RAS
Pulmonary embolism is a leading cause of out of hospital cardiac arrest that requires fast diagnosis. While computed tomography pulmonary angiography is the standard diagnostic tool, it is not always accessible. Electrocardiography is an essential tool for diagnosing multiple cardiac anomalies, as it is affordable, fast and available in many settings. However, the availability of public ECG datasets, specially for PE, is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural networks in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate information learned in larger ECG datasets, such as PTB-XL, CPSC18 and MedalCare-XL, to a smaller, more challenging dataset for PE. By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .
comment: Accepted to the MIRASOL 2025 Workshop (MICCAI 2025)
♻ ☆ Joint modeling for learning decision-making dynamics in behavioral experiments
Major depressive disorder (MDD), a leading cause of disability and mortality, is associated with reward-processing abnormalities and concentration issues. Motivated by the probabilistic reward task from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel framework that integrates the reinforcement learning (RL) model and drift-diffusion model (DDM) to jointly analyze reward-based decision-making with response times. To account for emerging evidence suggesting that decision-making may alternate between multiple interleaved strategies, we model latent state switching using a hidden Markov model (HMM). In the ''engaged'' state, decisions follow an RL-DDM, simultaneously capturing reward processing, decision dynamics, and temporal structure. In contrast, in the ''lapsed'' state, decision-making is modeled using a simplified DDM, where specific parameters are fixed to approximate random guessing with equal probability. The proposed method is implemented using a computationally efficient generalized expectation-maximization (EM) algorithm with forward-backward procedures. Through extensive numerical studies, we demonstrate that our proposed method outperforms competing approaches across various reward-generating distributions, under both strategy-switching and non-switching scenarios, as well as in the presence of input perturbations. When applied to the EMBARC study, our framework reveals that MDD patients exhibit lower overall engagement than healthy controls and experience longer decision times when they do engage. Additionally, we show that neuroimaging measures of brain activities are associated with decision-making characteristics in the ''engaged'' state but not in the ''lapsed'' state, providing evidence of brain-behavior association specific to the ''engaged'' state.
♻ ☆ Implementing Adaptations for Vision AutoRegressive Model ICML 2025
Vision AutoRegressive model (VAR) was recently introduced as an alternative to Diffusion Models (DMs) in image generation domain. In this work we focus on its adaptations, which aim to fine-tune pre-trained models to perform specific downstream tasks, like medical data generation. While for DMs there exist many techniques, adaptations for VAR remain underexplored. Similarly, differentially private (DP) adaptations-ones that aim to preserve privacy of the adaptation data-have been extensively studied for DMs, while VAR lacks such solutions. In our work, we implement and benchmark many strategies for VAR, and compare them to state-of-the-art DM adaptation strategies. We observe that VAR outperforms DMs for non-DP adaptations, however, the performance of DP suffers, which necessitates further research in private adaptations for VAR. Code is available at https://github.com/sprintml/finetuning_var_dp.
comment: Accepted at DIG-BUGS: Data in Generative Models Workshop @ ICML 2025
♻ ☆ REDS: Resource-Efficient Deep Subnetworks for Dynamic Resource Constraints
Deep learning models deployed on edge devices frequently encounter resource variability, which arises from fluctuating energy levels, timing constraints, or prioritization of other critical tasks within the system. State-of-the-art machine learning pipelines generate resource-agnostic models that are not capable to adapt at runtime. In this work, we introduce Resource-Efficient Deep Subnetworks (REDS) to tackle model adaptation to variable resources. In contrast to the state-of-the-art, REDS leverages structured sparsity constructively by exploiting permutation invariance of neurons, which allows for hardware-specific optimizations. Specifically, REDS achieves computational efficiency by (1) skipping sequential computational blocks identified by a novel iterative knapsack optimizer, and (2) taking advantage of data cache by re-arranging the order of operations in REDS computational graph. REDS supports conventional deep networks frequently deployed on the edge and provides computational benefits even for small and simple networks. We evaluate REDS on eight benchmark architectures trained on the Visual Wake Words, Google Speech Commands, Fashion-MNIST, CIFAR-10 and ImageNet-1K datasets, and test on four off-the-shelf mobile and embedded hardware platforms. We provide a theoretical result and empirical evidence demonstrating REDS' outstanding performance in terms of submodels' test set accuracy, and demonstrate an adaptation time in response to dynamic resource constraints of under 40$\mu$s, utilizing a fully-connected network on Arduino Nano 33 BLE.
♻ ☆ Learning unitaries with quantum statistical queries
We propose several algorithms for learning unitary operators from quantum statistical queries with respect to their Choi-Jamiolkowski state. Quantum statistical queries capture the capabilities of a learner with limited quantum resources, which receives as input only noisy estimates of expected values of measurements. Our approach leverages quantum statistical queries to estimate the Fourier mass of a unitary on a subset of Pauli strings, generalizing previous techniques developed for uniform quantum examples. Specifically, we show that the celebrated quantum Goldreich-Levin algorithm can be implemented with quantum statistical queries, whereas the prior version of the algorithm involves oracle access to the unitary and its inverse. As an application, we prove that quantum Boolean functions with constant total influence or with constant degree are efficiently learnable in our model. Moreover, we prove that $\mathcal{O}(\log n)$-juntas are efficiently learnable and constant-depth circuits are learnable query-efficiently with quantum statistical queries. On the other hand, all previous algorithms for these tasks demand significantly greater resources, such as oracle access to the unitary or direct access to the Choi-Jamiolkowski state. We also demonstrate that, despite these positive results, quantum statistical queries lead to an exponentially larger query complexity for certain tasks, compared to separable measurements to the Choi-Jamiolkowski state. In particular, we show an exponential lower bound for learning a class of phase-oracle unitaries and a double exponential lower bound for testing the unitarity of channels. Taken together, our results indicate that quantum statistical queries offer a unified framework for various unitary learning tasks, with potential applications in quantum machine learning, many-body physics and benchmarking of near-term devices.
comment: 40 pages
♻ ☆ RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge
We address the critical problem of interference rejection in radio-frequency (RF) signals using a data-driven approach that leverages deep-learning methods. A primary contribution of this paper is the introduction of the RF Challenge, which is a publicly available, diverse RF signal dataset for data-driven analyses of RF signal problems. Specifically, we adopt a simplified signal model for developing and analyzing interference rejection algorithms. For this signal model, we introduce a set of carefully chosen deep learning architectures, incorporating key domain-informed modifications alongside traditional benchmark solutions to establish baseline performance metrics for this intricate, ubiquitous problem. Through extensive simulations involving eight different signal mixture types, we demonstrate the superior performance (in some cases, by two orders of magnitude) of architectures such as UNet and WaveNet over traditional methods like matched filtering and linear minimum mean square error estimation. Our findings suggest that the data-driven approach can yield scalable solutions, in the sense that the same architectures may be similarly trained and deployed for different types of signals. Moreover, these findings further corroborate the promising potential of deep learning algorithms for enhancing communication systems, particularly via interference mitigation. This work also includes results from an open competition based on the RF Challenge, hosted at the 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'24).
comment: 17 pages, 16 figures. Footnote about test set leakage added
♻ ☆ On the similarity of bandwidth-tuned quantum kernels and classical kernels
Quantum kernels (QK) are widely used in quantum machine learning applications; yet, their potential to surpass classical machine learning methods on classical datasets remains uncertain. This limitation can be attributed to the exponential concentration phenomenon, which can impair generalization. A common strategy to alleviate this is bandwidth tuning, which involves rescaling data points in the quantum model to improve generalization. In this work, we numerically demonstrate that optimal bandwidth tuning results in QKs that closely resemble radial basis function (RBF) kernels, leading to a lack of quantum advantage over classical methods. Moreover, we reveal that the size of optimal bandwidth tuning parameters further simplifies QKs, causing them to behave like polynomial kernels, corresponding to a low-order Taylor approximation of a RBF kernel. We thoroughly investigate this for fidelity quantum kernels and projected quantum kernels using various data encoding circuits across several classification datasets. We provide numerical evidence and derive a simple analytical model that elucidates how bandwidth tuning influences key quantities in classification tasks. Overall, our findings shed light on the mechanisms that render QK methods classically tractable.
comment: 9 main pages with 5 figures, and 9 appendix pages with 12 figures. Added reference to GitHub where code for reproduction is availabe; corrected typos; article in QST
♻ ☆ Critique of Impure Reason: Unveiling the reasoning behaviour of medical Large Language Models
Background: Despite the current ubiquity of Large Language Models (LLMs) across the medical domain, there is a surprising lack of studies which address their reasoning behaviour. We emphasise the importance of understanding reasoning behaviour as opposed to high-level prediction accuracies, since it is equivalent to explainable AI (XAI) in this context. In particular, achieving XAI in medical LLMs used in the clinical domain will have a significant impact across the healthcare sector. Results: Therefore, in this work, we adapt the existing concept of reasoning behaviour and articulate its interpretation within the specific context of medical LLMs. We survey and categorise current state-of-the-art approaches for modeling and evaluating reasoning reasoning in medical LLMs. Additionally, we propose theoretical frameworks which can empower medical professionals or machine learning engineers to gain insight into the low-level reasoning operations of these previously obscure models. We also outline key open challenges facing the development of Large Reasoning Models. Conclusion: The subsequent increased transparency and trust in medical machine learning models by clinicians as well as patients will accelerate the integration, application as well as further development of medical AI for the healthcare system as a whole.
comment: 25 pages, 7 figures, 3 tables. Conceptualization, both authors. formal analysis, both authors. funding acquisition, both authors. investigation, both authors. resources, both authors. supervision, T.C.. validation, both authors. visualization, both authors. writing original draft, both authors. writing review and editing, both authors
♻ ☆ APTx Neuron: A Unified Trainable Neuron Architecture Integrating Activation and Computation
We propose the APTx Neuron, a novel, unified neural computation unit that integrates non-linear activation and linear transformation into a single trainable expression. The APTx Neuron is derived from the APTx activation function, thereby eliminating the need for separate activation layers and making the architecture both computationally efficient and elegant. The proposed neuron follows the functional form $y = \sum_{i=1}^{n} ((\alpha_i + \tanh(\beta_i x_i)) \cdot \gamma_i x_i) + \delta$, where all parameters $\alpha_i$, $\beta_i$, $\gamma_i$, and $\delta$ are trainable. We validate our APTx Neuron-based architecture on the MNIST dataset, achieving up to 96.69% test accuracy within 11 epochs using approximately 332K trainable parameters. The results highlight the superior expressiveness and computational efficiency of the APTx Neuron compared to traditional neurons, pointing toward a new paradigm in unified neuron design and the architectures built upon it.
comment: 10 pages, 2 figures, 1 table. Includes a GitHub repository for MNIST experiments and a PyPI package for APTx Neuron implementation
♻ ☆ Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps IROS 2025
Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
comment: Accepted at IROS 2025
♻ ☆ Dragonfly: a modular deep reinforcement learning library
Dragonfly is a deep reinforcement learning library focused on modularity, in order to ease experimentation and developments. It relies on a json serialization that allows to swap building blocks and perform parameter sweep, while minimizing code maintenance. Some of its features are specifically designed for CPU-intensive environments, such as numerical simulations. Its performance on standard agents using common benchmarks compares favorably with the literature.
♻ ☆ Satellite-Surface-Area Machine-Learning Models for Reservoir Storage Estimation: Regime-Sensitive Evaluation and Operational Deployment at Loskop Dam, South Africa
Reliable daily estimates of reservoir storage are pivotal for water allocation and drought response decisions in semiarid regions. Conventional rating curves at Loskop Dam, the primary storage on South Africa's Olifants River, have become increasingly uncertain owing to sedimentation and episodic drawdown. A 40 year Digital Earth Africa (DEA) surface area archive (1984-2024) fused with gauged water levels to develop data driven volume predictors that operate under a maximum 9.14%, a 90 day drawdown constraint. Four nested feature sets were examined: (i) raw water area, (ii) +a power law "calculated volume" proxy, (iii) +six river geometry metrics, and (iv) +full supply elevation. Five candidate algorithms, Gradient Boosting (GB), Random Forest (RF), Ridge (RI), Lasso (LA) and Elastic Net (EN), were tuned using a 20 draw random search and assessed with a five fold Timeseries Split to eliminate look ahead bias. Prediction errors were decomposed into two regimes: Low (<250 x 10^6 cubic meters) and High (>250 x 10^6 cubic meters) storage regimes. Ridge regression achieved the lowest cross validated RMSE (12.3 x 10^6 cubic meters), outperforming GB by 16% and RF by 7%. In regime terms, Ridge was superior in the Low band (18.0 ver. 22.7 MCM for GB) and tied RF in the High band (~12 MCM). In sample diagnostics showed GB's apparent dominance (6.8-5.4 MCM) to be an artefact of overfitting. A Ridge meta stacked ensemble combining GB, RF, and Ridge reduced full series RMSE to ~ 11 MCM (~ 3% of live capacity). We recommend (i) GB retrained daily for routine operations, (ii) Ridge for drought early warning, and (iii) the stacked blend for all weather dashboards. Quarterly rolling retraining and regime specific metrics are advised to maintain operational accuracy below the 5% threshold mandated by the Department of Water and Sanitation.
comment: 20 pages, 9 Figures
♻ ☆ Finite-Time Analysis of Discrete-Time Stochastic Interpolants
The stochastic interpolant framework offers a powerful approach for constructing generative models based on ordinary differential equations (ODEs) or stochastic differential equations (SDEs) to transform arbitrary data distributions. However, prior analyses of this framework have primarily focused on the continuous-time setting, assuming a perfect solution of the underlying equations. In this work, we present the first discrete-time analysis of the stochastic interpolant framework, where we introduce an innovative discrete-time sampler and derive a finite-time upper bound on its distribution estimation error. Our result provides a novel quantification of how different factors, including the distance between source and target distributions and estimation accuracy, affect the convergence rate and also offers a new principled way to design efficient schedules for convergence acceleration. Finally, numerical experiments are conducted on the discrete-time sampler to corroborate our theoretical findings.
♻ ☆ Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
Recent advances have witnessed the effectiveness of reinforcement learning (RL) finetuning in enhancing the reasoning capabilities of large language models (LLMs). The optimization process often requires numerous iterations to achieve satisfactory performance, resulting in high computational costs due to the need for frequent prompt evaluations under intensive LLM interactions and repeated policy updates. Appropriate online prompt selection methods reduce iteration steps by prioritizing informative prompts during training, while the pipeline's reliance on exhaustive prompt evaluation and subset selection for optimization still incurs substantial computational overhead due to frequent LLM inference calls. Distinguished from these direct evaluate-then-select schemes, this work investigates iterative approximate evaluation for arbitrary prompts and introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework that online estimates prompt difficulty without requiring costly LLM interactions. Technically, MoPPS models each prompt's success rate as a latent variable, performs streaming Bayesian inference, and employs posterior sampling in a constructed multi-armed bandit machine, enabling sample efficient and adaptive prompt selection. Extensive experiments across mathematics, planning, and vision-based geometry tasks show that MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced LLM rollouts.
♻ ☆ Everything is a Video: Unifying Modalities through Next-Frame Prediction
Multimodal learning, which involves integrating information from various modalities such as text, images, audio, and video, is pivotal for numerous complex tasks like visual question answering, cross-modal retrieval, and caption generation. Traditional approaches rely on modality-specific encoders and late fusion techniques, which can hinder scalability and flexibility when adapting to new tasks or modalities. To address these limitations, we introduce a novel framework that extends the concept of task reformulation beyond natural language processing (NLP) to multimodal learning. We propose to reformulate diverse multimodal tasks into a unified next-frame prediction problem, allowing a single model to handle different modalities without modality-specific components. This method treats all inputs and outputs as sequential frames in a video, enabling seamless integration of modalities and effective knowledge transfer across tasks. Our approach is evaluated on a range of tasks, including text-to-text, image-to-text, video-to-video, video-to-text, and audio-to-text, demonstrating the model's ability to generalize across modalities with minimal adaptation. We show that task reformulation can significantly simplify multimodal model design across various tasks, laying the groundwork for more generalized multimodal foundation models.
comment: 10 pages, 10 figures
♻ ☆ Enhancing Wearable Tap Water Audio Detection through Subclass Annotation in the HD-Epic Dataset
Wearable human activity recognition has been shown to benefit from the inclusion of acoustic data, as the sounds around a person often contain valuable context. However, due to privacy concerns, it is usually not ethically feasible to record and save microphone data from the device, since the audio could, for instance, also contain private conversations. Rather, the data should be processed locally, which in turn requires processing power and consumes energy on the wearable device. One special use case of contextual information that can be utilized to augment special tasks in human activity recognition is water flow detection, which can, e.g., be used to aid wearable hand washing detection. We created a new label called tap water for the recently released HD-Epic data set, creating 717 hand-labeled annotations of tap water flow, based on existing annotations of the water class. We analyzed the relation of tap water and water in the dataset and additionally trained and evaluated two lightweight classifiers to evaluate the newly added label class, showing that the new class can be learned more easily.
comment: To be published in Companion of the 2025 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp Companion '25), Beyond Sound workshop. Replacement version identical to the one to be published with ACM
♻ ☆ GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose the Dual-Group Multi-Scale Wavelet Loss, a wavelet-domain constraint mechanism via dual-group subband strategy and cross-resolution frequency alignment for enhanced reconstruction fidelity in RSI-SR. Extensive experiments under two degradation methods on several benchmarks, including AID, UCMerced, and RSSRD-QH, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.09 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 3.2 times faster.
comment: GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
♻ ☆ Group Sequence Policy Optimization
This paper introduces Group Sequence Policy Optimization (GSPO), our stable, efficient, and performant reinforcement learning algorithm for training large language models. Unlike previous algorithms that adopt token-level importance ratios, GSPO defines the importance ratio based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization. We demonstrate that GSPO achieves superior training efficiency and performance compared to the GRPO algorithm, notably stabilizes Mixture-of-Experts (MoE) RL training, and has the potential for simplifying the design of RL infrastructure. These merits of GSPO have contributed to the remarkable improvements in the latest Qwen3 models.
♻ ☆ Fast Last-Iterate Convergence of SGD in the Smooth Interpolation Regime
We study population convergence guarantees of stochastic gradient descent (SGD) for smooth convex objectives in the interpolation regime, where the noise at optimum is zero or near zero. The behavior of the last iterate of SGD in this setting -- particularly with large (constant) stepsizes -- has received growing attention in recent years due to implications for the training of over-parameterized models, as well as to analyzing forgetting in continual learning and to understanding the convergence of the randomized Kaczmarz method for solving linear systems. We establish that after $T$ steps of SGD on $\beta$-smooth convex loss functions with stepsize $0 < \eta < 2/\beta$, the last iterate exhibits expected excess risk $\widetilde{O}(\frac{1}{\eta (2-\beta \eta) T^{1-\beta\eta/2}} + \frac{\eta}{(2-\beta\eta)^2} T^{\beta\eta/2} \sigma_\star^2)$, where $\sigma_\star^2$ denotes the variance of the stochastic gradients at the optimum. In particular, for a well-tuned stepsize we obtain a near optimal $\widetilde{O}(1/T + \sigma_\star/\sqrt{T})$ rate for the last iterate, extending the results of Varre et al. (2021) beyond least squares regression; and when $\sigma_\star=0$ we obtain a rate of $\smash{O(1/\sqrt T)}$ with $\eta=1/\beta$, improving upon the best-known $\smash{O(T^{-1/4})}$ rate recently established by Evron et al. (2025) in the special case of realizable linear regression.
comment: 30 pages
♻ ☆ Improving Open-world Continual Learning under the Constraints of Scarce Labeled Data KDD2025
Open-world continual learning (OWCL) adapts to sequential tasks with open samples, learning knowledge incrementally while preventing forgetting. However, existing OWCL still requires a large amount of labeled data for training, which is often impractical in real-world applications. Given that new categories/entities typically come with limited annotations and are in small quantities, a more realistic situation is OWCL with scarce labeled data, i.e., few-shot training samples. Hence, this paper investigates the problem of open-world few-shot continual learning (OFCL), challenging in (i) learning unbounded tasks without forgetting previous knowledge and avoiding overfitting, (ii) constructing compact decision boundaries for open detection with limited labeled data, and (iii) transferring knowledge about knowns and unknowns and even update the unknowns to knowns once the labels of open samples are learned. In response, we propose a novel OFCL framework that integrates three key components: (1) an instance-wise token augmentation (ITA) that represents and enriches sample representations with additional knowledge, (2) a margin-based open boundary (MOB) that supports open detection with new tasks emerge over time, and (3) an adaptive knowledge space (AKS) that endows unknowns with knowledge for the updating from unknowns to knowns. Finally, extensive experiments show that the proposed OFCL framework outperforms all baselines remarkably with practical importance and reproducibility. The source code is released at https://github.com/liyj1201/OFCL.
comment: Accepted by KDD2025 (February Cycle)
♻ ☆ Continual Low-Rank Scaled Dot-product Attention
Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of Transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.
comment: 16 pages, 7 figures
♻ ☆ Architecture-Aware Minimization (A$^2$M): How to Find Flat Minima in Neural Architecture Search
Neural Architecture Search (NAS) has become an essential tool for designing effective and efficient neural networks. In this paper, we investigate the geometric properties of neural architecture spaces commonly used in differentiable NAS methods, specifically NAS-Bench-201 and DARTS. By defining flatness metrics such as neighborhoods and loss barriers along paths in architecture space, we reveal locality and flatness characteristics analogous to the well-known properties of neural network loss landscapes in weight space. In particular, we find that highly accurate architectures cluster together in flat regions, while suboptimal architectures remain isolated, unveiling the detailed geometrical structure of the architecture search landscape. Building on these insights, we propose Architecture-Aware Minimization (A$^2$M), a novel analytically derived algorithmic framework that explicitly biases, for the first time, the gradient of differentiable NAS methods towards flat minima in architecture space. A$^2$M consistently improves generalization over state-of-the-art DARTS-based algorithms on benchmark datasets including CIFAR-10, CIFAR-100, and ImageNet16-120, across both NAS-Bench-201 and DARTS search spaces. Notably, A$^2$M is able to increase the test accuracy, on average across different differentiable NAS methods, by +3.60\% on CIFAR-10, +4.60\% on CIFAR-100, and +3.64\% on ImageNet16-120, demonstrating its superior effectiveness in practice. A$^2$M can be easily integrated into existing differentiable NAS frameworks, offering a versatile tool for future research and applications in automated machine learning. We open-source our code at https://github.com/AI-Tech-Research-Lab/AsquaredM.
comment: Published in the journal Machine Learning: Science and Technology - IOPscience
♻ ☆ LUT Tensor Core: A Software-Hardware Co-Design for LUT-Based Low-Bit LLM Inference ISCA'25
Large Language Model (LLM) inference becomes resource-intensive, prompting a shift toward low-bit model weights to reduce the memory footprint and improve efficiency. Such low-bit LLMs necessitate the mixed-precision matrix multiplication (mpGEMM), an important yet underexplored operation involving the multiplication of lower-precision weights with higher-precision activations. Off-the-shelf hardware does not support this operation natively, leading to indirect, thus inefficient, dequantization-based implementations. In this paper, we study the lookup table (LUT)-based approach for mpGEMM and find that a conventional LUT implementation fails to achieve the promised gains. To unlock the full potential of LUT-based mpGEMM, we propose LUT Tensor Core, a software-hardware co-design for low-bit LLM inference. LUT Tensor Core differentiates itself from conventional LUT designs through: 1) software-based optimizations to minimize table precompute overhead and weight reinterpretation to reduce table storage; 2) a LUT-based Tensor Core hardware design with an elongated tiling shape to maximize table reuse and a bit-serial design to support diverse precision combinations in mpGEMM; 3) a new instruction set and compilation optimizations for LUT-based mpGEMM. LUT Tensor Core significantly outperforms existing pure software LUT implementations and achieves a 1.44$\times$ improvement in compute density and energy efficiency compared to previous state-of-the-art LUT-based accelerators.
comment: Conference Version (ISCA'25). Fixed a typo
♻ ☆ The Feature Speed Formula: a flexible approach to scale hyper-parameters of deep neural networks SC
Deep learning succeeds by doing hierarchical feature learning, yet tuning hyper-parameters (HP) such as initialization scales, learning rates etc., only give indirect control over this behavior. In this paper, we introduce a key notion to predict and control feature learning: the angle $\theta_\ell$ between the feature updates and the backward pass (at layer index $\ell$). We show that the magnitude of feature updates after one GD step, at any training time, can be expressed via a simple and general \emph{feature speed formula} in terms of this angle $\theta_\ell$, the loss decay, and the magnitude of the backward pass. This angle $\theta_\ell$ is controlled by the conditioning of the layer-to-layer Jacobians and at random initialization, it is determined by the spectrum of a certain kernel, which coincides with the Neural Tangent Kernel when $\ell=\text{depth}$. Given $\theta_\ell$, the feature speed formula provides us with rules to adjust HPs (scales and learning rates) so as to satisfy certain dynamical properties, such as feature learning and loss decay. We investigate the implications of our approach for ReLU MLPs and ResNets in the large width-then-depth limit. Relying on prior work, we show that in ReLU MLPs with iid initialization, the angle degenerates with depth as $\cos(\theta_\ell)=\Theta(1/\sqrt{\ell})$. In contrast, ResNets with branch scale $O(1/\sqrt{\text{depth}})$ maintain a non-degenerate angle $\cos(\theta_\ell)=\Theta(1)$. We use these insights to recover key properties of known HP scalings and also to introduce a new HP scaling for large depth ReLU MLPs with favorable theoretical properties.
comment: Previous title "Steering deep feature learning with backward aligned feature updates". This is the published version. Novelties compared to v1: BFA for linear Resnets (Prop. 5.2), scaling FSC (Table 1), and content reorganized
♻ ☆ Benchmarking Graph Neural Networks for Document Layout Analysis in Public Affairs ICDAR
The automatic analysis of document layouts in digital-born PDF documents remains a challenging problem due to the heterogeneous arrangement of textual and nontextual elements and the imprecision of the textual metadata in the Portable Document Format. In this work, we benchmark Graph Neural Network (GNN) architectures for the task of fine-grained layout classification of text blocks from digital native documents. We introduce two graph construction structures: a k-closest-neighbor graph and a fully connected graph, and generate node features via pre-trained text and vision models, thus avoiding manual feature engineering. Three experimental frameworks are evaluated: single-modality (text or visual), concatenated multimodal, and dual-branch multimodal. We evaluated four foundational GNN models and compared them with the baseline. Our experiments are specifically conducted on a rich dataset of public affairs documents that includes more than 20 sources (e.g., regional and national-level official gazettes), 37K PDF documents, with 441K pages in total. Our results demonstrate that GraphSAGE operating on the k-closest-neighbor graph in a dual-branch configuration achieves the highest per-class and overall accuracy, outperforming the baseline in some sources. These findings confirm the importance of local layout relationships and multimodal fusion exploited through GNNs for the analysis of native digital document layouts.
comment: 15 pages, 2 figures, accepted paper at The Fifth ICDAR International Workshop on Machine Learning
♻ ☆ IGNIS: A Robust Neural Network Framework for Constrained Parameter Estimation in Archimedean Copulas
Classical estimators, the cornerstones of statistical inference, face insurmountable challenges when applied to important emerging classes of Archimedean copulas. These models exhibit pathological properties, including numerically unstable densities, non-monotonic parameter-to-dependence mappings, and vanishingly small likelihood gradients, rendering methods like Maximum Likelihood (MLE) and Method of Moments (MoM) inconsistent or computationally infeasible. We introduce IGNIS, a unified neural estimation framework that sidesteps these barriers by learning a direct, robust mapping from data-driven dependency measures to the underlying copula parameter theta. IGNIS utilizes a multi-input architecture and a theory-guided output layer (softplus(z) + 1) to automatically enforce the domain constraint theta_hat >= 1. Trained and validated on four families (Gumbel, Joe, and the numerically challenging A1/A2), IGNIS delivers accurate and stable estimates for real-world financial and health datasets, demonstrating its necessity for reliable inference in modern, complex dependence models where traditional methods fail.
comment: Under review
♻ ☆ Learning Before Filtering: Real-Time Hardware Learning at the Detector Level
Advances in sensor technology and automation have ushered in an era of data abundance, where the ability to identify and extract relevant information in real time has become increasingly critical. Traditional filtering approaches, which depend on a priori knowledge, often struggle to adapt to dynamic or unanticipated data features. Machine learning offers a compelling alternative-particularly when training can occur directly at or near the detector. This paper presents a digital hardware architecture designed for real-time neural network training, specifically optimized for high-throughput data ingestion. The design is described in an implementation-independent manner, with detailed analysis of each architectural component and their performance implications. Through system parameterization, the study explores trade-offs between processing speed, model complexity, and hardware resource utilization. Practical examples illustrate how these parameters affect applicability across various use cases. A proof-of-concept implementation on an FPGA demonstrates in-situ training, confirming that computational accuracy is preserved relative to conventional software-based approaches. Moreover, resource estimates indicate that current-generation FPGAs can train networks of approximately 3,500 neurons per chip. The architecture is both scalable and adaptable, representing a significant advancement toward integrating learning directly within detector systems and enabling a new class of extreme-edge, real-time information processing.
♻ ☆ Distributional Soft Actor-Critic with Three Refinements
Reinforcement learning (RL) has shown remarkable success in solving complex decision-making and control tasks. However, many model-free RL algorithms experience performance degradation due to inaccurate value estimation, particularly the overestimation of Q-values, which can lead to suboptimal policies. To address this issue, we previously proposed the Distributional Soft Actor-Critic (DSAC or DSACv1), an off-policy RL algorithm that enhances value estimation accuracy by learning a continuous Gaussian value distribution. Despite its effectiveness, DSACv1 faces challenges such as training instability and sensitivity to reward scaling, caused by high variance in critic gradients due to return randomness. In this paper, we introduce three key refinements to DSACv1 to overcome these limitations and further improve Q-value estimation accuracy: expected value substitution, twin value distribution learning, and variance-based critic gradient adjustment. The enhanced algorithm, termed DSAC with Three refinements (DSAC-T or DSACv2), is systematically evaluated across a diverse set of benchmark tasks. Without the need for task-specific hyperparameter tuning, DSAC-T consistently matches or outperforms leading model-free RL algorithms, including SAC, TD3, DDPG, TRPO, and PPO, in all tested environments. Additionally, DSAC-T ensures a stable learning process and maintains robust performance across varying reward scales. Its effectiveness is further demonstrated through real-world application in controlling a wheeled robot, highlighting its potential for deployment in practical robotic tasks.
comment: Title updated in this version. The previous version was titled "DSAC-T: Distributional Soft Actor-Critic With Three Refinements". No other major changes
♻ ☆ Enhancing generalization in high energy physics using white-box adversarial attacks
Machine learning is becoming increasingly popular in the context of particle physics. Supervised learning, which uses labeled Monte Carlo (MC) simulations, remains one of the most widely used methods for discriminating signals beyond the Standard Model. However, this paper suggests that supervised models may depend excessively on artifacts and approximations from Monte Carlo simulations, potentially limiting their ability to generalize well to real data. This study aims to enhance the generalization properties of supervised models by reducing the sharpness of local minima. It reviews the application of four distinct white-box adversarial attacks in the context of classifying Higgs boson decay signals. The attacks are divided into weight-space attacks and feature-space attacks. To study and quantify the sharpness of different local minima, this paper presents two analysis methods: gradient ascent and reduced Hessian eigenvalue analysis. The results show that white-box adversarial attacks significantly improve generalization performance, albeit with increased computational complexity.
comment: 14 pages, 7 figures, 10 tables, 3 algorithms, published in Physical Review D (PRD), presented at the ML4Jets 2024 conference
♻ ☆ Beyond Manual Annotation: A Human-AI Collaborative Framework for Medical Image Segmentation Using Only "Better or Worse" Expert Feedback
Manual annotation of medical images is a labor-intensive and time-consuming process, posing a significant bottleneck in the development and deployment of robust medical imaging AI systems. This paper introduces a novel hands-free Human-AI collaborative framework for medical image segmentation that substantially reduces the annotation burden by eliminating the need for explicit manual pixel-level labeling. The core innovation lies in a preference learning paradigm, where human experts provide minimal, intuitive feedback -- simply indicating whether an AI-generated segmentation is better or worse than a previous version. The framework comprises four key components: (1) an adaptable foundation model (FM) for feature extraction, (2) label propagation based on feature similarity, (3) a clicking agent that learns from human better-or-worse feedback to decide where to click and with which label, and (4) a multi-round segmentation learning procedure that trains a state-of-the-art segmentation network using pseudo-labels generated by the clicking agent and FM-based label propagation. Experiments on three public datasets demonstrate that the proposed approach achieves competitive segmentation performance using only binary preference feedback, without requiring experts to directly manually annotate the images.
comment: 10 pages, 6 figures
♻ ☆ AutoLibra: Agent Metric Induction from Open-Ended Feedback
Agents are predominantly evaluated and optimized via task success metrics, which are coarse, rely on manual design from experts, and fail to reward intermediate emergent behaviors. We propose AutoLibra, a framework for agent evaluation, that transforms open-ended human feedback e.g. "If you find that the button is disabled, don't click it again", or "This agent has too much autonomy to decide what to do on its own" into metrics for evaluating fine-grained behaviors in agent trajectories. AutoLibra accomplishes this by grounding feedback to an agent's behavior, clustering similar positive and negative behaviors, and creating concrete metrics with clear definitions and concrete examples, which can be used for prompting LLM-as-a-Judge as evaluators. We further propose two meta-metrics to evaluate the alignment of a set of (induced) metrics with open feedback: "coverage" and "redundancy". Through optimizing these meta-metrics, we experimentally demonstrate AutoLibra's ability to induce more concrete agent evaluation metrics than the ones proposed in previous agent evaluation benchmarks and discover new metrics to analyze agents. We also present two applications of AutoLibra in agent improvement: First, we show that AutoLibra-induced metrics serve as better prompt-engineering targets than the task success rate on a wide range of text game tasks, improving agent performance over baseline by a mean of 20%. Second, we show that AutoLibra can iteratively select high-quality fine-tuning data for web navigation agents. Our results suggest that AutoLibra is a powerful task-agnostic tool for evaluating and improving language agents.
comment: https://opensocial.world/
♻ ☆ GASPnet: Global Agreement to Synchronize Phases
In recent years, Transformer architectures have revolutionized most fields of artificial intelligence, relying on an attentional mechanism based on the agreement between keys and queries to select and route information in the network. In previous work, we introduced a novel, brain-inspired architecture that leverages a similar implementation to achieve a global 'routing by agreement' mechanism. Such a system modulates the network's activity by matching each neuron's key with a single global query, pooled across the entire network. Acting as a global attentional system, this mechanism improves noise robustness over baseline levels but is insufficient for multi-classification tasks. Here, we improve on this work by proposing a novel mechanism that combines aspects of the Transformer attentional operations with a compelling neuroscience theory, namely, binding by synchrony. This theory proposes that the brain binds together features by synchronizing the temporal activity of neurons encoding those features. This allows the binding of features from the same object while efficiently disentangling those from distinct objects. We drew inspiration from this theory and incorporated angular phases into all layers of a convolutional network. After achieving phase alignment via Kuramoto dynamics, we use this approach to enhance operations between neurons with similar phases and suppresses those with opposite phases. We test the benefits of this mechanism on two datasets: one composed of pairs of digits and one composed of a combination of an MNIST item superimposed on a CIFAR-10 image. Our results reveal better accuracy than CNN networks, proving more robust to noise and with better generalization abilities. Overall, we propose a novel mechanism that addresses the visual binding problem in neural networks by leveraging the synergy between neuroscience and machine learning.
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. Furthermore, the model also demonstrates portability across GPU architectures, achieving average speedups of x3.12 on L40, x2.50 on RTX 3090, x2.39 on H100, and x2.37 on H20 despite being optimized specifically for A100. The capabilities of CUDA-L1 demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources. We also identify important challenges posed by training RL models for tasks like CUDA development, where RL often learns to exploit loopholes in reward functions rather than solve the intended optimization problems. By identifying these failure modes and analyzing their root causes, we develop practical methods for creating more robust training procedures that prevent reward hacking.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ The Effect of Data Poisoning on Counterfactual Explanations
Counterfactual explanations are a widely used approach for examining the predictions of black-box systems. They can offer the opportunity for computational recourse by suggesting actionable changes on how to alter the input to obtain a different (i.e., more favorable) system output. However, recent studies have pointed out their susceptibility to various forms of manipulation. This work studies the vulnerability of counterfactual explanations to data poisoning. We formally introduce and investigate data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, a sub-group of instances, or globally for all instances. In this context, we formally introduce and characterize data poisonings, from which we derive and investigate a general data poisoning mechanism. We demonstrate the impact of such data poisoning in the critical real-world application of explaining event detections in water distribution networks. Additionally, we conduct an extensive empirical evaluation, demonstrating that state-of-the-art counterfactual generation methods and toolboxes are vulnerable to such data poisoning. Furthermore, we find that existing defense methods fail to detect those poisonous samples.
♻ ☆ NbBench: Benchmarking Language Models for Comprehensive Nanobody Tasks
Nanobodies -- single-domain antibody fragments derived from camelid heavy-chain-only antibodies -- exhibit unique advantages such as compact size, high stability, and strong binding affinity, making them valuable tools in therapeutics and diagnostics. While recent advances in pretrained protein and antibody language models (PPLMs and PALMs) have greatly enhanced biomolecular understanding, nanobody-specific modeling remains underexplored and lacks a unified benchmark. To address this gap, we introduce NbBench, the first comprehensive benchmark suite for nanobody representation learning. Spanning eight biologically meaningful tasks across nine curated datasets, NbBench encompasses structure annotation, binding prediction, and developability assessment. We systematically evaluate eleven representative models -- including general-purpose protein LMs, antibody-specific LMs, and nanobody-specific LMs -- in a frozen setting. Our analysis reveals that antibody language models excel in antigen-related tasks, while performance on regression tasks such as thermostability and affinity remains challenging across all models. Notably, no single model consistently outperforms others across all tasks. By standardizing datasets, task definitions, and evaluation protocols, NbBench offers a reproducible foundation for assessing and advancing nanobody modeling.
♻ ☆ Action-List Reinforcement Learning Syndrome Decoding for Binary Linear Block Codes
This paper explores the application of reinforcement learning techniques to enhance the performance of decoding of linear block codes based on flipping bits and finding optimal decisions. We describe the methodology for mapping the iterative decoding process into Markov Decision Processes (MDPs) and propose different methods to reduce the number of states in the MDP. A truncated MDP is proposed to reduce the number of states in the MDP by learning a Hamming ball with a specified radius around codewords. We then propose a general scheme for reinforcement learning based decoders applicable to any class of codes to improve the performance of decoders. We call this scheme an action-list decoding. We design an action-list decoder based on the Deep-Q network values that substantially enhance performance. We also get benefit of automorphism group of code to further improve the code performance. Additionally, we propose a feedback-based method to exploit and enhance the performance of existing high-performing decoders by applying reinforcement learning algorithms after the existing decoders. These approaches effectively reduces the complexity of the reinforcement learning block. Finally, we present experimental results for the Low-Density Parity Check (LDPC) codes over the Binary Symmetric Channel (BSC) to demonstrate the efficiency of the proposed methods.
♻ ☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance ICCV 2025
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
comment: Accepted by ICCV 2025
♻ ☆ Accidental Vulnerability: Factors in Fine-Tuning that Shift Model Safeguards
As large language models (LLMs) gain popularity, their vulnerability to adversarial attacks emerges as a primary concern. While fine-tuning models on domain-specific datasets is often employed to improve model performance, it can inadvertently introduce vulnerabilities within the underlying model. In this work, we investigate Accidental Vulnerability, unexpected vulnerabilities arising from characteristics of fine-tuning data. We begin by identifying potential correlation factors such as linguistic features, semantic similarity, and toxicity across multiple experimental datasets. We then evaluate the adversarial robustness of these fine-tuned models, analyzing persona shifts and interpretability traits to understand how dataset factors contribute to attack success rates. Lastly, we explore causal relationships that offer new insights into adversarial defense strategies, highlighting the crucial role of dataset design in preserving model alignment. Our code is available at https://github.com/psyonp/accidental_vulnerability.
♻ ☆ Geometric Representation Condition Improves Equivariant Molecule Generation ICML 2025
Recent advances in molecular generative models have demonstrated great promise for accelerating scientific discovery, particularly in drug design. However, these models often struggle to generate high-quality molecules, especially in conditional scenarios where specific molecular properties must be satisfied. In this work, we introduce GeoRCG, a general framework to improve molecular generative models by integrating geometric representation conditions with provable theoretical guarantees. We decompose the generation process into two stages: first, generating an informative geometric representation; second, generating a molecule conditioned on the representation. Compared with single-stage generation, the easy-to-generate representation in the first stage guides the second stage generation toward a high-quality molecule in a goal-oriented way. Leveraging EDM and SemlaFlow as base generators, we observe significant quality improvements in unconditional molecule generation on the widely used QM9 and GEOM-DRUG datasets. More notably, in the challenging conditional molecular generation task, our framework achieves an average 50\% performance improvement over state-of-the-art approaches, highlighting the superiority of conditioning on semantically rich geometric representations. Furthermore, with such representation guidance, the number of diffusion steps can be reduced to as small as 100 while largely preserving the generation quality achieved with 1,000 steps, thereby significantly reducing the generation iterations needed. Code is available at https://github.com/GraphPKU/GeoRCG.
comment: Accepted to ICML 2025 as a Spotlight Poster
♻ ☆ Guide your favorite protein sequence generative model
Generative machine learning models on sequences are transforming protein engineering. However, no principled framework exists for conditioning these models on auxiliary information, such as experimental data, in a plug-and-play manner. Herein, we present ProteinGuide -- a principled and general method for conditioning -- by unifying a broad class of protein generative models under a single framework. We demonstrate the applicability of ProteinGuide by guiding two protein generative models, ProteinMPNN and ESM3, to generate amino acid and structure token sequences, conditioned on several user-specified properties such as enhanced stability, enzyme classes, and CATH-labeled folds. We also used ProteinGuide with inverse folding models and our own experimental assay to design adenine base editor sequences for high activity.
♻ ☆ Tensor Completion with Nearly Linear Samples Given Weak Side Information
Tensor completion exhibits an interesting computational-statistical gap in terms of the number of samples needed to perform tensor estimation. While there are only $\Theta(tn)$ degrees of freedom in a $t$-order tensor with $n^t$ entries, the best known polynomial time algorithm requires $O(n^{t/2})$ samples in order to guarantee consistent estimation. In this paper, we show that weak side information is sufficient to reduce the sample complexity to $O(n)$. The side information consists of a weight vector for each of the modes which is not orthogonal to any of the latent factors along that mode; this is significantly weaker than assuming noisy knowledge of the subspaces. We provide an algorithm that utilizes this side information to produce a consistent estimator with $O(n^{1+\kappa})$ samples for any small constant $\kappa > 0$. We also provide experiments on both synthetic and real-world datasets that validate our theoretical insights.
♻ ☆ Prover Agent: An Agent-based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas to assist in discovering the overall proof strategy. It achieves an 86.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present case studies illustrating how these generated lemmas contribute to solving challenging problems.
comment: 22 pages, 2 figures. Accepted at the 2nd AI for Math Workshop at the 42nd International Conference on Machine Learning
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Reinforcement Learning from Human Feedback (RLHF) plays a crucial role in aligning large language models (LLMs) with human values and preferences. While state-of-the-art applications like ChatGPT or GPT-4 commonly employ Proximal Policy Optimization (PPO), the inclusion of a critic network introduces significant computational overhead. REINFORCE-based methods, such as REINFORCE Leave One-Out (RLOO), ReMax, and Group Relative Policy Optimization (GRPO), address this limitation by eliminating the critic network. However, these approaches face challenges in accurate advantage estimation. Specifically, they estimate advantages independently for responses to each prompt, which can lead to overfitting on simpler prompts and vulnerability to reward hacking and may be biased. To address these challenges, we introduce REINFORCE++, a novel approach that removes the critic model while using the global advantage normalization which is unbiased to improve the training stability. Our empirical evaluation demonstrates that REINFORCE++ exhibits robust performance across various reward models without requiring prompt set truncation. Furthermore, it achieves superior generalization in both RLHF and long chain-of-thought (CoT) settings compared to existing REINFORCE-based methods. The implementation is available at https://github.com/OpenRLHF/OpenRLHF.
comment: add experiments
♻ ☆ Learning to Unlearn while Retaining: Combating Gradient Conflicts in Machine Unlearning ICCV 2025
Machine Unlearning has recently garnered significant attention, aiming to selectively remove knowledge associated with specific data while preserving the model's performance on the remaining data. A fundamental challenge in this process is balancing effective unlearning with knowledge retention, as naive optimization of these competing objectives can lead to conflicting gradients, hindering convergence and degrading overall performance. To address this issue, we propose Learning to Unlearn while Retaining, aimed to mitigate gradient conflicts between unlearning and retention objectives. Our approach strategically avoids conflicts through an implicit gradient regularization mechanism that emerges naturally within the proposed framework. This prevents conflicting gradients between unlearning and retention, leading to effective unlearning while preserving the model's utility. We validate our approach across both discriminative and generative tasks, demonstrating its effectiveness in achieving unlearning without compromising performance on remaining data. Our results highlight the advantages of avoiding such gradient conflicts, outperforming existing methods that fail to account for these interactions.
comment: Accepted at ICCV 2025
♻ ☆ Classification of high-dimensional data with spiked covariance matrix structure
We study the classification problem for high-dimensional data with $n$ observations on $p$ features where the $p \times p$ covariance matrix $\Sigma$ exhibits a spiked eigenvalues structure and the vector $\zeta$, given by the difference between the whitened mean vectors, is sparse with sparsity at most $s$. We propose an adaptive classifier (adaptive with respect to the sparsity $s$) that first performs dimension reduction on the feature vectors prior to classification in the dimensionally reduced space, i.e., the classifier whitened the data, then screen the features by keeping only those corresponding to the $s$ largest coordinates of $\zeta$ and finally apply Fisher linear discriminant on the selected features. Leveraging recent results on entrywise matrix perturbation bounds for covariance matrices, we show that the resulting classifier is Bayes optimal whenever $n \rightarrow \infty$ and $s \sqrt{n^{-1} \ln p} \rightarrow 0$. Experimental results on real and synthetic data sets indicate that the proposed classifier is competitive with existing state-of-the-art methods while also selecting a smaller number of features.
comment: 40 pages, 2 figures
♻ ☆ Position: Untrained Machine Learning for Anomaly Detection by using 3D Point Cloud Data
Anomaly detection based on 3D point cloud data is an important research problem and receives more and more attention recently. Untrained anomaly detection based on only one sample is an emerging research problem motivated by real manufacturing industries such as personalized manufacturing where only one sample can be collected without any additional labels and historical datasets. Identifying anomalies accurately based on one 3D point cloud sample is a critical challenge in both industrial applications and the field of machine learning. This paper aims to provide a formal definition of the untrained anomaly detection problem based on 3D point cloud data, discuss the differences between untrained anomaly detection and current unsupervised anomaly detection problems. Unlike trained unsupervised learning, untrained unsupervised learning does not rely on any data, including unlabeled data. Instead, they leverage prior knowledge about the surfaces and anomalies. We propose three complementary methodological frameworks: the Latent Variable Inference Framework that employs probabilistic modeling to distinguish anomalies; the Decomposition Framework that separates point clouds into reference, anomaly, and noise components through sparse learning; and the Local Geometry Framework that leverages neighborhood information for anomaly identification. Experimental results demonstrate that untrained methods achieve competitive detection performance while offering significant computational advantages, demonstrating up to a 15-fold increase in execution speed. The proposed methods provide viable solutions for scenarios with extreme data scarcity, addressing critical challenges in personalized manufacturing and healthcare applications where collecting multiple samples or historical data is infeasible.
comment: 9 pages, 5 figure
♻ ☆ A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Random reshuffling techniques are prevalent in large-scale applications, such as training neural networks. While the convergence and acceleration effects of random reshuffling-type methods are fairly well understood in the smooth setting, much less studies seem available in the nonsmooth case. In this work, we design a new normal map-based proximal random reshuffling (norm-PRR) method for nonsmooth nonconvex finite-sum problems. We show that norm-PRR achieves the iteration complexity ${\cal O}(n^{-1/3}T^{-2/3})$ where $n$ denotes the number of component functions $f(\cdot,i)$ and $T$ counts the total number of iterations. This improves the currently known complexity bounds for this class of problems by a factor of $n^{-1/3}$ in terms of the number of gradient evaluations. Additionally, we prove that norm-PRR converges linearly under the (global) Polyak-{\L}ojasiewicz condition and in the interpolation setting. We further complement these non-asymptotic results and provide an in-depth analysis of the asymptotic properties of norm-PRR. Specifically, under the (local) Kurdyka-{\L}ojasiewicz inequality, the whole sequence of iterates generated by norm-PRR is shown to converge to a single stationary point. Moreover, we derive last-iterate convergence rates that can match those in the smooth, strongly convex setting. Finally, numerical experiments are performed on nonconvex classification tasks to illustrate the efficiency of the proposed approach.
comment: 45 pages, 5 figures
♻ ☆ Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.
comment: Project page: https://github.com/ZLKong/Awesome-Collection-Token-Reduction
♻ ☆ FedStrategist: A Meta-Learning Framework for Adaptive and Robust Aggregation in Federated Learning
Federated Learning (FL) offers a paradigm for privacy-preserving collaborative AI, but its decentralized nature creates significant vulnerabilities to model poisoning attacks. While numerous static defenses exist, their effectiveness is highly context-dependent, often failing against adaptive adversaries or in heterogeneous data environments. This paper introduces FedStrategist, a novel meta-learning framework that reframes robust aggregation as a real-time, cost-aware control problem. We design a lightweight contextual bandit agent that dynamically selects the optimal aggregation rule from an arsenal of defenses based on real-time diagnostic metrics. Through comprehensive experiments, we demonstrate that no single static rule is universally optimal. We show that our adaptive agent successfully learns superior policies across diverse scenarios, including a ``Krum-favorable" environment and against a sophisticated "stealth" adversary designed to neutralize specific diagnostic signals. Critically, we analyze the paradoxical scenario where a non-robust baseline achieves high but compromised accuracy, and demonstrate that our agent learns a conservative policy to prioritize model integrity. Furthermore, we prove the agent's policy is controllable via a single "risk tolerance" parameter, allowing practitioners to explicitly manage the trade-off between performance and security. Our work provides a new, practical, and analyzable approach to creating resilient and intelligent decentralized AI systems.
comment: 24 pages, 8 figures. This work is intended for a journal submission
♻ ☆ Addressing High Class Imbalance in Multi-Class Diabetic Retinopathy Severity Grading with Augmentation and Transfer Learning
Diabetic retinopathy (DR) is a leading cause of vision loss worldwide, and early diagnosis through automated retinal image analysis can significantly reduce the risk of blindness. This paper presents a robust deep learning framework for both binary and five-class DR classification, leveraging transfer learning and extensive data augmentation to address the challenges of class imbalance and limited training data. We evaluate a range of pretrained convolutional neural network architectures, including variants of ResNet and EfficientNet, on the APTOS 2019 dataset. For binary classification, our proposed model achieves a state-of-the-art accuracy of 98.9%, with a precision of 98.6%, recall of 99.3%, F1-score of 98.9%, and an AUC of 99.4%. In the more challenging five-class severity classification task, our model obtains a competitive accuracy of 84.6% and an AUC of 94.1%, outperforming several existing approaches. Our findings also demonstrate that EfficientNet-B0 and ResNet34 offer optimal trade-offs between accuracy and computational efficiency across both tasks. These results underscore the effectiveness of combining class-balanced augmentation with transfer learning for high-performance DR diagnosis. The proposed framework provides a scalable and accurate solution for DR screening, with potential for deployment in real-world clinical environments.
comment: 9 pages, 1 Figure
♻ ☆ TiVy: Time Series Visual Summary for Scalable Visualization IEEE VIS 2025
Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.
comment: to be published in TVCG (IEEE VIS 2025)
♻ ☆ Multi-Microphone and Multi-Modal Emotion Recognition in Reverberant Environment
This paper presents a Multi-modal Emotion Recognition (MER) system designed to enhance emotion recognition accuracy in challenging acoustic conditions. Our approach combines a modified and extended Hierarchical Token-semantic Audio Transformer (HTS-AT) for multi-channel audio processing with an R(2+1)D Convolutional Neural Networks (CNN) model for video analysis. We evaluate our proposed method on a reverberated version of the Ryerson audio-visual database of emotional speech and song (RAVDESS) dataset using synthetic and real-world Room Impulse Responsess (RIRs). Our results demonstrate that integrating audio and video modalities yields superior performance compared to uni-modal approaches, especially in challenging acoustic conditions. Moreover, we show that the multimodal (audiovisual) approach that utilizes multiple microphones outperforms its single-microphone counterpart.
comment: 5 pages, 4 figures, 2 tables. Accepted to EUSIPCO 2025
♻ ☆ Recovering Manifold Structure Using Ollivier-Ricci Curvature
We introduce ORC-ManL, a new algorithm to prune spurious edges from nearest neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated metric distortion. Our motivation comes from manifold learning: we show that when the data generating the nearest-neighbor graph consists of noisy samples from a low-dimensional manifold, edges that shortcut through the ambient space have more negative Ollivier-Ricci curvature than edges that lie along the data manifold. We demonstrate that our method outperforms alternative pruning methods and that it significantly improves performance on many downstream geometric data analysis tasks that use nearest neighbor graphs as input. Specifically, we evaluate on manifold learning, persistent homology, dimension estimation, and others. We also show that ORC-ManL can be used to improve clustering and manifold learning of single-cell RNA sequencing data. Finally, we provide empirical convergence experiments that support our theoretical findings.
♻ ☆ SQuat: Subspace-orthogonal KV Cache Quantization
The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
♻ ☆ Learning Pareto-Optimal Rewards from Noisy Preferences: A Framework for Multi-Objective Inverse Reinforcement Learning
As generative agents become increasingly capable, alignment of their behavior with complex human values remains a fundamental challenge. Existing approaches often simplify human intent through reduction to a scalar reward, overlooking the multi-faceted nature of human feedback. In this work, we introduce a theoretical framework for preference-based Multi-Objective Inverse Reinforcement Learning (MO-IRL), where human preferences are modeled as latent vector-valued reward functions. We formalize the problem of recovering a Pareto-optimal reward representation from noisy preference queries and establish conditions for identifying the underlying multi-objective structure. We derive tight sample complexity bounds for recovering $\epsilon$-approximations of the Pareto front and introduce a regret formulation to quantify suboptimality in this multi-objective setting. Furthermore, we propose a provably convergent algorithm for policy optimization using preference-inferred reward cones. Our results bridge the gap between practical alignment techniques and theoretical guarantees, providing a principled foundation for learning aligned behaviors in a high-dimension and value-pluralistic environment.
♻ ☆ MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
In the era of big data, access to abundant data is crucial for driving research forward. However, such data is often inaccessible due to privacy concerns or high costs, particularly in healthcare domain. Generating synthetic (tabular) data can address this, but existing models typically require substantial amounts of data to train effectively, contradicting our objective to solve data scarcity. To address this challenge, we propose a novel framework to generate synthetic tabular data, powered by large language models (LLMs) that emulates the architecture of a Generative Adversarial Network (GAN). By incorporating data generation process as contextual information and utilizing LLM as the optimizer, our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes. Our experimental results on public and private datasets demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
♻ ☆ Position: Adopt Constraints Over Penalties in Deep Learning
Recent efforts to develop trustworthy AI systems with accountability guarantees have led to widespread use of machine learning formulations incorporating external requirements, or constraints. These requirements are often enforced via penalization--adding fixed-weight terms to the task loss. We argue this approach is fundamentally ill-suited since there may be no penalty coefficient that simultaneously ensures constraint satisfaction and optimal constrained performance, i.e., that truly solves the constrained problem. Moreover, tuning these coefficients requires costly trial-and-error, incurring significant time and computational overhead. We, therefore, advocate for broader adoption of tailored constrained optimization methods--such as the Lagrangian approach, which jointly optimizes the penalization "coefficients" (the Lagrange multipliers) and the model parameters. Such methods (i) truly solve the constrained problem and do so accountably, by clearly defining feasibility and verifying when it is achieved, (ii) eliminate the need for extensive penalty tuning, and (iii) integrate seamlessly with modern deep learning pipelines.
comment: Code available at https://github.com/merajhashemi/constraints-vs-penalties
♻ ☆ Adversarial attacks and defenses in explainable artificial intelligence: A survey
Explainable artificial intelligence (XAI) methods are portrayed as a remedy for debugging and trusting statistical and deep learning models, as well as interpreting their predictions. However, recent advances in adversarial machine learning (AdvML) highlight the limitations and vulnerabilities of state-of-the-art explanation methods, putting their security and trustworthiness into question. The possibility of manipulating, fooling or fairwashing evidence of the model's reasoning has detrimental consequences when applied in high-stakes decision-making and knowledge discovery. This survey provides a comprehensive overview of research concerning adversarial attacks on explanations of machine learning models, as well as fairness metrics. We introduce a unified notation and taxonomy of methods facilitating a common ground for researchers and practitioners from the intersecting research fields of AdvML and XAI. We discuss how to defend against attacks and design robust interpretation methods. We contribute a list of existing insecurities in XAI and outline the emerging research directions in adversarial XAI (AdvXAI). Future work should address improving explanation methods and evaluation protocols to take into account the reported safety issues.
comment: Accepted by Information Fusion
♻ ☆ Reinforcement Learning Fine-Tunes a Sparse Subnetwork in Large Language Models
Reinforcement learning (RL) is a key post-pretraining step for aligning large language models (LLMs) with complex tasks and human preferences. While it is often assumed that RL fine-tuning requires updating most of a model's parameters, we challenge this assumption with a surprising finding: RL fine-tuning consistently modifies only a small subnetwork (typically 5-30% of weights), leaving most parameters unchanged. We call this phenomenon RL-induced parameter update sparsity. It arises naturally, without any sparsity constraints or parameter-efficient tuning, and appears across multiple RL algorithms (e.g., PPO, DPO, SimPO, PRIME) and model families (e.g., OpenAI, Meta, and open-source LLMs). Moreover, the subnetworks updated by RL show substantial overlap across different seeds, datasets, and algorithms-far exceeding chance-suggesting a partially transferable structure in the pretrained model. We show that fine-tuning only this sparse subnetwork recovers full model performance and yields parameters nearly identical to the fully fine-tuned model. Our analysis suggests this sparsity emerges because RL operates near the model's original distribution, requiring only targeted changes. KL penalties, gradient clipping, and on-policy dynamics have limited effect on the sparsity pattern. These findings shed new light on how RL adapts models: not by shifting all weights, but by focusing training on a small, consistently updated subnetwork. This insight enables more efficient RL methods and reframes sparsity through the lens of the lottery ticket hypothesis.
comment: The manuscript has been withdrawn due to significant overlap in methodology and results with a prior work (arXiv:2505.11711) that we were not aware of at the time of submission. To maintain academic integrity and avoid redundancy in the literature, we have chosen to withdraw this version
♻ ☆ Heterogeneous Treatment Effect in Time-to-Event Outcomes: Harnessing Censored Data with Recursively Imputed Trees
Tailoring treatments to individual needs is a central goal in fields such as medicine. A key step toward this goal is estimating Heterogeneous Treatment Effects (HTE) - the way treatments impact different subgroups. While crucial, HTE estimation is challenging with survival data, where time until an event (e.g., death) is key. Existing methods often assume complete observation, an assumption violated in survival data due to right-censoring, leading to bias and inefficiency. Cui et al. (2023) proposed a doubly-robust method for HTE estimation in survival data under no hidden confounders, combining a causal survival forest with an augmented inverse-censoring weighting estimator. However, we find it struggles under heavy censoring, which is common in rare-outcome problems such as Amyotrophic lateral sclerosis (ALS). Moreover, most current methods cannot handle instrumental variables, which are a crucial tool in the causal inference arsenal. We introduce Multiple Imputation for Survival Treatment Response (MISTR), a novel, general, and non-parametric method for estimating HTE in survival data. MISTR uses recursively imputed survival trees to handle censoring without directly modeling the censoring mechanism. Through extensive simulations and analysis of two real-world datasets-the AIDS Clinical Trials Group Protocol 175 and the Illinois unemployment dataset we show that MISTR outperforms prior methods under heavy censoring in the no-hidden-confounders setting, and extends to the instrumental variable setting. To our knowledge, MISTR is the first non-parametric approach for HTE estimation with unobserved confounders via instrumental variables.
Graphics 6
☆ Methodology for intelligent injection point location based on geometric algorithms and discrete topologies for virtual digital twin environments
This article presents an innovative methodology for locating injection points in injection-molded parts using intelligent models with geometric algorithms for discrete topologies. The first algorithm calculates the center of mass of the discrete model based on the center of mass of each triangular facet in the system, ensuring uniform molten plastic distribution during mold cavity filling. Two sub-algorithms intelligently evaluate the geometry and optimal injection point location. The first sub-algorithm generates a geometric matrix based on a two-dimensional nodal quadrature adapted to the part's bounding box. The second sub-algorithm projects the nodal matrix and associated circular areas orthogonally on the part's surface along the demolding direction. The optimal injection point location is determined by minimizing the distance to the center of mass from the first algorithm's result. This novel methodology has been validated through rheological simulations in six case studies with complex geometries. The results demonstrate uniform and homogeneous molten plastic distribution with minimal pressure loss during the filling phase. Importantly, this methodology does not require expert intervention, reducing time and costs associated with manual injection mold feed system design. It is also adaptable to various design environments and virtual twin systems, not tied to specific CAD software. The validated results surpass the state of the art, offering an agile alternative for digital twin applications in new product design environments, reducing dependence on experts, facilitating designer training, and ultimately cutting costs
☆ Endoscopic Depth Estimation Based on Deep Learning: A Survey
Endoscopic depth estimation is a critical technology for improving the safety and precision of minimally invasive surgery. It has attracted considerable attention from researchers in medical imaging, computer vision, and robotics. Over the past decade, a large number of methods have been developed. Despite the existence of several related surveys, a comprehensive overview focusing on recent deep learning-based techniques is still limited. This paper endeavors to bridge this gap by systematically reviewing the state-of-the-art literature. Specifically, we provide a thorough survey of the field from three key perspectives: data, methods, and applications, covering a range of methods including both monocular and stereo approaches. We describe common performance evaluation metrics and summarize publicly available datasets. Furthermore, this review analyzes the specific challenges of endoscopic scenes and categorizes representative techniques based on their supervision strategies and network architectures. The application of endoscopic depth estimation in the important area of robot-assisted surgery is also reviewed. Finally, we outline potential directions for future research, such as domain adaptation, real-time implementation, and enhanced model generalization, thereby providing a valuable starting point for researchers to engage with and advance the field.
☆ VoluMe -- Authentic 3D Video Calls from Live Gaussian Splat Prediction
Virtual 3D meetings offer the potential to enhance copresence, increase engagement and thus improve effectiveness of remote meetings compared to standard 2D video calls. However, representing people in 3D meetings remains a challenge; existing solutions achieve high quality by using complex hardware, making use of fixed appearance via enrolment, or by inverting a pre-trained generative model. These approaches lead to constraints that are unwelcome and ill-fitting for videoconferencing applications. We present the first method to predict 3D Gaussian reconstructions in real time from a single 2D webcam feed, where the 3D representation is not only live and realistic, but also authentic to the input video. By conditioning the 3D representation on each video frame independently, our reconstruction faithfully recreates the input video from the captured viewpoint (a property we call authenticity), while generalizing realistically to novel viewpoints. Additionally, we introduce a stability loss to obtain reconstructions that are temporally stable on video sequences. We show that our method delivers state-of-the-art accuracy in visual quality and stability metrics compared to existing methods, and demonstrate our approach in live one-to-one 3D meetings using only a standard 2D camera and display. This demonstrates that our approach can allow anyone to communicate volumetrically, via a method for 3D videoconferencing that is not only highly accessible, but also realistic and authentic.
☆ Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
Materials used in real clothing exhibit remarkable complexity and spatial variation due to common processes such as stitching, hemming, dyeing, printing, padding, and bonding. Simulating these materials, for instance using finite element methods, is often computationally demanding and slow. Worse, such methods can suffer from numerical artifacts called ``membrane locking'' that makes cloth appear artificially stiff. Here we propose a general framework, called Mass-Spring Net, for learning a simple yet efficient surrogate model that captures the effects of these complex materials using only motion observations. The cloth is discretized into a mass-spring network with unknown material parameters that are learned directly from the motion data, using a novel force-and-impulse loss function. Our approach demonstrates the ability to accurately model spatially varying material properties from a variety of data sources, and immunity to membrane locking which plagues FEM-based simulations. Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios.
♻ ☆ TiVy: Time Series Visual Summary for Scalable Visualization IEEE VIS 2025
Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.
comment: to be published in TVCG (IEEE VIS 2025)
♻ ☆ GALE: Leveraging Heterogeneous Systems for Efficient Unstructured Mesh Data Analysis
Unstructured meshes present challenges in scientific data analysis due to irregular distribution and complex connectivity. Computing and storing connectivity information is a major bottleneck for visualization algorithms, affecting both time and memory performance. Recent task-parallel data structures address this by precomputing connectivity information at runtime while the analysis algorithm executes, effectively hiding computation costs and improving performance. However, existing approaches are CPU-bound, forcing the data structure and analysis algorithm to compete for the same computational resources, limiting potential speedups. To overcome this limitation, we introduce a novel task-parallel approach optimized for heterogeneous CPU-GPU systems. Specifically, we offload the computation of mesh connectivity information to GPU threads, enabling CPU threads to focus on executing the visualization algorithm. Following this paradigm, we propose GALE (GPU-Aided Localized data structurE), the first open-source CUDA-based data structure designed for heterogeneous task parallelism. Experiments on two 20-core CPUs and an NVIDIA V100 GPU show that GALE achieves up to 2.7x speedup over state-of-the-art localized data structures while maintaining memory efficiency.
Robotics 23
☆ Model-Structured Neural Networks to Control the Steering Dynamics of Autonomous Race Cars SC
Autonomous racing has gained increasing attention in recent years, as a safe environment to accelerate the development of motion planning and control methods for autonomous driving. Deep learning models, predominantly based on neural networks (NNs), have demonstrated significant potential in modeling the vehicle dynamics and in performing various tasks in autonomous driving. However, their black-box nature is critical in the context of autonomous racing, where safety and robustness demand a thorough understanding of the decision-making algorithms. To address this challenge, this paper proposes MS-NN-steer, a new Model-Structured Neural Network for vehicle steering control, integrating the prior knowledge of the nonlinear vehicle dynamics into the neural architecture. The proposed controller is validated using real-world data from the Abu Dhabi Autonomous Racing League (A2RL) competition, with full-scale autonomous race cars. In comparison with general-purpose NNs, MS-NN-steer is shown to achieve better accuracy and generalization with small training datasets, while being less sensitive to the weights' initialization. Also, MS-NN-steer outperforms the steering controller used by the A2RL winning team. Our implementation is available open-source in a GitHub repository.
comment: Accepted at the 2025 IEEE International Conference on Intelligent Transportation Systems (ITSC)
☆ ACCESS-AV: Adaptive Communication-Computation Codesign for Sustainable Autonomous Vehicle Localization in Smart Factories
Autonomous Delivery Vehicles (ADVs) are increasingly used for transporting goods in 5G network-enabled smart factories, with the compute-intensive localization module presenting a significant opportunity for optimization. We propose ACCESS-AV, an energy-efficient Vehicle-to-Infrastructure (V2I) localization framework that leverages existing 5G infrastructure in smart factory environments. By opportunistically accessing the periodically broadcast 5G Synchronization Signal Blocks (SSBs) for localization, ACCESS-AV obviates the need for dedicated Roadside Units (RSUs) or additional onboard sensors to achieve energy efficiency as well as cost reduction. We implement an Angle-of-Arrival (AoA)-based estimation method using the Multiple Signal Classification (MUSIC) algorithm, optimized for resource-constrained ADV platforms through an adaptive communication-computation strategy that dynamically balances energy consumption with localization accuracy based on environmental conditions such as Signal-to-Noise Ratio (SNR) and vehicle velocity. Experimental results demonstrate that ACCESS-AV achieves an average energy reduction of 43.09% compared to non-adaptive systems employing AoA algorithms such as vanilla MUSIC, ESPRIT, and Root-MUSIC. It maintains sub-30 cm localization accuracy while also delivering substantial reductions in infrastructure and operational costs, establishing its viability for sustainable smart factory environments.
comment: 28 pages, 9 figures
☆ Bipedalism for Quadrupedal Robots: Versatile Loco-Manipulation through Risk-Adaptive Reinforcement Learning
Loco-manipulation of quadrupedal robots has broadened robotic applications, but using legs as manipulators often compromises locomotion, while mounting arms complicates the system. To mitigate this issue, we introduce bipedalism for quadrupedal robots, thus freeing the front legs for versatile interactions with the environment. We propose a risk-adaptive distributional Reinforcement Learning (RL) framework designed for quadrupedal robots walking on their hind legs, balancing worst-case conservativeness with optimal performance in this inherently unstable task. During training, the adaptive risk preference is dynamically adjusted based on the uncertainty of the return, measured by the coefficient of variation of the estimated return distribution. Extensive experiments in simulation show our method's superior performance over baselines. Real-world deployment on a Unitree Go2 robot further demonstrates the versatility of our policy, enabling tasks like cart pushing, obstacle probing, and payload transport, while showcasing robustness against challenging dynamics and external disturbances.
comment: Humanoids 2025
☆ Hypo-paradoxical Linkages: Linkages That Should Move-But Don't
While paradoxical linkages famously violate the Chebyshev-Grubler-Kutzbach criterion by exhibiting unexpected mobility, we identify an opposing phenomenon: a class of linkages that appear mobile according to the same criterion, yet are in fact rigid. We refer to these as hypo-paradoxical linkages, and proceed to analyze and illustrate their behavior. We use the same tools to further explain the unexpected positive mobility of Bennet mechanism.
comment: 15 pages, 8 figures
☆ Advancing Shared and Multi-Agent Autonomy in Underwater Missions: Integrating Knowledge Graphs and Retrieval-Augmented Generation
Robotic platforms have become essential for marine operations by providing regular and continuous access to offshore assets, such as underwater infrastructure inspection, environmental monitoring, and resource exploration. However, the complex and dynamic nature of underwater environments, characterized by limited visibility, unpredictable currents, and communication constraints, presents significant challenges that demand advanced autonomy while ensuring operator trust and oversight. Central to addressing these challenges are knowledge representation and reasoning techniques, particularly knowledge graphs and retrieval-augmented generation (RAG) systems, that enable robots to efficiently structure, retrieve, and interpret complex environmental data. These capabilities empower robotic agents to reason, adapt, and respond effectively to changing conditions. The primary goal of this work is to demonstrate both multi-agent autonomy and shared autonomy, where multiple robotic agents operate independently while remaining connected to a human supervisor. We show how a RAG-powered large language model, augmented with knowledge graph data and domain taxonomy, enables autonomous multi-agent decision-making and facilitates seamless human-robot interaction, resulting in 100\% mission validation and behavior completeness. Finally, ablation studies reveal that without structured knowledge from the graph and/or taxonomy, the LLM is prone to hallucinations, which can compromise decision quality.
☆ VLMPlanner: Integrating Visual Language Models with Motion Planning ACM MM 2025
Integrating large language models (LLMs) into autonomous driving motion planning has recently emerged as a promising direction, offering enhanced interpretability, better controllability, and improved generalization in rare and long-tail scenarios. However, existing methods often rely on abstracted perception or map-based inputs, missing crucial visual context, such as fine-grained road cues, accident aftermath, or unexpected obstacles, which are essential for robust decision-making in complex driving environments. To bridge this gap, we propose VLMPlanner, a hybrid framework that combines a learning-based real-time planner with a vision-language model (VLM) capable of reasoning over raw images. The VLM processes multi-view images to capture rich, detailed visual information and leverages its common-sense reasoning capabilities to guide the real-time planner in generating robust and safe trajectories. Furthermore, we develop the Context-Adaptive Inference Gate (CAI-Gate) mechanism that enables the VLM to mimic human driving behavior by dynamically adjusting its inference frequency based on scene complexity, thereby achieving an optimal balance between planning performance and computational efficiency. We evaluate our approach on the large-scale, challenging nuPlan benchmark, with comprehensive experimental results demonstrating superior planning performance in scenarios with intricate road conditions and dynamic elements. Code will be available.
comment: 8 pages, 3 figures, this paper has been accepted by ACM MM 2025
☆ Decentralized Uncertainty-Aware Multi-Agent Collision Avoidance With Model Predictive Path Integral IROS2025
Decentralized multi-agent navigation under uncertainty is a complex task that arises in numerous robotic applications. It requires collision avoidance strategies that account for both kinematic constraints, sensing and action execution noise. In this paper, we propose a novel approach that integrates the Model Predictive Path Integral (MPPI) with a probabilistic adaptation of Optimal Reciprocal Collision Avoidance. Our method ensures safe and efficient multi-agent navigation by incorporating probabilistic safety constraints directly into the MPPI sampling process via a Second-Order Cone Programming formulation. This approach enables agents to operate independently using local noisy observations while maintaining safety guarantees. We validate our algorithm through extensive simulations with differential-drive robots and benchmark it against state-of-the-art methods, including ORCA-DD and B-UAVC. Results demonstrate that our approach outperforms them while achieving high success rates, even in densely populated environments. Additionally, validation in the Gazebo simulator confirms its practical applicability to robotic platforms.
comment: This is a pre-print of the paper accepted to IROS2025. It contains 8 pages, 4 figures and 1 table. The supplementary video available at https://youtu.be/_D4zDYJ4KCk
☆ Tactile-Guided Robotic Ultrasound: Mapping Preplanned Scan Paths for Intercostal Imaging IROS2025
Medical ultrasound (US) imaging is widely used in clinical examinations due to its portability, real-time capability, and radiation-free nature. To address inter- and intra-operator variability, robotic ultrasound systems have gained increasing attention. However, their application in challenging intercostal imaging remains limited due to the lack of an effective scan path generation method within the constrained acoustic window. To overcome this challenge, we explore the potential of tactile cues for characterizing subcutaneous rib structures as an alternative signal for ultrasound segmentation-free bone surface point cloud extraction. Compared to 2D US images, 1D tactile-related signals offer higher processing efficiency and are less susceptible to acoustic noise and artifacts. By leveraging robotic tracking data, a sparse tactile point cloud is generated through a few scans along the rib, mimicking human palpation. To robustly map the scanning trajectory into the intercostal space, the sparse tactile bone location point cloud is first interpolated to form a denser representation. This refined point cloud is then registered to an image-based dense bone surface point cloud, enabling accurate scan path mapping for individual patients. Additionally, to ensure full coverage of the object of interest, we introduce an automated tilt angle adjustment method to visualize structures beneath the bone. To validate the proposed method, we conducted comprehensive experiments on four distinct phantoms. The final scanning waypoint mapping achieved Mean Nearest Neighbor Distance (MNND) and Hausdorff distance (HD) errors of 3.41 mm and 3.65 mm, respectively, while the reconstructed object beneath the bone had errors of 0.69 mm and 2.2 mm compared to the CT ground truth.
comment: Accepted by IROS2025, video link: https://youtu.be/SBwpFVzEhAg
♻ ☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
♻ ☆ Learning Local Heuristics for Search-Based Navigation Planning
Graph search planning algorithms for navigation typically rely heavily on heuristics to efficiently plan paths. As a result, while such approaches require no training phase and can directly plan long horizon paths, they often require careful hand designing of informative heuristic functions. Recent works have started bypassing hand designed heuristics by using machine learning to learn heuristic functions that guide the search algorithm. While these methods can learn complex heuristic functions from raw input, they i) require a significant training phase and ii) do not generalize well to new maps and longer horizon paths. Our contribution is showing that instead of learning a global heuristic estimate, we can define and learn local heuristics which results in a significantly smaller learning problem and improves generalization. We show that using such local heuristics can reduce node expansions by 2-20x while maintaining bounded suboptimality, are easy to train, and generalize to new maps & long horizon plans.
comment: Published at the International Conference on Automated Planning and Scheduling 2023 (ICAPS 2023)
♻ ☆ Real-Time LaCAM for Real-Time MAPF
The vast majority of Multi-Agent Path Finding (MAPF) methods with completeness guarantees require planning full-horizon paths. However, planning full-horizon paths can take too long and be impractical in real-world applications. Instead, real-time planning and execution, which only allows the planner a finite amount of time before executing and replanning, is more practical for real-world multi-agent systems. Several methods utilize real-time planning schemes but none are provably complete, which leads to livelock or deadlock. Our main contribution is Real-Time LaCAM, the first Real-Time MAPF method with provable completeness guarantees. We do this by leveraging LaCAM (Okumura 2023) in an incremental fashion. Our results show how we can iteratively plan for congested environments with a cutoff time of milliseconds while still maintaining the same success rate as full-horizon LaCAM. We also show how it can be used with a single-step learned MAPF policy.
comment: Published at the International Symposium on Combinatorial Search 2025 (SoCS 2025)
♻ ☆ ADA-DPM: A Neural Descriptors-based Adaptive Noise Filtering Strategy for SLAM
Lidar SLAM plays a significant role in mobile robot navigation and high-definition map construction. However, existing methods often face a trade-off between localization accuracy and system robustness in scenarios with a high proportion of dynamic objects, point cloud distortion, and unstructured environments. To address this issue, we propose a neural descriptors-based adaptive noise filtering strategy for SLAM, named ADA-DPM, which improves the performance of localization and mapping tasks through three key technical innovations. Firstly, to tackle dynamic object interference, we design the Dynamic Segmentation Head to predict and filter out dynamic feature points, eliminating the ego-motion interference caused by dynamic objects. Secondly, to mitigate the impact of noise and unstructured feature points, we propose the Global Importance Scoring Head that adaptively selects high-contribution feature points while suppressing the influence of noise and unstructured feature points. Moreover, we introduce the Cross-Layer Graph Convolution Module (GLI-GCN) to construct multi-scale neighborhood graphs, fusing local structural information across different scales and improving the discriminative power of overlapping features. Finally, experimental validations on multiple public datasets confirm the effectiveness of ADA-DPM.
♻ ☆ Context-Aware Deep Lagrangian Networks for Model Predictive Control IROS 2025
Controlling a robot based on physics-consistent dynamic models, such as Deep Lagrangian Networks (DeLaN), can improve the generalizability and interpretability of the resulting behavior. However, in complex environments, the number of objects to potentially interact with is vast, and their physical properties are often uncertain. This complexity makes it infeasible to employ a single global model. Therefore, we need to resort to online system identification of context-aware models that capture only the currently relevant aspects of the environment. While physical principles such as the conservation of energy may not hold across varying contexts, ensuring physical plausibility for any individual context-aware model can still be highly desirable, particularly when using it for receding horizon control methods such as model predictive control (MPC). Hence, in this work, we extend DeLaN to make it context-aware, combine it with a recurrent network for online system identification, and integrate it with an MPC for adaptive, physics-consistent control. We also combine DeLaN with a residual dynamics model to leverage the fact that a nominal model of the robot is typically available. We evaluate our method on a 7-DOF robot arm for trajectory tracking under varying loads. Our method reduces the end-effector tracking error by 39%, compared to a 21% improvement achieved by a baseline that uses an extended Kalman filter.
comment: Accepted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Critical Anatomy-Preserving & Terrain-Augmenting Navigation (CAPTAiN): Application to Laminectomy Surgical Education
Surgical training remains a crucial milestone in modern medicine, with procedures such as laminectomy exemplifying the high risks involved. Laminectomy drilling requires precise manual control to mill bony tissue while preserving spinal segment integrity and avoiding breaches in the dura: the protective membrane surrounding the spinal cord. Despite unintended tears occurring in up to 11.3% of cases, no assistive tools are currently utilized to reduce this risk. Variability in patient anatomy further complicates learning for novice surgeons. This study introduces CAPTAiN, a critical anatomy-preserving and terrain-augmenting navigation system that provides layered, color-coded voxel guidance to enhance anatomical awareness during spinal drilling. CAPTAiN was evaluated against a standard non-navigated approach through 110 virtual laminectomies performed by 11 orthopedic residents and medical students. CAPTAiN significantly improved surgical completion rates of target anatomy (87.99% vs. 74.42%) and reduced cognitive load across multiple NASA-TLX domains. It also minimized performance gaps across experience levels, enabling novices to perform on par with advanced trainees. These findings highlight CAPTAiN's potential to optimize surgical execution and support skill development across experience levels. Beyond laminectomy, it demonstrates potential for broader applications across various surgical and drilling procedures, including those in neurosurgery, otolaryngology, and other medical fields.
♻ ☆ Vidar: Embodied Video Diffusion Model for Generalist Bimanual Manipulation
Bimanual robotic manipulation, which involves the coordinated control of two robotic arms, is foundational for solving challenging tasks. Despite recent progress in general-purpose manipulation, data scarcity and embodiment heterogeneity remain serious obstacles to further scaling up in bimanual settings. In this paper, we introduce Video Diffusion for Action Reasoning (Vidar), a two-stage framework that leverages large-scale, diffusion-based video pre-training and a novel masked inverse dynamics model for action prediction. We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms, utilizing a unified observation space that encodes robot, camera, task, and scene contexts. Our masked inverse dynamics model learns masks to extract action-relevant information from generated trajectories without requiring pixel-level labels, and the masks can effectively generalize to unseen backgrounds. Our experiments demonstrate that with only 20 minutes of human demonstrations on an unseen robot platform (only 1% of typical data requirements), Vidar generalizes to unseen tasks and backgrounds with strong semantic understanding, surpassing state-of-the-art methods. Our findings highlight the potential of video foundation models, coupled with masked action prediction, to enable scalable and generalizable robotic manipulation in diverse real-world settings.
♻ ☆ Leveraging Analytic Gradients in Provably Safe Reinforcement Learning
The deployment of autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research that aims to provide such guarantees using safeguards. These safeguards should be integrated during training to reduce the sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance from fewer environment interactions. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them with a state-of-the-art learning algorithm and a differentiable simulation. Using numerical experiments on three control tasks, we evaluate how different safeguards affect learning. The results demonstrate safeguarded training without compromising performance.
comment: 16 pages, 10 figures
♻ ☆ Trends in Motion Prediction Toward Deployable and Generalizable Autonomy: A Revisit and Perspectives
Motion prediction, the anticipation of future agent states or scene evolution, is rooted in human cognition, bridging perception and decision-making. It enables intelligent systems, such as robots and self-driving cars, to act safely in dynamic, human-involved environments, and informs broader time-series reasoning challenges. With advances in methods, representations, and datasets, the field has seen rapid progress, reflected in quickly evolving benchmark results. Yet, when state-of-the-art methods are deployed in the real world, they often struggle to generalize to open-world conditions and fall short of deployment standards. This reveals a gap between research benchmarks, which are often idealized or ill-posed, and real-world complexity. To address this gap, this survey revisits the generalization and deployability of motion prediction models, with an emphasis on the applications of robotics, autonomous driving, and human motion. We first offer a comprehensive taxonomy of motion prediction methods, covering representations, modeling strategies, application domains, and evaluation protocols. We then study two key challenges: (1) how to push motion prediction models to be deployable to realistic deployment standards, where motion prediction does not act in a vacuum, but functions as one module of closed-loop autonomy stacks - it takes input from the localization and perception, and informs downstream planning and control. 2) how to generalize motion prediction models from limited seen scenarios/datasets to the open-world settings. Throughout the paper, we highlight critical open challenges to guide future work, aiming to recalibrate the community's efforts, fostering progress that is not only measurable but also meaningful for real-world applications. The project webpage corresponding to this paper can be found here https://trends-in-motion-prediction- 2025.github.io/.
comment: Book Published by Foundation and Trends in Robotics. 162 pages, 40 figures, 13 tables
♻ ☆ DG16M: A Large-Scale Dataset for Dual-Arm Grasping with Force-Optimized Grasps
Dual-arm robotic grasping is crucial for handling large objects that require stable and coordinated manipulation. While single-arm grasping has been extensively studied, datasets tailored for dual-arm settings remain scarce. We introduce a large-scale dataset of 16 million dual-arm grasps, evaluated under improved force-closure constraints. Additionally, we develop a benchmark dataset containing 300 objects with approximately 30,000 grasps, evaluated in a physics simulation environment, providing a better grasp quality assessment for dual-arm grasp synthesis methods. Finally, we demonstrate the effectiveness of our dataset by training a Dual-Arm Grasp Classifier network that outperforms the state-of-the-art methods by 15\%, achieving higher grasp success rates and improved generalization across objects.
♻ ☆ Recasting Classical Motion Planning for Contact-Rich Manipulation
In this work, we explore how conventional motion planning algorithms can be reapplied to contact-rich manipulation tasks. Rather than focusing solely on efficiency, we investigate how manipulation aspects can be recast in terms of conventional motion-planning algorithms. Conventional motion planners, such as Rapidly-Exploring Random Trees (RRT), typically compute collision-free paths in configuration space. However, in many manipulation tasks, contact is either unavoidable or essential for task success, such as for creating space or maintaining physical equilibrium. As such, we presents Haptic Rapidly-Exploring Random Trees (HapticRRT), a planning algorithm that incorporates a recently proposed optimality measure in the context of \textit{quasi-static} manipulation, based on the (squared) Hessian of manipulation potential. The key contributions are i) adapting classical RRT to operate on the quasi-static equilibrium manifold, while deepening the interpretation of haptic obstacles and metrics; ii) discovering multiple manipulation strategies, corresponding to branches of the equilibrium manifold. iii) validating the generality of our method across three diverse manipulation tasks, each requiring only a single manipulation potential expression. The video can be found at https://youtu.be/R8aBCnCCL40.
♻ ☆ Robotic Visual Instruction
Recently, natural language has been the primary medium for human-robot interaction. However, its inherent lack of spatial precision introduces challenges for robotic task definition such as ambiguity and verbosity. Moreover, in some public settings where quiet is required, such as libraries or hospitals, verbal communication with robots is inappropriate. To address these limitations, we introduce the Robotic Visual Instruction (RoVI), a novel paradigm to guide robotic tasks through an object-centric, hand-drawn symbolic representation. RoVI effectively encodes spatial-temporal information into human-interpretable visual instructions through 2D sketches, utilizing arrows, circles, colors, and numbers to direct 3D robotic manipulation. To enable robots to understand RoVI better and generate precise actions based on RoVI, we present Visual Instruction Embodied Workflow (VIEW), a pipeline formulated for RoVI-conditioned policies. This approach leverages Vision-Language Models (VLMs) to interpret RoVI inputs, decode spatial and temporal constraints from 2D pixel space via keypoint extraction, and then transform them into executable 3D action sequences. We additionally curate a specialized dataset of 15K instances to fine-tune small VLMs for edge deployment,enabling them to effectively learn RoVI capabilities. Our approach is rigorously validated across 11 novel tasks in both real and simulated environments, demonstrating significant generalization capability. Notably, VIEW achieves an 87.5% success rate in real-world scenarios involving unseen tasks that feature multi-step actions, with disturbances, and trajectory-following requirements. Project website: https://robotic-visual-instruction.github.io/
comment: Project website: https://robotic-visual-instruction.github.io/
♻ ☆ TPK: Trustworthy Trajectory Prediction Integrating Prior Knowledge For Interpretability and Kinematic Feasibility
Trajectory prediction is crucial for autonomous driving, enabling vehicles to navigate safely by anticipating the movements of surrounding road users. However, current deep learning models often lack trustworthiness as their predictions can be physically infeasible and illogical to humans. To make predictions more trustworthy, recent research has incorporated prior knowledge, like the social force model for modeling interactions and kinematic models for physical realism. However, these approaches focus on priors that suit either vehicles or pedestrians and do not generalize to traffic with mixed agent classes. We propose incorporating interaction and kinematic priors of all agent classes--vehicles, pedestrians, and cyclists with class-specific interaction layers to capture agent behavioral differences. To improve the interpretability of the agent interactions, we introduce DG-SFM, a rule-based interaction importance score that guides the interaction layer. To ensure physically feasible predictions, we proposed suitable kinematic models for all agent classes with a novel pedestrian kinematic model. We benchmark our approach on the Argoverse 2 dataset, using the state-of-the-art transformer HPTR as our baseline. Experiments demonstrate that our method improves interaction interpretability, revealing a correlation between incorrect predictions and divergence from our interaction prior. Even though incorporating the kinematic models causes a slight decrease in accuracy, they eliminate infeasible trajectories found in the dataset and the baseline model. Thus, our approach fosters trust in trajectory prediction as its interaction reasoning is interpretable, and its predictions adhere to physics.
comment: First and Second authors contributed equally; Accepted in the 36th IEEE Intelligent Vehicles Symposium (IV 2025) for oral presentation; Winner of the best paper award
♻ ☆ Modeling the Dynamics of Sub-Millisecond Electroadhesive Engagement and Release Times
Electroadhesive clutches are electrically controllable switchable adhesives commonly used in soft robots and haptic user interfaces. They can form strong bonds to a wide variety of surfaces at low power consumption. However, electroadhesive clutches in the literature engage to and release from substrates several orders of magnitude slower than a traditional electrostatic model would predict. Large release times, in particular, can limit electroadhesion's usefulness in high-bandwidth applications. We develop a novel electromechanical model for electroadhesion, factoring in polarization dynamics, the drive circuitry's rise and fall times, and contact mechanics between the dielectric and substrate. We show in simulation and experimentally how different design parameters affect the engagement and release times of centimeter-scale electroadhesive clutches to metallic substrates, and we find that the model accurately captures the magnitude and trends of our experimental results. In particular, we find that higher drive frequencies, narrower substrate aspect ratios, and faster drive circuitry output stages enable significantly faster release times. The fastest clutches have engagement times less than 15 us and release times less than 875 us, which are 10x and 17.1x faster, respectively, than the best times found in prior literature on centimeter-scale electroadhesive clutches.
comment: This work has been published in Extreme Mechanics Letters
♻ ☆ Investigation of the Challenges of Underwater-Visual-Monocular-SLAM
In this paper, we present a comprehensive investigation of the challenges of Monocular Visual Simultaneous Localization and Mapping (vSLAM) methods for underwater robots. While significant progress has been made in state estimation methods that utilize visual data in the past decade, most evaluations have been limited to controlled indoor and urban environments, where impressive performance was demonstrated. However, these techniques have not been extensively tested in extremely challenging conditions, such as underwater scenarios where factors such as water and light conditions, robot path, and depth can greatly impact algorithm performance. Hence, our evaluation is conducted in real-world AUV scenarios as well as laboratory settings which provide precise external reference. A focus is laid on understanding the impact of environmental conditions, such as optical properties of the water and illumination scenarios, on the performance of monocular vSLAM methods. To this end, we first show that all methods perform very well in in-air settings and subsequently show the degradation of their performance in challenging underwater environments. The final goal of this study is to identify techniques that can improve accuracy and robustness of SLAM methods in such conditions. To achieve this goal, we investigate the potential of image enhancement techniques to improve the quality of input images used by the SLAM methods, specifically in low visibility and extreme lighting scenarios in scattering media. We present a first evaluation on calibration maneuvers and simple image restoration techniques to determine their ability to enable or enhance the performance of monocular SLAM methods in underwater environments.
Computer Vision and Pattern Recognition 85
☆ Can Foundation Models Predict Fitness for Duty?
Biometric capture devices have been utilised to estimate a person's alertness through near-infrared iris images, expanding their use beyond just biometric recognition. However, capturing a substantial number of corresponding images related to alcohol consumption, drug use, and sleep deprivation to create a dataset for training an AI model presents a significant challenge. Typically, a large quantity of images is required to effectively implement a deep learning approach. Currently, training downstream models with a huge number of images based on foundational models provides a real opportunity to enhance this area, thanks to the generalisation capabilities of self-supervised models. This work examines the application of deep learning and foundational models in predicting fitness for duty, which is defined as the subject condition related to determining the alertness for work.
☆ Indian Sign Language Detection for Real-Time Translation using Machine Learning
Gestural language is used by deaf & mute communities to communicate through hand gestures & body movements that rely on visual-spatial patterns known as sign languages. Sign languages, which rely on visual-spatial patterns of hand gestures & body movements, are the primary mode of communication for deaf & mute communities worldwide. Effective communication is fundamental to human interaction, yet individuals in these communities often face significant barriers due to a scarcity of skilled interpreters & accessible translation technologies. This research specifically addresses these challenges within the Indian context by focusing on Indian Sign Language (ISL). By leveraging machine learning, this study aims to bridge the critical communication gap for the deaf & hard-of-hearing population in India, where technological solutions for ISL are less developed compared to other global sign languages. We propose a robust, real-time ISL detection & translation system built upon a Convolutional Neural Network (CNN). Our model is trained on a comprehensive ISL dataset & demonstrates exceptional performance, achieving a classification accuracy of 99.95%. This high precision underscores the model's capability to discern the nuanced visual features of different signs. The system's effectiveness is rigorously evaluated using key performance metrics, including accuracy, F1 score, precision & recall, ensuring its reliability for real-world applications. For real-time implementation, the framework integrates MediaPipe for precise hand tracking & motion detection, enabling seamless translation of dynamic gestures. This paper provides a detailed account of the model's architecture, the data preprocessing pipeline & the classification methodology. The research elaborates the model architecture, preprocessing & classification methodologies for enhancing communication in deaf & mute communities.
comment: 7 pages, 6 figures, 2 tables. Accepted for publication at the 6th International Conference on Recent Advances in Information Technology (RAIT 2025). This is the accepted version (preprint); the final published version will appear in IEEE Xplore
☆ Second Competition on Presentation Attack Detection on ID Card
This work summarises and reports the results of the second Presentation Attack Detection competition on ID cards. This new version includes new elements compared to the previous one. (1) An automatic evaluation platform was enabled for automatic benchmarking; (2) Two tracks were proposed in order to evaluate algorithms and datasets, respectively; and (3) A new ID card dataset was shared with Track 1 teams to serve as the baseline dataset for the training and optimisation. The Hochschule Darmstadt, Fraunhofer-IGD, and Facephi company jointly organised this challenge. 20 teams were registered, and 74 submitted models were evaluated. For Track 1, the "Dragons" team reached first place with an Average Ranking and Equal Error rate (EER) of AV-Rank of 40.48% and 11.44% EER, respectively. For the more challenging approach in Track 2, the "Incode" team reached the best results with an AV-Rank of 14.76% and 6.36% EER, improving on the results of the first edition of 74.30% and 21.87% EER, respectively. These results suggest that PAD on ID cards is improving, but it is still a challenging problem related to the number of images, especially of bona fide images.
☆ VESPA: Towards un(Human)supervised Open-World Pointcloud Labeling for Autonomous Driving
Data collection for autonomous driving is rapidly accelerating, but manual annotation, especially for 3D labels, remains a major bottleneck due to its high cost and labor intensity. Autolabeling has emerged as a scalable alternative, allowing the generation of labels for point clouds with minimal human intervention. While LiDAR-based autolabeling methods leverage geometric information, they struggle with inherent limitations of lidar data, such as sparsity, occlusions, and incomplete object observations. Furthermore, these methods typically operate in a class-agnostic manner, offering limited semantic granularity. To address these challenges, we introduce VESPA, a multimodal autolabeling pipeline that fuses the geometric precision of LiDAR with the semantic richness of camera images. Our approach leverages vision-language models (VLMs) to enable open-vocabulary object labeling and to refine detection quality directly in the point cloud domain. VESPA supports the discovery of novel categories and produces high-quality 3D pseudolabels without requiring ground-truth annotations or HD maps. On Nuscenes dataset, VESPA achieves an AP of 52.95% for object discovery and up to 46.54% for multiclass object detection, demonstrating strong performance in scalable 3D scene understanding. Code will be available upon acceptance.
☆ Solving Scene Understanding for Autonomous Navigation in Unstructured Environments
Autonomous vehicles are the next revolution in the automobile industry and they are expected to revolutionize the future of transportation. Understanding the scenario in which the autonomous vehicle will operate is critical for its competent functioning. Deep Learning has played a massive role in the progress that has been made till date. Semantic Segmentation, the process of annotating every pixel of an image with an object class, is one crucial part of this scene comprehension using Deep Learning. It is especially useful in Autonomous Driving Research as it requires comprehension of drivable and non-drivable areas, roadside objects and the like. In this paper semantic segmentation has been performed on the Indian Driving Dataset which has been recently compiled on the urban and rural roads of Bengaluru and Hyderabad. This dataset is more challenging compared to other datasets like Cityscapes, since it is based on unstructured driving environments. It has a four level hierarchy and in this paper segmentation has been performed on the first level. Five different models have been trained and their performance has been compared using the Mean Intersection over Union. These are UNET, UNET+RESNET50, DeepLabsV3, PSPNet and SegNet. The highest MIOU of 0.6496 has been achieved. The paper discusses the dataset, exploratory data analysis, preparation, implementation of the five models and studies the performance and compares the results achieved in the process.
☆ ModalFormer: Multimodal Transformer for Low-Light Image Enhancement
Low-light image enhancement (LLIE) is a fundamental yet challenging task due to the presence of noise, loss of detail, and poor contrast in images captured under insufficient lighting conditions. Recent methods often rely solely on pixel-level transformations of RGB images, neglecting the rich contextual information available from multiple visual modalities. In this paper, we present ModalFormer, the first large-scale multimodal framework for LLIE that fully exploits nine auxiliary modalities to achieve state-of-the-art performance. Our model comprises two main components: a Cross-modal Transformer (CM-T) designed to restore corrupted images while seamlessly integrating multimodal information, and multiple auxiliary subnetworks dedicated to multimodal feature reconstruction. Central to the CM-T is our novel Cross-modal Multi-headed Self-Attention mechanism (CM-MSA), which effectively fuses RGB data with modality-specific features--including deep feature embeddings, segmentation information, geometric cues, and color information--to generate information-rich hybrid attention maps. Extensive experiments on multiple benchmark datasets demonstrate ModalFormer's state-of-the-art performance in LLIE. Pre-trained models and results are made available at https://github.com/albrateanu/ModalFormer.
☆ MagicAnime: A Hierarchically Annotated, Multimodal and Multitasking Dataset with Benchmarks for Cartoon Animation Generation
Generating high-quality cartoon animations multimodal control is challenging due to the complexity of non-human characters, stylistically diverse motions and fine-grained emotions. There is a huge domain gap between real-world videos and cartoon animation, as cartoon animation is usually abstract and has exaggerated motion. Meanwhile, public multimodal cartoon data are extremely scarce due to the difficulty of large-scale automatic annotation processes compared with real-life scenarios. To bridge this gap, We propose the MagicAnime dataset, a large-scale, hierarchically annotated, and multimodal dataset designed to support multiple video generation tasks, along with the benchmarks it includes. Containing 400k video clips for image-to-video generation, 50k pairs of video clips and keypoints for whole-body annotation, 12k pairs of video clips for video-to-video face animation, and 2.9k pairs of video and audio clips for audio-driven face animation. Meanwhile, we also build a set of multi-modal cartoon animation benchmarks, called MagicAnime-Bench, to support the comparisons of different methods in the tasks above. Comprehensive experiments on four tasks, including video-driven face animation, audio-driven face animation, image-to-video animation, and pose-driven character animation, validate its effectiveness in supporting high-fidelity, fine-grained, and controllable generation.
comment: 8 pages,6 figures
☆ Generative Pre-training for Subjective Tasks: A Diffusion Transformer-Based Framework for Facial Beauty Prediction
Facial Beauty Prediction (FBP) is a challenging computer vision task due to its subjective nature and the subtle, holistic features that influence human perception. Prevailing methods, often based on deep convolutional networks or standard Vision Transformers pre-trained on generic object classification (e.g., ImageNet), struggle to learn feature representations that are truly aligned with high-level aesthetic assessment. In this paper, we propose a novel two-stage framework that leverages the power of generative models to create a superior, domain-specific feature extractor. In the first stage, we pre-train a Diffusion Transformer on a large-scale, unlabeled facial dataset (FFHQ) through a self-supervised denoising task. This process forces the model to learn the fundamental data distribution of human faces, capturing nuanced details and structural priors essential for aesthetic evaluation. In the second stage, the pre-trained and frozen encoder of our Diffusion Transformer is used as a backbone feature extractor, with only a lightweight regression head being fine-tuned on the target FBP dataset (FBP5500). Our method, termed Diff-FBP, sets a new state-of-the-art on the FBP5500 benchmark, achieving a Pearson Correlation Coefficient (PCC) of 0.932, significantly outperforming prior art based on general-purpose pre-training. Extensive ablation studies validate that our generative pre-training strategy is the key contributor to this performance leap, creating feature representations that are more semantically potent for subjective visual tasks.
Detecting Visual Information Manipulation Attacks in Augmented Reality: A Multimodal Semantic Reasoning Approach
The virtual content in augmented reality (AR) can introduce misleading or harmful information, leading to semantic misunderstandings or user errors. In this work, we focus on visual information manipulation (VIM) attacks in AR where virtual content changes the meaning of real-world scenes in subtle but impactful ways. We introduce a taxonomy that categorizes these attacks into three formats: character, phrase, and pattern manipulation, and three purposes: information replacement, information obfuscation, and extra wrong information. Based on the taxonomy, we construct a dataset, AR-VIM. It consists of 452 raw-AR video pairs spanning 202 different scenes, each simulating a real-world AR scenario. To detect such attacks, we propose a multimodal semantic reasoning framework, VIM-Sense. It combines the language and visual understanding capabilities of vision-language models (VLMs) with optical character recognition (OCR)-based textual analysis. VIM-Sense achieves an attack detection accuracy of 88.94% on AR-VIM, consistently outperforming vision-only and text-only baselines. The system reaches an average attack detection latency of 7.07 seconds in a simulated video processing framework and 7.17 seconds in a real-world evaluation conducted on a mobile Android AR application.
comment: 11 pages, 7 figures
☆ PIVOTS: Aligning unseen Structures using Preoperative to Intraoperative Volume-To-Surface Registration for Liver Navigation
Non-rigid registration is essential for Augmented Reality guided laparoscopic liver surgery by fusing preoperative information, such as tumor location and vascular structures, into the limited intraoperative view, thereby enhancing surgical navigation. A prerequisite is the accurate prediction of intraoperative liver deformation which remains highly challenging due to factors such as large deformation caused by pneumoperitoneum, respiration and tool interaction as well as noisy intraoperative data, and limited field of view due to occlusion and constrained camera movement. To address these challenges, we introduce PIVOTS, a Preoperative to Intraoperative VOlume-To-Surface registration neural network that directly takes point clouds as input for deformation prediction. The geometric feature extraction encoder allows multi-resolution feature extraction, and the decoder, comprising novel deformation aware cross attention modules, enables pre- and intraoperative information interaction and accurate multi-level displacement prediction. We train the neural network on synthetic data simulated from a biomechanical simulation pipeline and validate its performance on both synthetic and real datasets. Results demonstrate superior registration performance of our method compared to baseline methods, exhibiting strong robustness against high amounts of noise, large deformation, and various levels of intraoperative visibility. We publish the training and test sets as evaluation benchmarks and call for a fair comparison of liver registration methods with volume-to-surface data. Code and datasets are available here https://github.com/pengliu-nct/PIVOTS.
☆ SWIFT: A General Sensitive Weight Identification Framework for Fast Sensor-Transfer Pansharpening
Pansharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multispectral (LRMS) images to generate high-resolution multispectral (HRMS) images. Although deep learning-based methods have achieved promising performance, they generally suffer from severe performance degradation when applied to data from unseen sensors. Adapting these models through full-scale retraining or designing more complex architectures is often prohibitively expensive and impractical for real-world deployment. To address this critical challenge, we propose a fast and general-purpose framework for cross-sensor adaptation, SWIFT (Sensitive Weight Identification for Fast Transfer). Specifically, SWIFT employs an unsupervised sampling strategy based on data manifold structures to balance sample selection while mitigating the bias of traditional Farthest Point Sampling, efficiently selecting only 3\% of the most informative samples from the target domain. This subset is then used to probe a source-domain pre-trained model by analyzing the gradient behavior of its parameters, allowing for the quick identification and subsequent update of only the weight subset most sensitive to the domain shift. As a plug-and-play framework, SWIFT can be applied to various existing pansharpening models. Extensive experiments demonstrate that SWIFT reduces the adaptation time from hours to approximately one minute on a single NVIDIA RTX 4090 GPU. The adapted models not only substantially outperform direct-transfer baselines but also achieve performance competitive with, and in some cases superior to, full retraining, establishing a new state-of-the-art on cross-sensor pansharpening tasks for the WorldView-2 and QuickBird datasets.
☆ Fine-structure Preserved Real-world Image Super-resolution via Transfer VAE Training ICCV 2025
Impressive results on real-world image super-resolution (Real-ISR) have been achieved by employing pre-trained stable diffusion (SD) models. However, one critical issue of such methods lies in their poor reconstruction of image fine structures, such as small characters and textures, due to the aggressive resolution reduction of the VAE (eg., 8$\times$ downsampling) in the SD model. One solution is to employ a VAE with a lower downsampling rate for diffusion; however, adapting its latent features with the pre-trained UNet while mitigating the increased computational cost poses new challenges. To address these issues, we propose a Transfer VAE Training (TVT) strategy to transfer the 8$\times$ downsampled VAE into a 4$\times$ one while adapting to the pre-trained UNet. Specifically, we first train a 4$\times$ decoder based on the output features of the original VAE encoder, then train a 4$\times$ encoder while keeping the newly trained decoder fixed. Such a TVT strategy aligns the new encoder-decoder pair with the original VAE latent space while enhancing image fine details. Additionally, we introduce a compact VAE and compute-efficient UNet by optimizing their network architectures, reducing the computational cost while capturing high-resolution fine-scale features. Experimental results demonstrate that our TVT method significantly improves fine-structure preservation, which is often compromised by other SD-based methods, while requiring fewer FLOPs than state-of-the-art one-step diffusion models. The official code can be found at https://github.com/Joyies/TVT.
comment: ICCV 2025
☆ T$^\text{3}$SVFND: Towards an Evolving Fake News Detector for Emergencies with Test-time Training on Short Video Platforms DASFAA 2025
The existing methods for fake news videos detection may not be generalized, because there is a distribution shift between short video news of different events, and the performance of such techniques greatly drops if news records are coming from emergencies. We propose a new fake news videos detection framework (T$^3$SVFND) using Test-Time Training (TTT) to alleviate this limitation, enhancing the robustness of fake news videos detection. Specifically, we design a self-supervised auxiliary task based on Mask Language Modeling (MLM) that masks a certain percentage of words in text and predicts these masked words by combining contextual information from different modalities (audio and video). In the test-time training phase, the model adapts to the distribution of test data through auxiliary tasks. Extensive experiments on the public benchmark demonstrate the effectiveness of the proposed model, especially for the detection of emergency news.
comment: 16 pages, 3 figures, published to DASFAA 2025
Controllable Feature Whitening for Hyperparameter-Free Bias Mitigation ICCV 2025
As the use of artificial intelligence rapidly increases, the development of trustworthy artificial intelligence has become important. However, recent studies have shown that deep neural networks are susceptible to learn spurious correlations present in datasets. To improve the reliability, we propose a simple yet effective framework called controllable feature whitening. We quantify the linear correlation between the target and bias features by the covariance matrix, and eliminate it through the whitening module. Our results systemically demonstrate that removing the linear correlations between features fed into the last linear classifier significantly mitigates the bias, while avoiding the need to model intractable higher-order dependencies. A particular advantage of the proposed method is that it does not require regularization terms or adversarial learning, which often leads to unstable optimization in practice. Furthermore, we show that two fairness criteria, demographic parity and equalized odds, can be effectively handled by whitening with the re-weighted covariance matrix. Consequently, our method controls the trade-off between the utility and fairness of algorithms by adjusting the weighting coefficient. Finally, we validate that our method outperforms existing approaches on four benchmark datasets: Corrupted CIFAR-10, Biased FFHQ, WaterBirds, and Celeb-A.
comment: Accepted to ICCV 2025 (Poster)
☆ L-MCAT: Unpaired Multimodal Transformer with Contrastive Attention for Label-Efficient Satellite Image Classification
We propose the Lightweight Multimodal Contrastive Attention Transformer (L-MCAT), a novel transformer-based framework for label-efficient remote sensing image classification using unpaired multimodal satellite data. L-MCAT introduces two core innovations: (1) Modality-Spectral Adapters (MSA) that compress high-dimensional sensor inputs into a unified embedding space, and (2) Unpaired Multimodal Attention Alignment (U-MAA), a contrastive self-supervised mechanism integrated into the attention layers to align heterogeneous modalities without pixel-level correspondence or labels. L-MCAT achieves 95.4% overall accuracy on the SEN12MS dataset using only 20 labels per class, outperforming state-of-the-art baselines while using 47x fewer parameters and 23x fewer FLOPs than MCTrans. It maintains over 92% accuracy even under 50% spatial misalignment, demonstrating robustness for real-world deployment. The model trains end-to-end in under 5 hours on a single consumer GPU.
☆ MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms. However, these approaches overlook fundamental paradigm-specific neurophysiological distinctions, limiting their generalization ability. Importantly, in practical BCI deployments, the specific paradigm such as motor imagery (MI) for stroke rehabilitation or assistive robotics, is generally determined prior to data acquisition. This paper proposes MIRepNet, the first EEG foundation model tailored for the MI paradigm. MIRepNet comprises a high-quality EEG preprocessing pipeline incorporating a neurophysiologically-informed channel template, adaptable to EEG headsets with arbitrary electrode configurations. Furthermore, we introduce a hybrid pretraining strategy that combines self-supervised masked token reconstruction and supervised MI classification, facilitating rapid adaptation and accurate decoding on novel downstream MI tasks with fewer than 30 trials per class. Extensive evaluations across five public MI datasets demonstrated that MIRepNet consistently achieved state-of-the-art performance, significantly outperforming both specialized and generalized EEG models. Our code will be available on GitHub\footnote{https://github.com/staraink/MIRepNet}.
☆ AnimalClue: Recognizing Animals by their Traces ICCV2025
Wildlife observation plays an important role in biodiversity conservation, necessitating robust methodologies for monitoring wildlife populations and interspecies interactions. Recent advances in computer vision have significantly contributed to automating fundamental wildlife observation tasks, such as animal detection and species identification. However, accurately identifying species from indirect evidence like footprints and feces remains relatively underexplored, despite its importance in contributing to wildlife monitoring. To bridge this gap, we introduce AnimalClue, the first large-scale dataset for species identification from images of indirect evidence. Our dataset consists of 159,605 bounding boxes encompassing five categories of indirect clues: footprints, feces, eggs, bones, and feathers. It covers 968 species, 200 families, and 65 orders. Each image is annotated with species-level labels, bounding boxes or segmentation masks, and fine-grained trait information, including activity patterns and habitat preferences. Unlike existing datasets primarily focused on direct visual features (e.g., animal appearances), AnimalClue presents unique challenges for classification, detection, and instance segmentation tasks due to the need for recognizing more detailed and subtle visual features. In our experiments, we extensively evaluate representative vision models and identify key challenges in animal identification from their traces. Our dataset and code are available at https://dahlian00.github.io/AnimalCluePage/
comment: ICCV2025 Highlight
☆ Decomposing Densification in Gaussian Splatting for Faster 3D Scene Reconstruction
3D Gaussian Splatting (GS) has emerged as a powerful representation for high-quality scene reconstruction, offering compelling rendering quality. However, the training process of GS often suffers from slow convergence due to inefficient densification and suboptimal spatial distribution of Gaussian primitives. In this work, we present a comprehensive analysis of the split and clone operations during the densification phase, revealing their distinct roles in balancing detail preservation and computational efficiency. Building upon this analysis, we propose a global-to-local densification strategy, which facilitates more efficient growth of Gaussians across the scene space, promoting both global coverage and local refinement. To cooperate with the proposed densification strategy and promote sufficient diffusion of Gaussian primitives in space, we introduce an energy-guided coarse-to-fine multi-resolution training framework, which gradually increases resolution based on energy density in 2D images. Additionally, we dynamically prune unnecessary Gaussian primitives to speed up the training. Extensive experiments on MipNeRF-360, Deep Blending, and Tanks & Temples datasets demonstrate that our approach significantly accelerates training,achieving over 2x speedup with fewer Gaussian primitives and superior reconstruction performance.
☆ MambaMap: Online Vectorized HD Map Construction using State Space Model
High-definition (HD) maps are essential for autonomous driving, as they provide precise road information for downstream tasks. Recent advances highlight the potential of temporal modeling in addressing challenges like occlusions and extended perception range. However, existing methods either fail to fully exploit temporal information or incur substantial computational overhead in handling extended sequences. To tackle these challenges, we propose MambaMap, a novel framework that efficiently fuses long-range temporal features in the state space to construct online vectorized HD maps. Specifically, MambaMap incorporates a memory bank to store and utilize information from historical frames, dynamically updating BEV features and instance queries to improve robustness against noise and occlusions. Moreover, we introduce a gating mechanism in the state space, selectively integrating dependencies of map elements in high computational efficiency. In addition, we design innovative multi-directional and spatial-temporal scanning strategies to enhance feature extraction at both BEV and instance levels. These strategies significantly boost the prediction accuracy of our approach while ensuring robust temporal consistency. Extensive experiments on the nuScenes and Argoverse2 datasets demonstrate that our proposed MambaMap approach outperforms state-of-the-art methods across various splits and perception ranges. Source code will be available at https://github.com/ZiziAmy/MambaMap.
☆ Multi-Attention Stacked Ensemble for Lung Cancer Detection in CT Scans
In this work, we address the challenge of binary lung nodule classification (benign vs malignant) using CT images by proposing a multi-level attention stacked ensemble of deep neural networks. Three pretrained backbones -- EfficientNet V2 S, MobileViT XXS, and DenseNet201 -- are each adapted with a custom classification head tailored to 96 x 96 pixel inputs. A two-stage attention mechanism learns both model-wise and class-wise importance scores from concatenated logits, and a lightweight meta-learner refines the final prediction. To mitigate class imbalance and improve generalization, we employ dynamic focal loss with empirically calculated class weights, MixUp augmentation during training, and test-time augmentation at inference. Experiments on the LIDC-IDRI dataset demonstrate exceptional performance, achieving 98.09 accuracy and 0.9961 AUC, representing a 35 percent reduction in error rate compared to state-of-the-art methods. The model exhibits balanced performance across sensitivity (98.73) and specificity (98.96), with particularly strong results on challenging cases where radiologist disagreement was high. Statistical significance testing confirms the robustness of these improvements across multiple experimental runs. Our approach can serve as a robust, automated aid for radiologists in lung cancer screening.
comment: 26 pages, 14 figures
☆ Motion-example-controlled Co-speech Gesture Generation Leveraging Large Language Models SIGGRAPH 2025
The automatic generation of controllable co-speech gestures has recently gained growing attention. While existing systems typically achieve gesture control through predefined categorical labels or implicit pseudo-labels derived from motion examples, these approaches often compromise the rich details present in the original motion examples. We present MECo, a framework for motion-example-controlled co-speech gesture generation by leveraging large language models (LLMs). Our method capitalizes on LLMs' comprehension capabilities through fine-tuning to simultaneously interpret speech audio and motion examples, enabling the synthesis of gestures that preserve example-specific characteristics while maintaining speech congruence. Departing from conventional pseudo-labeling paradigms, we position motion examples as explicit query contexts within the prompt structure to guide gesture generation. Experimental results demonstrate state-of-the-art performance across three metrics: Fr\'echet Gesture Distance (FGD), motion diversity, and example-gesture similarity. Furthermore, our framework enables granular control of individual body parts and accommodates diverse input modalities including motion clips, static poses, human video sequences, and textual descriptions. Our code, pre-trained models, and videos are available at https://robinwitch.github.io/MECo-Page.
comment: SIGGRAPH 2025; Project Page: https://robinwitch.github.io/MECo-Page
☆ Dual-Stream Global-Local Feature Collaborative Representation Network for Scene Classification of Mining Area
Scene classification of mining areas provides accurate foundational data for geological environment monitoring and resource development planning. This study fuses multi-source data to construct a multi-modal mine land cover scene classification dataset. A significant challenge in mining area classification lies in the complex spatial layout and multi-scale characteristics. By extracting global and local features, it becomes possible to comprehensively reflect the spatial distribution, thereby enabling a more accurate capture of the holistic characteristics of mining scenes. We propose a dual-branch fusion model utilizing collaborative representation to decompose global features into a set of key semantic vectors. This model comprises three key components:(1) Multi-scale Global Transformer Branch: It leverages adjacent large-scale features to generate global channel attention features for small-scale features, effectively capturing the multi-scale feature relationships. (2) Local Enhancement Collaborative Representation Branch: It refines the attention weights by leveraging local features and reconstructed key semantic sets, ensuring that the local context and detailed characteristics of the mining area are effectively integrated. This enhances the model's sensitivity to fine-grained spatial variations. (3) Dual-Branch Deep Feature Fusion Module: It fuses the complementary features of the two branches to incorporate more scene information. This fusion strengthens the model's ability to distinguish and classify complex mining landscapes. Finally, this study employs multi-loss computation to ensure a balanced integration of the modules. The overall accuracy of this model is 83.63%, which outperforms other comparative models. Additionally, it achieves the best performance across all other evaluation metrics.
☆ Neural Shell Texture Splatting: More Details and Fewer Primitives
Gaussian splatting techniques have shown promising results in novel view synthesis, achieving high fidelity and efficiency. However, their high reconstruction quality comes at the cost of requiring a large number of primitives. We identify this issue as stemming from the entanglement of geometry and appearance in Gaussian Splatting. To address this, we introduce a neural shell texture, a global representation that encodes texture information around the surface. We use Gaussian primitives as both a geometric representation and texture field samplers, efficiently splatting texture features into image space. Our evaluation demonstrates that this disentanglement enables high parameter efficiency, fine texture detail reconstruction, and easy textured mesh extraction, all while using significantly fewer primitives.
☆ Color histogram equalization and fine-tuning to improve expression recognition of (partially occluded) faces on sign language datasets
The goal of this investigation is to quantify to what extent computer vision methods can correctly classify facial expressions on a sign language dataset. We extend our experiments by recognizing expressions using only the upper or lower part of the face, which is needed to further investigate the difference in emotion manifestation between hearing and deaf subjects. To take into account the peculiar color profile of a dataset, our method introduces a color normalization stage based on histogram equalization and fine-tuning. The results show the ability to correctly recognize facial expressions with 83.8% mean sensitivity and very little variance (.042) among classes. Like for humans, recognition of expressions from the lower half of the face (79.6%) is higher than that from the upper half (77.9%). Noticeably, the classification accuracy from the upper half of the face is higher than human level.
☆ SAViL-Det: Semantic-Aware Vision-Language Model for Multi-Script Text Detection
Detecting text in natural scenes remains challenging, particularly for diverse scripts and arbitrarily shaped instances where visual cues alone are often insufficient. Existing methods do not fully leverage semantic context. This paper introduces SAViL-Det, a novel semantic-aware vision-language model that enhances multi-script text detection by effectively integrating textual prompts with visual features. SAViL-Det utilizes a pre-trained CLIP model combined with an Asymptotic Feature Pyramid Network (AFPN) for multi-scale visual feature fusion. The core of the proposed framework is a novel language-vision decoder that adaptively propagates fine-grained semantic information from text prompts to visual features via cross-modal attention. Furthermore, a text-to-pixel contrastive learning mechanism explicitly aligns textual and corresponding visual pixel features. Extensive experiments on challenging benchmarks demonstrate the effectiveness of the proposed approach, achieving state-of-the-art performance with F-scores of 84.8% on the benchmark multi-lingual MLT-2019 dataset and 90.2% on the curved-text CTW1500 dataset.
☆ SAMwave: Wavelet-Driven Feature Enrichment for Effective Adaptation of Segment Anything Model BMVC 2025
The emergence of large foundation models has propelled significant advances in various domains. The Segment Anything Model (SAM), a leading model for image segmentation, exemplifies these advances, outperforming traditional methods. However, such foundation models often suffer from performance degradation when applied to complex tasks for which they are not trained. Existing methods typically employ adapter-based fine-tuning strategies to adapt SAM for tasks and leverage high-frequency features extracted from the Fourier domain. However, Our analysis reveals that these approaches offer limited benefits due to constraints in their feature extraction techniques. To overcome this, we propose \textbf{\textit{SAMwave}}, a novel and interpretable approach that utilizes the wavelet transform to extract richer, multi-scale high-frequency features from input data. Extending this, we introduce complex-valued adapters capable of capturing complex-valued spatial-frequency information via complex wavelet transforms. By adaptively integrating these wavelet coefficients, SAMwave enables SAM's encoder to capture information more relevant for dense prediction. Empirical evaluations on four challenging low-level vision tasks demonstrate that SAMwave significantly outperforms existing adaptation methods. This superior performance is consistent across both the SAM and SAM2 backbones and holds for both real and complex-valued adapter variants, highlighting the efficiency, flexibility, and interpretability of our proposed method for adapting segment anything models.
comment: Accepted to BMVC 2025. The first two authors contributed equally
☆ MoCTEFuse: Illumination-Gated Mixture of Chiral Transformer Experts for Multi-Level Infrared and Visible Image Fusion
While illumination changes inevitably affect the quality of infrared and visible image fusion, many outstanding methods still ignore this factor and directly merge the information from source images, leading to modality bias in the fused results. To this end, we propose a dynamic multi-level image fusion network called MoCTEFuse, which applies an illumination-gated Mixture of Chiral Transformer Experts (MoCTE) to adaptively preserve texture details and object contrasts in balance. MoCTE consists of high- and low-illumination expert subnetworks, each built upon the Chiral Transformer Fusion Block (CTFB). Guided by the illumination gating signals, CTFB dynamically switches between the primary and auxiliary modalities as well as assigning them corresponding weights with its asymmetric cross-attention mechanism. Meanwhile, it is stacked at multiple stages to progressively aggregate and refine modality-specific and cross-modality information. To facilitate robust training, we propose a competitive loss function that integrates illumination distributions with three levels of sub-loss terms. Extensive experiments conducted on the DroneVehicle, MSRS, TNO and RoadScene datasets show MoCTEFuse's superior fusion performance. Finally, it achieves the best detection mean Average Precision (mAP) of 70.93% on the MFNet dataset and 45.14% on the DroneVehicle dataset. The code and model are released at https://github.com/Bitlijinfu/MoCTEFuse.
☆ Towards Universal Modal Tracking with Online Dense Temporal Token Learning
We propose a universal video-level modality-awareness tracking model with online dense temporal token learning (called {\modaltracker}). It is designed to support various tracking tasks, including RGB, RGB+Thermal, RGB+Depth, and RGB+Event, utilizing the same model architecture and parameters. Specifically, our model is designed with three core goals: \textbf{Video-level Sampling}. We expand the model's inputs to a video sequence level, aiming to see a richer video context from an near-global perspective. \textbf{Video-level Association}. Furthermore, we introduce two simple yet effective online dense temporal token association mechanisms to propagate the appearance and motion trajectory information of target via a video stream manner. \textbf{Modality Scalable}. We propose two novel gated perceivers that adaptively learn cross-modal representations via a gated attention mechanism, and subsequently compress them into the same set of model parameters via a one-shot training manner for multi-task inference. This new solution brings the following benefits: (i) The purified token sequences can serve as temporal prompts for the inference in the next video frames, whereby previous information is leveraged to guide future inference. (ii) Unlike multi-modal trackers that require independent training, our one-shot training scheme not only alleviates the training burden, but also improves model representation. Extensive experiments on visible and multi-modal benchmarks show that our {\modaltracker} achieves a new \textit{SOTA} performance. The code will be available at https://github.com/GXNU-ZhongLab/ODTrack.
comment: arXiv admin note: text overlap with arXiv:2401.01686
☆ LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.
☆ PUMPS: Skeleton-Agnostic Point-based Universal Motion Pre-Training for Synthesis in Human Motion Tasks ICCV 2025
Motion skeletons drive 3D character animation by transforming bone hierarchies, but differences in proportions or structure make motion data hard to transfer across skeletons, posing challenges for data-driven motion synthesis. Temporal Point Clouds (TPCs) offer an unstructured, cross-compatible motion representation. Though reversible with skeletons, TPCs mainly serve for compatibility, not for direct motion task learning. Doing so would require data synthesis capabilities for the TPC format, which presents unexplored challenges regarding its unique temporal consistency and point identifiability. Therefore, we propose PUMPS, the primordial autoencoder architecture for TPC data. PUMPS independently reduces frame-wise point clouds into sampleable feature vectors, from which a decoder extracts distinct temporal points using latent Gaussian noise vectors as sampling identifiers. We introduce linear assignment-based point pairing to optimise the TPC reconstruction process, and negate the use of expensive point-wise attention mechanisms in the architecture. Using these latent features, we pre-train a motion synthesis model capable of performing motion prediction, transition generation, and keyframe interpolation. For these pre-training tasks, PUMPS performs remarkably well even without native dataset supervision, matching state-of-the-art performance. When fine-tuned for motion denoising or estimation, PUMPS outperforms many respective methods without deviating from its generalist architecture.
comment: Accepted for publication in ICCV 2025
☆ Player-Centric Multimodal Prompt Generation for Large Language Model Based Identity-Aware Basketball Video Captioning ICCV 2025
Existing sports video captioning methods often focus on the action yet overlook player identities, limiting their applicability. Although some methods integrate extra information to generate identity-aware descriptions, the player identities are sometimes incorrect because the extra information is independent of the video content. This paper proposes a player-centric multimodal prompt generation network for identity-aware sports video captioning (LLM-IAVC), which focuses on recognizing player identities from a visual perspective. Specifically, an identity-related information extraction module (IRIEM) is designed to extract player-related multimodal embeddings. IRIEM includes a player identification network (PIN) for extracting visual features and player names, and a bidirectional semantic interaction module (BSIM) to link player features with video content for mutual enhancement. Additionally, a visual context learning module (VCLM) is designed to capture the key video context information. Finally, by integrating the outputs of the above modules as the multimodal prompt for the large language model (LLM), it facilitates the generation of descriptions with player identities. To support this work, we construct a new benchmark called NBA-Identity, a large identity-aware basketball video captioning dataset with 9,726 videos covering 9 major event types. The experimental results on NBA-Identity and VC-NBA-2022 demonstrate that our proposed model achieves advanced performance. Code and dataset are publicly available at https://github.com/Zeyu1226-mt/LLM-IAVC.
comment: Accepted by ICCV 2025 (Poster)
☆ AnimeColor: Reference-based Animation Colorization with Diffusion Transformers
Animation colorization plays a vital role in animation production, yet existing methods struggle to achieve color accuracy and temporal consistency. To address these challenges, we propose \textbf{AnimeColor}, a novel reference-based animation colorization framework leveraging Diffusion Transformers (DiT). Our approach integrates sketch sequences into a DiT-based video diffusion model, enabling sketch-controlled animation generation. We introduce two key components: a High-level Color Extractor (HCE) to capture semantic color information and a Low-level Color Guider (LCG) to extract fine-grained color details from reference images. These components work synergistically to guide the video diffusion process. Additionally, we employ a multi-stage training strategy to maximize the utilization of reference image color information. Extensive experiments demonstrate that AnimeColor outperforms existing methods in color accuracy, sketch alignment, temporal consistency, and visual quality. Our framework not only advances the state of the art in animation colorization but also provides a practical solution for industrial applications. The code will be made publicly available at \href{https://github.com/IamCreateAI/AnimeColor}{https://github.com/IamCreateAI/AnimeColor}.
☆ Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ \textbf{Availability and implementation:} Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.
☆ GT-Mean Loss: A Simple Yet Effective Solution for Brightness Mismatch in Low-Light Image Enhancement ICCV2025
Low-light image enhancement (LLIE) aims to improve the visual quality of images captured under poor lighting conditions. In supervised LLIE research, there exists a significant yet often overlooked inconsistency between the overall brightness of an enhanced image and its ground truth counterpart, referred to as brightness mismatch in this study. Brightness mismatch negatively impact supervised LLIE models by misleading model training. However, this issue is largely neglected in current research. In this context, we propose the GT-mean loss, a simple yet effective loss function directly modeling the mean values of images from a probabilistic perspective. The GT-mean loss is flexible, as it extends existing supervised LLIE loss functions into the GT-mean form with minimal additional computational costs. Extensive experiments demonstrate that the incorporation of the GT-mean loss results in consistent performance improvements across various methods and datasets.
comment: Accepted to ICCV2025. GitHub repository: https://github.com/jingxiLiao/GT-mean-loss
☆ Wavelet-guided Misalignment-aware Network for Visible-Infrared Object Detection
Visible-infrared object detection aims to enhance the detection robustness by exploiting the complementary information of visible and infrared image pairs. However, its performance is often limited by frequent misalignments caused by resolution disparities, spatial displacements, and modality inconsistencies. To address this issue, we propose the Wavelet-guided Misalignment-aware Network (WMNet), a unified framework designed to adaptively address different cross-modal misalignment patterns. WMNet incorporates wavelet-based multi-frequency analysis and modality-aware fusion mechanisms to improve the alignment and integration of cross-modal features. By jointly exploiting low and high-frequency information and introducing adaptive guidance across modalities, WMNet alleviates the adverse effects of noise, illumination variation, and spatial misalignment. Furthermore, it enhances the representation of salient target features while suppressing spurious or misleading information, thereby promoting more accurate and robust detection. Extensive evaluations on the DVTOD, DroneVehicle, and M3FD datasets demonstrate that WMNet achieves state-of-the-art performance on misaligned cross-modal object detection tasks, confirming its effectiveness and practical applicability.
☆ An Automated Deep Segmentation and Spatial-Statistics Approach for Post-Blast Rock Fragmentation Assessment
We introduce an end-to-end pipeline that leverages a fine-tuned YOLO12l-seg model -- trained on over 500 annotated post-blast images -- to deliver real-time instance segmentation (Box mAP@0.5 ~ 0.769, Mask mAP@0.5 ~ 0.800 at ~ 15 FPS). High-fidelity masks are converted into normalized 3D coordinates, from which we extract multi-metric spatial descriptors: principal component directions, kernel density hotspots, size-depth regression, and Delaunay edge statistics. We present four representative examples to illustrate key fragmentation patterns. Experimental results confirm the framework's accuracy, robustness to small-object crowding, and feasibility for rapid, automated blast-effect assessment in field conditions.
☆ Multi-output Deep-Supervised Classifier Chains for Plant Pathology
Plant leaf disease classification is an important task in smart agriculture which plays a critical role in sustainable production. Modern machine learning approaches have shown unprecedented potential in this classification task which offers an array of benefits including time saving and cost reduction. However, most recent approaches directly employ convolutional neural networks where the effect of the relationship between plant species and disease types on prediction performance is not properly studied. In this study, we proposed a new model named Multi-output Deep Supervised Classifier Chains (Mo-DsCC) which weaves the prediction of plant species and disease by chaining the output layers for the two labels. Mo-DsCC consists of three components: A modified VGG-16 network as the backbone, deep supervision training, and a stack of classification chains. To evaluate the advantages of our model, we perform intensive experiments on two benchmark datasets Plant Village and PlantDoc. Comparison to recent approaches, including multi-model, multi-label (Power-set), multi-output and multi-task, demonstrates that Mo-DsCC achieves better accuracy and F1-score. The empirical study in this paper shows that the application of Mo-DsCC could be a useful puzzle for smart agriculture to benefit farms and bring new ideas to industry and academia.
☆ Local2Global query Alignment for Video Instance Segmentation
Online video segmentation methods excel at handling long sequences and capturing gradual changes, making them ideal for real-world applications. However, achieving temporally consistent predictions remains a challenge, especially with gradual accumulation of noise or drift in on-line propagation, abrupt occlusions and scene transitions. This paper introduces Local2Global, an online framework, for video instance segmentation, exhibiting state-of-the-art performance with simple baseline and training purely in online fashion. Leveraging the DETR-based query propagation framework, we introduce two novel sets of queries:(1) local queries that capture initial object-specific spatial features from each frame and (2) global queries containing past spatio-temporal representations. We propose the L2G-aligner, a novel lightweight transformer decoder, to facilitate an early alignment between local and global queries. This alignment allows our model to effectively utilize current frame information while maintaining temporal consistency, producing a smooth transition between frames. Furthermore, L2G-aligner is integrated within the segmentation model, without relying on additional complex heuristics, or memory mechanisms. Extensive experiments across various challenging VIS and VPS datasets showcase the superiority of our method with simple online training, surpassing current benchmarks without bells and rings. For instance, we achieve 54.3 and 49.4 AP on Youtube-VIS-19/-21 datasets and 37.0 AP on OVIS dataset respectively withthe ResNet-50 backbone.
☆ RESCUE: Crowd Evacuation Simulation via Controlling SDM-United Characters
Crowd evacuation simulation is critical for enhancing public safety, and demanded for realistic virtual environments. Current mainstream evacuation models overlook the complex human behaviors that occur during evacuation, such as pedestrian collisions, interpersonal interactions, and variations in behavior influenced by terrain types or individual body shapes. This results in the failure to accurately simulate the escape of people in the real world. In this paper, aligned with the sensory-decision-motor (SDM) flow of the human brain, we propose a real-time 3D crowd evacuation simulation framework that integrates a 3D-adaptive SFM (Social Force Model) Decision Mechanism and a Personalized Gait Control Motor. This framework allows multiple agents to move in parallel and is suitable for various scenarios, with dynamic crowd awareness. Additionally, we introduce Part-level Force Visualization to assist in evacuation analysis. Experimental results demonstrate that our framework supports dynamic trajectory planning and personalized behavior for each agent throughout the evacuation process, and is compatible with uneven terrain. Visually, our method generates evacuation results that are more realistic and plausible, providing enhanced insights for crowd simulation. The code is available at http://cic.tju.edu.cn/faculty/likun/projects/RESCUE.
☆ NeuroVoxel-LM: Language-Aligned 3D Perception via Dynamic Voxelization and Meta-Embedding
Recent breakthroughs in Visual Language Models (VLMs) and Multimodal Large Language Models (MLLMs) have significantly advanced 3D scene perception towards language-driven cognition. However, existing 3D language models struggle with sparse, large-scale point clouds due to slow feature extraction and limited representation accuracy. To address these challenges, we propose NeuroVoxel-LM, a novel framework that integrates Neural Radiance Fields (NeRF) with dynamic resolution voxelization and lightweight meta-embedding. Specifically, we introduce a Dynamic Resolution Multiscale Voxelization (DR-MSV) technique that adaptively adjusts voxel granularity based on geometric and structural complexity, reducing computational cost while preserving reconstruction fidelity. In addition, we propose the Token-level Adaptive Pooling for Lightweight Meta-Embedding (TAP-LME) mechanism, which enhances semantic representation through attention-based weighting and residual fusion. Experimental results demonstrate that DR-MSV significantly improves point cloud feature extraction efficiency and accuracy, while TAP-LME outperforms conventional max-pooling in capturing fine-grained semantics from NeRF weights.
comment: **14 pages, 3 figures, 2 tables
Detection of Medial Epicondyle Avulsion in Elbow Ultrasound Images via Bone Structure Reconstruction
This study proposes a reconstruction-based framework for detecting medial epicondyle avulsion in elbow ultrasound images, trained exclusively on normal cases. Medial epicondyle avulsion, commonly observed in baseball players, involves bone detachment and deformity, often appearing as discontinuities in bone contour. Therefore, learning the structure and continuity of normal bone is essential for detecting such abnormalities. To achieve this, we propose a masked autoencoder-based, structure-aware reconstruction framework that learns the continuity of normal bone structures. Even in the presence of avulsion, the model attempts to reconstruct the normal structure, resulting in large reconstruction errors at the avulsion site. For evaluation, we constructed a novel dataset comprising normal and avulsion ultrasound images from 16 baseball players, with pixel-level annotations under orthopedic supervision. Our method outperformed existing approaches, achieving a pixel-wise AUC of 0.965 and an image-wise AUC of 0.967. The dataset is publicly available at: https://github.com/Akahori000/Ultrasound-Medial-Epicondyle-Avulsion-Dataset.
comment: 19th International Conference on Machine Vision Applications (MVA)
☆ Hybrid-Domain Synergistic Transformer for Hyperspectral Image Denoising
Hyperspectral image denoising faces the challenge of multi-dimensional coupling of spatially non-uniform noise and spectral correlation interference. Existing deep learning methods mostly focus on RGB images and struggle to effectively handle the unique spatial-spectral characteristics and complex noise distributions of hyperspectral images (HSI). This paper proposes an HSI denoising framework, Hybrid-Domain Synergistic Transformer Network (HDST), based on frequency domain enhancement and multiscale modeling, achieving three-dimensional collaborative processing of spatial, frequency and channel domains. The method innovatively integrates three key mechanisms: (1) introducing an FFT preprocessing module with multi-band convolution to extract cross-band correlations and decouple spectral noise components; (2) designing a dynamic cross-domain attention module that adaptively fuses spatial domain texture features and frequency domain noise priors through a learnable gating mechanism; (3) building a hierarchical architecture where shallow layers capture global noise statistics using multiscale atrous convolution, and deep layers achieve detail recovery through frequency domain postprocessing. Experiments on both real and synthetic datasets demonstrate that HDST significantly improves denoising performance while maintaining computational efficiency, validating the effectiveness of the proposed method. This research provides new insights and a universal framework for addressing complex noise coupling issues in HSI and other high-dimensional visual data. The code is available at https://github.com/lhy-cn/HDST-HSIDenoise.
comment: 10 pages, 4 figures, 4 tables
☆ Local Prompt Adaptation for Style-Consistent Multi-Object Generation in Diffusion Models
Diffusion models have become a powerful backbone for text-to-image generation, enabling users to synthesize high-quality visuals from natural language prompts. However, they often struggle with complex prompts involving multiple objects and global or local style specifications. In such cases, the generated scenes tend to lack style uniformity and spatial coherence, limiting their utility in creative and controllable content generation. In this paper, we propose a simple, training-free architectural method called Local Prompt Adaptation (LPA). Our method decomposes the prompt into content and style tokens, and injects them selectively into the U-Net's attention layers at different stages. By conditioning object tokens early and style tokens later in the generation process, LPA enhances both layout control and stylistic consistency. We evaluate our method on a custom benchmark of 50 style-rich prompts across five categories and compare against strong baselines including Composer, MultiDiffusion, Attend-and-Excite, LoRA, and SDXL. Our approach outperforms prior work on both CLIP score and style consistency metrics, offering a new direction for controllable, expressive diffusion-based generation.
comment: 10 Pages, 8 figures, pre-print
♻ ☆ NSegment : Label-specific Deformations for Remote Sensing Image Segmentation
Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to the high cost of labeling complicates training noise-robust models. While sophisticated mechanisms such as label selection or noise correction might address the issue mentioned above, they tend to increase training time and add implementation complexity. In this paper, we propose NSegment-a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. Experimental results demonstrate that our approach improves the performance of RS image segmentation over various state-of-the-art models.
♻ ☆ Deformable Convolution Module with Globally Learned Relative Offsets for Fundus Vessel Segmentation
Deformable convolution can adaptively change the shape of convolution kernel by learning offsets to deal with complex shape features. We propose a novel plug and play deformable convolutional module that uses attention and feedforward networks to learn offsets, so that the deformable patterns can capture long-distance global features. Compared with previously existing deformable convolutions, the proposed module learns the sub pixel displacement field and adaptively warps the feature maps across all channels rather than directly deforms the convolution kernel , which is equivalent to a relative deformation of the kernel sampling grids, achieving global feature deformation and the decoupling of kernel size and learning network. Considering that the fundus blood vessels have globally self similar complex edges, we design a deep learning model for fundus blood vessel segmentation, GDCUnet, based on the proposed convolutional module. Empirical evaluations under the same configuration and unified framework show that GDCUnet has achieved state of the art performance on public datasets. Further ablation experiments demonstrated that the proposed deformable convolutional module could more significantly learn the complex features of fundus blood vessels, enhancing the model representation and generalization capabilities. The proposed module is similar to the interface of conventional convolution, we suggest applying it to more machine vision tasks with complex global self similar features.
comment: Added a graphical abstract and refined some wording
♻ ☆ LUDVIG: Learning-Free Uplifting of 2D Visual Features to Gaussian Splatting Scenes ICCV 2025
We address the problem of extending the capabilities of vision foundation models such as DINO, SAM, and CLIP, to 3D tasks. Specifically, we introduce a novel method to uplift 2D image features into Gaussian Splatting representations of 3D scenes. Unlike traditional approaches that rely on minimizing a reconstruction loss, our method employs a simpler and more efficient feature aggregation technique, augmented by a graph diffusion mechanism. Graph diffusion refines 3D features, such as coarse segmentation masks, by leveraging 3D geometry and pairwise similarities induced by DINOv2. Our approach achieves performance comparable to the state of the art on multiple downstream tasks while delivering significant speed-ups. Notably, we obtain competitive segmentation results using only generic DINOv2 features, despite DINOv2 not being trained on millions of annotated segmentation masks like SAM. When applied to CLIP features, our method demonstrates strong performance in open-vocabulary object segmentation tasks, highlighting the versatility of our approach.
comment: Published at ICCV 2025. Project page: https://juliettemarrie.github.io/ludvig
♻ ☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
♻ ☆ Point Cloud Self-supervised Learning via 3D to Multi-view Masked Learner ICCV 2025
Recently, multi-modal masked autoencoders (MAE) has been introduced in 3D self-supervised learning, offering enhanced feature learning by leveraging both 2D and 3D data to capture richer cross-modal representations. However, these approaches have two limitations: (1) they inefficiently require both 2D and 3D modalities as inputs, even though the inherent multi-view properties of 3D point clouds already contain 2D modality. (2) input 2D modality causes the reconstruction learning to unnecessarily rely on visible 2D information, hindering 3D geometric representation learning. To address these challenges, we propose a 3D to Multi-View Learner (Multi-View ML) that only utilizes 3D modalities as inputs and effectively capture rich spatial information in 3D point clouds. Specifically, we first project 3D point clouds to multi-view 2D images at the feature level based on 3D-based pose. Then, we introduce two components: (1) a 3D to multi-view autoencoder that reconstructs point clouds and multi-view images from 3D and projected 2D features; (2) a multi-scale multi-head (MSMH) attention mechanism that facilitates local-global information interactions in each decoder transformer block through attention heads at various scales. Additionally, a novel two-stage self-training strategy is proposed to align 2D and 3D representations. Our method outperforms state-of-the-art counterparts across various downstream tasks, including 3D classification, part segmentation, and object detection.
comment: Accepted by ICCV 2025
♻ ☆ AutoLungDx: A Hybrid Deep Learning Approach for Early Lung Cancer Diagnosis Using 3D Res-U-Net, YOLOv5, and Vision Transformers
Lung cancer is a leading cause of cancer-related deaths worldwide, and early detection is crucial for improving patient outcomes. Nevertheless, early diagnosis of cancer is a major challenge, particularly in low-resource settings where access to medical resources and trained radiologists is limited. The objective of this study is to propose an automated end-to-end deep learning-based framework for the early detection and classification of lung nodules, specifically for low-resource settings. The proposed framework consists of three stages: lung segmentation using a modified 3D U-Net named 3D Res-U-Net, nodule detection using YOLO-v5, and classification with a Vision Transformer-based architecture. We evaluated the proposed framework on a publicly available dataset, LUNA16. The proposed framework's performance was measured using the respective domain's evaluation matrices. The proposed framework achieved a 98.82% lung segmentation dice score while detecting the lung nodule with 0.76 mAP@50 from the segmented lung, at a low false-positive rate. The performance of both networks of the proposed framework was compared with other studies and found to outperform them regarding segmentation and detection accuracy. Additionally, our proposed Vision transformer network obtained an accuracy of 93.57%, which is 1.21% higher than the state-of-the-art networks. Our proposed end-to-end deep learning-based framework can effectively segment lungs, and detect and classify lung nodules, specifically in low-resource settings with limited access to radiologists. The proposed framework outperforms existing studies regarding all the respective evaluation metrics. The proposed framework can potentially improve the accuracy and efficiency of lung cancer screening in low-resource settings, ultimately leading to better patient outcomes.
♻ ☆ A Lightweight Face Quality Assessment Framework to Improve Face Verification Performance in Real-Time Screening Applications
Face image quality plays a critical role in determining the accuracy and reliability of face verification systems, particularly in real-time screening applications such as surveillance, identity verification, and access control. Low-quality face images, often caused by factors such as motion blur, poor lighting conditions, occlusions, and extreme pose variations, significantly degrade the performance of face recognition models, leading to higher false rejection and false acceptance rates. In this work, we propose a lightweight yet effective framework for automatic face quality assessment, which aims to pre-filter low-quality face images before they are passed to the verification pipeline. Our approach utilises normalised facial landmarks in conjunction with a Random Forest Regression classifier to assess image quality, achieving an accuracy of 96.67%. By integrating this quality assessment module into the face verification process, we observe a substantial improvement in performance, including a comfortable 99.7% reduction in the false rejection rate and enhanced cosine similarity scores when paired with the ArcFace face verification model. To validate our approach, we have conducted experiments on a real-world dataset collected comprising over 600 subjects captured from CCTV footage in unconstrained environments within Dubai Police. Our results demonstrate that the proposed framework effectively mitigates the impact of poor-quality face images, outperforming existing face quality assessment techniques while maintaining computational efficiency. Moreover, the framework specifically addresses two critical challenges in real-time screening: variations in face resolution and pose deviations, both of which are prevalent in practical surveillance scenarios.
♻ ☆ Doodle Your Keypoints: Sketch-Based Few-Shot Keypoint Detection ICCV 2025
Keypoint detection, integral to modern machine perception, faces challenges in few-shot learning, particularly when source data from the same distribution as the query is unavailable. This gap is addressed by leveraging sketches, a popular form of human expression, providing a source-free alternative. However, challenges arise in mastering cross-modal embeddings and handling user-specific sketch styles. Our proposed framework overcomes these hurdles with a prototypical setup, combined with a grid-based locator and prototypical domain adaptation. We also demonstrate success in few-shot convergence across novel keypoints and classes through extensive experiments.
comment: Accepted at ICCV 2025. Project Page: https://subhajitmaity.me/DYKp
♻ ☆ Representing 3D Shapes With 64 Latent Vectors for 3D Diffusion Models
Constructing a compressed latent space through a variational autoencoder (VAE) is the key for efficient 3D diffusion models. This paper introduces COD-VAE that encodes 3D shapes into a COmpact set of 1D latent vectors without sacrificing quality. COD-VAE introduces a two-stage autoencoder scheme to improve compression and decoding efficiency. First, our encoder block progressively compresses point clouds into compact latent vectors via intermediate point patches. Second, our triplane-based decoder reconstructs dense triplanes from latent vectors instead of directly decoding neural fields, significantly reducing computational overhead of neural fields decoding. Finally, we propose uncertainty-guided token pruning, which allocates resources adaptively by skipping computations in simpler regions and improves the decoder efficiency. Experimental results demonstrate that COD-VAE achieves 16x compression compared to the baseline while maintaining quality. This enables 20.8x speedup in generation, highlighting that a large number of latent vectors is not a prerequisite for high-quality reconstruction and generation. The code is available at https://github.com/join16/COD-VAE.
♻ ☆ Towards End-to-End Neuromorphic Event-based 3D Object Reconstruction Without Physical Priors ICME
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
comment: 6 pages, 3 figures, 5 tables, accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
♻ ☆ RadMamba: Efficient Human Activity Recognition through Radar-based Micro-Doppler-Oriented Mamba State-Space Model
Radar-based HAR has emerged as a promising alternative to conventional monitoring approaches, such as wearable devices and camera-based systems, due to its unique privacy preservation and robustness advantages. However, existing solutions based on convolutional and recurrent neural networks, although effective, are computationally demanding during deployment. This limits their applicability in scenarios with constrained resources or those requiring multiple sensors. Advanced architectures, such as Vision Transformer (ViT) and State-Space Model (SSM) architectures, offer improved modeling capabilities and have made efforts toward lightweight designs. However, their computational complexity remains relatively high. To leverage the strengths of transformer architectures while simultaneously enhancing accuracy and reducing computational complexity, this paper introduces RadMamba, a parameter-efficient, radar micro-Doppler-oriented Mamba SSM specifically tailored for radar-based HAR. Across three diverse datasets, RadMamba matches the top-performing previous model's 99.8% classification accuracy on Dataset DIAT with only 1/400 of its parameters and equals the leading models' 92.0% accuracy on Dataset CI4R with merely 1/10 of their parameters. In scenarios with continuous sequences of actions evaluated on Dataset UoG2020, RadMamba surpasses other models with significantly higher parameter counts by at least 3%, achieving this with only 6.7k parameters. Our code is available at: https://github.com/lab-emi/AIRHAR.
comment: Under Review
♻ ☆ CP-LLM: Context and Pixel Aware Large Language Model for Video Quality Assessment
Video quality assessment (VQA) is a challenging research topic with broad applications. Effective VQA necessitates sensitivity to pixel-level distortions and a comprehensive understanding of video context to accurately determine the perceptual impact of distortions. Traditional hand-crafted and learning-based VQA models mainly focus on pixel-level distortions and lack contextual understanding, while recent LLM-based models struggle with sensitivity to small distortions or handle quality scoring and description as separate tasks. To address these shortcomings, we introduce CP-LLM: a Context and Pixel aware Large Language Model. CP-LLM is a novel multimodal LLM architecture featuring dual vision encoders designed to independently analyze perceptual quality at both high-level (video context) and low-level (pixel distortion) granularity, along with a language decoder subsequently reasons about the interplay between these aspects. This design enables CP-LLM to simultaneously produce robust quality scores and interpretable quality descriptions, with enhanced sensitivity to pixel distortions (e.g. compression artifacts). The model is trained via a multi-task pipeline optimizing for score prediction, description generation, and pairwise comparisons. Experiment results demonstrate that CP-LLM achieves state-of-the-art cross-dataset performance on established VQA benchmarks and superior robustness to pixel distortions, confirming its efficacy for comprehensive and practical video quality assessment in real-world scenarios.
comment: Under review
♻ ☆ FlowAlign: Trajectory-Regularized, Inversion-Free Flow-based Image Editing
Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose {\em FlowAlign}, a novel inversion-free flow-based framework for consistent image editing with optimal control-based trajectory control. Specifically, FlowAlign introduces source similarity at the terminal point as a regularization term to promote smoother and more consistent trajectories during the editing process. Notably, our terminal point regularization is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highliting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.
♻ ☆ MASQUE: A Text-Guided Diffusion-Based Framework for Localized and Customized Adversarial Makeup
As facial recognition is increasingly adopted for government and commercial services, its potential misuse has raised serious concerns about privacy and civil rights. To counteract, various anti-facial recognition techniques have been proposed for privacy protection by adversarially perturbing face images, among which generative makeup-based approaches are the most popular. However, these methods, designed primarily to impersonate specific target identities, can only achieve weak dodging success rates while increasing the risk of targeted abuse. In addition, they often introduce global visual artifacts or a lack of adaptability to accommodate diverse makeup prompts, compromising user satisfaction. To address the above limitations, we develop MASQUE, a novel diffusion-based framework that generates localized adversarial makeups guided by user-defined text prompts. Built upon precise null-text inversion, customized cross-attention fusion with masking, and a pairwise adversarial guidance mechanism using images of the same individual, MASQUE achieves robust dodging performance without requiring any external identity. Comprehensive evaluations on open-source facial recognition models and commercial APIs demonstrate that MASQUE significantly improves dodging success rates over all baselines, along with higher perceptual fidelity and stronger adaptability to various text makeup prompts.
♻ ☆ DDB: Diffusion Driven Balancing to Address Spurious Correlations
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a Diffusion Driven Balancing (DDB) technique to generate training samples with text-to-image diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods. Our code is available at https://github.com/ArianYp/DDB.
♻ ☆ ADAgent: LLM Agent for Alzheimer's Disease Analysis with Collaborative Coordinator
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. Early and precise diagnosis of AD is crucial for timely intervention and treatment planning to alleviate the progressive neurodegeneration. However, most existing methods rely on single-modality data, which contrasts with the multifaceted approach used by medical experts. While some deep learning approaches process multi-modal data, they are limited to specific tasks with a small set of input modalities and cannot handle arbitrary combinations. This highlights the need for a system that can address diverse AD-related tasks, process multi-modal or missing input, and integrate multiple advanced methods for improved performance. In this paper, we propose ADAgent, the first specialized AI agent for AD analysis, built on a large language model (LLM) to address user queries and support decision-making. ADAgent integrates a reasoning engine, specialized medical tools, and a collaborative outcome coordinator to facilitate multi-modal diagnosis and prognosis tasks in AD. Extensive experiments demonstrate that ADAgent outperforms SOTA methods, achieving significant improvements in accuracy, including a 2.7% increase in multi-modal diagnosis, a 0.7% improvement in multi-modal prognosis, and enhancements in MRI and PET diagnosis tasks.
♻ ☆ GenM$^3$: Generative Pretrained Multi-path Motion Model for Text Conditional Human Motion Generation
Scaling up motion datasets is crucial to enhance motion generation capabilities. However, training on large-scale multi-source datasets introduces data heterogeneity challenges due to variations in motion content. To address this, we propose Generative Pretrained Multi-path Motion Model (GenM\(^3\)), a comprehensive framework designed to learn unified motion representations. GenM\(^3\) comprises two components: 1) a Multi-Expert VQ-VAE (MEVQ-VAE) that adapts to different dataset distributions to learn a unified discrete motion representation, and 2) a Multi-path Motion Transformer (MMT) that improves intra-modal representations by using separate modality-specific pathways, each with densely activated experts to accommodate variations within that modality, and improves inter-modal alignment by the text-motion shared pathway. To enable large-scale training, we integrate and unify 11 high-quality motion datasets (approximately 220 hours of motion data) and augment it with textual annotations (nearly 10,000 motion sequences labeled by a large language model and 300+ by human experts). After training on our integrated dataset, GenM\(^3\) achieves a state-of-the-art FID of 0.035 on the HumanML3D benchmark, surpassing state-of-the-art methods by a large margin. It also demonstrates strong zero-shot generalization on IDEA400 dataset, highlighting its effectiveness and adaptability across diverse motion scenarios.
♻ ☆ Vidar: Embodied Video Diffusion Model for Generalist Bimanual Manipulation
Bimanual robotic manipulation, which involves the coordinated control of two robotic arms, is foundational for solving challenging tasks. Despite recent progress in general-purpose manipulation, data scarcity and embodiment heterogeneity remain serious obstacles to further scaling up in bimanual settings. In this paper, we introduce Video Diffusion for Action Reasoning (Vidar), a two-stage framework that leverages large-scale, diffusion-based video pre-training and a novel masked inverse dynamics model for action prediction. We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms, utilizing a unified observation space that encodes robot, camera, task, and scene contexts. Our masked inverse dynamics model learns masks to extract action-relevant information from generated trajectories without requiring pixel-level labels, and the masks can effectively generalize to unseen backgrounds. Our experiments demonstrate that with only 20 minutes of human demonstrations on an unseen robot platform (only 1% of typical data requirements), Vidar generalizes to unseen tasks and backgrounds with strong semantic understanding, surpassing state-of-the-art methods. Our findings highlight the potential of video foundation models, coupled with masked action prediction, to enable scalable and generalizable robotic manipulation in diverse real-world settings.
♻ ☆ Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation
Although data-driven methods have achieved success in 3D human pose estimation, they often suffer from domain gaps and exhibit limited generalization. In contrast, optimization-based methods excel in fine-tuning for specific cases but are generally inferior to data-driven methods in overall performance. We observe that previous optimization-based methods commonly rely on a projection constraint, which only ensures alignment in 2D space, potentially leading to the overfitting problem. To address this, we propose an Uncertainty-Aware testing-time Optimization (UAO) framework, which keeps the prior information of the pre-trained model and alleviates the overfitting problem using the uncertainty of joints. Specifically, during the training phase, we design an effective 2D-to-3D network for estimating the corresponding 3D pose while quantifying the uncertainty of each 3D joint. For optimization during testing, the proposed optimization framework freezes the pre-trained model and optimizes only a latent state. Projection loss is then employed to ensure the generated poses are well aligned in 2D space for high-quality optimization. Furthermore, we utilize the uncertainty of each joint to determine how much each joint is allowed for optimization. The effectiveness and superiority of the proposed framework are validated through extensive experiments on challenging datasets: Human3.6M, MPI-INF-3DHP, and 3DPW. Notably, our approach outperforms the previous best result by a large margin of 5.5\% on Human3.6M. Code is available at \href{https://github.com/xiu-cs/UAO-Pose3D}{https://github.com/xiu-cs/UAO-Pose3D}.
comment: Accepted by IEEE Transactions on Multimedia. Open sourced
♻ ☆ Video2BEV: Transforming Drone Videos to BEVs for Video-based Geo-localization
Existing approaches to drone visual geo-localization predominantly adopt the image-based setting, where a single drone-view snapshot is matched with images from other platforms. Such task formulation, however, underutilizes the inherent video output of the drone and is sensitive to occlusions and viewpoint disparity. To address these limitations, we formulate a new video-based drone geo-localization task and propose the Video2BEV paradigm. This paradigm transforms the video into a Bird's Eye View (BEV), simplifying the subsequent \textbf{inter-platform} matching process. In particular, we employ Gaussian Splatting to reconstruct a 3D scene and obtain the BEV projection. Different from the existing transform methods, \eg, polar transform, our BEVs preserve more fine-grained details without significant distortion. To facilitate the discriminative \textbf{intra-platform} representation learning, our Video2BEV paradigm also incorporates a diffusion-based module for generating hard negative samples. To validate our approach, we introduce UniV, a new video-based geo-localization dataset that extends the image-based University-1652 dataset. UniV features flight paths at $30^\circ$ and $45^\circ$ elevation angles with increased frame rates of up to 10 frames per second (FPS). Extensive experiments on the UniV dataset show that our Video2BEV paradigm achieves competitive recall rates and outperforms conventional video-based methods. Compared to other competitive methods, our proposed approach exhibits robustness at lower elevations with more occlusions.
♻ ☆ Compressed Image Generation with Denoising Diffusion Codebook Models ICML
We present a novel generative approach based on Denoising Diffusion Models (DDMs), which produces high-quality image samples along with their losslessly compressed bit-stream representations. This is obtained by replacing the standard Gaussian noise sampling in the reverse diffusion with a selection of noise samples from pre-defined codebooks of fixed iid Gaussian vectors. Surprisingly, we find that our method, termed Denoising Diffusion Codebook Model (DDCM), retains sample quality and diversity of standard DDMs, even for extremely small codebooks. We leverage DDCM and pick the noises from the codebooks that best match a given image, converting our generative model into a highly effective lossy image codec achieving state-of-the-art perceptual image compression results. More generally, by setting other noise selections rules, we extend our compression method to any conditional image generation task (e.g., image restoration), where the generated images are produced jointly with their condensed bit-stream representations. Our work is accompanied by a mathematical interpretation of the proposed compressed conditional generation schemes, establishing a connection with score-based approximations of posterior samplers for the tasks considered.
comment: Published in the International Conference on Machine Learning (ICML) 2025. Code and demo are available at https://ddcm-2025.github.io/
♻ ☆ Knowledge Distillation with Refined Logits ICCV 2025
Recent research on knowledge distillation has increasingly focused on logit distillation because of its simplicity, effectiveness, and versatility in model compression. In this paper, we introduce Refined Logit Distillation (RLD) to address the limitations of current logit distillation methods. Our approach is motivated by the observation that even high-performing teacher models can make incorrect predictions, creating an exacerbated divergence between the standard distillation loss and the cross-entropy loss, which can undermine the consistency of the student model's learning objectives. Previous attempts to use labels to empirically correct teacher predictions may undermine the class correlations. In contrast, our RLD employs labeling information to dynamically refine teacher logits. In this way, our method can effectively eliminate misleading information from the teacher while preserving crucial class correlations, thus enhancing the value and efficiency of distilled knowledge. Experimental results on CIFAR-100 and ImageNet demonstrate its superiority over existing methods. Our code is available at https://github.com/zju-SWJ/RLD.
comment: ICCV 2025
♻ ☆ Beyond Walking: A Large-Scale Image-Text Benchmark for Text-based Person Anomaly Search
Text-based person search aims to retrieve specific individuals across camera networks using natural language descriptions. However, current benchmarks often exhibit biases towards common actions like walking or standing, neglecting the critical need for identifying abnormal behaviors in real-world scenarios. To meet such demands, we propose a new task, text-based person anomaly search, locating pedestrians engaged in both routine or anomalous activities via text. To enable the training and evaluation of this new task, we construct a large-scale image-text Pedestrian Anomaly Behavior (PAB) benchmark, featuring a broad spectrum of actions, e.g., running, performing, playing soccer, and the corresponding anomalies, e.g., lying, being hit, and falling of the same identity. The training set of PAB comprises 1,013,605 synthesized image-text pairs of both normalities and anomalies, while the test set includes 1,978 real-world image-text pairs. To validate the potential of PAB, we introduce a cross-modal pose-aware framework, which integrates human pose patterns with identity-based hard negative pair sampling. Extensive experiments on the proposed benchmark show that synthetic training data facilitates the fine-grained behavior retrieval, and the proposed pose-aware method arrives at 84.93% recall@1 accuracy, surpassing other competitive methods. The dataset, model, and code are available at https://github.com/Shuyu-XJTU/CMP.
♻ ☆ Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Medical Images
Anomaly detection in medical imaging plays a crucial role in identifying pathological regions across various imaging modalities, such as brain MRI, liver CT, and carotid ultrasound (US). However, training fully supervised segmentation models is often hindered by the scarcity of expert annotations and the complexity of diverse anatomical structures. To address these issues, we propose a novel unsupervised anomaly detection framework based on a diffusion model that incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process. Synomaly noise introduces synthetic anomalies into healthy images during training, allowing the model to effectively learn anomaly removal. The multi-stage diffusion process is introduced to progressively denoise images, preserving fine details while improving the quality of anomaly-free reconstructions. The generated high-fidelity counterfactual healthy images can further enhance the interpretability of the segmentation models, as well as provide a reliable baseline for evaluating the extent of anomalies and supporting clinical decision-making. Notably, the unsupervised anomaly detection model is trained purely on healthy images, eliminating the need for anomalous training samples and pixel-level annotations. We validate the proposed approach on brain MRI, liver CT datasets, and carotid US. The experimental results demonstrate that the proposed framework outperforms existing state-of-the-art unsupervised anomaly detection methods, achieving performance comparable to fully supervised segmentation models in the US dataset. Ablation studies further highlight the contributions of Synomaly noise and the multi-stage diffusion process in improving anomaly segmentation. These findings underscore the potential of our approach as a robust and annotation-efficient alternative for medical anomaly detection.
♻ ☆ A Unified Image-Dense Annotation Generation Model for Underwater Scenes CVPR 2025
Underwater dense prediction, especially depth estimation and semantic segmentation, is crucial for gaining a comprehensive understanding of underwater scenes. Nevertheless, high-quality and large-scale underwater datasets with dense annotations remain scarce because of the complex environment and the exorbitant data collection costs. This paper proposes a unified Text-to-Image and DEnse annotation generation method (TIDE) for underwater scenes. It relies solely on text as input to simultaneously generate realistic underwater images and multiple highly consistent dense annotations. Specifically, we unify the generation of text-to-image and text-to-dense annotations within a single model. The Implicit Layout Sharing mechanism (ILS) and cross-modal interaction method called Time Adaptive Normalization (TAN) are introduced to jointly optimize the consistency between image and dense annotations. We synthesize a large-scale underwater dataset using TIDE to validate the effectiveness of our method in underwater dense prediction tasks. The results demonstrate that our method effectively improves the performance of existing underwater dense prediction models and mitigates the scarcity of underwater data with dense annotations. We hope our method can offer new perspectives on alleviating data scarcity issues in other fields. The code is available at https://github.com/HongkLin/TIDE
comment: Accepted by CVPR 2025. The code is available at https://github.com/HongkLin/TIDE
♻ ☆ Emerging Properties in Unified Multimodal Pretraining
Unifying multimodal understanding and generation has shown impressive capabilities in cutting-edge proprietary systems. In this work, we introduce BAGEL, an open-source foundational model that natively supports multimodal understanding and generation. BAGEL is a unified, decoder-only model pretrained on trillions of tokens curated from large-scale interleaved text, image, video, and web data. When scaled with such diverse multimodal interleaved data, BAGEL exhibits emerging capabilities in complex multimodal reasoning. As a result, it significantly outperforms open-source unified models in both multimodal generation and understanding across standard benchmarks, while exhibiting advanced multimodal reasoning abilities such as free-form image manipulation, future frame prediction, 3D manipulation, and world navigation. In the hope of facilitating further opportunities for multimodal research, we share the key findings, pretraining details, data creation protocal, and release our code and checkpoints to the community. The project page is at https://bagel-ai.org/
comment: 37 pages, 17 figures
♻ ☆ Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning
Recently, leveraging pre-training techniques to enhance point cloud models has become a prominent research topic. However, existing approaches typically require full fine-tuning of pre-trained models to achieve satisfactory performance on downstream tasks, which is storage-intensive and computationally demanding. To address this issue, we propose a novel Parameter-Efficient Fine-Tuning (PEFT) method for point cloud, called \textbf{PointGST} (\textbf{Point} cloud \textbf{G}raph \textbf{S}pectral \textbf{T}uning). PointGST freezes the pre-trained model and introduces a lightweight, trainable Point Cloud Spectral Adapter (PCSA) for fine-tuning parameters in the spectral domain. The core idea is built on two observations: 1) The inner tokens from frozen models might present confusion in the spatial domain; 2) Task-specific intrinsic information is important for transferring the general knowledge to the downstream task. Specifically, PointGST transfers the point tokens from the spatial domain to the spectral domain, effectively de-correlating confusion among tokens by using orthogonal components for separation. Moreover, the generated spectral basis involves intrinsic information about the downstream point clouds, enabling more targeted tuning. As a result, PointGST facilitates the efficient transfer of general knowledge to downstream tasks while significantly reducing training costs. Extensive experiments on challenging point cloud datasets across various tasks demonstrate that PointGST not only outperforms its fully fine-tuning counterpart but also significantly reduces trainable parameters, making it a promising solution for efficient point cloud learning. The code will be made available at https://github.com/jerryfeng2003/PointGST
comment: Accepted by IEEE TPAMI. The code will be made available at https://github.com/jerryfeng2003/PointGST
♻ ☆ Manipulating Multimodal Agents via Cross-Modal Prompt Injection
The emergence of multimodal large language models has redefined the agent paradigm by integrating language and vision modalities with external data sources, enabling agents to better interpret human instructions and execute increasingly complex tasks. However, in this paper, we identify a critical yet previously overlooked security vulnerability in multimodal agents: cross-modal prompt injection attacks. To exploit this vulnerability, we propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities to align with target malicious content, allowing external instructions to hijack the agent's decision-making process and execute unauthorized tasks. Our approach incorporates two key coordinated components. First, we introduce Visual Latent Alignment, where we optimize adversarial features to the malicious instructions in the visual embedding space based on a text-to-image generative model, ensuring that adversarial images subtly encode cues for malicious task execution. Subsequently, we present Textual Guidance Enhancement, where a large language model is leveraged to construct the black-box defensive system prompt through adversarial meta prompting and generate an malicious textual command that steers the agent's output toward better compliance with attackers' requests. Extensive experiments demonstrate that our method outperforms state-of-the-art attacks, achieving at least a +30.1% increase in attack success rates across diverse tasks. Furthermore, we validate our attack's effectiveness in real-world multimodal autonomous agents, highlighting its potential implications for safety-critical applications.
comment: 16 pages, 5 figures
♻ ☆ Adaptive Real-Time Multi-Loss Function Optimization Using Dynamic Memory Fusion Framework: A Case Study on Breast Cancer Segmentation
Deep learning has proven to be a highly effective tool for a wide range of applications, significantly when leveraging the power of multi-loss functions to optimize performance on multiple criteria simultaneously. However, optimal selection and weighting loss functions in deep learning tasks can significantly influence model performance, yet manual tuning of these functions is often inefficient and inflexible. We propose a novel framework called dynamic memory fusion for adaptive multi-loss function penalizing in real-time to address this. This framework leverages historical loss values data to dynamically adjust the weighting of multiple loss functions throughout the training process. Additionally, this framework integrates an auxiliary loss function to enhance model performance in the early stages. To further research horizons, we introduce the class-balanced dice loss function, designed to address class imbalance by prioritizing underrepresented classes. Experiments on breast ultrasound datasets demonstrate that the framework improves segmentation performance across various metrics. These results demonstrate the effectiveness of our proposed framework in ensuring that the model dynamically adjusts its focus to prioritize the most relevant criteria, leading to improved performance in evolving environments. The source code for our proposed methodology is publicly available on GitHub.
♻ ☆ Robotic Visual Instruction
Recently, natural language has been the primary medium for human-robot interaction. However, its inherent lack of spatial precision introduces challenges for robotic task definition such as ambiguity and verbosity. Moreover, in some public settings where quiet is required, such as libraries or hospitals, verbal communication with robots is inappropriate. To address these limitations, we introduce the Robotic Visual Instruction (RoVI), a novel paradigm to guide robotic tasks through an object-centric, hand-drawn symbolic representation. RoVI effectively encodes spatial-temporal information into human-interpretable visual instructions through 2D sketches, utilizing arrows, circles, colors, and numbers to direct 3D robotic manipulation. To enable robots to understand RoVI better and generate precise actions based on RoVI, we present Visual Instruction Embodied Workflow (VIEW), a pipeline formulated for RoVI-conditioned policies. This approach leverages Vision-Language Models (VLMs) to interpret RoVI inputs, decode spatial and temporal constraints from 2D pixel space via keypoint extraction, and then transform them into executable 3D action sequences. We additionally curate a specialized dataset of 15K instances to fine-tune small VLMs for edge deployment,enabling them to effectively learn RoVI capabilities. Our approach is rigorously validated across 11 novel tasks in both real and simulated environments, demonstrating significant generalization capability. Notably, VIEW achieves an 87.5% success rate in real-world scenarios involving unseen tasks that feature multi-step actions, with disturbances, and trajectory-following requirements. Project website: https://robotic-visual-instruction.github.io/
comment: Project website: https://robotic-visual-instruction.github.io/
♻ ☆ 3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models
3D generation is experiencing rapid advancements, while the development of 3D evaluation has not kept pace. How to keep automatic evaluation equitably aligned with human perception has become a well-recognized challenge. Recent advances in the field of language and image generation have explored human preferences and showcased respectable fitting ability. However, the 3D domain still lacks such a comprehensive preference dataset over generative models. To mitigate this absence, we develop 3DGen-Arena, an integrated platform in a battle manner. Then, we carefully design diverse text and image prompts and leverage the arena platform to gather human preferences from both public users and expert annotators, resulting in a large-scale multi-dimension human preference dataset 3DGen-Bench. Using this dataset, we further train a CLIP-based scoring model, 3DGen-Score, and a MLLM-based automatic evaluator, 3DGen-Eval. These two models innovatively unify the quality evaluation of text-to-3D and image-to-3D generation, and jointly form our automated evaluation system with their respective strengths. Extensive experiments demonstrate the efficacy of our scoring model in predicting human preferences, exhibiting a superior correlation with human ranks compared to existing metrics. We believe that our 3DGen-Bench dataset and automated evaluation system will foster a more equitable evaluation in the field of 3D generation, further promoting the development of 3D generative models and their downstream applications. Project page is available at https://zyh482.github.io/3DGen-Bench/.
comment: Page: https://zyh482.github.io/3DGen-Bench/ ; Code: https://github.com/3DTopia/3DGen-Bench
♻ ☆ Benchmarking and Learning Multi-Dimensional Quality Evaluator for Text-to-3D Generation
Text-to-3D generation has achieved remarkable progress in recent years, yet evaluating these methods remains challenging for two reasons: i) Existing benchmarks lack fine-grained evaluation on different prompt categories and evaluation dimensions. ii) Previous evaluation metrics only focus on a single aspect (e.g., text-3D alignment) and fail to perform multi-dimensional quality assessment. To address these problems, we first propose a comprehensive benchmark named MATE-3D. The benchmark contains eight well-designed prompt categories that cover single and multiple object generation, resulting in 1,280 generated textured meshes. We have conducted a large-scale subjective experiment from four different evaluation dimensions and collected 107,520 annotations, followed by detailed analyses of the results. Based on MATE-3D, we propose a novel quality evaluator named HyperScore. Utilizing hypernetwork to generate specified mapping functions for each evaluation dimension, our metric can effectively perform multi-dimensional quality assessment. HyperScore presents superior performance over existing metrics on MATE-3D, making it a promising metric for assessing and improving text-to-3D generation. The project is available at https://mate-3d.github.io/.
♻ ☆ HLFormer: Enhancing Partially Relevant Video Retrieval with Hyperbolic Learning ICCV'25
Partially Relevant Video Retrieval (PRVR) addresses the critical challenge of matching untrimmed videos with text queries describing only partial content. Existing methods suffer from geometric distortion in Euclidean space that sometimes misrepresents the intrinsic hierarchical structure of videos and overlooks certain hierarchical semantics, ultimately leading to suboptimal temporal modeling. To address this issue, we propose the first hyperbolic modeling framework for PRVR, namely HLFormer, which leverages hyperbolic space learning to compensate for the suboptimal hierarchical modeling capabilities of Euclidean space. Specifically, HLFormer integrates the Lorentz Attention Block and Euclidean Attention Block to encode video embeddings in hybrid spaces, using the Mean-Guided Adaptive Interaction Module to dynamically fuse features. Additionally, we introduce a Partial Order Preservation Loss to enforce "text < video" hierarchy through Lorentzian cone constraints. This approach further enhances cross-modal matching by reinforcing partial relevance between video content and text queries. Extensive experiments show that HLFormer outperforms state-of-the-art methods. Code is released at https://github.com/lijun2005/ICCV25-HLFormer.
comment: Accepted by ICCV'25. 13 pages, 6 figures, 4 tables
♻ ☆ MATE: Motion-Augmented Temporal Consistency for Event-based Point Tracking
Tracking Any Point (TAP) plays a crucial role in motion analysis. Video-based approaches rely on iterative local matching for tracking, but they assume linear motion during the blind time between frames, which leads to point loss under large displacements or nonlinear motion. The high temporal resolution and motion blur-free characteristics of event cameras provide continuous, fine-grained motion information, capturing subtle variations with microsecond precision. This paper presents an event-based framework for tracking any point, which tackles the challenges posed by spatial sparsity and motion sensitivity in events through two tailored modules. Specifically, to resolve ambiguities caused by event sparsity, a motion-guidance module incorporates kinematic vectors into the local matching process. Additionally, a variable motion aware module is integrated to ensure temporally consistent responses that are insensitive to varying velocities, thereby enhancing matching precision. To validate the effectiveness of the approach, two event dataset for tracking any point is constructed by simulation. The method improves the $Survival_{50}$ metric by 17.9% over event-only tracking of any point baseline. Moreover, on standard feature tracking benchmarks, it outperforms all existing methods, even those that combine events and video frames.
♻ ☆ Motion Keyframe Interpolation for Any Human Skeleton via Temporally Consistent Point Cloud Sampling and Reconstruction ECCV 2024
In the character animation field, modern supervised keyframe interpolation models have demonstrated exceptional performance in constructing natural human motions from sparse pose definitions. As supervised models, large motion datasets are necessary to facilitate the learning process; however, since motion is represented with fixed hierarchical skeletons, such datasets are incompatible for skeletons outside the datasets' native configurations. Consequently, the expected availability of a motion dataset for desired skeletons severely hinders the feasibility of learned interpolation in practice. To combat this limitation, we propose Point Cloud-based Motion Representation Learning (PC-MRL), an unsupervised approach to enabling cross-compatibility between skeletons for motion interpolation learning. PC-MRL consists of a skeleton obfuscation strategy using temporal point cloud sampling, and an unsupervised skeleton reconstruction method from point clouds. We devise a temporal point-wise K-nearest neighbors loss for unsupervised learning. Moreover, we propose First-frame Offset Quaternion (FOQ) and Rest Pose Augmentation (RPA) strategies to overcome necessary limitations of our unsupervised point cloud-to-skeletal motion process. Comprehensive experiments demonstrate the effectiveness of PC-MRL in motion interpolation for desired skeletons without supervision from native datasets.
comment: Published in ECCV 2024
DSwinIR: Rethinking Window-based Attention for Image Restoration
Image restoration has witnessed significant advancements with the development of deep learning models. Especially Transformer-based models, particularly those leveraging window-based self-attention, have become a dominant force in image restoration. However, their performance is fundamentally constrained by the rigid, non-overlapping window partitioning scheme, which leads to two critical limitations: insufficient feature interaction across window boundaries and content-agnostic receptive fields that cannot adapt to diverse image structures. Existing methods often rely on heuristic patterns to mitigate these issues, rather than addressing the root cause. In this paper, we propose the Deformable Sliding Window Transformer (DSwinIR), a new foundational backbone architecture that systematically overcomes these limitations. At the heart of DSwinIR is the proposed novel Deformable Sliding Window (DSwin) Attention. This mechanism introduces two fundamental innovations. First, it replaces the rigid partitioning with a token-centric sliding window paradigm, ensuring seamless cross-window information flow and effectively eliminating boundary artifacts. Second, it incorporates a content-aware deformable sampling strategy, which allows the attention mechanism to learn data-dependent offsets and dynamically shape its receptive fields to focus on the most informative image regions. This synthesis endows the model with both strong locality-aware inductive biases and powerful, adaptive long-range modeling capabilities. Extensive experiments show that DSwinIR sets a new state-of-the-art across a wide spectrum of image restoration tasks. For instance, in all-in-one restoration, our DSwinIR surpasses the most recent backbone GridFormer by over 0.53 dB on the three-task benchmark and a remarkable 0.86 dB on the five-task benchmark.
♻ ☆ CopyJudge: Automated Copyright Infringement Identification and Mitigation in Text-to-Image Diffusion Models ACM MM 2025
Assessing whether AI-generated images are substantially similar to source works is a crucial step in resolving copyright disputes. In this paper, we propose CopyJudge, a novel automated infringement identification framework that leverages large vision-language models (LVLMs) to simulate practical court processes for determining substantial similarity between copyrighted images and those generated by text-to-image diffusion models. Specifically, we employ an abstraction-filtration-comparison test framework based on the multi-LVLM debate to assess the likelihood of infringement and provide detailed judgment rationales. Based on these judgments, we further introduce a general LVLM-based mitigation strategy that automatically optimizes infringing prompts by avoiding sensitive expressions while preserving the non-infringing content. Furthermore, assuming the input noise is controllable, our approach can be enhanced by iteratively exploring non-infringing noise vectors within the diffusion latent space, even without modifying the original prompts. Experimental results show that our automated identification method achieves comparable state-of-the-art performance, while offering superior generalization and interpretability across various forms of infringement, and that our mitigation method more effectively mitigates memorization and IP infringement with a high degree of alignment to the original non-infringing expressions.
comment: Accepted by ACM MM 2025
♻ ☆ Ask and Remember: A Questions-Only Replay Strategy for Continual Visual Question Answering ICCV 2025
Continual Learning in Visual Question Answering (VQACL) requires models to acquire new visual-linguistic skills (plasticity) while preserving previously learned knowledge (stability). The inherent multimodality of VQACL exacerbates this challenge, as models must balance stability across visual and textual domains while adapting to novel objects and reasoning tasks. Existing methods, primarily designed for unimodal settings, often fall short in addressing this dual requirement. In this work, we present QUestion-only replay with Attention Distillation (QUAD), a novel approach for VQACL that leverages only past task questions for regularization. By eliminating the need to store visual data, QUAD not only reduces memory overhead, but also alleviates privacy concerns. Our method introduces a Question-only Replay mechanism that selectively reuses prior task questions to counteract overfitting to the answer space of the current task, addressing the problem out of answer set. Complementing this, we propose Attention Consistency Distillation to enforce both intra-modal and inter-modal attention consistency across tasks, preserving essential visual-linguistic associations. Extensive experiments on VQAv2 and NExT-QA demonstrate that QUAD significantly outperforms state-of-the-art methods, achieving robust performance in continual VQA. Code is available at: https://github.com/IemProg/QUAD.
comment: ICCV 2025, 8 pages. Code: https://github.com/IemProg/QUAD
♻ ☆ ViewSRD: 3D Visual Grounding via Structured Multi-View Decomposition ICCV 2025
3D visual grounding aims to identify and localize objects in a 3D space based on textual descriptions. However, existing methods struggle with disentangling targets from anchors in complex multi-anchor queries and resolving inconsistencies in spatial descriptions caused by perspective variations. To tackle these challenges, we propose ViewSRD, a framework that formulates 3D visual grounding as a structured multi-view decomposition process. First, the Simple Relation Decoupling (SRD) module restructures complex multi-anchor queries into a set of targeted single-anchor statements, generating a structured set of perspective-aware descriptions that clarify positional relationships. These decomposed representations serve as the foundation for the Multi-view Textual-Scene Interaction (Multi-TSI) module, which integrates textual and scene features across multiple viewpoints using shared, Cross-modal Consistent View Tokens (CCVTs) to preserve spatial correlations. Finally, a Textual-Scene Reasoning module synthesizes multi-view predictions into a unified and robust 3D visual grounding. Experiments on 3D visual grounding datasets show that ViewSRD significantly outperforms state-of-the-art methods, particularly in complex queries requiring precise spatial differentiation. Code is available at https://github.com/visualjason/ViewSRD.
comment: Accepted by ICCV 2025
♻ ☆ Dual Frequency Branch Framework with Reconstructed Sliding Windows Attention for AI-Generated Image Detection
The rapid advancement of Generative Adversarial Networks (GANs) and diffusion models has enabled the creation of highly realistic synthetic images, presenting significant societal risks, such as misinformation and deception. As a result, detecting AI-generated images has emerged as a critical challenge. Existing researches emphasize extracting fine-grained features to enhance detector generalization, yet they often lack consideration for the importance and interdependencies of internal elements within local regions and are limited to a single frequency domain, hindering the capture of general forgery traces. To overcome the aforementioned limitations, we first utilize a sliding window to restrict the attention mechanism to a local window, and reconstruct the features within the window to model the relationships between neighboring internal elements within the local region. Then, we design a dual frequency domain branch framework consisting of four frequency domain subbands of DWT and the phase part of FFT to enrich the extraction of local forgery features from different perspectives. Through feature enrichment of dual frequency domain branches and fine-grained feature extraction of reconstruction sliding window attention, our method achieves superior generalization detection capabilities on both GAN and diffusion model-based generative images. Evaluated on diverse datasets comprising images from 65 distinct generative models, our approach achieves a 2.13\% improvement in detection accuracy over state-of-the-art methods.
comment: under review
♻ ☆ MIGE: Mutually Enhanced Multimodal Instruction-Based Image Generation and Editing ACM MM25
Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Inspired by this, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It first treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation, then introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism. This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: by leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a SOTA in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.
comment: This paper have been accepted by ACM MM25
♻ ☆ Versatile Multimodal Controls for Expressive Talking Human Animation ACM MM2025
In filmmaking, directors typically allow actors to perform freely based on the script before providing specific guidance on how to present key actions. AI-generated content faces similar requirements, where users not only need automatic generation of lip synchronization and basic gestures from audio input but also desire semantically accurate and expressive body movement that can be ``directly guided'' through text descriptions. Therefore, we present VersaAnimator, a versatile framework that synthesizes expressive talking human videos from arbitrary portrait images. Specifically, we design a motion generator that produces basic rhythmic movements from audio input and supports text-prompt control for specific actions. The generated whole-body 3D motion tokens can animate portraits of various scales, producing talking heads, half-body gestures and even leg movements for whole-body images. Besides, we introduce a multi-modal controlled video diffusion that generates photorealistic videos, where speech signals govern lip synchronization, facial expressions, and head motions while body movements are guided by the 2D poses. Furthermore, we introduce a token2pose translator to smoothly map 3D motion tokens to 2D pose sequences. This design mitigates the stiffness resulting from direct 3D to 2D conversion and enhances the details of the generated body movements. Extensive experiments shows that VersaAnimator synthesizes lip-synced and identity-preserving videos while generating expressive and semantically meaningful whole-body motions.
comment: Accepted by ACM MM2025
Machine Learning 81
☆ BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool
Multi-omics data offer unprecedented insights into complex biological systems, yet their high dimensionality, sparsity, and intricate interactions pose significant analytical challenges. Network-based approaches have advanced multi-omics research by effectively capturing biologically relevant relationships among molecular entities. While these methods are powerful for representing molecular interactions, there remains a need for tools specifically designed to effectively utilize these network representations across diverse downstream analyses. To fulfill this need, we introduce BioNeuralNet, a flexible and modular Python framework tailored for end-to-end network-based multi-omics data analysis. BioNeuralNet leverages Graph Neural Networks (GNNs) to learn biologically meaningful low-dimensional representations from multi-omics networks, converting these complex molecular networks into versatile embeddings. BioNeuralNet supports all major stages of multi-omics network analysis, including several network construction techniques, generation of low-dimensional representations, and a broad range of downstream analytical tasks. Its extensive utilities, including diverse GNN architectures, and compatibility with established Python packages (e.g., scikit-learn, PyTorch, NetworkX), enhance usability and facilitate quick adoption. BioNeuralNet is an open-source, user-friendly, and extensively documented framework designed to support flexible and reproducible multi-omics network analysis in precision medicine.
comment: 6 pages, 1 figure, 2 tables; Software available on PyPI as BioNeuralNet. For documentation, tutorials, and workflows see https://bioneuralnet.readthedocs.io
☆ FAST: Similarity-based Knowledge Transfer for Efficient Policy Learning
Transfer Learning (TL) offers the potential to accelerate learning by transferring knowledge across tasks. However, it faces critical challenges such as negative transfer, domain adaptation and inefficiency in selecting solid source policies. These issues often represent critical problems in evolving domains, i.e. game development, where scenarios transform and agents must adapt. The continuous release of new agents is costly and inefficient. In this work we challenge the key issues in TL to improve knowledge transfer, agents performance across tasks and reduce computational costs. The proposed methodology, called FAST - Framework for Adaptive Similarity-based Transfer, leverages visual frames and textual descriptions to create a latent representation of tasks dynamics, that is exploited to estimate similarity between environments. The similarity scores guides our method in choosing candidate policies from which transfer abilities to simplify learning of novel tasks. Experimental results, over multiple racing tracks, demonstrate that FAST achieves competitive final performance compared to learning-from-scratch methods while requiring significantly less training steps. These findings highlight the potential of embedding-driven task similarity estimations.
comment: Accepted at IEEE Conference on Games (CoG) 2025
☆ ResCap-DBP: A Lightweight Residual-Capsule Network for Accurate DNA-Binding Protein Prediction Using Global ProteinBERT Embeddings
DNA-binding proteins (DBPs) are integral to gene regulation and cellular processes, making their accurate identification essential for understanding biological functions and disease mechanisms. Experimental methods for DBP identification are time-consuming and costly, driving the need for efficient computational prediction techniques. In this study, we propose a novel deep learning framework, ResCap-DBP, that combines a residual learning-based encoder with a one-dimensional Capsule Network (1D-CapsNet) to predict DBPs directly from raw protein sequences. Our architecture incorporates dilated convolutions within residual blocks to mitigate vanishing gradient issues and extract rich sequence features, while capsule layers with dynamic routing capture hierarchical and spatial relationships within the learned feature space. We conducted comprehensive ablation studies comparing global and local embeddings from ProteinBERT and conventional one-hot encoding. Results show that ProteinBERT embeddings substantially outperform other representations on large datasets. Although one-hot encoding showed marginal advantages on smaller datasets, such as PDB186, it struggled to scale effectively. Extensive evaluations on four pairs of publicly available benchmark datasets demonstrate that our model consistently outperforms current state-of-the-art methods. It achieved AUC scores of 98.0% and 89.5% on PDB14189andPDB1075, respectively. On independent test sets PDB2272 and PDB186, the model attained top AUCs of 83.2% and 83.3%, while maintaining competitive performance on larger datasets such as PDB20000. Notably, the model maintains a well balanced sensitivity and specificity across datasets. These results demonstrate the efficacy and generalizability of integrating global protein representations with advanced deep learning architectures for reliable and scalable DBP prediction in diverse genomic contexts.
☆ Communication-Efficient Distributed Training for Collaborative Flat Optima Recovery in Deep Learning
We study centralized distributed data parallel training of deep neural networks (DNNs), aiming to improve the trade-off between communication efficiency and model performance of the local gradient methods. To this end, we revisit the flat-minima hypothesis, which suggests that models with better generalization tend to lie in flatter regions of the loss landscape. We introduce a simple, yet effective, sharpness measure, Inverse Mean Valley, and demonstrate its strong correlation with the generalization gap of DNNs. We incorporate an efficient relaxation of this measure into the distributed training objective as a lightweight regularizer that encourages workers to collaboratively seek wide minima. The regularizer exerts a pushing force that counteracts the consensus step pulling the workers together, giving rise to the Distributed Pull-Push Force (DPPF) algorithm. Empirically, we show that DPPF outperforms other communication-efficient approaches and achieves better generalization performance than local gradient methods and synchronous gradient averaging, while significantly reducing communication overhead. In addition, our loss landscape visualizations confirm the ability of DPPF to locate flatter minima. On the theoretical side, we show that DPPF guides workers to span flat valleys, with the final valley width governed by the interplay between push and pull strengths, and that its pull-push dynamics is self-stabilizing. We further provide generalization guarantees linked to the valley width and prove convergence in the non-convex setting.
comment: 9 pages main body, 32 pages of supplementary material for detailed derivations and more experiment results
Survey of NLU Benchmarks Diagnosing Linguistic Phenomena: Why not Standardize Diagnostics Benchmarks?
Natural Language Understanding (NLU) is a basic task in Natural Language Processing (NLP). The evaluation of NLU capabilities has become a trending research topic that attracts researchers in the last few years, resulting in the development of numerous benchmarks. These benchmarks include various tasks and datasets in order to evaluate the results of pretrained models via public leaderboards. Notably, several benchmarks contain diagnostics datasets designed for investigation and fine-grained error analysis across a wide range of linguistic phenomena. This survey provides a comprehensive review of available English, Arabic, and Multilingual NLU benchmarks, with a particular emphasis on their diagnostics datasets and the linguistic phenomena they covered. We present a detailed comparison and analysis of these benchmarks, highlighting their strengths and limitations in evaluating NLU tasks and providing in-depth error analysis. When highlighting the gaps in the state-of-the-art, we noted that there is no naming convention for macro and micro categories or even a standard set of linguistic phenomena that should be covered. Consequently, we formulated a research question regarding the evaluation metrics of the evaluation diagnostics benchmarks: "Why do not we have an evaluation standard for the NLU evaluation diagnostics benchmarks?" similar to ISO standard in industry. We conducted a deep analysis and comparisons of the covered linguistic phenomena in order to support experts in building a global hierarchy for linguistic phenomena in future. We think that having evaluation metrics for diagnostics evaluation could be valuable to gain more insights when comparing the results of the studied models on different diagnostics benchmarks.
☆ A General Framework for Estimating Preferences Using Response Time Data
We propose a general methodology for recovering preference parameters from data on choices and response times. Our methods yield estimates with fast ($1/n$ for $n$ data points) convergence rates when specialized to the popular Drift Diffusion Model (DDM), but are broadly applicable to generalizations of the DDM as well as to alternative models of decision making that make use of response time data. The paper develops an empirical application to an experiment on intertemporal choice, showing that the use of response times delivers predictive accuracy and matters for the estimation of economically relevant parameters.
☆ Bipedalism for Quadrupedal Robots: Versatile Loco-Manipulation through Risk-Adaptive Reinforcement Learning
Loco-manipulation of quadrupedal robots has broadened robotic applications, but using legs as manipulators often compromises locomotion, while mounting arms complicates the system. To mitigate this issue, we introduce bipedalism for quadrupedal robots, thus freeing the front legs for versatile interactions with the environment. We propose a risk-adaptive distributional Reinforcement Learning (RL) framework designed for quadrupedal robots walking on their hind legs, balancing worst-case conservativeness with optimal performance in this inherently unstable task. During training, the adaptive risk preference is dynamically adjusted based on the uncertainty of the return, measured by the coefficient of variation of the estimated return distribution. Extensive experiments in simulation show our method's superior performance over baselines. Real-world deployment on a Unitree Go2 robot further demonstrates the versatility of our policy, enabling tasks like cart pushing, obstacle probing, and payload transport, while showcasing robustness against challenging dynamics and external disturbances.
comment: Humanoids 2025
☆ Set-based Implicit Likelihood Inference of Galaxy Cluster Mass ICML
We present a set-based machine learning framework that infers posterior distributions of galaxy cluster masses from projected galaxy dynamics. Our model combines Deep Sets and conditional normalizing flows to incorporate both positional and velocity information of member galaxies to predict residual corrections to the $M$-$\sigma$ relation for improved interpretability. Trained on the Uchuu-UniverseMachine simulation, our approach significantly reduces scatter and provides well-calibrated uncertainties across the full mass range compared to traditional dynamical estimates.
comment: 5 pages, 4 figures; accepted as a spotlight talk at ICML-colocated ML4Astro 2025 workshop
☆ WBHT: A Generative Attention Architecture for Detecting Black Hole Anomalies in Backbone Networks
We propose the Wasserstein Black Hole Transformer (WBHT) framework for detecting black hole (BH) anomalies in communication networks. These anomalies cause packet loss without failure notifications, disrupting connectivity and leading to financial losses. WBHT combines generative modeling, sequential learning, and attention mechanisms to improve BH anomaly detection. It integrates a Wasserstein generative adversarial network with attention mechanisms for stable training and accurate anomaly identification. The model uses long-short-term memory layers to capture long-term dependencies and convolutional layers for local temporal patterns. A latent space encoding mechanism helps distinguish abnormal network behavior. Tested on real-world network data, WBHT outperforms existing models, achieving significant improvements in F1 score (ranging from 1.65% to 58.76%). Its efficiency and ability to detect previously undetected anomalies make it a valuable tool for proactive network monitoring and security, especially in mission-critical networks.
☆ Clustering by Attention: Leveraging Prior Fitted Transformers for Data Partitioning
Clustering is a core task in machine learning with wide-ranging applications in data mining and pattern recognition. However, its unsupervised nature makes it inherently challenging. Many existing clustering algorithms suffer from critical limitations: they often require careful parameter tuning, exhibit high computational complexity, lack interpretability, or yield suboptimal accuracy, especially when applied to large-scale datasets. In this paper, we introduce a novel clustering approach based on meta-learning. Our approach eliminates the need for parameter optimization while achieving accuracy that outperforms state-of-the-art clustering techniques. The proposed technique leverages a few pre-clustered samples to guide the clustering process for the entire dataset in a single forward pass. Specifically, we employ a pre-trained Prior-Data Fitted Transformer Network (PFN) to perform clustering. The algorithm computes attention between the pre-clustered samples and the unclustered samples, allowing it to infer cluster assignments for the entire dataset based on the learned relation. We theoretically and empirically demonstrate that, given just a few pre-clustered examples, the model can generalize to accurately cluster the rest of the dataset. Experiments on challenging benchmark datasets show that our approach can successfully cluster well-separated data without any pre-clustered samples, and significantly improves performance when a few clustered samples are provided. We show that our approach is superior to the state-of-the-art techniques. These results highlight the effectiveness and scalability of our approach, positioning it as a promising alternative to existing clustering techniques.
☆ Sequence-Aware Inline Measurement Attribution for Good-Bad Wafer Diagnosis
How can we identify problematic upstream processes when a certain type of wafer defect starts appearing at a quality checkpoint? Given the complexity of modern semiconductor manufacturing, which involves thousands of process steps, cross-process root cause analysis for wafer defects has been considered highly challenging. This paper proposes a novel framework called Trajectory Shapley Attribution (TSA), an extension of Shapley values (SV), a widely used attribution algorithm in explainable artificial intelligence research. TSA overcomes key limitations of standard SV, including its disregard for the sequential nature of manufacturing processes and its reliance on an arbitrarily chosen reference point. We applied TSA to a good-bad wafer diagnosis task in experimental front-end-of-line processes at the NY CREATES Albany NanoTech fab, aiming to identify measurement items (serving as proxies for process parameters) most relevant to abnormal defect occurrence.
comment: Published as K. Miyaguchi, M. Joko, R. Sheraw and T. Id\'e, "Sequence-Aware Inline Measurement Attribution for Good-Bad Wafer Diagnosis : DM: Big Data Management and Machine Learning," 2025 36th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Albany, NY, USA, 2025, pp. 1-6, doi: 10.1109/ASMC64512.2025.11010308
☆ MH-GIN: Multi-scale Heterogeneous Graph-based Imputation Network for AIS Data (Extended Version)
Location-tracking data from the Automatic Identification System, much of which is publicly available, plays a key role in a range of maritime safety and monitoring applications. However, the data suffers from missing values that hamper downstream applications. Imputing the missing values is challenging because the values of different heterogeneous attributes are updated at diverse rates, resulting in the occurrence of multi-scale dependencies among attributes. Existing imputation methods that assume similar update rates across attributes are unable to capture and exploit such dependencies, limiting their imputation accuracy. We propose MH-GIN, a Multi-scale Heterogeneous Graph-based Imputation Network that aims improve imputation accuracy by capturing multi-scale dependencies. Specifically, MH-GIN first extracts multi-scale temporal features for each attribute while preserving their intrinsic heterogeneous characteristics. Then, it constructs a multi-scale heterogeneous graph to explicitly model dependencies between heterogeneous attributes to enable more accurate imputation of missing values through graph propagation. Experimental results on two real-world datasets find that MH-GIN is capable of an average 57% reduction in imputation errors compared to state-of-the-art methods, while maintaining computational efficiency. The source code and implementation details of MH-GIN are publicly available https://github.com/hyLiu1994/MH-GIN.
comment: 18 pages, 4 figures
☆ Wafer Defect Root Cause Analysis with Partial Trajectory Regression
Identifying upstream processes responsible for wafer defects is challenging due to the combinatorial nature of process flows and the inherent variability in processing routes, which arises from factors such as rework operations and random process waiting times. This paper presents a novel framework for wafer defect root cause analysis, called Partial Trajectory Regression (PTR). The proposed framework is carefully designed to address the limitations of conventional vector-based regression models, particularly in handling variable-length processing routes that span a large number of heterogeneous physical processes. To compute the attribution score of each process given a detected high defect density on a specific wafer, we propose a new algorithm that compares two counterfactual outcomes derived from partial process trajectories. This is enabled by new representation learning methods, proc2vec and route2vec. We demonstrate the effectiveness of the proposed framework using real wafer history data from the NY CREATES fab in Albany.
comment: Published as K. Miyaguchi, M. Joko, R. Sheraw and T. Id\'e, "Wafer Defect Root Cause Analysis with Partial Trajectory Regression,'' Proceedings of the 36th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2025), Albany, NY, USA, 2025, pp. 1-6, doi: 10.1109/ASMC64512.2025.11010733
☆ A Theory of $θ$-Expectations
The canonical theory of stochastic calculus under ambiguity, founded on sub-additivity, is insensitive to non-convex uncertainty structures, leading to an identifiability impasse. This paper develops a mathematical framework for an identifiable calculus sensitive to non-convex geometry. We introduce the $\theta$-BSDE, a class of backward stochastic differential equations where the driver is determined by a pointwise maximization over a primitive, possibly non-convex, uncertainty set. The system's tractability is predicated not on convexity, but on a global analytic hypothesis: the existence of a unique and globally Lipschitz maximizer map for the driver function. Under this hypothesis, which carves out a tractable class of models, we establish well-posedness via a fixed-point argument. For a distinct, geometrically regular class of models, we prove a result of independent interest: under non-degeneracy conditions from Malliavin calculus, the maximizer is unique along any solution path, ensuring the model's internal consistency. We clarify the fundamental logical gap between this pathwise property and the global regularity required by our existence proof. The resulting valuation operator defines a dynamically consistent expectation, and we establish its connection to fully nonlinear PDEs via a Feynman-Kac formula.
☆ Computational Advantages of Multi-Grade Deep Learning: Convergence Analysis and Performance Insights
Multi-grade deep learning (MGDL) has been shown to significantly outperform the standard single-grade deep learning (SGDL) across various applications. This work aims to investigate the computational advantages of MGDL focusing on its performance in image regression, denoising, and deblurring tasks, and comparing it to SGDL. We establish convergence results for the gradient descent (GD) method applied to these models and provide mathematical insights into MGDL's improved performance. In particular, we demonstrate that MGDL is more robust to the choice of learning rate under GD than SGDL. Furthermore, we analyze the eigenvalue distributions of the Jacobian matrices associated with the iterative schemes arising from the GD iterations, offering an explanation for MGDL's enhanced training stability.
☆ From Observations to Causations: A GNN-based Probabilistic Prediction Framework for Causal Discovery
Causal discovery from observational data is challenging, especially with large datasets and complex relationships. Traditional methods often struggle with scalability and capturing global structural information. To overcome these limitations, we introduce a novel graph neural network (GNN)-based probabilistic framework that learns a probability distribution over the entire space of causal graphs, unlike methods that output a single deterministic graph. Our framework leverages a GNN that encodes both node and edge attributes into a unified graph representation, enabling the model to learn complex causal structures directly from data. The GNN model is trained on a diverse set of synthetic datasets augmented with statistical and information-theoretic measures, such as mutual information and conditional entropy, capturing both local and global data properties. We frame causal discovery as a supervised learning problem, directly predicting the entire graph structure. Our approach demonstrates superior performance, outperforming both traditional and recent non-GNN-based methods, as well as a GNN-based approach, in terms of accuracy and scalability on synthetic and real-world datasets without further training. This probabilistic framework significantly improves causal structure learning, with broad implications for decision-making and scientific discovery across various fields.
☆ Cultivating Helpful, Personalized, and Creative AI Tutors: A Framework for Pedagogical Alignment using Reinforcement Learning
The integration of large language models (LLMs) into education presents unprecedented opportunities for scalable personalized learning. However, standard LLMs often function as generic information providers, lacking alignment with fundamental pedagogical principles such as helpfulness, student-centered personalization, and creativity cultivation. To bridge this gap, we propose EduAlign, a novel framework designed to guide LLMs toward becoming more effective and responsible educational assistants. EduAlign consists of two main stages. In the first stage, we curate a dataset of 8k educational interactions and annotate them-both manually and automatically-along three key educational dimensions: Helpfulness, Personalization, and Creativity (HPC). These annotations are used to train HPC-RM, a multi-dimensional reward model capable of accurately scoring LLM outputs according to these educational principles. We further evaluate the consistency and reliability of this reward model. In the second stage, we leverage HPC-RM as a reward signal to fine-tune a pre-trained LLM using Group Relative Policy Optimization (GRPO) on a set of 2k diverse prompts. We then assess the pre- and post-finetuning models on both educational and general-domain benchmarks across the three HPC dimensions. Experimental results demonstrate that the fine-tuned model exhibits significantly improved alignment with pedagogical helpfulness, personalization, and creativity stimulation. This study presents a scalable and effective approach to aligning LLMs with nuanced and desirable educational traits, paving the way for the development of more engaging, pedagogically aligned AI tutors.
☆ The Blessing and Curse of Dimensionality in Safety Alignment
The focus on safety alignment in large language models (LLMs) has increased significantly due to their widespread adoption across different domains. The scale of LLMs play a contributing role in their success, and the growth in parameter count follows larger hidden dimensions. In this paper, we hypothesize that while the increase in dimensions has been a key advantage, it may lead to emergent problems as well. These problems emerge as the linear structures in the activation space can be exploited, in the form of activation engineering, to circumvent its safety alignment. Through detailed visualizations of linear subspaces associated with different concepts, such as safety, across various model scales, we show that the curse of high-dimensional representations uniquely impacts LLMs. Further substantiating our claim, we demonstrate that projecting the representations of the model onto a lower dimensional subspace can preserve sufficient information for alignment while avoiding those linear structures. Empirical results confirm that such dimensional reduction significantly reduces susceptibility to jailbreaking through representation engineering. Building on our empirical validations, we provide theoretical insights into these linear jailbreaking methods relative to a model's hidden dimensions. Broadly speaking, our work posits that the high dimensions of a model's internal representations can be both a blessing and a curse in safety alignment.
comment: Published as a conference paper at COLM 2025
☆ MIPS: a Multimodal Infinite Polymer Sequence Pre-training Framework for Polymer Property Prediction
Polymers, composed of repeating structural units called monomers, are fundamental materials in daily life and industry. Accurate property prediction for polymers is essential for their design, development, and application. However, existing modeling approaches, which typically represent polymers by the constituent monomers, struggle to capture the whole properties of polymer, since the properties change during the polymerization process. In this study, we propose a Multimodal Infinite Polymer Sequence (MIPS) pre-training framework, which represents polymers as infinite sequences of monomers and integrates both topological and spatial information for comprehensive modeling. From the topological perspective, we generalize message passing mechanism (MPM) and graph attention mechanism (GAM) to infinite polymer sequences. For MPM, we demonstrate that applying MPM to infinite polymer sequences is equivalent to applying MPM on the induced star-linking graph of monomers. For GAM, we propose to further replace global graph attention with localized graph attention (LGA). Moreover, we show the robustness of the "star linking" strategy through Repeat and Shift Invariance Test (RSIT). Despite its robustness, "star linking" strategy exhibits limitations when monomer side chains contain ring structures, a common characteristic of polymers, as it fails the Weisfeiler-Lehman~(WL) test. To overcome this issue, we propose backbone embedding to enhance the capability of MPM and LGA on infinite polymer sequences. From the spatial perspective, we extract 3D descriptors of repeating monomers to capture spatial information. Finally, we design a cross-modal fusion mechanism to unify the topological and spatial information. Experimental validation across eight diverse polymer property prediction tasks reveals that MIPS achieves state-of-the-art performance.
comment: 14 pages, 8 figures, accepted by ACM Multimedia 2025 (oral)
☆ A Comparative Study of OpenMP Scheduling Algorithm Selection Strategies
Scientific and data science applications are becoming increasingly complex, with growing computational and memory demands. Modern high performance computing (HPC) systems provide high parallelism and heterogeneity across nodes, devices, and cores. To achieve good performance, effective scheduling and load balancing techniques are essential. Parallel programming frameworks such as OpenMP now offer a variety of advanced scheduling algorithms to support diverse applications and platforms. This creates an instance of the scheduling algorithm selection problem, which involves identifying the most suitable algorithm for a given combination of workload and system characteristics. In this work, we explore learning-based approaches for selecting scheduling algorithms in OpenMP. We propose and evaluate expert-based and reinforcement learning (RL)-based methods, and conduct a detailed performance analysis across six applications and three systems. Our results show that RL methods are capable of learning high-performing scheduling decisions, although they require significant exploration, with the choice of reward function playing a key role. Expert-based methods, in contrast, rely on prior knowledge and involve less exploration, though they may not always identify the optimal algorithm for a specific application-system pair. By combining expert knowledge with RL-based learning, we achieve improved performance and greater adaptability. Overall, this work demonstrates that dynamic selection of scheduling algorithms during execution is both viable and beneficial for OpenMP applications. The approach can also be extended to MPI-based programs, enabling optimization of scheduling decisions across multiple levels of parallelism.
comment: To appear at IEEE ACCESS
☆ Towards Generalized Parameter Tuning in Coherent Ising Machines: A Portfolio-Based Approach
Coherent Ising Machines (CIMs) have recently gained attention as a promising computing model for solving combinatorial optimization problems. In particular, the Chaotic Amplitude Control (CAC) algorithm has demonstrated high solution quality, but its performance is highly sensitive to a large number of hyperparameters, making efficient tuning essential. In this study, we present an algorithm portfolio approach for hyperparameter tuning in CIMs employing Chaotic Amplitude Control with momentum (CACm) algorithm. Our method incorporates multiple search strategies, enabling flexible and effective adaptation to the characteristics of the hyperparameter space. Specifically, we propose two representative tuning methods, Method A and Method B. Method A optimizes each hyperparameter sequentially with a fixed total number of trials, while Method B prioritizes hyperparameters based on initial evaluations before applying Method A in order. Performance evaluations were conducted on the Supercomputer "Flow" at Nagoya University, using planted Wishart instances and Time to Solution (TTS) as the evaluation metric. Compared to the baseline performance with best-known hyperparameters, Method A achieved up to 1.47x improvement, and Method B achieved up to 1.65x improvement. These results demonstrate the effectiveness of the algorithm portfolio approach in enhancing the tuning process for CIMs.
Controllable Feature Whitening for Hyperparameter-Free Bias Mitigation ICCV 2025
As the use of artificial intelligence rapidly increases, the development of trustworthy artificial intelligence has become important. However, recent studies have shown that deep neural networks are susceptible to learn spurious correlations present in datasets. To improve the reliability, we propose a simple yet effective framework called controllable feature whitening. We quantify the linear correlation between the target and bias features by the covariance matrix, and eliminate it through the whitening module. Our results systemically demonstrate that removing the linear correlations between features fed into the last linear classifier significantly mitigates the bias, while avoiding the need to model intractable higher-order dependencies. A particular advantage of the proposed method is that it does not require regularization terms or adversarial learning, which often leads to unstable optimization in practice. Furthermore, we show that two fairness criteria, demographic parity and equalized odds, can be effectively handled by whitening with the re-weighted covariance matrix. Consequently, our method controls the trade-off between the utility and fairness of algorithms by adjusting the weighting coefficient. Finally, we validate that our method outperforms existing approaches on four benchmark datasets: Corrupted CIFAR-10, Biased FFHQ, WaterBirds, and Celeb-A.
comment: Accepted to ICCV 2025 (Poster)
☆ Approximating Full Conformal Prediction for Neural Network Regression with Gauss-Newton Influence ICLR 2025
Uncertainty quantification is an important prerequisite for the deployment of deep learning models in safety-critical areas. Yet, this hinges on the uncertainty estimates being useful to the extent the prediction intervals are well-calibrated and sharp. In the absence of inherent uncertainty estimates (e.g. pretrained models predicting only point estimates), popular approaches that operate post-hoc include Laplace's method and split conformal prediction (split-CP). However, Laplace's method can be miscalibrated when the model is misspecified and split-CP requires sample splitting, and thus comes at the expense of statistical efficiency. In this work, we construct prediction intervals for neural network regressors post-hoc without held-out data. This is achieved by approximating the full conformal prediction method (full-CP). Whilst full-CP nominally requires retraining the model for every test point and candidate label, we propose to train just once and locally perturb model parameters using Gauss-Newton influence to approximate the effect of retraining. Coupled with linearization of the network, we express the absolute residual nonconformity score as a piecewise linear function of the candidate label allowing for an efficient procedure that avoids the exhaustive search over the output space. On standard regression benchmarks and bounding box localization, we show the resulting prediction intervals are locally-adaptive and often tighter than those of split-CP.
comment: Accepted at the 13th International Conference on Learning Representations (ICLR 2025)
☆ Data-Efficient Prediction-Powered Calibration via Cross-Validation
Calibration data are necessary to formally quantify the uncertainty of the decisions produced by an existing artificial intelligence (AI) model. To overcome the common issue of scarce calibration data, a promising approach is to employ synthetic labels produced by a (generally different) predictive model. However, fine-tuning the label-generating predictor on the inference task of interest, as well as estimating the residual bias of the synthetic labels, demand additional data, potentially exacerbating the calibration data scarcity problem. This paper introduces a novel approach that efficiently utilizes limited calibration data to simultaneously fine-tune a predictor and estimate the bias of the synthetic labels. The proposed method yields prediction sets with rigorous coverage guarantees for AI-generated decisions. Experimental results on an indoor localization problem validate the effectiveness and performance gains of our solution.
☆ Learning from Expert Factors: Trajectory-level Reward Shaping for Formulaic Alpha Mining
Reinforcement learning (RL) has successfully automated the complex process of mining formulaic alpha factors, for creating interpretable and profitable investment strategies. However, existing methods are hampered by the sparse rewards given the underlying Markov Decision Process. This inefficiency limits the exploration of the vast symbolic search space and destabilizes the training process. To address this, Trajectory-level Reward Shaping (TLRS), a novel reward shaping method, is proposed. TLRS provides dense, intermediate rewards by measuring the subsequence-level similarity between partially generated expressions and a set of expert-designed formulas. Furthermore, a reward centering mechanism is introduced to reduce training variance. Extensive experiments on six major Chinese and U.S. stock indices show that TLRS significantly improves the predictive power of mined factors, boosting the Rank Information Coefficient by 9.29% over existing potential-based shaping algorithms. Notably, TLRS achieves a major leap in computational efficiency by reducing its time complexity with respect to the feature dimension from linear to constant, which is a significant improvement over distance-based baselines.
☆ Protein-SE(3): Benchmarking SE(3)-based Generative Models for Protein Structure Design
SE(3)-based generative models have shown great promise in protein geometry modeling and effective structure design. However, the field currently lacks a modularized benchmark to enable comprehensive investigation and fair comparison of different methods. In this paper, we propose Protein-SE(3), a new benchmark based on a unified training framework, which comprises protein scaffolding tasks, integrated generative models, high-level mathematical abstraction, and diverse evaluation metrics. Recent advanced generative models designed for protein scaffolding, from multiple perspectives like DDPM (Genie1 and Genie2), Score Matching (FrameDiff and RfDiffusion) and Flow Matching (FoldFlow and FrameFlow) are integrated into our framework. All integrated methods are fairly investigated with the same training dataset and evaluation metrics. Furthermore, we provide a high-level abstraction of the mathematical foundations behind the generative models, enabling fast prototyping of future algorithms without reliance on explicit protein structures. Accordingly, we release the first comprehensive benchmark built upon unified training framework for SE(3)-based protein structure design, which is publicly accessible at https://github.com/BruthYU/protein-se3.
☆ Technical Indicator Networks (TINs): An Interpretable Neural Architecture Modernizing Classic al Technical Analysis for Adaptive Algorithmic Trading
This work proposes that a vast majority of classical technical indicators in financial analysis are, in essence, special cases of neural networks with fixed and interpretable weights. It is shown that nearly all such indicators, such as moving averages, momentum-based oscillators, volatility bands, and other commonly used technical constructs, can be reconstructed topologically as modular neural network components. Technical Indicator Networks (TINs) are introduced as a general neural architecture that replicates and structurally upgrades traditional indicators by supporting n-dimensional inputs such as price, volume, sentiment, and order book data. By encoding domain-specific knowledge into neural structures, TINs modernize the foundational logic of technical analysis and propel algorithmic trading into a new era, bridging the legacy of proven indicators with the potential of contemporary AI systems.
comment: Patent Application No. DE10202502351 filed on July 8, 2025 with DPMA
☆ Partial Domain Adaptation via Importance Sampling-based Shift Correction
Partial domain adaptation (PDA) is a challenging task in real-world machine learning scenarios. It aims to transfer knowledge from a labeled source domain to a related unlabeled target domain, where the support set of the source label distribution subsumes the target one. Previous PDA works managed to correct the label distribution shift by weighting samples in the source domain. However, the simple reweighing technique cannot explore the latent structure and sufficiently use the labeled data, and then models are prone to over-fitting on the source domain. In this work, we propose a novel importance sampling-based shift correction (IS$^2$C) method, where new labeled data are sampled from a built sampling domain, whose label distribution is supposed to be the same as the target domain, to characterize the latent structure and enhance the generalization ability of the model. We provide theoretical guarantees for IS$^2$C by proving that the generalization error can be sufficiently dominated by IS$^2$C. In particular, by implementing sampling with the mixture distribution, the extent of shift between source and sampling domains can be connected to generalization error, which provides an interpretable way to build IS$^2$C. To improve knowledge transfer, an optimal transport-based independence criterion is proposed for conditional distribution alignment, where the computation of the criterion can be adjusted to reduce the complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$ in realistic PDA scenarios. Extensive experiments on PDA benchmarks validate the theoretical results and demonstrate the effectiveness of our IS$^2$C over existing methods.
☆ NeuroCLIP: A Multimodal Contrastive Learning Method for rTMS-treated Methamphetamine Addiction Analysis
Methamphetamine dependence poses a significant global health challenge, yet its assessment and the evaluation of treatments like repetitive transcranial magnetic stimulation (rTMS) frequently depend on subjective self-reports, which may introduce uncertainties. While objective neuroimaging modalities such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) offer alternatives, their individual limitations and the reliance on conventional, often hand-crafted, feature extraction can compromise the reliability of derived biomarkers. To overcome these limitations, we propose NeuroCLIP, a novel deep learning framework integrating simultaneously recorded EEG and fNIRS data through a progressive learning strategy. This approach offers a robust and trustworthy biomarker for methamphetamine addiction. Validation experiments show that NeuroCLIP significantly improves discriminative capabilities among the methamphetamine-dependent individuals and healthy controls compared to models using either EEG or only fNIRS alone. Furthermore, the proposed framework facilitates objective, brain-based evaluation of rTMS treatment efficacy, demonstrating measurable shifts in neural patterns towards healthy control profiles after treatment. Critically, we establish the trustworthiness of the multimodal data-driven biomarker by showing its strong correlation with psychometrically validated craving scores. These findings suggest that biomarker derived from EEG-fNIRS data via NeuroCLIP offers enhanced robustness and reliability over single-modality approaches, providing a valuable tool for addiction neuroscience research and potentially improving clinical assessments.
☆ ASNN: Learning to Suggest Neural Architectures from Performance Distributions
The architecture of a neural network (NN) plays a critical role in determining its performance. However, there is no general closed-form function that maps between network structure and accuracy, making the process of architecture design largely heuristic or search-based. In this study, we propose the Architecture Suggesting Neural Network (ASNN), a model designed to learn the relationship between NN architecture and its test accuracy, and to suggest improved architectures accordingly. To train ASNN, we constructed datasets using TensorFlow-based models with varying numbers of layers and nodes. Experimental results were collected for both 2-layer and 3-layer architectures across a grid of configurations, each evaluated with 10 repeated trials to account for stochasticity. Accuracy values were treated as inputs, and architectural parameters as outputs. The trained ASNN was then used iteratively to predict architectures that yield higher performance. In both 2-layer and 3-layer cases, ASNN successfully suggested architectures that outperformed the best results found in the original training data. Repeated prediction and retraining cycles led to the discovery of architectures with improved mean test accuracies, demonstrating the model's capacity to generalize the performance-structure relationship. These results suggest that ASNN provides an efficient alternative to random search for architecture optimization, and offers a promising approach toward automating neural network design. "Parts of the manuscript, including text editing and expression refinement, were supported by OpenAI's ChatGPT. All content was reviewed and verified by the authors."
comment: 10 pages
☆ Practical Multi-Task Learning for Rare Conversions in Ad Tech RecSys 2025
We present a Multi-Task Learning (MTL) approach for improving predictions for rare (e.g., <1%) conversion events in online advertising. The conversions are classified into "rare" or "frequent" types based on historical statistics. The model learns shared representations across all signals while specializing through separate task towers for each type. The approach was tested and fully deployed to production, demonstrating consistent improvements in both offline (0.69% AUC lift) and online KPI performance metric (2% Cost per Action reduction).
comment: Accepted to RecSys 2025
☆ The Policy Cliff: A Theoretical Analysis of Reward-Policy Maps in Large Language Models
Reinforcement learning (RL) plays a crucial role in shaping the behavior of large language and reasoning models (LLMs/LRMs). However, it often produces brittle and unstable policies, leading to critical failures such as spurious reasoning, deceptive alignment, and instruction disobedience that undermine the trustworthiness and safety of LLMs/LRMs. Currently, these issues lack a unified theoretical explanation and are typically addressed using ad-hoc heuristics. This paper presents a rigorous mathematical framework for analyzing the stability of the mapping from a reward function to the optimal policy. We show that policy brittleness often stems from non-unique optimal actions, a common occurrence when multiple valid traces exist in a reasoning task. This theoretical lens provides a unified explanation for a range of seemingly disparate failures, reframing them as rational outcomes of optimizing rewards that may be incomplete or noisy, especially in the presence of action degeneracy. We extend this analysis from the fundamental single-reward setting to the more realistic multi-reward RL across diverse domains, showing how stability is governed by an "effective reward" aggregation mechanism. We also prove that entropy regularization restores policy stability at the cost of increased stochasticity. Our framework provides a unified explanation for recent empirical findings on deceptive reasoning, instruction-following trade-offs, and RLHF-induced sophistry, and is further validated through perturbation experiments in multi-reward RL. This work advances policy-stability analysis from empirical heuristics towards a principled theory, offering essential insights for designing safer and more trustworthy AI systems.
Awesome-OL: An Extensible Toolkit for Online Learning
In recent years, online learning has attracted increasing attention due to its adaptive capability to process streaming and non-stationary data. To facilitate algorithm development and practical deployment in this area, we introduce Awesome-OL, an extensible Python toolkit tailored for online learning research. Awesome-OL integrates state-of-the-art algorithm, which provides a unified framework for reproducible comparisons, curated benchmark datasets, and multi-modal visualization. Built upon the scikit-multiflow open-source infrastructure, Awesome-OL emphasizes user-friendly interactions without compromising research flexibility or extensibility. The source code is publicly available at: https://github.com/liuzy0708/Awesome-OL.
comment: 7 pages
☆ Generative molecule evolution using 3D pharmacophore for efficient Structure-Based Drug Design
Recent advances in generative models, particularly diffusion and auto-regressive models, have revolutionized fields like computer vision and natural language processing. However, their application to structure-based drug design (SBDD) remains limited due to critical data constraints. To address the limitation of training data for models targeting SBDD tasks, we propose an evolutionary framework named MEVO, which bridges the gap between billion-scale small molecule dataset and the scarce protein-ligand complex dataset, and effectively increase the abundance of training data for generative SBDD models. MEVO is composed of three key components: a high-fidelity VQ-VAE for molecule representation in latent space, a diffusion model for pharmacophore-guided molecule generation, and a pocket-aware evolutionary strategy for molecule optimization with physics-based scoring function. This framework efficiently generate high-affinity binders for various protein targets, validated with predicted binding affinities using free energy perturbation (FEP) methods. In addition, we showcase the capability of MEVO in designing potent inhibitors to KRAS$^{\textrm{G12D}}$, a challenging target in cancer therapeutics, with similar affinity to the known highly active inhibitor evaluated by FEP calculations. With high versatility and generalizability, MEVO offers an effective and data-efficient model for various tasks in structure-based ligand design.
☆ Aggregation-aware MLP: An Unsupervised Approach for Graph Message-passing
Graph Neural Networks (GNNs) have become a dominant approach to learning graph representations, primarily because of their message-passing mechanisms. However, GNNs typically adopt a fixed aggregator function such as Mean, Max, or Sum without principled reasoning behind the selection. This rigidity, especially in the presence of heterophily, often leads to poor, problem dependent performance. Although some attempts address this by designing more sophisticated aggregation functions, these methods tend to rely heavily on labeled data, which is often scarce in real-world tasks. In this work, we propose a novel unsupervised framework, "Aggregation-aware Multilayer Perceptron" (AMLP), which shifts the paradigm from directly crafting aggregation functions to making MLP adaptive to aggregation. Our lightweight approach consists of two key steps: First, we utilize a graph reconstruction method that facilitates high-order grouping effects, and second, we employ a single-layer network to encode varying degrees of heterophily, thereby improving the capacity and applicability of the model. Extensive experiments on node clustering and classification demonstrate the superior performance of AMLP, highlighting its potential for diverse graph learning scenarios.
comment: 11 pages, 6 figures
☆ Wine Characterisation with Spectral Information and Predictive Artificial Intelligence
The purpose of this paper is to use absorbance data obtained by human tasting and an ultraviolet-visible (UV-Vis) scanning spectrophotometer to predict the attributes of grape juice (GJ) and to classify the wine's origin, respectively. The approach combined machine learning (ML) techniques with spectroscopy to find a relatively simple way to apply them in two stages of winemaking and help improve the traditional wine analysis methods regarding sensory data and wine's origins. This new technique has overcome the disadvantages of the complex sensors by taking advantage of spectral fingerprinting technology and forming a comprehensive study of the employment of AI in the wine analysis domain. In the results, Support Vector Machine (SVM) was the most efficient and robust in both attributes and origin prediction tasks. Both the accuracy and F1 score of the origin prediction exceed 91%. The feature ranking approach found that the more influential wavelengths usually appear at the lower end of the scan range, 250 nm (nanometers) to 420 nm, which is believed to be of great help for selecting appropriate validation methods and sensors to extract wine data in future research. The knowledge of this research provides new ideas and early solutions for the wine industry or other beverage industries to integrate big data and IoT in the future, which significantly promotes the development of 'Smart Wineries'.
☆ Online Learning with Probing for Sequential User-Centric Selection
We formalize sequential decision-making with information acquisition as the probing-augmented user-centric selection (PUCS) framework, where a learner first probes a subset of arms to obtain side information on resources and rewards, and then assigns $K$ plays to $M$ arms. PUCS covers applications such as ridesharing, wireless scheduling, and content recommendation, in which both resources and payoffs are initially unknown and probing is costly. For the offline setting with known distributions, we present a greedy probing algorithm with a constant-factor approximation guarantee $\zeta = (e-1)/(2e-1)$. For the online setting with unknown distributions, we introduce OLPA, a stochastic combinatorial bandit algorithm that achieves a regret bound $\mathcal{O}(\sqrt{T} + \ln^{2} T)$. We also prove a lower bound $\Omega(\sqrt{T})$, showing that the upper bound is tight up to logarithmic factors. Experiments on real-world data demonstrate the effectiveness of our solutions.
☆ NeuroVoxel-LM: Language-Aligned 3D Perception via Dynamic Voxelization and Meta-Embedding
Recent breakthroughs in Visual Language Models (VLMs) and Multimodal Large Language Models (MLLMs) have significantly advanced 3D scene perception towards language-driven cognition. However, existing 3D language models struggle with sparse, large-scale point clouds due to slow feature extraction and limited representation accuracy. To address these challenges, we propose NeuroVoxel-LM, a novel framework that integrates Neural Radiance Fields (NeRF) with dynamic resolution voxelization and lightweight meta-embedding. Specifically, we introduce a Dynamic Resolution Multiscale Voxelization (DR-MSV) technique that adaptively adjusts voxel granularity based on geometric and structural complexity, reducing computational cost while preserving reconstruction fidelity. In addition, we propose the Token-level Adaptive Pooling for Lightweight Meta-Embedding (TAP-LME) mechanism, which enhances semantic representation through attention-based weighting and residual fusion. Experimental results demonstrate that DR-MSV significantly improves point cloud feature extraction efficiency and accuracy, while TAP-LME outperforms conventional max-pooling in capturing fine-grained semantics from NeRF weights.
comment: **14 pages, 3 figures, 2 tables
☆ Graded Transformers: A Symbolic-Geometric Approach to Structured Learning
We introduce the Graded Transformer framework, a novel class of sequence models that embeds algebraic inductive biases through grading transformations on vector spaces. Extending the theory of Graded Neural Networks (GNNs), we propose two architectures: the Linearly Graded Transformer (LGT) and the Exponentially Graded Transformer (EGT). These models apply parameterized scaling operators-governed by fixed or learnable grading tuples and, for EGT, exponential factors to infuse hierarchical structure into attention and representation layers, enhancing efficiency for structured data. We derive rigorous theoretical guarantees, including universal approximation theorems for continuous and Sobolev functions, reduced sample complexity via effective VC dimension bounds, Lipschitz continuity of graded operations, and robustness to adversarial perturbations. A graded loss function ensures gradient stability and alignment with domain priors during optimization. By treating grades as differentiable parameters, the framework enables adaptive feature prioritization, overcoming limitations of fixed grades in prior work. The Graded Transformer holds transformative potential for hierarchical learning and neurosymbolic reasoning, with applications spanning algebraic geometry (e.g., moduli spaces and zeta functions), physics (e.g., multiscale simulations), natural language processing (e.g., syntactic parsing), biological sequence analysis (e.g., variant prediction), and emerging areas like graph neural networks and financial modeling. This work advances structured deep learning by fusing geometric and algebraic principles with attention mechanisms, offering a mathematically grounded alternative to data-driven models and paving the way for interpretable, efficient systems in complex domains.
☆ EcoTransformer: Attention without Multiplication
The Transformer, with its scaled dot-product attention mechanism, has become a foundational architecture in modern AI. However, this mechanism is computationally intensive and incurs substantial energy costs. We propose a new Transformer architecture EcoTransformer, in which the output context vector is constructed as the convolution of the values using a Laplacian kernel, where the distances are measured by the L1 metric between the queries and keys. Compared to dot-product based attention, the new attention score calculation is free of matrix multiplication. It performs on par with, or even surpasses, scaled dot-product attention in NLP, bioinformatics, and vision tasks, while consuming significantly less energy.
comment: 8 pages, 1 figure
☆ Meta Fusion: A Unified Framework For Multimodality Fusion with Mutual Learning
Developing effective multimodal data fusion strategies has become increasingly essential for improving the predictive power of statistical machine learning methods across a wide range of applications, from autonomous driving to medical diagnosis. Traditional fusion methods, including early, intermediate, and late fusion, integrate data at different stages, each offering distinct advantages and limitations. In this paper, we introduce Meta Fusion, a flexible and principled framework that unifies these existing strategies as special cases. Motivated by deep mutual learning and ensemble learning, Meta Fusion constructs a cohort of models based on various combinations of latent representations across modalities, and further boosts predictive performance through soft information sharing within the cohort. Our approach is model-agnostic in learning the latent representations, allowing it to flexibly adapt to the unique characteristics of each modality. Theoretically, our soft information sharing mechanism reduces the generalization error. Empirically, Meta Fusion consistently outperforms conventional fusion strategies in extensive simulation studies. We further validate our approach on real-world applications, including Alzheimer's disease detection and neural decoding.
☆ Feed-anywhere ANN (I) Steady Discrete $\to$ Diffusing on Graph Hidden States
We propose a novel framework for learning hidden graph structures from data using geometric analysis and nonlinear dynamics. Our approach: (1) Defines discrete Sobolev spaces on graphs for scalar/vector fields, establishing key functional properties; (2) Introduces gauge-equivalent nonlinear Schr\"odinger and Landau--Lifshitz dynamics with provable stable stationary solutions smoothly dependent on input data and graph weights; (3) Develops a stochastic gradient algorithm over graph moduli spaces with sparsity regularization. Theoretically, we guarantee: topological correctness (homology recovery), metric convergence (Gromov--Hausdorff), and efficient search space utilization. Our dynamics-based model achieves stronger generalization bounds than standard neural networks, with complexity dependent on the data manifold's topology.
comment: 11 pages, 1 algorithm
♻ ☆ Agentar-Fin-R1: Enhancing Financial Intelligence through Domain Expertise, Training Efficiency, and Advanced Reasoning
Large Language Models (LLMs) exhibit considerable promise in financial applications; however, prevailing models frequently demonstrate limitations when confronted with scenarios that necessitate sophisticated reasoning capabilities, stringent trustworthiness criteria, and efficient adaptation to domain-specific requirements. We introduce the Agentar-Fin-R1 series of financial large language models (8B and 32B parameters), specifically engineered based on the Qwen3 foundation model to enhance reasoning capabilities, reliability, and domain specialization for financial applications. Our optimization approach integrates a high-quality, systematic financial task label system with a comprehensive multi-layered trustworthiness assurance framework. This framework encompasses high-quality trustworthy knowledge engineering, multi-agent trustworthy data synthesis, and rigorous data validation governance. Through label-guided automated difficulty-aware optimization, tow-stage training pipeline, and dynamic attribution systems, we achieve substantial improvements in training efficiency. Our models undergo comprehensive evaluation on mainstream financial benchmarks including Fineva, FinEval, and FinanceIQ, as well as general reasoning datasets such as MATH-500 and GPQA-diamond. To thoroughly assess real-world deployment capabilities, we innovatively propose the Finova evaluation benchmark, which focuses on agent-level financial reasoning and compliance verification. Experimental results demonstrate that Agentar-Fin-R1 not only achieves state-of-the-art performance on financial tasks but also exhibits exceptional general reasoning capabilities, validating its effectiveness as a trustworthy solution for high-stakes financial applications. The Finova bench is available at https://github.com/antgroup/Finova.
♻ ☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
♻ ☆ Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
The Cellular-Potts model is a powerful and ubiquitous framework for developing computational models for simulating complex multicellular biological systems. Cellular-Potts models (CPMs) are often computationally expensive due to the explicit modeling of interactions among large numbers of individual model agents and diffusive fields described by partial differential equations (PDEs). In this work, we develop a convolutional neural network (CNN) surrogate model using a U-Net architecture that accounts for periodic boundary conditions. We use this model to accelerate the evaluation of a mechanistic CPM previously used to investigate in vitro vasculogenesis. The surrogate model was trained to predict 100 computational steps ahead (Monte-Carlo steps, MCS), accelerating simulation evaluations by a factor of 590 times compared to CPM code execution. Over multiple recursive evaluations, our model effectively captures the emergent behaviors demonstrated by the original Cellular-Potts model of such as vessel sprouting, extension and anastomosis, and contraction of vascular lacunae. This approach demonstrates the potential for deep learning to serve as efficient surrogate models for CPM simulations, enabling faster evaluation of computationally expensive CPM of biological processes at greater spatial and temporal scales.
♻ ☆ Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning ICML 2025
Bayesian optimization has attracted huge attention from diverse research areas in science and engineering, since it is capable of efficiently finding a global optimum of an expensive-to-evaluate black-box function. In general, a probabilistic regression model is widely used as a surrogate function to model an explicit distribution over function evaluations given an input to estimate and a training dataset. Beyond the probabilistic regression-based methods, density ratio estimation-based Bayesian optimization has been suggested in order to estimate a density ratio of the groups relatively close and relatively far to a global optimum. Developing this line of research further, supervised classifiers are employed to estimate a class probability for the two groups instead of a density ratio. However, the supervised classifiers used in this strategy are prone to be overconfident for known knowledge on global solution candidates. Supposing that we have access to unlabeled points, e.g., predefined fixed-size pools, we propose density ratio estimation-based Bayesian optimization with semi-supervised learning to solve this challenge. Finally, we show the empirical results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool, and analyze the validity of our methods in diverse experiments.
comment: Accepted at the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training ICLR 2025
Large language models (LLMs), optimized through human feedback, have rapidly emerged as a leading paradigm for developing intelligent conversational assistants. However, despite their strong performance across many benchmarks, LLM-based agents might still lack conversational skills such as disambiguation -- when they are faced with ambiguity, they often overhedge or implicitly guess users' true intents rather than asking clarification questions. Under task-specific settings, high-quality conversation samples are often limited, constituting a bottleneck for LLMs' ability to learn optimal dialogue action policies. We propose Action-Based Contrastive Self-Training (ACT), a quasi-online preference optimization algorithm based on Direct Preference Optimization (DPO), that enables data-efficient dialogue policy learning in multi-turn conversation modeling. We demonstrate ACT's efficacy under in data-efficient tuning scenarios, even when there is no action label available, using multiple real-world conversational tasks: tabular-grounded question-answering, machine reading comprehension, and AmbigSQL, a novel task for disambiguating information-seeking requests for complex SQL generation towards data analysis agents. Additionally, we propose evaluating LLMs' ability to function as conversational agents by examining whether they can implicitly recognize and reason about ambiguity in conversation. ACT demonstrates substantial conversation modeling improvements over standard tuning approaches like supervised fine-tuning and DPO.
comment: ICLR 2025; Code: https://github.com/google-research/google-research/tree/master/learning_to_clarify
♻ ☆ A Free Probabilistic Framework for Analyzing the Transformer-based Language Models
We present a formal operator-theoretic framework for analyzing Transformer-based language models using free probability theory. By modeling token embeddings and attention mechanisms as self-adjoint operators in a tracial \( W^* \)-probability space, we reinterpret attention as non-commutative convolution and describe representation propagation via free additive convolution. This leads to a spectral dynamic system interpretation of deep Transformers. We derive entropy-based generalization bounds under freeness assumptions and provide insight into positional encoding, spectral evolution, and representational complexity. This work offers a principled, though theoretical, perspective on structural dynamics in large language models.
♻ ☆ PyG 2.0: Scalable Learning on Real World Graphs
PyG (PyTorch Geometric) has evolved significantly since its initial release, establishing itself as a leading framework for Graph Neural Networks. In this paper, we present Pyg 2.0 (and its subsequent minor versions), a comprehensive update that introduces substantial improvements in scalability and real-world application capabilities. We detail the framework's enhanced architecture, including support for heterogeneous and temporal graphs, scalable feature/graph stores, and various optimizations, enabling researchers and practitioners to tackle large-scale graph learning problems efficiently. Over the recent years, PyG has been supporting graph learning in a large variety of application areas, which we will summarize, while providing a deep dive into the important areas of relational deep learning and large language modeling.
♻ ☆ A Learning-based Domain Decomposition Method
Recent developments in mechanical, aerospace, and structural engineering have driven a growing need for efficient ways to model and analyse structures at much larger and more complex scales than before. While established numerical methods like the Finite Element Method remain reliable, they often struggle with computational cost and scalability when dealing with large and geometrically intricate problems. In recent years, neural network-based methods have shown promise because of their ability to efficiently approximate nonlinear mappings. However, most existing neural approaches are still largely limited to simple domains, which makes it difficult to apply to real-world PDEs involving complex geometries. In this paper, we propose a learning-based domain decomposition method (L-DDM) that addresses this gap. Our approach uses a single, pre-trained neural operator-originally trained on simple domains-as a surrogate model within a domain decomposition scheme, allowing us to tackle large and complicated domains efficiently. We provide a general theoretical result on the existence of neural operator approximations in the context of domain decomposition solution of abstract PDEs. We then demonstrate our method by accurately approximating solutions to elliptic PDEs with discontinuous microstructures in complex geometries, using a physics-pretrained neural operator (PPNO). Our results show that this approach not only outperforms current state-of-the-art methods on these challenging problems, but also offers resolution-invariance and strong generalization to microstructural patterns unseen during training.
♻ ☆ Memorization: A Close Look at Books ACL 2025
To what extent can entire books be extracted from LLMs? Using the Llama 3 70B family of models, and the "prefix-prompting" extraction technique, we were able to auto-regressively reconstruct, with a very high level of similarity, one entire book (Alice's Adventures in Wonderland) from just the first 500 tokens. We were also able to obtain high extraction rates on several other books, piece-wise. However, these successes do not extend uniformly to all books. We show that extraction rates of books correlate with book popularity and thus, likely duplication in the training data. We also confirm the undoing of mitigations in the instruction-tuned Llama 3.1, following recent work (Nasr et al., 2025). We further find that this undoing comes from changes to only a tiny fraction of weights concentrated primarily in the lower transformer blocks. Our results provide evidence of the limits of current regurgitation mitigation strategies and introduce a framework for studying how fine-tuning affects the retrieval of verbatim memorization in aligned LLMs.
comment: Accepted at ACL 2025 L2M2 Workshop
♻ ☆ Lagrangian neural networks for nonholonomic mechanics
Lagrangian Neural Networks (LNNs) are a powerful tool for addressing physical systems, particularly those governed by conservation laws. LNNs can parametrize the Lagrangian of a system to predict trajectories with nearly conserved energy. These techniques have proven effective in unconstrained systems as well as those with holonomic constraints. In this work, we adapt LNN techniques to mechanical systems with nonholonomic constraints. We test our approach on some well-known examples with nonholonomic constraints, showing that incorporating these restrictions into the neural network's learning improves not only trajectory estimation accuracy but also ensures adherence to constraints and exhibits better energy behavior compared to the unconstrained counterpart.
♻ ☆ RadMamba: Efficient Human Activity Recognition through Radar-based Micro-Doppler-Oriented Mamba State-Space Model
Radar-based HAR has emerged as a promising alternative to conventional monitoring approaches, such as wearable devices and camera-based systems, due to its unique privacy preservation and robustness advantages. However, existing solutions based on convolutional and recurrent neural networks, although effective, are computationally demanding during deployment. This limits their applicability in scenarios with constrained resources or those requiring multiple sensors. Advanced architectures, such as Vision Transformer (ViT) and State-Space Model (SSM) architectures, offer improved modeling capabilities and have made efforts toward lightweight designs. However, their computational complexity remains relatively high. To leverage the strengths of transformer architectures while simultaneously enhancing accuracy and reducing computational complexity, this paper introduces RadMamba, a parameter-efficient, radar micro-Doppler-oriented Mamba SSM specifically tailored for radar-based HAR. Across three diverse datasets, RadMamba matches the top-performing previous model's 99.8% classification accuracy on Dataset DIAT with only 1/400 of its parameters and equals the leading models' 92.0% accuracy on Dataset CI4R with merely 1/10 of their parameters. In scenarios with continuous sequences of actions evaluated on Dataset UoG2020, RadMamba surpasses other models with significantly higher parameter counts by at least 3%, achieving this with only 6.7k parameters. Our code is available at: https://github.com/lab-emi/AIRHAR.
comment: Under Review
♻ ☆ Hypergraph Neural Networks Reveal Spatial Domains from Single-cell Transcriptomics Data
The task of spatial clustering of transcriptomics data is of paramount importance. It enables the classification of tissue samples into diverse subpopulations of cells, which, in turn, facilitates the analysis of the biological functions of clusters, tissue reconstruction, and cell-cell interactions. Many approaches leverage gene expressions, spatial locations, and histological images to detect spatial domains; however, Graph Neural Networks (GNNs) as state of the art models suffer from a limitation in the assumption of pairwise connections between nodes. In the case of domain detection in spatial transcriptomics, some cells are found to be not directly related. Still, they are grouped as the same domain, which shows the incapability of GNNs for capturing implicit connections among the cells. While graph edges connect only two nodes, hyperedges connect an arbitrary number of nodes along their edges, which lets Hypergraph Neural Networks (HGNNs) capture and utilize richer and more complex structural information than traditional GNNs. We use autoencoders to address the limitation of not having the actual labels, which are well-suited for unsupervised learning. Our model has demonstrated exceptional performance, achieving the highest iLISI score of 1.843 compared to other methods. This score indicates the greatest diversity of cell types identified by our method. Furthermore, our model outperforms other methods in downstream clustering, achieving the highest ARI values of 0.51 and Leiden score of 0.60.
♻ ☆ Interpretable Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification using Multi-Omics Data
The integration of heterogeneous multi-omics datasets at a systems level remains a central challenge for developing analytical and computational models in precision cancer diagnostics. This paper introduces Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN), a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples together with Protein-Protein Interaction (PPI) networks for cancer classification across 31 different cancer types. The proposed approach combines differential gene expression with DESeq2, Linear Models for Microarray (LIMMA), and Least Absolute Shrinkage and Selection Operator (LASSO) regression to reduce multi-omics data dimensionality while preserving relevant biological features. The model architecture is based on the Kolmogorov-Arnold theorem principle and uses trainable univariate functions to enhance interpretability and feature analysis. MOGKAN achieves classification accuracy of 96.28 percent and exhibits low experimental variability in comparison to related deep learning-based models. The biomarkers identified by MOGKAN were validated as cancer-related markers through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability with potential to enhance the translation of complex multi-omics data into clinically actionable cancer diagnostics.
♻ ☆ FlowAlign: Trajectory-Regularized, Inversion-Free Flow-based Image Editing
Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose {\em FlowAlign}, a novel inversion-free flow-based framework for consistent image editing with optimal control-based trajectory control. Specifically, FlowAlign introduces source similarity at the terminal point as a regularization term to promote smoother and more consistent trajectories during the editing process. Notably, our terminal point regularization is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highliting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.
♻ ☆ What is Wrong with Perplexity for Long-context Language Modeling?
Handling long-context inputs is crucial for large language models (LLMs) in tasks such as extended conversations, document summarization, and many-shot in-context learning. While recent approaches have extended the context windows of LLMs and employed perplexity (PPL) as a standard evaluation metric, PPL has proven unreliable for assessing long-context capabilities. The underlying cause of this limitation has remained unclear. In this work, we provide a comprehensive explanation for this issue. We find that PPL overlooks key tokens, which are essential for long-context understanding, by averaging across all tokens and thereby obscuring the true performance of models in long-context scenarios. To address this, we propose \textbf{LongPPL}, a novel metric that focuses on key tokens by employing a long-short context contrastive method to identify them. Our experiments demonstrate that LongPPL strongly correlates with performance on various long-context benchmarks (e.g., Pearson correlation of -0.96), significantly outperforming traditional PPL in predictive accuracy. Additionally, we introduce \textbf{LongCE} (Long-context Cross-Entropy) loss, a re-weighting strategy for fine-tuning that prioritizes key tokens, leading to consistent improvements across diverse benchmarks. In summary, these contributions offer deeper insights into the limitations of PPL and present effective solutions for accurately evaluating and enhancing the long-context capabilities of LLMs. Code is available at https://github.com/PKU-ML/LongPPL.
♻ ☆ First-Order Sparse Convex Optimization: Better Rates with Sparse Updates
In was recently established that for convex optimization problems with a sparse optimal solution (may it be entry-wise sparsity or matrix rank-wise sparsity) it is possible to have linear convergence rates which depend on an improved mixed-norm condition number of the form $\frac{\beta_1{}s}{\alpha_2}$, where $\beta_1$ is the $\ell_1$-Lipchitz continuity constant of the gradient, $\alpha_2$ is the $\ell_2$-quadratic growth constant, and $s$ is the sparsity of the optimal solution. However, beyond the improved convergence rate, these methods are unable to leverage the sparsity of optimal solutions towards improving also the runtime of each iteration, which may still be prohibitively high for high-dimensional problems. In this work, we establish that linear convergence rates which depend on this improved condition number can be obtained using only sparse updates, which may result in overall significantly improved running times. Moreover, our methods are considerably easier to implement.
♻ ☆ Context-Aware Deep Lagrangian Networks for Model Predictive Control IROS 2025
Controlling a robot based on physics-consistent dynamic models, such as Deep Lagrangian Networks (DeLaN), can improve the generalizability and interpretability of the resulting behavior. However, in complex environments, the number of objects to potentially interact with is vast, and their physical properties are often uncertain. This complexity makes it infeasible to employ a single global model. Therefore, we need to resort to online system identification of context-aware models that capture only the currently relevant aspects of the environment. While physical principles such as the conservation of energy may not hold across varying contexts, ensuring physical plausibility for any individual context-aware model can still be highly desirable, particularly when using it for receding horizon control methods such as model predictive control (MPC). Hence, in this work, we extend DeLaN to make it context-aware, combine it with a recurrent network for online system identification, and integrate it with an MPC for adaptive, physics-consistent control. We also combine DeLaN with a residual dynamics model to leverage the fact that a nominal model of the robot is typically available. We evaluate our method on a 7-DOF robot arm for trajectory tracking under varying loads. Our method reduces the end-effector tracking error by 39%, compared to a 21% improvement achieved by a baseline that uses an extended Kalman filter.
comment: Accepted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Machine Learning Model Integration with Open World Temporal Logic for Process Automation
Recent advancements in Machine Learning (ML) have yielded powerful models capable of extracting structured information from diverse and complex data sources. However, a significant challenge lies in translating these perceptual or extractive outputs into actionable, reasoned decisions within complex operational workflows. To address these challenges, this paper introduces a novel approach that integrates the outputs from various machine learning models directly with the PyReason framework, an open-world temporal logic programming reasoning engine. PyReason's foundation in generalized annotated logic allows for the seamless incorporation of real-valued outputs (e.g., probabilities, confidence scores) from diverse ML models, treating them as truth intervals within its logical framework. Crucially, PyReason provides mechanisms, implemented in Python, to continuously poll ML model outputs, convert them into logical facts, and dynamically recompute the minimal model, ensuring real-tine adaptive decision-making. Furthermore, its native support for temporal reasoning, knowledge graph integration, and fully explainable interface traces enables sophisticated analysis over time-sensitive process data and existing organizational knowledge. By combining the strengths of perception and extraction from ML models with the logical deduction and transparency of PyReason, we aim to create a powerful system for automating complex processes. This integration finds utility across numerous domains, including manufacturing, healthcare, and business operations.
♻ ☆ Vidar: Embodied Video Diffusion Model for Generalist Bimanual Manipulation
Bimanual robotic manipulation, which involves the coordinated control of two robotic arms, is foundational for solving challenging tasks. Despite recent progress in general-purpose manipulation, data scarcity and embodiment heterogeneity remain serious obstacles to further scaling up in bimanual settings. In this paper, we introduce Video Diffusion for Action Reasoning (Vidar), a two-stage framework that leverages large-scale, diffusion-based video pre-training and a novel masked inverse dynamics model for action prediction. We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms, utilizing a unified observation space that encodes robot, camera, task, and scene contexts. Our masked inverse dynamics model learns masks to extract action-relevant information from generated trajectories without requiring pixel-level labels, and the masks can effectively generalize to unseen backgrounds. Our experiments demonstrate that with only 20 minutes of human demonstrations on an unseen robot platform (only 1% of typical data requirements), Vidar generalizes to unseen tasks and backgrounds with strong semantic understanding, surpassing state-of-the-art methods. Our findings highlight the potential of video foundation models, coupled with masked action prediction, to enable scalable and generalizable robotic manipulation in diverse real-world settings.
♻ ☆ Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation
Although data-driven methods have achieved success in 3D human pose estimation, they often suffer from domain gaps and exhibit limited generalization. In contrast, optimization-based methods excel in fine-tuning for specific cases but are generally inferior to data-driven methods in overall performance. We observe that previous optimization-based methods commonly rely on a projection constraint, which only ensures alignment in 2D space, potentially leading to the overfitting problem. To address this, we propose an Uncertainty-Aware testing-time Optimization (UAO) framework, which keeps the prior information of the pre-trained model and alleviates the overfitting problem using the uncertainty of joints. Specifically, during the training phase, we design an effective 2D-to-3D network for estimating the corresponding 3D pose while quantifying the uncertainty of each 3D joint. For optimization during testing, the proposed optimization framework freezes the pre-trained model and optimizes only a latent state. Projection loss is then employed to ensure the generated poses are well aligned in 2D space for high-quality optimization. Furthermore, we utilize the uncertainty of each joint to determine how much each joint is allowed for optimization. The effectiveness and superiority of the proposed framework are validated through extensive experiments on challenging datasets: Human3.6M, MPI-INF-3DHP, and 3DPW. Notably, our approach outperforms the previous best result by a large margin of 5.5\% on Human3.6M. Code is available at \href{https://github.com/xiu-cs/UAO-Pose3D}{https://github.com/xiu-cs/UAO-Pose3D}.
comment: Accepted by IEEE Transactions on Multimedia. Open sourced
♻ ☆ Leveraging Analytic Gradients in Provably Safe Reinforcement Learning
The deployment of autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research that aims to provide such guarantees using safeguards. These safeguards should be integrated during training to reduce the sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance from fewer environment interactions. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them with a state-of-the-art learning algorithm and a differentiable simulation. Using numerical experiments on three control tasks, we evaluate how different safeguards affect learning. The results demonstrate safeguarded training without compromising performance.
comment: 16 pages, 10 figures
♻ ☆ GQSA: Group Quantization and Sparsity for Accelerating Large Language Model Inference
Model compression has emerged as a mainstream solution to reduce memory usage and computational overhead. This paper presents Group Quantization and Sparse Acceleration (GQSA), a novel compression technique tailored for LLMs. Traditional methods typically focus exclusively on either quantization or sparsification, but relying on a single strategy often results in significant performance loss at high compression rates. In contrast, GQSA integrates quantization and sparsification in a tightly coupled manner, leveraging GPU-friendly structured group sparsity and quantization for efficient acceleration. Building upon system-algorithm co-design principles, we propose a two-stage sparse optimization strategy that ensures the performance superiority of the compressed model. On the engine side, we introduce a "task-centric" parallel strategy, which, to the best of our knowledge, is the first application in the domain of sparse computing. Compared to the traditional 2:4 sparse method, the GQSA offers a more flexible and adjustable sparsity rate, as well as a higher weight compression rate, and is efficiently compatible with weight-only quantization methods. Experimental results demonstrate that, under the GQSA W4S50% compression setting, the model's accuracy surpasses that of both 2:4 pruning and W2 quantization. Furthermore, at the inference level, GQSA outperforms W2 by 1.26$\times$ and 2:4 pruning by 2.35$\times$ in terms of speed.
comment: 14 pages
♻ ☆ ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models AAAI 2025
Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their practical application is constrained by substantial memory and computational demands. Post-training quantization (PTQ) is considered an effective method to accelerate LLM inference. Despite its growing popularity in LLM model compression, PTQ deployment faces two major challenges. First, low-bit quantization leads to performance degradation. Second, restricted by the limited integer computing unit type on GPUs, quantized matrix operations with different precisions cannot be effectively accelerated. To address these issues, we introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM. It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU. ABQ-LLM introduces several key innovations: (1) a distribution correction method for transformer blocks to mitigate distribution differences caused by full quantization of weights and activations, improving performance at low bit-widths. (2) the bit balance strategy to counteract performance degradation from asymmetric distribution issues at very low bit-widths (e.g., 2-bit). (3) an innovative quantization acceleration framework that reconstructs the quantization matrix multiplication of arbitrary precision combinations based on BTC (Binary TensorCore) equivalents, gets rid of the limitations of INT4/INT8 computing units. ABQ-LLM can convert each component bit width gain into actual acceleration gain, maximizing performance under mixed precision(e.g., W6A6, W2A8). Based on W2*A8 quantization configuration on LLaMA-7B model, it achieved a WikiText2 perplexity of 7.59 (2.17$\downarrow $ vs 9.76 in AffineQuant). Compared to SmoothQuant, we realized 1.6$\times$ acceleration improvement and 2.7$\times$ memory compression gain.
comment: AAAI 2025
♻ ☆ Semi-Supervised Risk Control via Prediction-Powered Inference
The risk-controlling prediction sets (RCPS) framework is a general tool for transforming the output of any machine learning model to design a predictive rule with rigorous error rate control. The key idea behind this framework is to use labeled hold-out calibration data to tune a hyper-parameter that affects the error rate of the resulting prediction rule. However, the limitation of such a calibration scheme is that with limited hold-out data, the tuned hyper-parameter becomes noisy and leads to a prediction rule with an error rate that is often unnecessarily conservative. To overcome this sample-size barrier, we introduce a semi-supervised calibration procedure that leverages unlabeled data to rigorously tune the hyper-parameter without compromising statistical validity. Our procedure builds upon the prediction-powered inference framework, carefully tailoring it to risk-controlling tasks. We demonstrate the benefits and validity of our proposal through two real-data experiments: few-shot image classification and early time series classification.
♻ ☆ Recursive KalmanNet: Analyse des capacités de généralisation d'un réseau de neurones récurrent guidé par un filtre de Kalman
The Recursive KalmanNet, recently introduced by the authors, is a recurrent neural network guided by a Kalman filter, capable of estimating the state variables and error covariance of stochastic dynamic systems from noisy measurements, without prior knowledge of the noise characteristics. This paper explores its generalization capabilities in out-of-distribution scenarios, where the temporal dynamics of the test measurements differ from those encountered during training. Le Recursive KalmanNet, r\'ecemment introduit par les auteurs, est un r\'eseau de neurones r\'ecurrent guid\'e par un filtre de Kalman, capable d'estimer les variables d'\'etat et la covariance des erreurs des syst\`emes dynamiques stochastiques \`a partir de mesures bruit\'ees, sans connaissance pr\'ealable des caract\'eristiques des bruits. Cet article explore ses capacit\'es de g\'en\'eralisation dans des sc\'enarios hors distribution, o\`u les dynamiques temporelles des mesures de test diff\`erent de celles rencontr\'ees \`a l'entra\^inement.
comment: 4 pages, in French language. 4 figures. Accepted for publication in GRETSI 2025 proceedings
♻ ☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
comment: 9 pages, 19 figures, 7 tables, 18 trained models
♻ ☆ GuidedQuant: Large Language Model Quantization via Exploiting End Loss Guidance ICML 2025
Post-training quantization is a key technique for reducing the memory and inference latency of large language models by quantizing weights and activations without requiring retraining. However, existing methods either (1) fail to account for the varying importance of hidden features to the end loss or, when incorporating end loss, (2) neglect the critical interactions between model weights. To address these limitations, we propose GuidedQuant, a novel quantization approach that integrates gradient information from the end loss into the quantization objective while preserving cross-weight dependencies within output channels. GuidedQuant consistently boosts the performance of state-of-the-art quantization methods across weight-only scalar, weight-only vector, and weight-and-activation quantization. Additionally, we introduce a novel non-uniform scalar quantization algorithm, which is guaranteed to monotonically decrease the quantization objective value, and outperforms existing methods in this category. We release the code at https://github.com/snu-mllab/GuidedQuant.
comment: ICML 2025
♻ ☆ Adaptive Real-Time Multi-Loss Function Optimization Using Dynamic Memory Fusion Framework: A Case Study on Breast Cancer Segmentation
Deep learning has proven to be a highly effective tool for a wide range of applications, significantly when leveraging the power of multi-loss functions to optimize performance on multiple criteria simultaneously. However, optimal selection and weighting loss functions in deep learning tasks can significantly influence model performance, yet manual tuning of these functions is often inefficient and inflexible. We propose a novel framework called dynamic memory fusion for adaptive multi-loss function penalizing in real-time to address this. This framework leverages historical loss values data to dynamically adjust the weighting of multiple loss functions throughout the training process. Additionally, this framework integrates an auxiliary loss function to enhance model performance in the early stages. To further research horizons, we introduce the class-balanced dice loss function, designed to address class imbalance by prioritizing underrepresented classes. Experiments on breast ultrasound datasets demonstrate that the framework improves segmentation performance across various metrics. These results demonstrate the effectiveness of our proposed framework in ensuring that the model dynamically adjusts its focus to prioritize the most relevant criteria, leading to improved performance in evolving environments. The source code for our proposed methodology is publicly available on GitHub.
♻ ☆ Does equivariance matter at scale?
Given large datasets and sufficient compute, is it beneficial to design neural architectures for the structure and symmetries of each problem? Or is it more efficient to learn them from data? We study empirically how equivariant and non-equivariant networks scale with compute and training samples. Focusing on a benchmark problem of rigid-body interactions and on general-purpose transformer architectures, we perform a series of experiments, varying the model size, training steps, and dataset size. We find evidence for three conclusions. First, equivariance improves data efficiency, but training non-equivariant models with data augmentation can close this gap given sufficient epochs. Second, scaling with compute follows a power law, with equivariant models outperforming non-equivariant ones at each tested compute budget. Finally, the optimal allocation of a compute budget onto model size and training duration differs between equivariant and non-equivariant models.
comment: Version published in TMLR
♻ ☆ Come Together, But Not Right Now: A Progressive Strategy to Boost Low-Rank Adaptation ICML 2025
Low-rank adaptation (LoRA) has emerged as a leading parameter-efficient fine-tuning technique for adapting large foundation models, yet it often locks adapters into suboptimal minima near their initialization. This hampers model generalization and limits downstream operators such as adapter merging and pruning. Here, we propose CoTo, a progressive training strategy that gradually increases adapters' activation probability over the course of fine-tuning. By stochastically deactivating adapters, CoTo encourages more balanced optimization and broader exploration of the loss landscape. We provide a theoretical analysis showing that CoTo promotes layer-wise dropout stability and linear mode connectivity, and we adopt a cooperative-game approach to quantify each adapter's marginal contribution. Extensive experiments demonstrate that CoTo consistently boosts single-task performance, enhances multi-task merging accuracy, improves pruning robustness, and reduces training overhead, all while remaining compatible with diverse LoRA variants. Code is available at https://github.com/zwebzone/coto.
comment: Accepted by ICML 2025. Code link: https://github.com/zwebzone/coto
♻ ☆ Syno: Structured Synthesis for Neural Operators
The desires for better prediction accuracy and higher execution performance in neural networks never end. Neural architecture search (NAS) and tensor compilers are two popular techniques to optimize these two goals, but they are both limited to composing or optimizing existing manually designed operators rather than coming up with completely new designs. In this work, we explore the less studied direction of neural operator synthesis, which aims to automatically and efficiently discover novel neural operators with better accuracy and/or speed. We develop an end-to-end framework Syno, to realize practical neural operator synthesis. Syno makes use of a novel set of fine-grained primitives defined on tensor dimensions, which ensure various desired properties to ease model training, and also enable expression canonicalization techniques to avoid redundant candidates during search. Syno further adopts a novel guided synthesis flow to obtain valid operators matched with the specified input/output dimension sizes, and leverages efficient stochastic tree search algorithms to quickly explore the design space. We demonstrate that Syno discovers better operators with average speedups of $1.37\times$ to $2.06\times$ on various hardware and compiler choices, while keeping less than 1% accuracy loss even on NAS-optimized models.
♻ ☆ On the Role of Discrete Representation in Sparse Mixture of Experts
Sparse mixture of experts (SMoE) is an effective solution for scaling up model capacity without increasing the computational costs. A crucial component of SMoE is the router, responsible for directing the input to relevant experts; however, it also presents a major weakness, leading to routing inconsistencies and representation collapse issues. Instead of fixing the router like previous works, we propose an alternative that assigns experts to input via indirection, which employs the discrete representation of input that points to the expert. The discrete representations are learnt via vector quantization, resulting in a new architecture dubbed Vector-Quantized Mixture of Experts (VQMoE). We provide theoretical support and empirical evidence demonstrating the VQMoE's ability to overcome the challenges present in traditional routers. Through extensive evaluations on both large language models and vision tasks for pre-training and fine-tuning, we show that VQMoE achieves a 28% improvement in robustness compared to other SMoE routing methods, while maintaining strong performance in fine-tuning tasks.
comment: 17 pages
♻ ☆ SETOL: A Semi-Empirical Theory of (Deep) Learning
We present a SemiEmpirical Theory of Learning (SETOL) that explains the remarkable performance of State-Of-The-Art (SOTA) Neural Networks (NNs). We provide a formal explanation of the origin of the fundamental quantities in the phenomenological theory of Heavy-Tailed Self-Regularization (HTSR): the heavy-tailed power-law layer quality metrics, alpha and alpha-hat. In prior work, these metrics have been shown to predict trends in the test accuracies of pretrained SOTA NN models, importantly, without needing access to either testing or training data. Our SETOL uses techniques from statistical mechanics as well as advanced methods from random matrix theory and quantum chemistry. The derivation suggests new mathematical preconditions for ideal learning, including a new metric, ERG, which is equivalent to applying a single step of the Wilson Exact Renormalization Group. We test the assumptions and predictions of SETOL on a simple 3-layer multilayer perceptron (MLP), demonstrating excellent agreement with the key theoretical assumptions. For SOTA NN models, we show how to estimate the individual layer qualities of a trained NN by simply computing the empirical spectral density (ESD) of the layer weight matrices and plugging this ESD into our SETOL formulas. Notably, we examine the performance of the HTSR alpha and the SETOL ERG layer quality metrics, and find that they align remarkably well, both on our MLP and on SOTA NNs.
comment: 139 pages, 28 figures. Code for experiments available at https://github.com/charlesmartin14/SETOL_experiments
♻ ☆ Generalized Trusted Multi-view Classification Framework with Hierarchical Opinion Aggregation
Recently, multi-view learning has witnessed a considerable interest on the research of trusted decision-making. Previous methods are mainly inspired from an important paper published by Han et al. in 2021, which formulates a Trusted Multi-view Classification (TMC) framework that aggregates evidence from different views based on Dempster's combination rule. All these methods only consider inter-view aggregation, yet lacking exploitation of intra-view information. In this paper, we propose a generalized trusted multi-view classification framework with hierarchical opinion aggregation. This hierarchical framework includes a two-phase aggregation process: the intra-view and inter-view aggregation hierarchies. In the intra aggregation, we assume that each view is comprised of common information shared with other views, as well as its specific information. We then aggregate both the common and specific information. This aggregation phase is useful to eliminate the feature noise inherent to view itself, thereby improving the view quality. In the inter-view aggregation, we design an attention mechanism at the evidence level to facilitate opinion aggregation from different views. To the best of our knowledge, this is one of the pioneering efforts to formulate a hierarchical aggregation framework in the trusted multi-view learning domain. Extensive experiments show that our model outperforms some state-of art trust-related baselines. One can access the source code on https://github.com/lshi91/GTMC-HOA.
♻ ☆ Distributed Learning over Arbitrary Topology: Linear Speed-Up with Polynomial Transient Time
We study a distributed learning problem in which $n$ agents, each with potentially heterogeneous local data, collaboratively minimize the sum of their local cost functions via peer-to-peer communication. We propose a novel algorithm, \emph{Spanning Tree Push-Pull} (STPP), which employs two spanning trees extracted from a general communication graph to distribute both model parameters and stochastic gradients. Unlike prior approaches that rely heavily on spectral gap properties, STPP leverages a more flexible topological characterization, enabling robust information flow and efficient updates. Theoretically, we prove that STPP achieves linear speedup and polynomial transient iteration complexity -- up to $\mathcal{O}(n^7)$ for smooth nonconvex objectives and $\tilde{\mathcal{O}}(n^3)$ for smooth strongly convex objectives -- under arbitrary network topologies. Moreover, compared with existing methods, STPP achieves faster convergence rates on sparse and non-regular topologies (e.g., directed rings) and reduces communication overhead on dense networks (e.g., static exponential graphs). Numerical experiments further demonstrate the strong performance of STPP across various graph architectures.
♻ ☆ When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars
The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.
♻ ☆ Minimax Optimal Reinforcement Learning with Quasi-Optimism
In our quest for a reinforcement learning (RL) algorithm that is both practical and provably optimal, we introduce EQO (Exploration via Quasi-Optimism). Unlike existing minimax optimal approaches, EQO avoids reliance on empirical variances and employs a simple bonus term proportional to the inverse of the state-action visit count. Central to EQO is the concept of quasi-optimism, where estimated values need not be fully optimistic, allowing for a simpler yet effective exploration strategy. The algorithm achieves the sharpest known regret bound for tabular RL under the mildest assumptions, proving that fast convergence can be attained with a practical and computationally efficient approach. Empirical evaluations demonstrate that EQO consistently outperforms existing algorithms in both regret performance and computational efficiency, providing the best of both theoretical soundness and practical effectiveness.
comment: Minor corrections to constant factors
♻ ☆ Analytic Continual Test-Time Adaptation for Multi-Modality Corruption
Test-Time Adaptation (TTA) enables pre-trained models to bridge the gap between source and target datasets using unlabeled test data, addressing domain shifts caused by corruptions like weather changes, noise, or sensor malfunctions in test time. Multi-Modal Continual Test-Time Adaptation (MM-CTTA), as an extension of standard TTA, further allows models to handle multi-modal inputs and adapt to continuously evolving target domains. However, MM-CTTA faces critical challenges such as catastrophic forgetting and reliability bias, which are rarely addressed effectively under multi-modal corruption scenarios. In this paper, we propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA), to tackle MM-CTTA tasks. MDAA introduces analytic learning,a closed-form training technique,through Analytic Classifiers (ACs) to mitigate catastrophic forgetting. Furthermore, we design the Dynamic Late Fusion Mechanism (DLFM) to dynamically select and integrate reliable information from different modalities. Extensive experiments show that MDAA achieves state-of-the-art performance across the proposed tasks.
♻ ☆ Beyond Self-Repellent Kernels: History-Driven Target Towards Efficient Nonlinear MCMC on General Graphs ICML 2025
We propose a history-driven target (HDT) framework in Markov Chain Monte Carlo (MCMC) to improve any random walk algorithm on discrete state spaces, such as general undirected graphs, for efficient sampling from target distribution $\boldsymbol{\mu}$. With broad applications in network science and distributed optimization, recent innovations like the self-repellent random walk (SRRW) achieve near-zero variance by prioritizing under-sampled states through transition kernel modifications based on past visit frequencies. However, SRRW's reliance on explicit computation of transition probabilities for all neighbors at each step introduces substantial computational overhead, while its strict dependence on time-reversible Markov chains excludes advanced non-reversible MCMC methods. To overcome these limitations, instead of direct modification of transition kernel, HDT introduces a history-dependent target distribution $\boldsymbol{\pi}[\mathbf{x}]$ to replace the original target $\boldsymbol{\mu}$ in any graph sampler, where $\mathbf{x}$ represents the empirical measure of past visits. This design preserves lightweight implementation by requiring only local information between the current and proposed states and achieves compatibility with both reversible and non-reversible MCMC samplers, while retaining unbiased samples with target distribution $\boldsymbol{\mu}$ and near-zero variance performance. Extensive experiments in graph sampling demonstrate consistent performance gains, and a memory-efficient Least Recently Used (LRU) cache ensures scalability to large general graphs.
comment: Accepted at ICML 2025 (Oral)
Graphics 3
☆ Neural Shell Texture Splatting: More Details and Fewer Primitives
Gaussian splatting techniques have shown promising results in novel view synthesis, achieving high fidelity and efficiency. However, their high reconstruction quality comes at the cost of requiring a large number of primitives. We identify this issue as stemming from the entanglement of geometry and appearance in Gaussian Splatting. To address this, we introduce a neural shell texture, a global representation that encodes texture information around the surface. We use Gaussian primitives as both a geometric representation and texture field samplers, efficiently splatting texture features into image space. Our evaluation demonstrates that this disentanglement enables high parameter efficiency, fine texture detail reconstruction, and easy textured mesh extraction, all while using significantly fewer primitives.
☆ Aggregation-aware MLP: An Unsupervised Approach for Graph Message-passing
Graph Neural Networks (GNNs) have become a dominant approach to learning graph representations, primarily because of their message-passing mechanisms. However, GNNs typically adopt a fixed aggregator function such as Mean, Max, or Sum without principled reasoning behind the selection. This rigidity, especially in the presence of heterophily, often leads to poor, problem dependent performance. Although some attempts address this by designing more sophisticated aggregation functions, these methods tend to rely heavily on labeled data, which is often scarce in real-world tasks. In this work, we propose a novel unsupervised framework, "Aggregation-aware Multilayer Perceptron" (AMLP), which shifts the paradigm from directly crafting aggregation functions to making MLP adaptive to aggregation. Our lightweight approach consists of two key steps: First, we utilize a graph reconstruction method that facilitates high-order grouping effects, and second, we employ a single-layer network to encode varying degrees of heterophily, thereby improving the capacity and applicability of the model. Extensive experiments on node clustering and classification demonstrate the superior performance of AMLP, highlighting its potential for diverse graph learning scenarios.
comment: 11 pages, 6 figures
♻ ☆ GATE: Geometry-Aware Trained Encoding
The encoding of input parameters is one of the fundamental building blocks of neural network algorithms. Its goal is to map the input data to a higher-dimensional space, typically supported by trained feature vectors. The mapping is crucial for the efficiency and approximation quality of neural networks. We propose a novel geometry-aware encoding called GATE that stores feature vectors on the surface of triangular meshes. Our encoding is suitable for neural rendering-related algorithms, for example, neural radiance caching. It also avoids limitations of previous hash-based encoding schemes, such as hash collisions, selection of resolution versus scene size, and divergent memory access. Our approach decouples feature vector density from geometry density using mesh colors, while allowing for finer control over neural network training and adaptive level-of-detail.
Artificial Intelligence 93
☆ When Prompts Go Wrong: Evaluating Code Model Robustness to Ambiguous, Contradictory, and Incomplete Task Descriptions
Large Language Models (LLMs) have demonstrated impressive performance in code generation tasks under idealized conditions, where task descriptions are clear and precise. However, in practice, task descriptions frequently exhibit ambiguity, incompleteness, or internal contradictions. In this paper, we present the first empirical study examining the robustness of state-of-the-art code generation models when faced with such unclear task descriptions. We extend the HumanEval and MBPP benchmarks by systematically introducing realistic task descriptions flaws through guided mutation strategies, producing a dataset that mirrors the messiness of informal developer instructions. We evaluate multiple LLMs of varying sizes and architectures, analyzing their functional correctness and failure modes across task descriptions categories. Our findings reveal that even minor imperfections in task description phrasing can cause significant performance degradation, with contradictory task descriptions resulting in numerous logical errors. Moreover, while larger models tend to be more resilient than smaller variants, they are not immune to the challenges posed by unclear requirements. We further analyze semantic error patterns and identify correlations between description clarity, model behavior, and error types. Our results underscore the critical need for developing LLMs that are not only powerful but also robust to the imperfections inherent in natural user tasks, highlighting important considerations for improving model training strategies, designing more realistic evaluation benchmarks, and ensuring reliable deployment in practical software development environments.
☆ FAST: Similarity-based Knowledge Transfer for Efficient Policy Learning
Transfer Learning (TL) offers the potential to accelerate learning by transferring knowledge across tasks. However, it faces critical challenges such as negative transfer, domain adaptation and inefficiency in selecting solid source policies. These issues often represent critical problems in evolving domains, i.e. game development, where scenarios transform and agents must adapt. The continuous release of new agents is costly and inefficient. In this work we challenge the key issues in TL to improve knowledge transfer, agents performance across tasks and reduce computational costs. The proposed methodology, called FAST - Framework for Adaptive Similarity-based Transfer, leverages visual frames and textual descriptions to create a latent representation of tasks dynamics, that is exploited to estimate similarity between environments. The similarity scores guides our method in choosing candidate policies from which transfer abilities to simplify learning of novel tasks. Experimental results, over multiple racing tracks, demonstrate that FAST achieves competitive final performance compared to learning-from-scratch methods while requiring significantly less training steps. These findings highlight the potential of embedding-driven task similarity estimations.
comment: Accepted at IEEE Conference on Games (CoG) 2025
☆ ResCap-DBP: A Lightweight Residual-Capsule Network for Accurate DNA-Binding Protein Prediction Using Global ProteinBERT Embeddings
DNA-binding proteins (DBPs) are integral to gene regulation and cellular processes, making their accurate identification essential for understanding biological functions and disease mechanisms. Experimental methods for DBP identification are time-consuming and costly, driving the need for efficient computational prediction techniques. In this study, we propose a novel deep learning framework, ResCap-DBP, that combines a residual learning-based encoder with a one-dimensional Capsule Network (1D-CapsNet) to predict DBPs directly from raw protein sequences. Our architecture incorporates dilated convolutions within residual blocks to mitigate vanishing gradient issues and extract rich sequence features, while capsule layers with dynamic routing capture hierarchical and spatial relationships within the learned feature space. We conducted comprehensive ablation studies comparing global and local embeddings from ProteinBERT and conventional one-hot encoding. Results show that ProteinBERT embeddings substantially outperform other representations on large datasets. Although one-hot encoding showed marginal advantages on smaller datasets, such as PDB186, it struggled to scale effectively. Extensive evaluations on four pairs of publicly available benchmark datasets demonstrate that our model consistently outperforms current state-of-the-art methods. It achieved AUC scores of 98.0% and 89.5% on PDB14189andPDB1075, respectively. On independent test sets PDB2272 and PDB186, the model attained top AUCs of 83.2% and 83.3%, while maintaining competitive performance on larger datasets such as PDB20000. Notably, the model maintains a well balanced sensitivity and specificity across datasets. These results demonstrate the efficacy and generalizability of integrating global protein representations with advanced deep learning architectures for reliable and scalable DBP prediction in diverse genomic contexts.
☆ CodeNER: Code Prompting for Named Entity Recognition
Recent studies have explored various approaches for treating candidate named entity spans as both source and target sequences in named entity recognition (NER) by leveraging large language models (LLMs). Although previous approaches have successfully generated candidate named entity spans with suitable labels, they rely solely on input context information when using LLMs, particularly, ChatGPT. However, NER inherently requires capturing detailed labeling requirements with input context information. To address this issue, we propose a novel method that leverages code-based prompting to improve the capabilities of LLMs in understanding and performing NER. By embedding code within prompts, we provide detailed BIO schema instructions for labeling, thereby exploiting the ability of LLMs to comprehend long-range scopes in programming languages. Experimental results demonstrate that the proposed code-based prompting method outperforms conventional text-based prompting on ten benchmarks across English, Arabic, Finnish, Danish, and German datasets, indicating the effectiveness of explicitly structuring NER instructions. We also verify that combining the proposed code-based prompting method with the chain-of-thought prompting further improves performance.
comment: 18 pages, 6 figures
Survey of NLU Benchmarks Diagnosing Linguistic Phenomena: Why not Standardize Diagnostics Benchmarks?
Natural Language Understanding (NLU) is a basic task in Natural Language Processing (NLP). The evaluation of NLU capabilities has become a trending research topic that attracts researchers in the last few years, resulting in the development of numerous benchmarks. These benchmarks include various tasks and datasets in order to evaluate the results of pretrained models via public leaderboards. Notably, several benchmarks contain diagnostics datasets designed for investigation and fine-grained error analysis across a wide range of linguistic phenomena. This survey provides a comprehensive review of available English, Arabic, and Multilingual NLU benchmarks, with a particular emphasis on their diagnostics datasets and the linguistic phenomena they covered. We present a detailed comparison and analysis of these benchmarks, highlighting their strengths and limitations in evaluating NLU tasks and providing in-depth error analysis. When highlighting the gaps in the state-of-the-art, we noted that there is no naming convention for macro and micro categories or even a standard set of linguistic phenomena that should be covered. Consequently, we formulated a research question regarding the evaluation metrics of the evaluation diagnostics benchmarks: "Why do not we have an evaluation standard for the NLU evaluation diagnostics benchmarks?" similar to ISO standard in industry. We conducted a deep analysis and comparisons of the covered linguistic phenomena in order to support experts in building a global hierarchy for linguistic phenomena in future. We think that having evaluation metrics for diagnostics evaluation could be valuable to gain more insights when comparing the results of the studied models on different diagnostics benchmarks.
☆ Cognitive Chain-of-Thought: Structured Multimodal Reasoning about Social Situations
Chain-of-Thought (CoT) prompting helps models think step by step. But what happens when they must see, understand, and judge-all at once? In visual tasks grounded in social context, where bridging perception with norm-grounded judgments is essential, flat CoT often breaks down. We introduce Cognitive Chain-of-Thought (CoCoT), a prompting strategy that scaffolds VLM reasoning through three cognitively inspired stages: perception, situation, and norm. Our experiments show that, across multiple multimodal benchmarks (including intent disambiguation, commonsense reasoning, and safety), CoCoT consistently outperforms CoT and direct prompting (+8\% on average). Our findings demonstrate that cognitively grounded reasoning stages enhance interpretability and social awareness in VLMs, paving the way for safer and more reliable multimodal systems.
comment: Under review; 17 pages
☆ A Multi-Stage Hybrid CNN-Transformer Network for Automated Pediatric Lung Sound Classification
Automated analysis of lung sound auscultation is essential for monitoring respiratory health, especially in regions facing a shortage of skilled healthcare workers. While respiratory sound classification has been widely studied in adults, its ap plication in pediatric populations, particularly in children aged <6 years, remains an underexplored area. The developmental changes in pediatric lungs considerably alter the acoustic proper ties of respiratory sounds, necessitating specialized classification approaches tailored to this age group. To address this, we propose a multistage hybrid CNN-Transformer framework that combines CNN-extracted features with an attention-based architecture to classify pediatric respiratory diseases using scalogram images from both full recordings and individual breath events. Our model achieved an overall score of 0.9039 in binary event classifi cation and 0.8448 in multiclass event classification by employing class-wise focal loss to address data imbalance. At the recording level, the model attained scores of 0.720 for ternary and 0.571 for multiclass classification. These scores outperform the previous best models by 3.81% and 5.94%, respectively. This approach offers a promising solution for scalable pediatric respiratory disease diagnosis, especially in resource-limited settings.
☆ MazeEval: A Benchmark for Testing Sequential Decision-Making in Language Models
As Large Language Models (LLMs) increasingly power autonomous agents in robotics and embodied AI, understanding their spatial reasoning capabilities becomes crucial for ensuring reliable real-world deployment. Despite advances in language understanding, current research lacks evaluation of how LLMs perform spatial navigation without visual cues, a fundamental requirement for agents operating with limited sensory information. This paper addresses this gap by introducing MazeEval, a benchmark designed to isolate and evaluate pure spatial reasoning in LLMs through coordinate-based maze navigation tasks. Our methodology employs a function-calling interface where models navigate mazes of varying complexity ($5\times 5$ to $15\times 15$ grids) using only coordinate feedback and distance-to-wall information, excluding visual input to test fundamental spatial cognition. We evaluate eight state-of-the-art LLMs across identical mazes in both English and Icelandic to assess cross-linguistic transfer of spatial abilities. Our findings reveal striking disparities: while OpenAI's O3 achieves perfect navigation for mazes up to size $30\times 30$, other models exhibit catastrophic failure beyond $9\times 9$ mazes, with 100% of failures attributed to excessive looping behavior where models revisit a cell at least 10 times. We document a significant performance degradation in Icelandic, with models solving mazes 3-4 sizes smaller than in English, suggesting spatial reasoning in LLMs emerges from linguistic patterns rather than language-agnostic mechanisms. These results have important implications for global deployment of LLM-powered autonomous systems, showing spatial intelligence remains fundamentally constrained by training data availability and highlighting the need for architectural innovations to achieve reliable navigation across linguistic contexts.
☆ Solving Scene Understanding for Autonomous Navigation in Unstructured Environments
Autonomous vehicles are the next revolution in the automobile industry and they are expected to revolutionize the future of transportation. Understanding the scenario in which the autonomous vehicle will operate is critical for its competent functioning. Deep Learning has played a massive role in the progress that has been made till date. Semantic Segmentation, the process of annotating every pixel of an image with an object class, is one crucial part of this scene comprehension using Deep Learning. It is especially useful in Autonomous Driving Research as it requires comprehension of drivable and non-drivable areas, roadside objects and the like. In this paper semantic segmentation has been performed on the Indian Driving Dataset which has been recently compiled on the urban and rural roads of Bengaluru and Hyderabad. This dataset is more challenging compared to other datasets like Cityscapes, since it is based on unstructured driving environments. It has a four level hierarchy and in this paper segmentation has been performed on the first level. Five different models have been trained and their performance has been compared using the Mean Intersection over Union. These are UNET, UNET+RESNET50, DeepLabsV3, PSPNet and SegNet. The highest MIOU of 0.6496 has been achieved. The paper discusses the dataset, exploratory data analysis, preparation, implementation of the five models and studies the performance and compares the results achieved in the process.
☆ Multi-Agent Reinforcement Learning for Dynamic Mobility Resource Allocation with Hierarchical Adaptive Grouping
Allocating mobility resources (e.g., shared bikes/e-scooters, ride-sharing vehicles) is crucial for rebalancing the mobility demand and supply in the urban environments. We propose in this work a novel multi-agent reinforcement learning named Hierarchical Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic mobility resource allocation. HAG-PS aims to address two important research challenges regarding multi-agent reinforcement learning for mobility resource allocation: (1) how to dynamically and adaptively share the mobility resource allocation policy (i.e., how to distribute mobility resources) across agents (i.e., representing the regional coordinators of mobility resources); and (2) how to achieve memory-efficient parameter sharing in an urban-scale setting. To address the above challenges, we have provided following novel designs within HAG-PS. To enable dynamic and adaptive parameter sharing, we have designed a hierarchical approach that consists of global and local information of the mobility resource states (e.g., distribution of mobility resources). We have developed an adaptive agent grouping approach in order to split or merge the groups of agents based on their relative closeness of encoded trajectories (i.e., states, actions, and rewards). We have designed a learnable identity (ID) embeddings to enable agent specialization beyond simple parameter copy. We have performed extensive experimental studies based on real-world NYC bike sharing data (a total of more than 1.2 million trips), and demonstrated the superior performance (e.g., improved bike availability) of HAG-PS compared with other baseline approaches.
comment: 5 pages, UrbComp 2025
☆ WBHT: A Generative Attention Architecture for Detecting Black Hole Anomalies in Backbone Networks
We propose the Wasserstein Black Hole Transformer (WBHT) framework for detecting black hole (BH) anomalies in communication networks. These anomalies cause packet loss without failure notifications, disrupting connectivity and leading to financial losses. WBHT combines generative modeling, sequential learning, and attention mechanisms to improve BH anomaly detection. It integrates a Wasserstein generative adversarial network with attention mechanisms for stable training and accurate anomaly identification. The model uses long-short-term memory layers to capture long-term dependencies and convolutional layers for local temporal patterns. A latent space encoding mechanism helps distinguish abnormal network behavior. Tested on real-world network data, WBHT outperforms existing models, achieving significant improvements in F1 score (ranging from 1.65% to 58.76%). Its efficiency and ability to detect previously undetected anomalies make it a valuable tool for proactive network monitoring and security, especially in mission-critical networks.
☆ Clustering by Attention: Leveraging Prior Fitted Transformers for Data Partitioning
Clustering is a core task in machine learning with wide-ranging applications in data mining and pattern recognition. However, its unsupervised nature makes it inherently challenging. Many existing clustering algorithms suffer from critical limitations: they often require careful parameter tuning, exhibit high computational complexity, lack interpretability, or yield suboptimal accuracy, especially when applied to large-scale datasets. In this paper, we introduce a novel clustering approach based on meta-learning. Our approach eliminates the need for parameter optimization while achieving accuracy that outperforms state-of-the-art clustering techniques. The proposed technique leverages a few pre-clustered samples to guide the clustering process for the entire dataset in a single forward pass. Specifically, we employ a pre-trained Prior-Data Fitted Transformer Network (PFN) to perform clustering. The algorithm computes attention between the pre-clustered samples and the unclustered samples, allowing it to infer cluster assignments for the entire dataset based on the learned relation. We theoretically and empirically demonstrate that, given just a few pre-clustered examples, the model can generalize to accurately cluster the rest of the dataset. Experiments on challenging benchmark datasets show that our approach can successfully cluster well-separated data without any pre-clustered samples, and significantly improves performance when a few clustered samples are provided. We show that our approach is superior to the state-of-the-art techniques. These results highlight the effectiveness and scalability of our approach, positioning it as a promising alternative to existing clustering techniques.
☆ A Theory of $θ$-Expectations
The canonical theory of stochastic calculus under ambiguity, founded on sub-additivity, is insensitive to non-convex uncertainty structures, leading to an identifiability impasse. This paper develops a mathematical framework for an identifiable calculus sensitive to non-convex geometry. We introduce the $\theta$-BSDE, a class of backward stochastic differential equations where the driver is determined by a pointwise maximization over a primitive, possibly non-convex, uncertainty set. The system's tractability is predicated not on convexity, but on a global analytic hypothesis: the existence of a unique and globally Lipschitz maximizer map for the driver function. Under this hypothesis, which carves out a tractable class of models, we establish well-posedness via a fixed-point argument. For a distinct, geometrically regular class of models, we prove a result of independent interest: under non-degeneracy conditions from Malliavin calculus, the maximizer is unique along any solution path, ensuring the model's internal consistency. We clarify the fundamental logical gap between this pathwise property and the global regularity required by our existence proof. The resulting valuation operator defines a dynamically consistent expectation, and we establish its connection to fully nonlinear PDEs via a Feynman-Kac formula.
☆ VLMPlanner: Integrating Visual Language Models with Motion Planning ACM MM 2025
Integrating large language models (LLMs) into autonomous driving motion planning has recently emerged as a promising direction, offering enhanced interpretability, better controllability, and improved generalization in rare and long-tail scenarios. However, existing methods often rely on abstracted perception or map-based inputs, missing crucial visual context, such as fine-grained road cues, accident aftermath, or unexpected obstacles, which are essential for robust decision-making in complex driving environments. To bridge this gap, we propose VLMPlanner, a hybrid framework that combines a learning-based real-time planner with a vision-language model (VLM) capable of reasoning over raw images. The VLM processes multi-view images to capture rich, detailed visual information and leverages its common-sense reasoning capabilities to guide the real-time planner in generating robust and safe trajectories. Furthermore, we develop the Context-Adaptive Inference Gate (CAI-Gate) mechanism that enables the VLM to mimic human driving behavior by dynamically adjusting its inference frequency based on scene complexity, thereby achieving an optimal balance between planning performance and computational efficiency. We evaluate our approach on the large-scale, challenging nuPlan benchmark, with comprehensive experimental results demonstrating superior planning performance in scenarios with intricate road conditions and dynamic elements. Code will be available.
comment: 8 pages, 3 figures, this paper has been accepted by ACM MM 2025
☆ Cultivating Helpful, Personalized, and Creative AI Tutors: A Framework for Pedagogical Alignment using Reinforcement Learning
The integration of large language models (LLMs) into education presents unprecedented opportunities for scalable personalized learning. However, standard LLMs often function as generic information providers, lacking alignment with fundamental pedagogical principles such as helpfulness, student-centered personalization, and creativity cultivation. To bridge this gap, we propose EduAlign, a novel framework designed to guide LLMs toward becoming more effective and responsible educational assistants. EduAlign consists of two main stages. In the first stage, we curate a dataset of 8k educational interactions and annotate them-both manually and automatically-along three key educational dimensions: Helpfulness, Personalization, and Creativity (HPC). These annotations are used to train HPC-RM, a multi-dimensional reward model capable of accurately scoring LLM outputs according to these educational principles. We further evaluate the consistency and reliability of this reward model. In the second stage, we leverage HPC-RM as a reward signal to fine-tune a pre-trained LLM using Group Relative Policy Optimization (GRPO) on a set of 2k diverse prompts. We then assess the pre- and post-finetuning models on both educational and general-domain benchmarks across the three HPC dimensions. Experimental results demonstrate that the fine-tuned model exhibits significantly improved alignment with pedagogical helpfulness, personalization, and creativity stimulation. This study presents a scalable and effective approach to aligning LLMs with nuanced and desirable educational traits, paving the way for the development of more engaging, pedagogically aligned AI tutors.
☆ The Blessing and Curse of Dimensionality in Safety Alignment
The focus on safety alignment in large language models (LLMs) has increased significantly due to their widespread adoption across different domains. The scale of LLMs play a contributing role in their success, and the growth in parameter count follows larger hidden dimensions. In this paper, we hypothesize that while the increase in dimensions has been a key advantage, it may lead to emergent problems as well. These problems emerge as the linear structures in the activation space can be exploited, in the form of activation engineering, to circumvent its safety alignment. Through detailed visualizations of linear subspaces associated with different concepts, such as safety, across various model scales, we show that the curse of high-dimensional representations uniquely impacts LLMs. Further substantiating our claim, we demonstrate that projecting the representations of the model onto a lower dimensional subspace can preserve sufficient information for alignment while avoiding those linear structures. Empirical results confirm that such dimensional reduction significantly reduces susceptibility to jailbreaking through representation engineering. Building on our empirical validations, we provide theoretical insights into these linear jailbreaking methods relative to a model's hidden dimensions. Broadly speaking, our work posits that the high dimensions of a model's internal representations can be both a blessing and a curse in safety alignment.
comment: Published as a conference paper at COLM 2025
☆ MIPS: a Multimodal Infinite Polymer Sequence Pre-training Framework for Polymer Property Prediction
Polymers, composed of repeating structural units called monomers, are fundamental materials in daily life and industry. Accurate property prediction for polymers is essential for their design, development, and application. However, existing modeling approaches, which typically represent polymers by the constituent monomers, struggle to capture the whole properties of polymer, since the properties change during the polymerization process. In this study, we propose a Multimodal Infinite Polymer Sequence (MIPS) pre-training framework, which represents polymers as infinite sequences of monomers and integrates both topological and spatial information for comprehensive modeling. From the topological perspective, we generalize message passing mechanism (MPM) and graph attention mechanism (GAM) to infinite polymer sequences. For MPM, we demonstrate that applying MPM to infinite polymer sequences is equivalent to applying MPM on the induced star-linking graph of monomers. For GAM, we propose to further replace global graph attention with localized graph attention (LGA). Moreover, we show the robustness of the "star linking" strategy through Repeat and Shift Invariance Test (RSIT). Despite its robustness, "star linking" strategy exhibits limitations when monomer side chains contain ring structures, a common characteristic of polymers, as it fails the Weisfeiler-Lehman~(WL) test. To overcome this issue, we propose backbone embedding to enhance the capability of MPM and LGA on infinite polymer sequences. From the spatial perspective, we extract 3D descriptors of repeating monomers to capture spatial information. Finally, we design a cross-modal fusion mechanism to unify the topological and spatial information. Experimental validation across eight diverse polymer property prediction tasks reveals that MIPS achieves state-of-the-art performance.
comment: 14 pages, 8 figures, accepted by ACM Multimedia 2025 (oral)
☆ Artificial Intelligence In Patent And Market Intelligence: A New Paradigm For Technology Scouting
This paper presents the development of an AI powered software platform that leverages advanced large language models (LLMs) to transform technology scouting and solution discovery in industrial R&D. Traditional approaches to solving complex research and development challenges are often time consuming, manually driven, and heavily dependent on domain specific expertise. These methods typically involve navigating fragmented sources such as patent repositories, commercial product catalogs, and competitor data, leading to inefficiencies and incomplete insights. The proposed platform utilizes cutting edge LLM capabilities including semantic understanding, contextual reasoning, and cross-domain knowledge extraction to interpret problem statements and retrieve high-quality, sustainable solutions. The system processes unstructured patent texts, such as claims and technical descriptions, and systematically extracts potential innovations aligned with the given problem context. These solutions are then algorithmically organized under standardized technical categories and subcategories to ensure clarity and relevance across interdisciplinary domains. In addition to patent analysis, the platform integrates commercial intelligence by identifying validated market solutions and active organizations addressing similar challenges. This combined insight sourced from both intellectual property and real world product data enables R&D teams to assess not only technical novelty but also feasibility, scalability, and sustainability. The result is a comprehensive, AI driven scouting engine that reduces manual effort, accelerates innovation cycles, and enhances decision making in complex R&D environments.
comment: Page 4-Figure 1 and Page 11-Figure 2 . A preprint describing a system for AI-powered technology scouting
☆ A Comparative Study of OpenMP Scheduling Algorithm Selection Strategies
Scientific and data science applications are becoming increasingly complex, with growing computational and memory demands. Modern high performance computing (HPC) systems provide high parallelism and heterogeneity across nodes, devices, and cores. To achieve good performance, effective scheduling and load balancing techniques are essential. Parallel programming frameworks such as OpenMP now offer a variety of advanced scheduling algorithms to support diverse applications and platforms. This creates an instance of the scheduling algorithm selection problem, which involves identifying the most suitable algorithm for a given combination of workload and system characteristics. In this work, we explore learning-based approaches for selecting scheduling algorithms in OpenMP. We propose and evaluate expert-based and reinforcement learning (RL)-based methods, and conduct a detailed performance analysis across six applications and three systems. Our results show that RL methods are capable of learning high-performing scheduling decisions, although they require significant exploration, with the choice of reward function playing a key role. Expert-based methods, in contrast, rely on prior knowledge and involve less exploration, though they may not always identify the optimal algorithm for a specific application-system pair. By combining expert knowledge with RL-based learning, we achieve improved performance and greater adaptability. Overall, this work demonstrates that dynamic selection of scheduling algorithms during execution is both viable and beneficial for OpenMP applications. The approach can also be extended to MPI-based programs, enabling optimization of scheduling decisions across multiple levels of parallelism.
comment: To appear at IEEE ACCESS
☆ Towards Generalized Parameter Tuning in Coherent Ising Machines: A Portfolio-Based Approach
Coherent Ising Machines (CIMs) have recently gained attention as a promising computing model for solving combinatorial optimization problems. In particular, the Chaotic Amplitude Control (CAC) algorithm has demonstrated high solution quality, but its performance is highly sensitive to a large number of hyperparameters, making efficient tuning essential. In this study, we present an algorithm portfolio approach for hyperparameter tuning in CIMs employing Chaotic Amplitude Control with momentum (CACm) algorithm. Our method incorporates multiple search strategies, enabling flexible and effective adaptation to the characteristics of the hyperparameter space. Specifically, we propose two representative tuning methods, Method A and Method B. Method A optimizes each hyperparameter sequentially with a fixed total number of trials, while Method B prioritizes hyperparameters based on initial evaluations before applying Method A in order. Performance evaluations were conducted on the Supercomputer "Flow" at Nagoya University, using planted Wishart instances and Time to Solution (TTS) as the evaluation metric. Compared to the baseline performance with best-known hyperparameters, Method A achieved up to 1.47x improvement, and Method B achieved up to 1.65x improvement. These results demonstrate the effectiveness of the algorithm portfolio approach in enhancing the tuning process for CIMs.
☆ SciToolAgent: A Knowledge Graph-Driven Scientific Agent for Multi-Tool Integration
Scientific research increasingly relies on specialized computational tools, yet effectively utilizing these tools demands substantial domain expertise. While Large Language Models (LLMs) show promise in tool automation, they struggle to seamlessly integrate and orchestrate multiple tools for complex scientific workflows. Here, we present SciToolAgent, an LLM-powered agent that automates hundreds of scientific tools across biology, chemistry, and materials science. At its core, SciToolAgent leverages a scientific tool knowledge graph that enables intelligent tool selection and execution through graph-based retrieval-augmented generation. The agent also incorporates a comprehensive safety-checking module to ensure responsible and ethical tool usage. Extensive evaluations on a curated benchmark demonstrate that SciToolAgent significantly outperforms existing approaches. Case studies in protein engineering, chemical reactivity prediction, chemical synthesis, and metal-organic framework screening further demonstrate SciToolAgent's capability to automate complex scientific workflows, making advanced research tools accessible to both experts and non-experts.
comment: 21 pages, 6 figures
☆ Learning from Expert Factors: Trajectory-level Reward Shaping for Formulaic Alpha Mining
Reinforcement learning (RL) has successfully automated the complex process of mining formulaic alpha factors, for creating interpretable and profitable investment strategies. However, existing methods are hampered by the sparse rewards given the underlying Markov Decision Process. This inefficiency limits the exploration of the vast symbolic search space and destabilizes the training process. To address this, Trajectory-level Reward Shaping (TLRS), a novel reward shaping method, is proposed. TLRS provides dense, intermediate rewards by measuring the subsequence-level similarity between partially generated expressions and a set of expert-designed formulas. Furthermore, a reward centering mechanism is introduced to reduce training variance. Extensive experiments on six major Chinese and U.S. stock indices show that TLRS significantly improves the predictive power of mined factors, boosting the Rank Information Coefficient by 9.29% over existing potential-based shaping algorithms. Notably, TLRS achieves a major leap in computational efficiency by reducing its time complexity with respect to the feature dimension from linear to constant, which is a significant improvement over distance-based baselines.
☆ Post-Completion Learning for Language Models
Current language model training paradigms typically terminate learning upon reaching the end-of-sequence (}) token, overlooking the potential learning opportunities in the post-completion space. We propose Post-Completion Learning (PCL), a novel training framework that systematically utilizes the sequence space after model output completion, to enhance both the reasoning and self-evaluation abilities. PCL enables models to continue generating self-assessments and reward predictions during training, while maintaining efficient inference by stopping at the completion point. To fully utilize this post-completion space, we design a white-box reinforcement learning method: let the model evaluate the output content according to the reward rules, then calculate and align the score with the reward functions for supervision. We implement dual-track SFT to optimize both reasoning and evaluation capabilities, and mixed it with RL training to achieve multi-objective hybrid optimization. Experimental results on different datasets and models demonstrate consistent improvements over traditional SFT and RL methods. Our method provides a new technical path for language model training that enhances output quality while preserving deployment efficiency.
☆ Protein-SE(3): Benchmarking SE(3)-based Generative Models for Protein Structure Design
SE(3)-based generative models have shown great promise in protein geometry modeling and effective structure design. However, the field currently lacks a modularized benchmark to enable comprehensive investigation and fair comparison of different methods. In this paper, we propose Protein-SE(3), a new benchmark based on a unified training framework, which comprises protein scaffolding tasks, integrated generative models, high-level mathematical abstraction, and diverse evaluation metrics. Recent advanced generative models designed for protein scaffolding, from multiple perspectives like DDPM (Genie1 and Genie2), Score Matching (FrameDiff and RfDiffusion) and Flow Matching (FoldFlow and FrameFlow) are integrated into our framework. All integrated methods are fairly investigated with the same training dataset and evaluation metrics. Furthermore, we provide a high-level abstraction of the mathematical foundations behind the generative models, enabling fast prototyping of future algorithms without reliance on explicit protein structures. Accordingly, we release the first comprehensive benchmark built upon unified training framework for SE(3)-based protein structure design, which is publicly accessible at https://github.com/BruthYU/protein-se3.
☆ Improving Subgraph Matching by Combining Algorithms and Graph Neural Networks
Homomorphism is a key mapping technique between graphs that preserves their structure. Given a graph and a pattern, the subgraph homomorphism problem involves finding a mapping from the pattern to the graph, ensuring that adjacent vertices in the pattern are mapped to adjacent vertices in the graph. Unlike subgraph isomorphism, which requires a one-to-one mapping, homomorphism allows multiple vertices in the pattern to map to the same vertex in the graph, making it more complex. We propose HFrame, the first graph neural network-based framework for subgraph homomorphism, which integrates traditional algorithms with machine learning techniques. We demonstrate that HFrame outperforms standard graph neural networks by being able to distinguish more graph pairs where the pattern is not homomorphic to the graph. Additionally, we provide a generalization error bound for HFrame. Through experiments on both real-world and synthetic graphs, we show that HFrame is up to 101.91 times faster than exact matching algorithms and achieves an average accuracy of 0.962.
☆ Multi-Attention Stacked Ensemble for Lung Cancer Detection in CT Scans
In this work, we address the challenge of binary lung nodule classification (benign vs malignant) using CT images by proposing a multi-level attention stacked ensemble of deep neural networks. Three pretrained backbones -- EfficientNet V2 S, MobileViT XXS, and DenseNet201 -- are each adapted with a custom classification head tailored to 96 x 96 pixel inputs. A two-stage attention mechanism learns both model-wise and class-wise importance scores from concatenated logits, and a lightweight meta-learner refines the final prediction. To mitigate class imbalance and improve generalization, we employ dynamic focal loss with empirically calculated class weights, MixUp augmentation during training, and test-time augmentation at inference. Experiments on the LIDC-IDRI dataset demonstrate exceptional performance, achieving 98.09 accuracy and 0.9961 AUC, representing a 35 percent reduction in error rate compared to state-of-the-art methods. The model exhibits balanced performance across sensitivity (98.73) and specificity (98.96), with particularly strong results on challenging cases where radiologist disagreement was high. Statistical significance testing confirms the robustness of these improvements across multiple experimental runs. Our approach can serve as a robust, automated aid for radiologists in lung cancer screening.
comment: 26 pages, 14 figures
☆ StepFun-Prover Preview: Let's Think and Verify Step by Step
We present StepFun-Prover Preview, a large language model designed for formal theorem proving through tool-integrated reasoning. Using a reinforcement learning pipeline that incorporates tool-based interactions, StepFun-Prover can achieve strong performance in generating Lean 4 proofs with minimal sampling. Our approach enables the model to emulate human-like problem-solving strategies by iteratively refining proofs based on real-time environment feedback. On the miniF2F-test benchmark, StepFun-Prover achieves a pass@1 success rate of $70.0\%$. Beyond advancing benchmark performance, we introduce an end-to-end training framework for developing tool-integrated reasoning models, offering a promising direction for automated theorem proving and Math AI assistant.
comment: 25 pages, 4 figures
☆ Color histogram equalization and fine-tuning to improve expression recognition of (partially occluded) faces on sign language datasets
The goal of this investigation is to quantify to what extent computer vision methods can correctly classify facial expressions on a sign language dataset. We extend our experiments by recognizing expressions using only the upper or lower part of the face, which is needed to further investigate the difference in emotion manifestation between hearing and deaf subjects. To take into account the peculiar color profile of a dataset, our method introduces a color normalization stage based on histogram equalization and fine-tuning. The results show the ability to correctly recognize facial expressions with 83.8% mean sensitivity and very little variance (.042) among classes. Like for humans, recognition of expressions from the lower half of the face (79.6%) is higher than that from the upper half (77.9%). Noticeably, the classification accuracy from the upper half of the face is higher than human level.
☆ Partial Domain Adaptation via Importance Sampling-based Shift Correction
Partial domain adaptation (PDA) is a challenging task in real-world machine learning scenarios. It aims to transfer knowledge from a labeled source domain to a related unlabeled target domain, where the support set of the source label distribution subsumes the target one. Previous PDA works managed to correct the label distribution shift by weighting samples in the source domain. However, the simple reweighing technique cannot explore the latent structure and sufficiently use the labeled data, and then models are prone to over-fitting on the source domain. In this work, we propose a novel importance sampling-based shift correction (IS$^2$C) method, where new labeled data are sampled from a built sampling domain, whose label distribution is supposed to be the same as the target domain, to characterize the latent structure and enhance the generalization ability of the model. We provide theoretical guarantees for IS$^2$C by proving that the generalization error can be sufficiently dominated by IS$^2$C. In particular, by implementing sampling with the mixture distribution, the extent of shift between source and sampling domains can be connected to generalization error, which provides an interpretable way to build IS$^2$C. To improve knowledge transfer, an optimal transport-based independence criterion is proposed for conditional distribution alignment, where the computation of the criterion can be adjusted to reduce the complexity from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$ in realistic PDA scenarios. Extensive experiments on PDA benchmarks validate the theoretical results and demonstrate the effectiveness of our IS$^2$C over existing methods.
☆ NeuroCLIP: A Multimodal Contrastive Learning Method for rTMS-treated Methamphetamine Addiction Analysis
Methamphetamine dependence poses a significant global health challenge, yet its assessment and the evaluation of treatments like repetitive transcranial magnetic stimulation (rTMS) frequently depend on subjective self-reports, which may introduce uncertainties. While objective neuroimaging modalities such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) offer alternatives, their individual limitations and the reliance on conventional, often hand-crafted, feature extraction can compromise the reliability of derived biomarkers. To overcome these limitations, we propose NeuroCLIP, a novel deep learning framework integrating simultaneously recorded EEG and fNIRS data through a progressive learning strategy. This approach offers a robust and trustworthy biomarker for methamphetamine addiction. Validation experiments show that NeuroCLIP significantly improves discriminative capabilities among the methamphetamine-dependent individuals and healthy controls compared to models using either EEG or only fNIRS alone. Furthermore, the proposed framework facilitates objective, brain-based evaluation of rTMS treatment efficacy, demonstrating measurable shifts in neural patterns towards healthy control profiles after treatment. Critically, we establish the trustworthiness of the multimodal data-driven biomarker by showing its strong correlation with psychometrically validated craving scores. These findings suggest that biomarker derived from EEG-fNIRS data via NeuroCLIP offers enhanced robustness and reliability over single-modality approaches, providing a valuable tool for addiction neuroscience research and potentially improving clinical assessments.
☆ SGPO: Self-Generated Preference Optimization based on Self-Improver
Large language models (LLMs), despite their extensive pretraining on diverse datasets, require effective alignment to human preferences for practical and reliable deployment. Conventional alignment methods typically employ off-policy learning and depend on human-annotated datasets, which limits their broad applicability and introduces distribution shift issues during training. To address these challenges, we propose Self-Generated Preference Optimization based on Self-Improver (SGPO), an innovative alignment framework that leverages an on-policy self-improving mechanism. Specifically, the improver refines responses from a policy model to self-generate preference data for direct preference optimization (DPO) of the policy model. Here, the improver and policy are unified into a single model, and in order to generate higher-quality preference data, this self-improver learns to make incremental yet discernible improvements to the current responses by referencing supervised fine-tuning outputs. Experimental results on AlpacaEval 2.0 and Arena-Hard show that the proposed SGPO significantly improves performance over DPO and baseline self-improving methods without using external preference data.
☆ LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.
☆ High-Performance Parallel Optimization of the Fish School Behaviour on the Setonix Platform Using OpenMP
This paper presents an in-depth investigation into the high-performance parallel optimization of the Fish School Behaviour (FSB) algorithm on the Setonix supercomputing platform using the OpenMP framework. Given the increasing demand for enhanced computational capabilities for complex, large-scale calculations across diverse domains, there's an imperative need for optimized parallel algorithms and computing structures. The FSB algorithm, inspired by nature's social behavior patterns, provides an ideal platform for parallelization due to its iterative and computationally intensive nature. This study leverages the capabilities of the Setonix platform and the OpenMP framework to analyze various aspects of multi-threading, such as thread counts, scheduling strategies, and OpenMP constructs, aiming to discern patterns and strategies that can elevate program performance. Experiments were designed to rigorously test different configurations, and our results not only offer insights for parallel optimization of FSB on Setonix but also provide valuable references for other parallel computational research using OpenMP. Looking forward, other factors, such as cache behavior and thread scheduling strategies at micro and macro levels, hold potential for further exploration and optimization.
☆ ASNN: Learning to Suggest Neural Architectures from Performance Distributions
The architecture of a neural network (NN) plays a critical role in determining its performance. However, there is no general closed-form function that maps between network structure and accuracy, making the process of architecture design largely heuristic or search-based. In this study, we propose the Architecture Suggesting Neural Network (ASNN), a model designed to learn the relationship between NN architecture and its test accuracy, and to suggest improved architectures accordingly. To train ASNN, we constructed datasets using TensorFlow-based models with varying numbers of layers and nodes. Experimental results were collected for both 2-layer and 3-layer architectures across a grid of configurations, each evaluated with 10 repeated trials to account for stochasticity. Accuracy values were treated as inputs, and architectural parameters as outputs. The trained ASNN was then used iteratively to predict architectures that yield higher performance. In both 2-layer and 3-layer cases, ASNN successfully suggested architectures that outperformed the best results found in the original training data. Repeated prediction and retraining cycles led to the discovery of architectures with improved mean test accuracies, demonstrating the model's capacity to generalize the performance-structure relationship. These results suggest that ASNN provides an efficient alternative to random search for architecture optimization, and offers a promising approach toward automating neural network design. "Parts of the manuscript, including text editing and expression refinement, were supported by OpenAI's ChatGPT. All content was reviewed and verified by the authors."
comment: 10 pages
☆ Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ \textbf{Availability and implementation:} Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.
Goal Alignment in LLM-Based User Simulators for Conversational AI
User simulators are essential to conversational AI, enabling scalable agent development and evaluation through simulated interactions. While current Large Language Models (LLMs) have advanced user simulation capabilities, we reveal that they struggle to consistently demonstrate goal-oriented behavior across multi-turn conversations--a critical limitation that compromises their reliability in downstream applications. We introduce User Goal State Tracking (UGST), a novel framework that tracks user goal progression throughout conversations. Leveraging UGST, we present a three-stage methodology for developing user simulators that can autonomously track goal progression and reason to generate goal-aligned responses. Moreover, we establish comprehensive evaluation metrics for measuring goal alignment in user simulators, and demonstrate that our approach yields substantial improvements across two benchmarks (MultiWOZ 2.4 and {\tau}-Bench). Our contributions address a critical gap in conversational AI and establish UGST as an essential framework for developing goal-aligned user simulators.
☆ The Policy Cliff: A Theoretical Analysis of Reward-Policy Maps in Large Language Models
Reinforcement learning (RL) plays a crucial role in shaping the behavior of large language and reasoning models (LLMs/LRMs). However, it often produces brittle and unstable policies, leading to critical failures such as spurious reasoning, deceptive alignment, and instruction disobedience that undermine the trustworthiness and safety of LLMs/LRMs. Currently, these issues lack a unified theoretical explanation and are typically addressed using ad-hoc heuristics. This paper presents a rigorous mathematical framework for analyzing the stability of the mapping from a reward function to the optimal policy. We show that policy brittleness often stems from non-unique optimal actions, a common occurrence when multiple valid traces exist in a reasoning task. This theoretical lens provides a unified explanation for a range of seemingly disparate failures, reframing them as rational outcomes of optimizing rewards that may be incomplete or noisy, especially in the presence of action degeneracy. We extend this analysis from the fundamental single-reward setting to the more realistic multi-reward RL across diverse domains, showing how stability is governed by an "effective reward" aggregation mechanism. We also prove that entropy regularization restores policy stability at the cost of increased stochasticity. Our framework provides a unified explanation for recent empirical findings on deceptive reasoning, instruction-following trade-offs, and RLHF-induced sophistry, and is further validated through perturbation experiments in multi-reward RL. This work advances policy-stability analysis from empirical heuristics towards a principled theory, offering essential insights for designing safer and more trustworthy AI systems.
☆ Multi-Agent Interactive Question Generation Framework for Long Document Understanding
Document Understanding (DU) in long-contextual scenarios with complex layouts remains a significant challenge in vision-language research. Although Large Vision-Language Models (LVLMs) excel at short-context DU tasks, their performance declines in long-context settings. A key limitation is the scarcity of fine-grained training data, particularly for low-resource languages such as Arabic. Existing state-of-the-art techniques rely heavily on human annotation, which is costly and inefficient. We propose a fully automated, multi-agent interactive framework to generate long-context questions efficiently. Our approach efficiently generates high-quality single- and multi-page questions for extensive English and Arabic documents, covering hundreds of pages across diverse domains. This facilitates the development of LVLMs with enhanced long-context understanding ability. Experimental results in this work have shown that our generated English and Arabic questions (\textbf{AraEngLongBench}) are quite challenging to major open- and close-source LVLMs. The code and data proposed in this work can be found in https://github.com/wangk0b/Multi_Agentic_QA_Long_Doc.git. Sample Question and Answer (QA) pairs and structured system prompts can be found in the Appendix.
Awesome-OL: An Extensible Toolkit for Online Learning
In recent years, online learning has attracted increasing attention due to its adaptive capability to process streaming and non-stationary data. To facilitate algorithm development and practical deployment in this area, we introduce Awesome-OL, an extensible Python toolkit tailored for online learning research. Awesome-OL integrates state-of-the-art algorithm, which provides a unified framework for reproducible comparisons, curated benchmark datasets, and multi-modal visualization. Built upon the scikit-multiflow open-source infrastructure, Awesome-OL emphasizes user-friendly interactions without compromising research flexibility or extensibility. The source code is publicly available at: https://github.com/liuzy0708/Awesome-OL.
comment: 7 pages
☆ Concept Learning for Cooperative Multi-Agent Reinforcement Learning
Despite substantial progress in applying neural networks (NN) to multi-agent reinforcement learning (MARL) areas, they still largely suffer from a lack of transparency and interoperability. However, its implicit cooperative mechanism is not yet fully understood due to black-box networks. In this work, we study an interpretable value decomposition framework via concept bottleneck models, which promote trustworthiness by conditioning credit assignment on an intermediate level of human-like cooperation concepts. To address this problem, we propose a novel value-based method, named Concepts learning for Multi-agent Q-learning (CMQ), that goes beyond the current performance-vs-interpretability trade-off by learning interpretable cooperation concepts. CMQ represents each cooperation concept as a supervised vector, as opposed to existing models where the information flowing through their end-to-end mechanism is concept-agnostic. Intuitively, using individual action value conditioning on global state embeddings to represent each concept allows for extra cooperation representation capacity. Empirical evaluations on the StarCraft II micromanagement challenge and level-based foraging (LBF) show that CMQ achieves superior performance compared with the state-of-the-art counterparts. The results also demonstrate that CMQ provides more cooperation concept representation capturing meaningful cooperation modes, and supports test-time concept interventions for detecting potential biases of cooperation mode and identifying spurious artifacts that impact cooperation.
comment: IEEE-China Conference on System Simulation Technology and its Applications, 2025
☆ Do Not Mimic My Voice: Speaker Identity Unlearning for Zero-Shot Text-to-Speech ICML 2025
The rapid advancement of Zero-Shot Text-to-Speech (ZS-TTS) technology has enabled high-fidelity voice synthesis from minimal audio cues, raising significant privacy and ethical concerns. Despite the threats to voice privacy, research to selectively remove the knowledge to replicate unwanted individual voices from pre-trained model parameters has not been explored. In this paper, we address the new challenge of speaker identity unlearning for ZS-TTS systems. To meet this goal, we propose the first machine unlearning frameworks for ZS-TTS, especially Teacher-Guided Unlearning (TGU), designed to ensure the model forgets designated speaker identities while retaining its ability to generate accurate speech for other speakers. Our proposed methods incorporate randomness to prevent consistent replication of forget speakers' voices, assuring unlearned identities remain untraceable. Additionally, we propose a new evaluation metric, speaker-Zero Retrain Forgetting (spk-ZRF). This assesses the model's ability to disregard prompts associated with forgotten speakers, effectively neutralizing its knowledge of these voices. The experiments conducted on the state-of-the-art model demonstrate that TGU prevents the model from replicating forget speakers' voices while maintaining high quality for other speakers. The demo is available at https://speechunlearn.github.io/
comment: Proceedings of the 42nd International Conference on Machine Learning (ICML 2025), Vancouver, Canada. PMLR 267, 2025. Authors Jinju Kim and Taesoo Kim contributed equally
☆ Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG KDD
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .
comment: KDD Cup 2025 Meta CRAG-MM Challenge
☆ Aggregation-aware MLP: An Unsupervised Approach for Graph Message-passing
Graph Neural Networks (GNNs) have become a dominant approach to learning graph representations, primarily because of their message-passing mechanisms. However, GNNs typically adopt a fixed aggregator function such as Mean, Max, or Sum without principled reasoning behind the selection. This rigidity, especially in the presence of heterophily, often leads to poor, problem dependent performance. Although some attempts address this by designing more sophisticated aggregation functions, these methods tend to rely heavily on labeled data, which is often scarce in real-world tasks. In this work, we propose a novel unsupervised framework, "Aggregation-aware Multilayer Perceptron" (AMLP), which shifts the paradigm from directly crafting aggregation functions to making MLP adaptive to aggregation. Our lightweight approach consists of two key steps: First, we utilize a graph reconstruction method that facilitates high-order grouping effects, and second, we employ a single-layer network to encode varying degrees of heterophily, thereby improving the capacity and applicability of the model. Extensive experiments on node clustering and classification demonstrate the superior performance of AMLP, highlighting its potential for diverse graph learning scenarios.
comment: 11 pages, 6 figures
☆ Iterative Pretraining Framework for Interatomic Potentials
Machine learning interatomic potentials (MLIPs) enable efficient molecular dynamics (MD) simulations with ab initio accuracy and have been applied across various domains in physical science. However, their performance often relies on large-scale labeled training data. While existing pretraining strategies can improve model performance, they often suffer from a mismatch between the objectives of pretraining and downstream tasks or rely on extensive labeled datasets and increasingly complex architectures to achieve broad generalization. To address these challenges, we propose Iterative Pretraining for Interatomic Potentials (IPIP), a framework designed to iteratively improve the predictive performance of MLIP models. IPIP incorporates a forgetting mechanism to prevent iterative training from converging to suboptimal local minima. Unlike general-purpose foundation models, which frequently underperform on specialized tasks due to a trade-off between generality and system-specific accuracy, IPIP achieves higher accuracy and efficiency using lightweight architectures. Compared to general-purpose force fields, this approach achieves over 80% reduction in prediction error and up to 4x speedup in the challenging Mo-S-O system, enabling fast and accurate simulations.
☆ Packet-Level DDoS Data Augmentation Using Dual-Stream Temporal-Field Diffusion
In response to Distributed Denial of Service (DDoS) attacks, recent research efforts increasingly rely on Machine Learning (ML)-based solutions, whose effectiveness largely depends on the quality of labeled training datasets. To address the scarcity of such datasets, data augmentation with synthetic traces is often employed. However, current synthetic trace generation methods struggle to capture the complex temporal patterns and spatial distributions exhibited in emerging DDoS attacks. This results in insufficient resemblance to real traces and unsatisfied detection accuracy when applied to ML tasks. In this paper, we propose Dual-Stream Temporal-Field Diffusion (DSTF-Diffusion), a multi-view, multi-stream network traffic generative model based on diffusion models, featuring two main streams: The field stream utilizes spatial mapping to bridge network data characteristics with pre-trained realms of stable diffusion models, effectively translating complex network interactions into formats that stable diffusion can process, while the spatial stream adopts a dynamic temporal modeling approach, meticulously capturing the intrinsic temporal patterns of network traffic. Extensive experiments demonstrate that data generated by our model exhibits higher statistical similarity to originals compared to current state-of-the-art solutions, and enhance performances on a wide range of downstream tasks.
comment: 11 pages, 5 figures
☆ Online Learning with Probing for Sequential User-Centric Selection
We formalize sequential decision-making with information acquisition as the probing-augmented user-centric selection (PUCS) framework, where a learner first probes a subset of arms to obtain side information on resources and rewards, and then assigns $K$ plays to $M$ arms. PUCS covers applications such as ridesharing, wireless scheduling, and content recommendation, in which both resources and payoffs are initially unknown and probing is costly. For the offline setting with known distributions, we present a greedy probing algorithm with a constant-factor approximation guarantee $\zeta = (e-1)/(2e-1)$. For the online setting with unknown distributions, we introduce OLPA, a stochastic combinatorial bandit algorithm that achieves a regret bound $\mathcal{O}(\sqrt{T} + \ln^{2} T)$. We also prove a lower bound $\Omega(\sqrt{T})$, showing that the upper bound is tight up to logarithmic factors. Experiments on real-world data demonstrate the effectiveness of our solutions.
☆ AI-Driven Generation of Old English: A Framework for Low-Resource Languages
Preserving ancient languages is essential for understanding humanity's cultural and linguistic heritage, yet Old English remains critically under-resourced, limiting its accessibility to modern natural language processing (NLP) techniques. We present a scalable framework that uses advanced large language models (LLMs) to generate high-quality Old English texts, addressing this gap. Our approach combines parameter-efficient fine-tuning (Low-Rank Adaptation, LoRA), data augmentation via backtranslation, and a dual-agent pipeline that separates the tasks of content generation (in English) and translation (into Old English). Evaluation with automated metrics (BLEU, METEOR, and CHRF) shows significant improvements over baseline models, with BLEU scores increasing from 26 to over 65 for English-to-Old English translation. Expert human assessment also confirms high grammatical accuracy and stylistic fidelity in the generated texts. Beyond expanding the Old English corpus, our method offers a practical blueprint for revitalizing other endangered languages, effectively uniting AI innovation with the goals of cultural preservation.
☆ NeuroVoxel-LM: Language-Aligned 3D Perception via Dynamic Voxelization and Meta-Embedding
Recent breakthroughs in Visual Language Models (VLMs) and Multimodal Large Language Models (MLLMs) have significantly advanced 3D scene perception towards language-driven cognition. However, existing 3D language models struggle with sparse, large-scale point clouds due to slow feature extraction and limited representation accuracy. To address these challenges, we propose NeuroVoxel-LM, a novel framework that integrates Neural Radiance Fields (NeRF) with dynamic resolution voxelization and lightweight meta-embedding. Specifically, we introduce a Dynamic Resolution Multiscale Voxelization (DR-MSV) technique that adaptively adjusts voxel granularity based on geometric and structural complexity, reducing computational cost while preserving reconstruction fidelity. In addition, we propose the Token-level Adaptive Pooling for Lightweight Meta-Embedding (TAP-LME) mechanism, which enhances semantic representation through attention-based weighting and residual fusion. Experimental results demonstrate that DR-MSV significantly improves point cloud feature extraction efficiency and accuracy, while TAP-LME outperforms conventional max-pooling in capturing fine-grained semantics from NeRF weights.
comment: **14 pages, 3 figures, 2 tables
☆ Learning to Align Human Code Preferences
Large Language Models (LLMs) have demonstrated remarkable potential in automating software development tasks. While recent advances leverage Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) to align models with human preferences, the optimal training strategy remains unclear across diverse code preference scenarios. This paper systematically investigates the roles of SFT and DPO in aligning LLMs with different code preferences. Through both theoretical analysis and empirical observation, we hypothesize that SFT excels in scenarios with objectively verifiable optimal solutions, while applying SFT followed by DPO (S&D) enables models to explore superior solutions in scenarios without objectively verifiable optimal solutions. Based on the analysis and experimental evidence, we propose Adaptive Preference Optimization (APO), a dynamic integration approach that adaptively amplifies preferred responses, suppresses dispreferred ones, and encourages exploration of potentially superior solutions during training. Extensive experiments across six representative code preference tasks validate our theoretical hypotheses and demonstrate that APO consistently matches or surpasses the performance of existing SFT and S&D strategies. Our work provides both theoretical foundations and practical guidance for selecting appropriate training strategies in different code preference alignment scenarios.
☆ EcoTransformer: Attention without Multiplication
The Transformer, with its scaled dot-product attention mechanism, has become a foundational architecture in modern AI. However, this mechanism is computationally intensive and incurs substantial energy costs. We propose a new Transformer architecture EcoTransformer, in which the output context vector is constructed as the convolution of the values using a Laplacian kernel, where the distances are measured by the L1 metric between the queries and keys. Compared to dot-product based attention, the new attention score calculation is free of matrix multiplication. It performs on par with, or even surpasses, scaled dot-product attention in NLP, bioinformatics, and vision tasks, while consuming significantly less energy.
comment: 8 pages, 1 figure
☆ Local Prompt Adaptation for Style-Consistent Multi-Object Generation in Diffusion Models
Diffusion models have become a powerful backbone for text-to-image generation, enabling users to synthesize high-quality visuals from natural language prompts. However, they often struggle with complex prompts involving multiple objects and global or local style specifications. In such cases, the generated scenes tend to lack style uniformity and spatial coherence, limiting their utility in creative and controllable content generation. In this paper, we propose a simple, training-free architectural method called Local Prompt Adaptation (LPA). Our method decomposes the prompt into content and style tokens, and injects them selectively into the U-Net's attention layers at different stages. By conditioning object tokens early and style tokens later in the generation process, LPA enhances both layout control and stylistic consistency. We evaluate our method on a custom benchmark of 50 style-rich prompts across five categories and compare against strong baselines including Composer, MultiDiffusion, Attend-and-Excite, LoRA, and SDXL. Our approach outperforms prior work on both CLIP score and style consistency metrics, offering a new direction for controllable, expressive diffusion-based generation.
comment: 10 Pages, 8 figures, pre-print
♻ ☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
♻ ☆ Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
The Cellular-Potts model is a powerful and ubiquitous framework for developing computational models for simulating complex multicellular biological systems. Cellular-Potts models (CPMs) are often computationally expensive due to the explicit modeling of interactions among large numbers of individual model agents and diffusive fields described by partial differential equations (PDEs). In this work, we develop a convolutional neural network (CNN) surrogate model using a U-Net architecture that accounts for periodic boundary conditions. We use this model to accelerate the evaluation of a mechanistic CPM previously used to investigate in vitro vasculogenesis. The surrogate model was trained to predict 100 computational steps ahead (Monte-Carlo steps, MCS), accelerating simulation evaluations by a factor of 590 times compared to CPM code execution. Over multiple recursive evaluations, our model effectively captures the emergent behaviors demonstrated by the original Cellular-Potts model of such as vessel sprouting, extension and anastomosis, and contraction of vascular lacunae. This approach demonstrates the potential for deep learning to serve as efficient surrogate models for CPM simulations, enabling faster evaluation of computationally expensive CPM of biological processes at greater spatial and temporal scales.
♻ ☆ Real-Time LaCAM for Real-Time MAPF
The vast majority of Multi-Agent Path Finding (MAPF) methods with completeness guarantees require planning full-horizon paths. However, planning full-horizon paths can take too long and be impractical in real-world applications. Instead, real-time planning and execution, which only allows the planner a finite amount of time before executing and replanning, is more practical for real-world multi-agent systems. Several methods utilize real-time planning schemes but none are provably complete, which leads to livelock or deadlock. Our main contribution is Real-Time LaCAM, the first Real-Time MAPF method with provable completeness guarantees. We do this by leveraging LaCAM (Okumura 2023) in an incremental fashion. Our results show how we can iteratively plan for congested environments with a cutoff time of milliseconds while still maintaining the same success rate as full-horizon LaCAM. We also show how it can be used with a single-step learned MAPF policy.
comment: Published at the International Symposium on Combinatorial Search 2025 (SoCS 2025)
♻ ☆ Point Cloud Self-supervised Learning via 3D to Multi-view Masked Learner ICCV 2025
Recently, multi-modal masked autoencoders (MAE) has been introduced in 3D self-supervised learning, offering enhanced feature learning by leveraging both 2D and 3D data to capture richer cross-modal representations. However, these approaches have two limitations: (1) they inefficiently require both 2D and 3D modalities as inputs, even though the inherent multi-view properties of 3D point clouds already contain 2D modality. (2) input 2D modality causes the reconstruction learning to unnecessarily rely on visible 2D information, hindering 3D geometric representation learning. To address these challenges, we propose a 3D to Multi-View Learner (Multi-View ML) that only utilizes 3D modalities as inputs and effectively capture rich spatial information in 3D point clouds. Specifically, we first project 3D point clouds to multi-view 2D images at the feature level based on 3D-based pose. Then, we introduce two components: (1) a 3D to multi-view autoencoder that reconstructs point clouds and multi-view images from 3D and projected 2D features; (2) a multi-scale multi-head (MSMH) attention mechanism that facilitates local-global information interactions in each decoder transformer block through attention heads at various scales. Additionally, a novel two-stage self-training strategy is proposed to align 2D and 3D representations. Our method outperforms state-of-the-art counterparts across various downstream tasks, including 3D classification, part segmentation, and object detection.
comment: Accepted by ICCV 2025
♻ ☆ Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training ICLR 2025
Large language models (LLMs), optimized through human feedback, have rapidly emerged as a leading paradigm for developing intelligent conversational assistants. However, despite their strong performance across many benchmarks, LLM-based agents might still lack conversational skills such as disambiguation -- when they are faced with ambiguity, they often overhedge or implicitly guess users' true intents rather than asking clarification questions. Under task-specific settings, high-quality conversation samples are often limited, constituting a bottleneck for LLMs' ability to learn optimal dialogue action policies. We propose Action-Based Contrastive Self-Training (ACT), a quasi-online preference optimization algorithm based on Direct Preference Optimization (DPO), that enables data-efficient dialogue policy learning in multi-turn conversation modeling. We demonstrate ACT's efficacy under in data-efficient tuning scenarios, even when there is no action label available, using multiple real-world conversational tasks: tabular-grounded question-answering, machine reading comprehension, and AmbigSQL, a novel task for disambiguating information-seeking requests for complex SQL generation towards data analysis agents. Additionally, we propose evaluating LLMs' ability to function as conversational agents by examining whether they can implicitly recognize and reason about ambiguity in conversation. ACT demonstrates substantial conversation modeling improvements over standard tuning approaches like supervised fine-tuning and DPO.
comment: ICLR 2025; Code: https://github.com/google-research/google-research/tree/master/learning_to_clarify
♻ ☆ AutoLungDx: A Hybrid Deep Learning Approach for Early Lung Cancer Diagnosis Using 3D Res-U-Net, YOLOv5, and Vision Transformers
Lung cancer is a leading cause of cancer-related deaths worldwide, and early detection is crucial for improving patient outcomes. Nevertheless, early diagnosis of cancer is a major challenge, particularly in low-resource settings where access to medical resources and trained radiologists is limited. The objective of this study is to propose an automated end-to-end deep learning-based framework for the early detection and classification of lung nodules, specifically for low-resource settings. The proposed framework consists of three stages: lung segmentation using a modified 3D U-Net named 3D Res-U-Net, nodule detection using YOLO-v5, and classification with a Vision Transformer-based architecture. We evaluated the proposed framework on a publicly available dataset, LUNA16. The proposed framework's performance was measured using the respective domain's evaluation matrices. The proposed framework achieved a 98.82% lung segmentation dice score while detecting the lung nodule with 0.76 mAP@50 from the segmented lung, at a low false-positive rate. The performance of both networks of the proposed framework was compared with other studies and found to outperform them regarding segmentation and detection accuracy. Additionally, our proposed Vision transformer network obtained an accuracy of 93.57%, which is 1.21% higher than the state-of-the-art networks. Our proposed end-to-end deep learning-based framework can effectively segment lungs, and detect and classify lung nodules, specifically in low-resource settings with limited access to radiologists. The proposed framework outperforms existing studies regarding all the respective evaluation metrics. The proposed framework can potentially improve the accuracy and efficiency of lung cancer screening in low-resource settings, ultimately leading to better patient outcomes.
♻ ☆ A Lightweight Face Quality Assessment Framework to Improve Face Verification Performance in Real-Time Screening Applications
Face image quality plays a critical role in determining the accuracy and reliability of face verification systems, particularly in real-time screening applications such as surveillance, identity verification, and access control. Low-quality face images, often caused by factors such as motion blur, poor lighting conditions, occlusions, and extreme pose variations, significantly degrade the performance of face recognition models, leading to higher false rejection and false acceptance rates. In this work, we propose a lightweight yet effective framework for automatic face quality assessment, which aims to pre-filter low-quality face images before they are passed to the verification pipeline. Our approach utilises normalised facial landmarks in conjunction with a Random Forest Regression classifier to assess image quality, achieving an accuracy of 96.67%. By integrating this quality assessment module into the face verification process, we observe a substantial improvement in performance, including a comfortable 99.7% reduction in the false rejection rate and enhanced cosine similarity scores when paired with the ArcFace face verification model. To validate our approach, we have conducted experiments on a real-world dataset collected comprising over 600 subjects captured from CCTV footage in unconstrained environments within Dubai Police. Our results demonstrate that the proposed framework effectively mitigates the impact of poor-quality face images, outperforming existing face quality assessment techniques while maintaining computational efficiency. Moreover, the framework specifically addresses two critical challenges in real-time screening: variations in face resolution and pose deviations, both of which are prevalent in practical surveillance scenarios.
♻ ☆ PyG 2.0: Scalable Learning on Real World Graphs
PyG (PyTorch Geometric) has evolved significantly since its initial release, establishing itself as a leading framework for Graph Neural Networks. In this paper, we present Pyg 2.0 (and its subsequent minor versions), a comprehensive update that introduces substantial improvements in scalability and real-world application capabilities. We detail the framework's enhanced architecture, including support for heterogeneous and temporal graphs, scalable feature/graph stores, and various optimizations, enabling researchers and practitioners to tackle large-scale graph learning problems efficiently. Over the recent years, PyG has been supporting graph learning in a large variety of application areas, which we will summarize, while providing a deep dive into the important areas of relational deep learning and large language modeling.
♻ ☆ Representing 3D Shapes With 64 Latent Vectors for 3D Diffusion Models
Constructing a compressed latent space through a variational autoencoder (VAE) is the key for efficient 3D diffusion models. This paper introduces COD-VAE that encodes 3D shapes into a COmpact set of 1D latent vectors without sacrificing quality. COD-VAE introduces a two-stage autoencoder scheme to improve compression and decoding efficiency. First, our encoder block progressively compresses point clouds into compact latent vectors via intermediate point patches. Second, our triplane-based decoder reconstructs dense triplanes from latent vectors instead of directly decoding neural fields, significantly reducing computational overhead of neural fields decoding. Finally, we propose uncertainty-guided token pruning, which allocates resources adaptively by skipping computations in simpler regions and improves the decoder efficiency. Experimental results demonstrate that COD-VAE achieves 16x compression compared to the baseline while maintaining quality. This enables 20.8x speedup in generation, highlighting that a large number of latent vectors is not a prerequisite for high-quality reconstruction and generation. The code is available at https://github.com/join16/COD-VAE.
♻ ☆ Memorization: A Close Look at Books ACL 2025
To what extent can entire books be extracted from LLMs? Using the Llama 3 70B family of models, and the "prefix-prompting" extraction technique, we were able to auto-regressively reconstruct, with a very high level of similarity, one entire book (Alice's Adventures in Wonderland) from just the first 500 tokens. We were also able to obtain high extraction rates on several other books, piece-wise. However, these successes do not extend uniformly to all books. We show that extraction rates of books correlate with book popularity and thus, likely duplication in the training data. We also confirm the undoing of mitigations in the instruction-tuned Llama 3.1, following recent work (Nasr et al., 2025). We further find that this undoing comes from changes to only a tiny fraction of weights concentrated primarily in the lower transformer blocks. Our results provide evidence of the limits of current regurgitation mitigation strategies and introduce a framework for studying how fine-tuning affects the retrieval of verbatim memorization in aligned LLMs.
comment: Accepted at ACL 2025 L2M2 Workshop
♻ ☆ Towards End-to-End Neuromorphic Event-based 3D Object Reconstruction Without Physical Priors ICME
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
comment: 6 pages, 3 figures, 5 tables, accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
♻ ☆ RadMamba: Efficient Human Activity Recognition through Radar-based Micro-Doppler-Oriented Mamba State-Space Model
Radar-based HAR has emerged as a promising alternative to conventional monitoring approaches, such as wearable devices and camera-based systems, due to its unique privacy preservation and robustness advantages. However, existing solutions based on convolutional and recurrent neural networks, although effective, are computationally demanding during deployment. This limits their applicability in scenarios with constrained resources or those requiring multiple sensors. Advanced architectures, such as Vision Transformer (ViT) and State-Space Model (SSM) architectures, offer improved modeling capabilities and have made efforts toward lightweight designs. However, their computational complexity remains relatively high. To leverage the strengths of transformer architectures while simultaneously enhancing accuracy and reducing computational complexity, this paper introduces RadMamba, a parameter-efficient, radar micro-Doppler-oriented Mamba SSM specifically tailored for radar-based HAR. Across three diverse datasets, RadMamba matches the top-performing previous model's 99.8% classification accuracy on Dataset DIAT with only 1/400 of its parameters and equals the leading models' 92.0% accuracy on Dataset CI4R with merely 1/10 of their parameters. In scenarios with continuous sequences of actions evaluated on Dataset UoG2020, RadMamba surpasses other models with significantly higher parameter counts by at least 3%, achieving this with only 6.7k parameters. Our code is available at: https://github.com/lab-emi/AIRHAR.
comment: Under Review
♻ ☆ FMSD-TTS: Few-shot Multi-Speaker Multi-Dialect Text-to-Speech Synthesis for Ü-Tsang, Amdo and Kham Speech Dataset Generation
Tibetan is a low-resource language with minimal parallel speech corpora spanning its three major dialects-\"U-Tsang, Amdo, and Kham-limiting progress in speech modeling. To address this issue, we propose FMSD-TTS, a few-shot, multi-speaker, multi-dialect text-to-speech framework that synthesizes parallel dialectal speech from limited reference audio and explicit dialect labels. Our method features a novel speaker-dialect fusion module and a Dialect-Specialized Dynamic Routing Network (DSDR-Net) to capture fine-grained acoustic and linguistic variations across dialects while preserving speaker identity. Extensive objective and subjective evaluations demonstrate that FMSD-TTS significantly outperforms baselines in both dialectal expressiveness and speaker similarity. We further validate the quality and utility of the synthesized speech through a challenging speech-to-speech dialect conversion task. Our contributions include: (1) a novel few-shot TTS system tailored for Tibetan multi-dialect speech synthesis, (2) the public release of a large-scale synthetic Tibetan speech corpus generated by FMSD-TTS, and (3) an open-source evaluation toolkit for standardized assessment of speaker similarity, dialect consistency, and audio quality.
comment: 15 pages
♻ ☆ Algebras of actions in an agent's representations of the world
In this paper, we propose a framework to extract the algebra of the transformations of worlds from the perspective of an agent. As a starting point, we use our framework to reproduce the symmetry-based representations from the symmetry-based disentangled representation learning (SBDRL) formalism proposed by [1]; only the algebra of transformations of worlds that form groups can be described using symmetry-based representations. We then study the algebras of the transformations of worlds with features that occur in simple reinforcement learning scenarios. Using computational methods, that we developed, we extract the algebras of the transformations of these worlds and classify them according to their properties. Finally, we generalise two important results of SBDRL - the equivariance condition and the disentangling definition - from only working with symmetry-based representations to working with representations capturing the transformation properties of worlds with transformations for any algebra. Finally, we combine our generalised equivariance condition and our generalised disentangling definition to show that disentangled sub-algebras can each have their own individual equivariance conditions, which can be treated independently.
♻ ☆ FlowAlign: Trajectory-Regularized, Inversion-Free Flow-based Image Editing
Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose {\em FlowAlign}, a novel inversion-free flow-based framework for consistent image editing with optimal control-based trajectory control. Specifically, FlowAlign introduces source similarity at the terminal point as a regularization term to promote smoother and more consistent trajectories during the editing process. Notably, our terminal point regularization is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highliting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.
♻ ☆ ADA-DPM: A Neural Descriptors-based Adaptive Noise Filtering Strategy for SLAM
Lidar SLAM plays a significant role in mobile robot navigation and high-definition map construction. However, existing methods often face a trade-off between localization accuracy and system robustness in scenarios with a high proportion of dynamic objects, point cloud distortion, and unstructured environments. To address this issue, we propose a neural descriptors-based adaptive noise filtering strategy for SLAM, named ADA-DPM, which improves the performance of localization and mapping tasks through three key technical innovations. Firstly, to tackle dynamic object interference, we design the Dynamic Segmentation Head to predict and filter out dynamic feature points, eliminating the ego-motion interference caused by dynamic objects. Secondly, to mitigate the impact of noise and unstructured feature points, we propose the Global Importance Scoring Head that adaptively selects high-contribution feature points while suppressing the influence of noise and unstructured feature points. Moreover, we introduce the Cross-Layer Graph Convolution Module (GLI-GCN) to construct multi-scale neighborhood graphs, fusing local structural information across different scales and improving the discriminative power of overlapping features. Finally, experimental validations on multiple public datasets confirm the effectiveness of ADA-DPM.
♻ ☆ Real-time Factuality Assessment from Adversarial Feedback
We show that existing evaluations for assessing the factuality of news from conventional sources, such as claims on fact-checking websites, result in high accuracies over time for LLM-based detectors-even after their knowledge cutoffs. This suggests that recent popular false information from such sources can be easily identified due to its likely presence in pre-training/retrieval corpora or the emergence of salient, yet shallow, patterns in these datasets. Instead, we argue that a proper factuality evaluation dataset should test a model's ability to reason about current events by retrieving and reading related evidence. To this end, we develop a novel pipeline that leverages natural language feedback from a RAG-based detector to iteratively modify real-time news into deceptive variants that challenge LLMs. Our iterative rewrite decreases the binary classification ROC-AUC by an absolute 17.5 percent for a strong RAG-based GPT-4o detector. Our experiments reveal the important role of RAG in both evaluating and generating challenging news examples, as retrieval-free LLM detectors are vulnerable to unseen events and adversarial attacks, while feedback from RAG-based evaluation helps discover more deceitful patterns.
♻ ☆ Machine Learning Model Integration with Open World Temporal Logic for Process Automation
Recent advancements in Machine Learning (ML) have yielded powerful models capable of extracting structured information from diverse and complex data sources. However, a significant challenge lies in translating these perceptual or extractive outputs into actionable, reasoned decisions within complex operational workflows. To address these challenges, this paper introduces a novel approach that integrates the outputs from various machine learning models directly with the PyReason framework, an open-world temporal logic programming reasoning engine. PyReason's foundation in generalized annotated logic allows for the seamless incorporation of real-valued outputs (e.g., probabilities, confidence scores) from diverse ML models, treating them as truth intervals within its logical framework. Crucially, PyReason provides mechanisms, implemented in Python, to continuously poll ML model outputs, convert them into logical facts, and dynamically recompute the minimal model, ensuring real-tine adaptive decision-making. Furthermore, its native support for temporal reasoning, knowledge graph integration, and fully explainable interface traces enables sophisticated analysis over time-sensitive process data and existing organizational knowledge. By combining the strengths of perception and extraction from ML models with the logical deduction and transparency of PyReason, we aim to create a powerful system for automating complex processes. This integration finds utility across numerous domains, including manufacturing, healthcare, and business operations.
♻ ☆ Continuous Classification Aggregation
We prove that any optimal, independent, and zero unanimous fuzzy classification aggregation function of a continuum of individual classifications of $m\ge 3$ objects into $2\le p\le m$ types must be a weighted arithmetic mean. We also provide a characterization for the case when $m=p=2$.
comment: 9 pages; 2 figures
♻ ☆ Vidar: Embodied Video Diffusion Model for Generalist Bimanual Manipulation
Bimanual robotic manipulation, which involves the coordinated control of two robotic arms, is foundational for solving challenging tasks. Despite recent progress in general-purpose manipulation, data scarcity and embodiment heterogeneity remain serious obstacles to further scaling up in bimanual settings. In this paper, we introduce Video Diffusion for Action Reasoning (Vidar), a two-stage framework that leverages large-scale, diffusion-based video pre-training and a novel masked inverse dynamics model for action prediction. We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms, utilizing a unified observation space that encodes robot, camera, task, and scene contexts. Our masked inverse dynamics model learns masks to extract action-relevant information from generated trajectories without requiring pixel-level labels, and the masks can effectively generalize to unseen backgrounds. Our experiments demonstrate that with only 20 minutes of human demonstrations on an unseen robot platform (only 1% of typical data requirements), Vidar generalizes to unseen tasks and backgrounds with strong semantic understanding, surpassing state-of-the-art methods. Our findings highlight the potential of video foundation models, coupled with masked action prediction, to enable scalable and generalizable robotic manipulation in diverse real-world settings.
♻ ☆ Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation
Although data-driven methods have achieved success in 3D human pose estimation, they often suffer from domain gaps and exhibit limited generalization. In contrast, optimization-based methods excel in fine-tuning for specific cases but are generally inferior to data-driven methods in overall performance. We observe that previous optimization-based methods commonly rely on a projection constraint, which only ensures alignment in 2D space, potentially leading to the overfitting problem. To address this, we propose an Uncertainty-Aware testing-time Optimization (UAO) framework, which keeps the prior information of the pre-trained model and alleviates the overfitting problem using the uncertainty of joints. Specifically, during the training phase, we design an effective 2D-to-3D network for estimating the corresponding 3D pose while quantifying the uncertainty of each 3D joint. For optimization during testing, the proposed optimization framework freezes the pre-trained model and optimizes only a latent state. Projection loss is then employed to ensure the generated poses are well aligned in 2D space for high-quality optimization. Furthermore, we utilize the uncertainty of each joint to determine how much each joint is allowed for optimization. The effectiveness and superiority of the proposed framework are validated through extensive experiments on challenging datasets: Human3.6M, MPI-INF-3DHP, and 3DPW. Notably, our approach outperforms the previous best result by a large margin of 5.5\% on Human3.6M. Code is available at \href{https://github.com/xiu-cs/UAO-Pose3D}{https://github.com/xiu-cs/UAO-Pose3D}.
comment: Accepted by IEEE Transactions on Multimedia. Open sourced
♻ ☆ Leveraging Analytic Gradients in Provably Safe Reinforcement Learning
The deployment of autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research that aims to provide such guarantees using safeguards. These safeguards should be integrated during training to reduce the sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance from fewer environment interactions. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them with a state-of-the-art learning algorithm and a differentiable simulation. Using numerical experiments on three control tasks, we evaluate how different safeguards affect learning. The results demonstrate safeguarded training without compromising performance.
comment: 16 pages, 10 figures
♻ ☆ Compressed Image Generation with Denoising Diffusion Codebook Models ICML
We present a novel generative approach based on Denoising Diffusion Models (DDMs), which produces high-quality image samples along with their losslessly compressed bit-stream representations. This is obtained by replacing the standard Gaussian noise sampling in the reverse diffusion with a selection of noise samples from pre-defined codebooks of fixed iid Gaussian vectors. Surprisingly, we find that our method, termed Denoising Diffusion Codebook Model (DDCM), retains sample quality and diversity of standard DDMs, even for extremely small codebooks. We leverage DDCM and pick the noises from the codebooks that best match a given image, converting our generative model into a highly effective lossy image codec achieving state-of-the-art perceptual image compression results. More generally, by setting other noise selections rules, we extend our compression method to any conditional image generation task (e.g., image restoration), where the generated images are produced jointly with their condensed bit-stream representations. Our work is accompanied by a mathematical interpretation of the proposed compressed conditional generation schemes, establishing a connection with score-based approximations of posterior samplers for the tasks considered.
comment: Published in the International Conference on Machine Learning (ICML) 2025. Code and demo are available at https://ddcm-2025.github.io/
♻ ☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
comment: 9 pages, 19 figures, 7 tables, 18 trained models
♻ ☆ Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines
Large Language Models (LLMs) have transformed human-computer interaction by enabling natural language-based communication with AI-powered chatbots. These models are designed to be intuitive and user-friendly, allowing users to articulate requests with minimal effort. However, despite their accessibility, studies reveal that users often struggle with effective prompting, resulting in inefficient responses. Existing research has highlighted both the limitations of LLMs in interpreting vague or poorly structured prompts and the difficulties users face in crafting precise queries. This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting. We introduce and compare three types of prompting guidelines: a task-specific framework developed through a structured methodology and two baseline approaches. To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users. Using Von NeuMidas, an extended pragmatic annotation schema for LLM interaction analysis, we categorize common prompting errors and identify recurring behavioral patterns. We then evaluate the impact of different guidelines by examining changes in user behavior, adherence to prompting strategies, and the overall quality of AI-generated responses. Our findings provide a deeper understanding of how users engage with LLMs and the role of structured prompting guidance in enhancing AI-assisted communication. By comparing different instructional frameworks, we offer insights into more effective approaches for improving user competency in AI interactions, with implications for AI literacy, chatbot usability, and the design of more responsive AI systems.
comment: Long paper accepted for AIED 2025, the 26th International Conference on Artificial Intelligence in Education, July 22 - 26, 2025, Palermo, Italy
♻ ☆ Robotic Visual Instruction
Recently, natural language has been the primary medium for human-robot interaction. However, its inherent lack of spatial precision introduces challenges for robotic task definition such as ambiguity and verbosity. Moreover, in some public settings where quiet is required, such as libraries or hospitals, verbal communication with robots is inappropriate. To address these limitations, we introduce the Robotic Visual Instruction (RoVI), a novel paradigm to guide robotic tasks through an object-centric, hand-drawn symbolic representation. RoVI effectively encodes spatial-temporal information into human-interpretable visual instructions through 2D sketches, utilizing arrows, circles, colors, and numbers to direct 3D robotic manipulation. To enable robots to understand RoVI better and generate precise actions based on RoVI, we present Visual Instruction Embodied Workflow (VIEW), a pipeline formulated for RoVI-conditioned policies. This approach leverages Vision-Language Models (VLMs) to interpret RoVI inputs, decode spatial and temporal constraints from 2D pixel space via keypoint extraction, and then transform them into executable 3D action sequences. We additionally curate a specialized dataset of 15K instances to fine-tune small VLMs for edge deployment,enabling them to effectively learn RoVI capabilities. Our approach is rigorously validated across 11 novel tasks in both real and simulated environments, demonstrating significant generalization capability. Notably, VIEW achieves an 87.5% success rate in real-world scenarios involving unseen tasks that feature multi-step actions, with disturbances, and trajectory-following requirements. Project website: https://robotic-visual-instruction.github.io/
comment: Project website: https://robotic-visual-instruction.github.io/
♻ ☆ From Infants to AI: Incorporating Infant-like Learning in Models Boosts Efficiency and Generalization in Learning Social Prediction Tasks
Early in development, infants learn a range of useful concepts, which can be challenging from a computational standpoint. This early learning comes together with an initial understanding of aspects of the meaning of concepts, e.g., their implications, causality, and using them to predict likely future events. All this is accomplished in many cases with little or no supervision, and from relatively few examples, compared with current network models. In learning about objects and human-object interactions, early acquired and possibly innate concepts are often used in the process of learning additional, more complex concepts. In the current work, we model how early-acquired concepts are used in the learning of subsequent concepts, and compare the results with standard deep network modeling. We focused in particular on the use of the concepts of animacy and goal attribution in learning to predict future events. We show that the use of early concepts in the learning of new concepts leads to better learning (higher accuracy) and more efficient learning (requiring less data). We further show that this integration of early and new concepts shapes the representation of the concepts acquired by the model. The results show that when the concepts were learned in a human-like manner, the emerging representation was more useful, as measured in terms of generalization to novel data and tasks. On a more general level, the results suggest that there are likely to be basic differences in the conceptual structures acquired by current network models compared to human learning.
♻ ☆ TPK: Trustworthy Trajectory Prediction Integrating Prior Knowledge For Interpretability and Kinematic Feasibility
Trajectory prediction is crucial for autonomous driving, enabling vehicles to navigate safely by anticipating the movements of surrounding road users. However, current deep learning models often lack trustworthiness as their predictions can be physically infeasible and illogical to humans. To make predictions more trustworthy, recent research has incorporated prior knowledge, like the social force model for modeling interactions and kinematic models for physical realism. However, these approaches focus on priors that suit either vehicles or pedestrians and do not generalize to traffic with mixed agent classes. We propose incorporating interaction and kinematic priors of all agent classes--vehicles, pedestrians, and cyclists with class-specific interaction layers to capture agent behavioral differences. To improve the interpretability of the agent interactions, we introduce DG-SFM, a rule-based interaction importance score that guides the interaction layer. To ensure physically feasible predictions, we proposed suitable kinematic models for all agent classes with a novel pedestrian kinematic model. We benchmark our approach on the Argoverse 2 dataset, using the state-of-the-art transformer HPTR as our baseline. Experiments demonstrate that our method improves interaction interpretability, revealing a correlation between incorrect predictions and divergence from our interaction prior. Even though incorporating the kinematic models causes a slight decrease in accuracy, they eliminate infeasible trajectories found in the dataset and the baseline model. Thus, our approach fosters trust in trajectory prediction as its interaction reasoning is interpretable, and its predictions adhere to physics.
comment: First and Second authors contributed equally; Accepted in the 36th IEEE Intelligent Vehicles Symposium (IV 2025) for oral presentation; Winner of the best paper award
♻ ☆ CopyJudge: Automated Copyright Infringement Identification and Mitigation in Text-to-Image Diffusion Models ACM MM 2025
Assessing whether AI-generated images are substantially similar to source works is a crucial step in resolving copyright disputes. In this paper, we propose CopyJudge, a novel automated infringement identification framework that leverages large vision-language models (LVLMs) to simulate practical court processes for determining substantial similarity between copyrighted images and those generated by text-to-image diffusion models. Specifically, we employ an abstraction-filtration-comparison test framework based on the multi-LVLM debate to assess the likelihood of infringement and provide detailed judgment rationales. Based on these judgments, we further introduce a general LVLM-based mitigation strategy that automatically optimizes infringing prompts by avoiding sensitive expressions while preserving the non-infringing content. Furthermore, assuming the input noise is controllable, our approach can be enhanced by iteratively exploring non-infringing noise vectors within the diffusion latent space, even without modifying the original prompts. Experimental results show that our automated identification method achieves comparable state-of-the-art performance, while offering superior generalization and interpretability across various forms of infringement, and that our mitigation method more effectively mitigates memorization and IP infringement with a high degree of alignment to the original non-infringing expressions.
comment: Accepted by ACM MM 2025
♻ ☆ Syno: Structured Synthesis for Neural Operators
The desires for better prediction accuracy and higher execution performance in neural networks never end. Neural architecture search (NAS) and tensor compilers are two popular techniques to optimize these two goals, but they are both limited to composing or optimizing existing manually designed operators rather than coming up with completely new designs. In this work, we explore the less studied direction of neural operator synthesis, which aims to automatically and efficiently discover novel neural operators with better accuracy and/or speed. We develop an end-to-end framework Syno, to realize practical neural operator synthesis. Syno makes use of a novel set of fine-grained primitives defined on tensor dimensions, which ensure various desired properties to ease model training, and also enable expression canonicalization techniques to avoid redundant candidates during search. Syno further adopts a novel guided synthesis flow to obtain valid operators matched with the specified input/output dimension sizes, and leverages efficient stochastic tree search algorithms to quickly explore the design space. We demonstrate that Syno discovers better operators with average speedups of $1.37\times$ to $2.06\times$ on various hardware and compiler choices, while keeping less than 1% accuracy loss even on NAS-optimized models.
♻ ☆ Retrieval and Distill: A Temporal Data Shift-Free Paradigm for Online Recommendation System
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
♻ ☆ Intersectional Bias in Japanese Large Language Models from a Contextualized Perspective ACL2025
An increasing number of studies have examined the social bias of rapidly developed large language models (LLMs). Although most of these studies have focused on bias occurring in a single social attribute, research in social science has shown that social bias often occurs in the form of intersectionality -- the constitutive and contextualized perspective on bias aroused by social attributes. In this study, we construct the Japanese benchmark inter-JBBQ, designed to evaluate the intersectional bias in LLMs on the question-answering setting. Using inter-JBBQ to analyze GPT-4o and Swallow, we find that biased output varies according to its contexts even with the equal combination of social attributes.
comment: Accepted to the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP2025) at ACL2025
♻ ☆ Ask and Remember: A Questions-Only Replay Strategy for Continual Visual Question Answering ICCV 2025
Continual Learning in Visual Question Answering (VQACL) requires models to acquire new visual-linguistic skills (plasticity) while preserving previously learned knowledge (stability). The inherent multimodality of VQACL exacerbates this challenge, as models must balance stability across visual and textual domains while adapting to novel objects and reasoning tasks. Existing methods, primarily designed for unimodal settings, often fall short in addressing this dual requirement. In this work, we present QUestion-only replay with Attention Distillation (QUAD), a novel approach for VQACL that leverages only past task questions for regularization. By eliminating the need to store visual data, QUAD not only reduces memory overhead, but also alleviates privacy concerns. Our method introduces a Question-only Replay mechanism that selectively reuses prior task questions to counteract overfitting to the answer space of the current task, addressing the problem out of answer set. Complementing this, we propose Attention Consistency Distillation to enforce both intra-modal and inter-modal attention consistency across tasks, preserving essential visual-linguistic associations. Extensive experiments on VQAv2 and NExT-QA demonstrate that QUAD significantly outperforms state-of-the-art methods, achieving robust performance in continual VQA. Code is available at: https://github.com/IemProg/QUAD.
comment: ICCV 2025, 8 pages. Code: https://github.com/IemProg/QUAD
♻ ☆ Measuring Information Distortion in Hierarchical Ultra long Novel Reconstruction:The Optimal Expansion Ratio
A two stage novel generation framework (outline -> section outline -> manuscript) is widely used in long novel generation,(e.g., \textsc{DOME}, \textsc{Plan\&Write}, \textsc{Long Writer}), but study of such framework in ultra long novel(>1M words) reconstruction is little. Building on recent text compression methods (\textsc{LLMZip}, \textsc{LLM2Vec}), we conduct an information-theoretic analysis to quantify semantic distortion under different compression-expansion ratios. We examine how outline length affects information preservation. Experiments on ultra-long novels show that the optimal compression-expansion ratio significantly reduces semantic distortion compared to other non-optimal compression-expansion ratio.
♻ ☆ Language Models Resist Alignment: Evidence From Data Compression ACL2025
Large language models (LLMs) may exhibit unintended or undesirable behaviors. Recent works have concentrated on aligning LLMs to mitigate harmful outputs. Despite these efforts, some anomalies indicate that even a well-conducted alignment process can be easily circumvented, whether intentionally or accidentally. Does alignment fine-tuning yield have robust effects on models, or are its impacts merely superficial? In this work, we make the first exploration of this phenomenon from both theoretical and empirical perspectives. Empirically, we demonstrate the $\mathbf{elasticity}$ of post-alignment models, i.e., the tendency to revert to the behavior distribution formed during the pre-training phase upon further fine-tuning. Leveraging compression theory, we formally deduce that fine-tuning disproportionately undermines alignment relative to pre-training, potentially by orders of magnitude. We validate the presence of elasticity through experiments on models of varying types and scales. Specifically, we find that model performance declines rapidly before reverting to the pre-training distribution, after which the rate of decline drops significantly. Furthermore, we further reveal that elasticity positively correlates with the increased model size and the expansion of pre-training data. Our findings underscore the need to address the inherent elasticity of LLMs to mitigate their resistance to alignment. The model weight and code are available at pku-lm-resist-alignment.github.io.
comment: Accepted by ACL2025 Main
♻ ☆ Versatile Multimodal Controls for Expressive Talking Human Animation ACM MM2025
In filmmaking, directors typically allow actors to perform freely based on the script before providing specific guidance on how to present key actions. AI-generated content faces similar requirements, where users not only need automatic generation of lip synchronization and basic gestures from audio input but also desire semantically accurate and expressive body movement that can be ``directly guided'' through text descriptions. Therefore, we present VersaAnimator, a versatile framework that synthesizes expressive talking human videos from arbitrary portrait images. Specifically, we design a motion generator that produces basic rhythmic movements from audio input and supports text-prompt control for specific actions. The generated whole-body 3D motion tokens can animate portraits of various scales, producing talking heads, half-body gestures and even leg movements for whole-body images. Besides, we introduce a multi-modal controlled video diffusion that generates photorealistic videos, where speech signals govern lip synchronization, facial expressions, and head motions while body movements are guided by the 2D poses. Furthermore, we introduce a token2pose translator to smoothly map 3D motion tokens to 2D pose sequences. This design mitigates the stiffness resulting from direct 3D to 2D conversion and enhances the details of the generated body movements. Extensive experiments shows that VersaAnimator synthesizes lip-synced and identity-preserving videos while generating expressive and semantically meaningful whole-body motions.
comment: Accepted by ACM MM2025
♻ ☆ TurboSpec: Closed-loop Speculation Control System for Optimizing LLM Serving Goodput
Large Language Model (LLM) serving systems batch concurrent user requests to achieve efficient serving. However, in real-world deployments, such inter-request parallelism from batching is often limited by external factors such as low request rates or memory constraints. Recent works focus on intra-request parallelism from speculative decoding as a solution to this problem. Unfortunately, benefits from intra-request parallelism are often fragile, as speculative decoding causes overhead, and speculated tokens may miss. We observe that speculative decoding may degrade LLM serving performance if added naively without tuning to the incoming requests and the speculation method. To alleviate the need for expert tuning and make speculative decoding more robust, we present TurboSpec, a speculation control system that automatically profiles the execution environment and utilizes a feedback-based algorithm to dynamically adjust the amount of intra-request parallelism in LLM serving. TurboSpec predicts "goodput" - the amount of successfully generated tokens - to evaluate and adjust intra-request parallelism amount to that with the highest goodput in runtime. We implement TurboSpec on a real-world LLM serving system vLLM and demonstrate its effectiveness across diverse workloads and hardware configurations, providing consistent performance improvements across all test scenarios.
♻ ☆ Foundation Models Knowledge Distillation For Battery Capacity Degradation Forecast
Accurate estimation of lithium-ion battery capacity degradation is critical for enhancing the reliability and safety of battery operations. Traditional expert models, tailored to specific scenarios, provide isolated estimations. With the rapid advancement of data-driven techniques, a series of general-purpose time-series foundation models have been developed. However, foundation models specifically designed for battery capacity degradation remain largely unexplored. To enable zero-shot generalization in battery degradation prediction using large model technology, this study proposes a degradation-aware fine-tuning strategy for time-series foundation models. We apply this strategy to fine-tune the Timer model on approximately 10 GB of open-source battery charge discharge data. Validation on our released CycleLife-SJTUIE dataset demonstrates that the fine-tuned Battery-Timer possesses strong zero-shot generalization capability in capacity degradation forecasting. To address the computational challenges of deploying large models, we further propose a knowledge distillation framework that transfers the knowledge of pre-trained foundation models into compact expert models. Distillation results across several state-of-the-art time-series expert models confirm that foundation model knowledge significantly improves the multi-condition generalization of expert models.
♻ ☆ Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations
Understanding the locus of semantic representation in large language models (LLMs) is crucial for interpretability and architectural innovation. The dominant paradigm posits that trainable input embeddings serve as foundational "meaning vectors." This paper challenges that view. We construct Transformer models where the embedding layer is entirely frozen, with vectors derived not from data, but from the visual structure of Unicode glyphs. These non-semantic, precomputed visual embeddings are fixed throughout training. Our method is compatible with any tokenizer, including a novel Unicode-centric tokenizer we introduce to ensure universal text coverage. Despite the absence of trainable, semantically initialized embeddings, our models converge, generate coherent text, and, critically, outperform architecturally identical models with trainable embeddings on the MMLU reasoning benchmark. We attribute this to "representational interference" in conventional models, where the embedding layer is burdened with learning both structural and semantic features. Our results indicate that high-level semantics are not inherent to input embeddings but are an emergent property of the Transformer's compositional architecture and data scale. This reframes the role of embeddings from meaning containers to structural primitives. We release all code and models to foster further research.
comment: Added a new Ablation Study section with a key experiment on random noise embeddings. Expanded the discussion on 'representational interference' and updated results and figures accordingly
♻ ☆ Analytic Continual Test-Time Adaptation for Multi-Modality Corruption
Test-Time Adaptation (TTA) enables pre-trained models to bridge the gap between source and target datasets using unlabeled test data, addressing domain shifts caused by corruptions like weather changes, noise, or sensor malfunctions in test time. Multi-Modal Continual Test-Time Adaptation (MM-CTTA), as an extension of standard TTA, further allows models to handle multi-modal inputs and adapt to continuously evolving target domains. However, MM-CTTA faces critical challenges such as catastrophic forgetting and reliability bias, which are rarely addressed effectively under multi-modal corruption scenarios. In this paper, we propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA), to tackle MM-CTTA tasks. MDAA introduces analytic learning,a closed-form training technique,through Analytic Classifiers (ACs) to mitigate catastrophic forgetting. Furthermore, we design the Dynamic Late Fusion Mechanism (DLFM) to dynamically select and integrate reliable information from different modalities. Extensive experiments show that MDAA achieves state-of-the-art performance across the proposed tasks.
♻ ☆ Reinforcement learning fine-tuning of language model for instruction following and math reasoning
This study investigates the effectiveness of reinforcement learning (RL) fine-tuning techniques on a compact language model (Qwen2.5-0.5B Base) for two challenging tasks: instruction following and mathematical reasoning. We compare supervised fine-tuning (SFT), Direct Preference Optimization (DPO) using preference-labeled data, and Reinforce Leave-One-Out (RLOO) with reward models. Our experiments show that RLOO with DeBERTa reward modeling achieves the best alignment, while DPO provides strong and consistent results. For math reasoing tasks, synthetic data augmentation and best-of-N sampling with an external verifier significantly improve accuracy, showing the potential of combining fine-tuning with inference-time tools. This study highlights key trade-offs and practical strategies for training lightweight, task-aligned small-scale language models.
♻ ☆ Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model (LLM) hallucinations by incorporating external knowledge retrieval. However, existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving when unnecessary or failing to retrieve iteratively when required for complex reasoning. Recent adaptive retrieval strategies, though adaptively navigates these retrieval strategies, predict only based on query complexity and lacks user-driven flexibility, making them infeasible for diverse user application needs. In this paper, we introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off. Our approach leverages two classifiers: one trained to prioritize accuracy and another to prioritize retrieval efficiency. Via an interpretable control parameter $\alpha$, users can seamlessly navigate between minimal-cost retrieval and high-accuracy retrieval based on their specific requirements. We empirically demonstrate that our approach effectively balances accuracy, retrieval cost, and user controllability, making it a practical and adaptable solution for real-world applications. Code is available at https://github.com/JinyanSu1/Flare-Aug.
Robotics 26
☆ A real-time full-chain wearable sensor-based musculoskeletal simulation: an OpenSim-ROS Integration
Musculoskeletal modeling and simulations enable the accurate description and analysis of the movement of biological systems with applications such as rehabilitation assessment, prosthesis, and exoskeleton design. However, the widespread usage of these techniques is limited by costly sensors, laboratory-based setups, computationally demanding processes, and the use of diverse software tools that often lack seamless integration. In this work, we address these limitations by proposing an integrated, real-time framework for musculoskeletal modeling and simulations that leverages OpenSimRT, the robotics operating system (ROS), and wearable sensors. As a proof-of-concept, we demonstrate that this framework can reasonably well describe inverse kinematics of both lower and upper body using either inertial measurement units or fiducial markers. Additionally, we show that it can effectively estimate inverse dynamics of the ankle joint and muscle activations of major lower limb muscles during daily activities, including walking, squatting and sit to stand, stand to sit when combined with pressure insoles. We believe this work lays the groundwork for further studies with more complex real-time and wearable sensor-based human movement analysis systems and holds potential to advance technologies in rehabilitation, robotics and exoskeleton designs.
comment: 11 pages, 10 figures
☆ Digital and Robotic Twinning for Validation of Proximity Operations and Formation Flying
In spacecraft Rendezvous, Proximity Operations (RPO), and Formation Flying (FF), the Guidance Navigation and Control (GNC) system is safety-critical and must meet strict performance requirements. However, validating such systems is challenging due to the complexity of the space environment, necessitating a verification and validation (V&V) process that bridges simulation and real-world behavior. The key contribution of this paper is a unified, end-to-end digital and robotic twinning framework that enables software- and hardware-in-the-loop testing for multi-modal GNC systems. The robotic twin includes three testbeds at Stanford's Space Rendezvous Laboratory (SLAB): the GNSS and Radiofrequency Autonomous Navigation Testbed for Distributed Space Systems (GRAND) to validate RF-based navigation techniques, and the Testbed for Rendezvous and Optical Navigation (TRON) and Optical Stimulator (OS) to validate vision-based methods. The test article for this work is an integrated multi-modal GNC software stack for RPO and FF developed at SLAB. This paper introduces the hybrid framework and summarizes calibration and error characterization for the robotic twin. Then, the GNC stack's performance and robustness is characterized using the integrated digital and robotic twinning pipeline for a full-range RPO mission scenario in Low-Earth Orbit (LEO). The results shown in the paper demonstrate consistency between digital and robotic twins, validating the hybrid twinning pipeline as a reliable framework for realistic assessment and verification of GNC systems.
comment: 23 pages, 12 figures. 2025 Astrodynamics Specialist Conference
☆ When Engineering Outruns Intelligence: A Re-evaluation of Instruction-Guided Navigation
Large language models (LLMs) are often credited with recent leaps in ObjectGoal Navigation, yet the extent to which they improve planning remains unclear. We revisit this question on the HM3D-v1 validation split. First, we strip InstructNav of its Dynamic Chain-of-Navigation prompt, open-vocabulary GLEE detector and Intuition saliency map, and replace them with a simple Distance-Weighted Frontier Explorer (DWFE). This geometry-only heuristic raises Success from 58.0% to 61.1% and lifts SPL from 20.9% to 36.0% over 2 000 validation episodes, outperforming all previous training-free baselines. Second, we add a lightweight language prior (SHF); on a 200-episode subset this yields a further +2% Success and +0.9% SPL while shortening paths by five steps on average. Qualitative trajectories confirm the trend: InstructNav back-tracks and times-out, DWFE reaches the goal after a few islands, and SHF follows an almost straight route. Our results indicate that frontier geometry, not emergent LLM reasoning, drives most reported gains, and suggest that metric-aware prompts or offline semantic graphs are necessary before attributing navigation success to "LLM intelligence."
☆ SuperMag: Vision-based Tactile Data Guided High-resolution Tactile Shape Reconstruction for Magnetic Tactile Sensors IROS 2025
Magnetic-based tactile sensors (MBTS) combine the advantages of compact design and high-frequency operation but suffer from limited spatial resolution due to their sparse taxel arrays. This paper proposes SuperMag, a tactile shape reconstruction method that addresses this limitation by leveraging high-resolution vision-based tactile sensor (VBTS) data to supervise MBTS super-resolution. Co-designed, open-source VBTS and MBTS with identical contact modules enable synchronized data collection of high-resolution shapes and magnetic signals via a symmetric calibration setup. We frame tactile shape reconstruction as a conditional generative problem, employing a conditional variational auto-encoder to infer high-resolution shapes from low-resolution MBTS inputs. The MBTS achieves a sampling frequency of 125 Hz, whereas the shape reconstruction sustains an inference time within 2.5 ms. This cross-modality synergy advances tactile perception of the MBTS, potentially unlocking its new capabilities in high-precision robotic tasks.
comment: 7 pages, 7 figures; accepted by IROS 2025
☆ Robot Excavation and Manipulation of Geometrically Cohesive Granular Media
Construction throughout history typically assumes that its blueprints and building blocks are pre-determined. However, recent work suggests that alternative approaches can enable new paradigms for structure formation. Aleatory architectures, or those which rely on the properties of their granular building blocks rather than pre-planned design or computation, have thus far relied on human intervention for their creation. We imagine that robotic swarms could be valuable to create such aleatory structures by manipulating and forming structures from entangled granular materials. To discover principles by which robotic systems can effectively manipulate soft matter, we develop a robophysical model for interaction with geometrically cohesive granular media composed of u-shape particles. This robotic platform uses environmental signals to autonomously coordinate excavation, transport, and deposition of material. We test the effect of substrate initial conditions by characterizing robot performance in two different material compaction states and observe as much as a 75% change in transported mass depending on initial substrate compressive loading. These discrepancies suggest the functional role that material properties such as packing and cohesion/entanglement play in excavation and construction. To better understand these material properties, we develop an apparatus for tensile testing of the geometrically cohesive substrates, which reveals how entangled material strength responds strongly to initial compressive loading. These results explain the variation observed in robotic performance and point to future directions for better understanding robotic interaction mechanics with entangled materials.
☆ CLASP: General-Purpose Clothes Manipulation with Semantic Keypoints
Clothes manipulation, such as folding or hanging, is a critical capability for home service robots. Despite recent advances, most existing methods remain limited to specific tasks and clothes types, due to the complex, high-dimensional geometry of clothes. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP), which aims at general-purpose clothes manipulation over different clothes types, T-shirts, shorts, skirts, long dresses, ... , as well as different tasks, folding, flattening, hanging, ... . The core idea of CLASP is semantic keypoints -- e.g., ''left sleeve'', ''right shoulder'', etc. -- a sparse spatial-semantic representation that is salient for both perception and action. Semantic keypoints of clothes can be reliably extracted from RGB-D images and provide an effective intermediate representation of clothes manipulation policies. CLASP uses semantic keypoints to bridge high-level task planning and low-level action execution. At the high level, it exploits vision language models (VLMs) to predict task plans over the semantic keypoints. At the low level, it executes the plans with the help of a simple pre-built manipulation skill library. Extensive simulation experiments show that CLASP outperforms state-of-the-art baseline methods on multiple tasks across diverse clothes types, demonstrating strong performance and generalization. Further experiments with a Franka dual-arm system on four distinct tasks -- folding, flattening, hanging, and placing -- confirm CLASP's performance on a real robot.
A roadmap for AI in robotics
AI technologies, including deep learning, large-language models have gone from one breakthrough to the other. As a result, we are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives. However, action and sensing in the physical world pose greater and different challenges than analysing data in isolation. As the development and application of AI in robotic products advances, it is important to reflect on which technologies, among the vast array of network architectures and learning models now available in the AI field, are most likely to be successfully applied to robots; how they can be adapted to specific robot designs, tasks, environments; which challenges must be overcome. This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises. These range from keeping up-to-date large datasets, representatives of a diversity of tasks robots may have to perform, and of environments they may encounter, to designing AI algorithms tailored specifically to robotics problems but generic enough to apply to a wide range of applications and transfer easily to a variety of robotic platforms. For robots to collaborate effectively with humans, they must predict human behavior without relying on bias-based profiling. Explainability and transparency in AI-driven robot control are not optional but essential for building trust, preventing misuse, and attributing responsibility in accidents. We close on what we view as the primary long-term challenges, that is, to design robots capable of lifelong learning, while guaranteeing safe deployment and usage, and sustainable computational costs.
☆ Spatial Language Likelihood Grounding Network for Bayesian Fusion of Human-Robot Observations
Fusing information from human observations can help robots overcome sensing limitations in collaborative tasks. However, an uncertainty-aware fusion framework requires a grounded likelihood representing the uncertainty of human inputs. This paper presents a Feature Pyramid Likelihood Grounding Network (FP-LGN) that grounds spatial language by learning relevant map image features and their relationships with spatial relation semantics. The model is trained as a probability estimator to capture aleatoric uncertainty in human language using three-stage curriculum learning. Results showed that FP-LGN matched expert-designed rules in mean Negative Log-Likelihood (NLL) and demonstrated greater robustness with lower standard deviation. Collaborative sensing results demonstrated that the grounded likelihood successfully enabled uncertainty-aware fusion of heterogeneous human language observations and robot sensor measurements, achieving significant improvements in human-robot collaborative task performance.
comment: Accepted to the 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
☆ Optimizing Spreading Factor Selection for Mobile LoRa Gateways Using Single-Channel Hardware
The deployment of mobile LoRa gateways using low-cost single-channel hardware presents a significant challenge in maintaining reliable communication due to the lack of dynamic configuration support. In traditional LoRaWAN networks, Adaptive Data Rate (ADR) mechanisms optimize communication parameters in real time. However, such features are typically supported only by expensive multi-channel gateways. This study proposes a cost-effective and energy-efficient solution by statically selecting the optimal Spreading Factor (SF) using a two-phase algorithm. The method first applies rule-based exclusion to eliminate SFs that violate constraints related to distance, data rate, link margin, and regulatory limits. Remaining candidates are then evaluated using a weighted scoring model incorporating Time-on-Air, energy consumption, data rate, and link robustness. The proposed algorithm was validated through extensive field tests and NS-3 simulations under line-of-sight conditions. Results demonstrate that the selected SF matched the optimal SF in over 92% of cases across 672 simulated scenarios, confirming the algorithm's effectiveness. This approach offers a scalable alternative to dynamic protocols, enabling reliable mobile LoRa deployments in cost-sensitive environments such as agriculture and rural sensing applications.
comment: 6 pages, 5 figures
☆ High-Speed Event Vision-Based Tactile Roller Sensor for Large Surface Measurements
Inspecting large-scale industrial surfaces like aircraft fuselages for quality control requires capturing their precise 3D surface geometry at high resolution. Vision-based tactile sensors (VBTSs) offer high local resolution but require slow 'press-and-lift' measurements stitched for large areas. Approaches with sliding or roller/belt VBTS designs provide measurements continuity. However, they face significant challenges respectively: sliding struggles with friction/wear and both approaches are speed-limited by conventional camera frame rates and motion blur, making large-area scanning time consuming. Thus, a rapid, continuous, high-resolution method is needed. We introduce a novel tactile sensor integrating a neuromorphic camera in a rolling mechanism to achieve this. Leveraging its high temporal resolution and robustness to motion blur, our system uses a modified event-based multi-view stereo approach for 3D reconstruction. We demonstrate state-of-the-art scanning speeds up to 0.5 m/s, achieving Mean Absolute Error below 100 microns -- 11 times faster than prior continuous tactile sensing methods. A multi-reference Bayesian fusion strategy enhances accuracy (reducing MAE by 25.2\% compared to EMVS) and mitigates curvature errors. We also validate high-speed feature recognition via Braille reading 2.6 times faster than previous approaches.
comment: 14 pages, 11 figures
☆ Bridging Simulation and Usability: A User-Friendly Framework for Scenario Generation in CARLA
Autonomous driving promises safer roads, reduced congestion, and improved mobility, yet validating these systems across diverse conditions remains a major challenge. Real-world testing is expensive, time-consuming, and sometimes unsafe, making large-scale validation impractical. In contrast, simulation environments offer a scalable and cost-effective alternative for rigorous verification and validation. A critical component of the validation process is scenario generation, which involves designing and configuring traffic scenarios to evaluate autonomous systems' responses to various events and uncertainties. However, existing scenario generation tools often require programming knowledge, limiting accessibility for non-technical users. To address this limitation, we present an interactive, no-code framework for scenario generation. Our framework features a graphical interface that enables users to create, modify, save, load, and execute scenarios without needing coding expertise or detailed simulation knowledge. Unlike script-based tools such as Scenic or ScenarioRunner, our approach lowers the barrier to entry and supports a broader user base. Central to our framework is a graph-based scenario representation that facilitates structured management, supports both manual and automated generation, and enables integration with deep learning-based scenario and behavior generation methods. In automated mode, the framework can randomly sample parameters such as actor types, behaviors, and environmental conditions, allowing the generation of diverse and realistic test datasets. By simplifying the scenario generation process, this framework supports more efficient testing workflows and increases the accessibility of simulation-based validation for researchers, engineers, and policymakers.
comment: Paper is accepted in IEEE International Automated Vehicle Validation Conference (IAVVC 2025)
☆ Efficient Self-Supervised Neuro-Analytic Visual Servoing for Real-time Quadrotor Control
This work introduces a self-supervised neuro-analytical, cost efficient, model for visual-based quadrotor control in which a small 1.7M parameters student ConvNet learns automatically from an analytical teacher, an improved image-based visual servoing (IBVS) controller. Our IBVS system solves numerical instabilities by reducing the classical visual servoing equations and enabling efficient stable image feature detection. Through knowledge distillation, the student model achieves 11x faster inference compared to the teacher IBVS pipeline, while demonstrating similar control accuracy at a significantly lower computational and memory cost. Our vision-only self-supervised neuro-analytic control, enables quadrotor orientation and movement without requiring explicit geometric models or fiducial markers. The proposed methodology leverages simulation-to-reality transfer learning and is validated on a small drone platform in GPS-denied indoor environments. Our key contributions include: (1) an analytical IBVS teacher that solves numerical instabilities inherent in classical approaches, (2) a two-stage segmentation pipeline combining YOLOv11 with a U-Net-based mask splitter for robust anterior-posterior vehicle segmentation to correctly estimate the orientation of the target, and (3) an efficient knowledge distillation dual-path system, which transfers geometric visual servoing capabilities from the analytical IBVS teacher to a compact and small student neural network that outperforms the teacher, while being suitable for real-time onboard deployment.
comment: Accepted at the International Conference on Computer Vision Workshops 2025
☆ Homotopy-aware Multi-agent Navigation via Distributed Model Predictive Control
Multi-agent trajectory planning requires ensuring both safety and efficiency, yet deadlocks remain a significant challenge, especially in obstacle-dense environments. Such deadlocks frequently occur when multiple agents attempt to traverse the same long and narrow corridor simultaneously. To address this, we propose a novel distributed trajectory planning framework that bridges the gap between global path and local trajectory cooperation. At the global level, a homotopy-aware optimal path planning algorithm is proposed, which fully leverages the topological structure of the environment. A reference path is chosen from distinct homotopy classes by considering both its spatial and temporal properties, leading to improved coordination among agents globally. At the local level, a model predictive control-based trajectory optimization method is used to generate dynamically feasible and collision-free trajectories. Additionally, an online replanning strategy ensures its adaptability to dynamic environments. Simulations and experiments validate the effectiveness of our approach in mitigating deadlocks. Ablation studies demonstrate that by incorporating time-aware homotopic properties into the underlying global paths, our method can significantly reduce deadlocks and improve the average success rate from 4%-13% to over 90% in randomly generated dense scenarios.
☆ Think, Act, Learn: A Framework for Autonomous Robotic Agents using Closed-Loop Large Language Models
The integration of Large Language Models (LLMs) into robotics has unlocked unprecedented capabilities in high-level task planning. However, most current systems operate in an open-loop fashion, where LLMs act as one-shot planners, rendering them brittle and unable to adapt to unforeseen circumstances in dynamic physical environments. To overcome this limitation, this paper introduces the "Think, Act, Learn" (T-A-L) framework, a novel architecture that enables an embodied agent to autonomously learn and refine its policies through continuous interaction. Our framework establishes a closed-loop cycle where an LLM first "thinks" by decomposing high-level commands into actionable plans. The robot then "acts" by executing these plans while gathering rich, multimodal sensory feedback. Critically, the "learn" module processes this feedback to facilitate LLM-driven self-reflection, allowing the agent to perform causal analysis on its failures and generate corrective strategies. These insights are stored in an experiential memory to guide future planning cycles. We demonstrate through extensive experiments in both simulation and the real world that our T-A-L agent significantly outperforms baseline methods, including open-loop LLMs, Behavioral Cloning, and traditional Reinforcement Learning. Our framework achieves over a 97% success rate on complex, long-horizon tasks, converges to a stable policy in an average of just 9 trials, and exhibits remarkable generalization to unseen tasks. This work presents a significant step towards developing more robust, adaptive, and truly autonomous robotic agents.
comment: 13 pages, 7 figures
☆ PlaneHEC: Efficient Hand-Eye Calibration for Multi-view Robotic Arm via Any Point Cloud Plane Detection ICRA
Hand-eye calibration is an important task in vision-guided robotic systems and is crucial for determining the transformation matrix between the camera coordinate system and the robot end-effector. Existing methods, for multi-view robotic systems, usually rely on accurate geometric models or manual assistance, generalize poorly, and can be very complicated and inefficient. Therefore, in this study, we propose PlaneHEC, a generalized hand-eye calibration method that does not require complex models and can be accomplished using only depth cameras, which achieves the optimal and fastest calibration results using arbitrary planar surfaces like walls and tables. PlaneHEC introduces hand-eye calibration equations based on planar constraints, which makes it strongly interpretable and generalizable. PlaneHEC also uses a comprehensive solution that starts with a closed-form solution and improves it withiterative optimization, which greatly improves accuracy. We comprehensively evaluated the performance of PlaneHEC in both simulated and real-world environments and compared the results with other point-cloud-based calibration methods, proving its superiority. Our approach achieves universal and fast calibration with an innovative design of computational models, providing a strong contribution to the development of multi-agent systems and embodied intelligence.
comment: Accepted by 2025 IEEE International Conference on Robotics & Automation (ICRA)
☆ Feeling the Force: A Nuanced Physics-based Traversability Sensor for Navigation in Unstructured Vegetation
In many applications, robots are increasingly deployed in unstructured and natural environments where they encounter various types of vegetation. Vegetation presents unique challenges as a traversable obstacle, where the mechanical properties of the plants can influence whether a robot can safely collide with and overcome the obstacle. A more nuanced approach is required to assess the safety and traversability of these obstacles, as collisions can sometimes be safe and necessary for navigating through dense or unavoidable vegetation. This paper introduces a novel sensor designed to directly measure the applied forces exerted by vegetation on a robot: by directly capturing the push-back forces, our sensor provides a detailed understanding of the interactions between the robot and its surroundings. We demonstrate the sensor's effectiveness through experimental validations, showcasing its ability to measure subtle force variations. This force-based approach provides a quantifiable metric that can inform navigation decisions and serve as a foundation for developing future learning algorithms.
☆ A 4D Radar Camera Extrinsic Calibration Tool Based on 3D Uncertainty Perspective N Points
4D imaging radar is a type of low-cost millimeter-wave radar(costing merely 10-20$\%$ of lidar systems) capable of providing range, azimuth, elevation, and Doppler velocity information. Accurate extrinsic calibration between millimeter-wave radar and camera systems is critical for robust multimodal perception in robotics, yet remains challenging due to inherent sensor noise characteristics and complex error propagation. This paper presents a systematic calibration framework to address critical challenges through a spatial 3d uncertainty-aware PnP algorithm (3DUPnP) that explicitly models spherical coordinate noise propagation in radar measurements, then compensating for non-zero error expectations during coordinate transformations. Finally, experimental validation demonstrates significant performance improvements over state-of-the-art CPnP baseline, including improved consistency in simulations and enhanced precision in physical experiments. This study provides a robust calibration solution for robotic systems equipped with millimeter-wave radar and cameras, tailored specifically for autonomous driving and robotic perception applications.
☆ Ag2x2: Robust Agent-Agnostic Visual Representations for Zero-Shot Bimanual Manipulation IROS 2025
Bimanual manipulation, fundamental to human daily activities, remains a challenging task due to its inherent complexity of coordinated control. Recent advances have enabled zero-shot learning of single-arm manipulation skills through agent-agnostic visual representations derived from human videos; however, these methods overlook crucial agent-specific information necessary for bimanual coordination, such as end-effector positions. We propose Ag2x2, a computational framework for bimanual manipulation through coordination-aware visual representations that jointly encode object states and hand motion patterns while maintaining agent-agnosticism. Extensive experiments demonstrate that Ag2x2 achieves a 73.5% success rate across 13 diverse bimanual tasks from Bi-DexHands and PerAct2, including challenging scenarios with deformable objects like ropes. This performance outperforms baseline methods and even surpasses the success rate of policies trained with expert-engineered rewards. Furthermore, we show that representations learned through Ag2x2 can be effectively leveraged for imitation learning, establishing a scalable pipeline for skill acquisition without expert supervision. By maintaining robust performance across diverse tasks without human demonstrations or engineered rewards, Ag2x2 represents a step toward scalable learning of complex bimanual robotic skills.
comment: Accepted to IROS 2025, oral presentation. Project page link: https://ziyin-xiong.github.io/ag2x2.github.io/
☆ Skin-Machine Interface with Multimodal Contact Motion Classifier
This paper proposes a novel framework for utilizing skin sensors as a new operation interface of complex robots. The skin sensors employed in this study possess the capability to quantify multimodal tactile information at multiple contact points. The time-series data generated from these sensors is anticipated to facilitate the classification of diverse contact motions exhibited by an operator. By mapping the classification results with robot motion primitives, a diverse range of robot motions can be generated by altering the manner in which the skin sensors are interacted with. In this paper, we focus on a learning-based contact motion classifier employing recurrent neural networks. This classifier is a pivotal factor in the success of this framework. Furthermore, we elucidate the requisite conditions for software-hardware designs. Firstly, multimodal sensing and its comprehensive encoding significantly contribute to the enhancement of classification accuracy and learning stability. Utilizing all modalities simultaneously as inputs to the classifier proves to be an effective approach. Secondly, it is essential to mount the skin sensors on a flexible and compliant support to enable the activation of three-axis accelerometers. These accelerometers are capable of measuring horizontal tactile information, thereby enhancing the correlation with other modalities. Furthermore, they serve to absorb the noises generated by the robot's movements during deployment. Through these discoveries, the accuracy of the developed classifier surpassed 95 %, enabling the dual-arm mobile manipulator to execute a diverse range of tasks via the Skin-Machine Interface. https://youtu.be/UjUXT4Z4BC8
comment: 8 pages, 8 figures (accepted in Humanoids2025)
☆ DOA: A Degeneracy Optimization Agent with Adaptive Pose Compensation Capability based on Deep Reinforcement Learning
Particle filter-based 2D-SLAM is widely used in indoor localization tasks due to its efficiency. However, indoor environments such as long straight corridors can cause severe degeneracy problems in SLAM. In this paper, we use Proximal Policy Optimization (PPO) to train an adaptive degeneracy optimization agent (DOA) to address degeneracy problem. We propose a systematic methodology to address three critical challenges in traditional supervised learning frameworks: (1) data acquisition bottlenecks in degenerate dataset, (2) inherent quality deterioration of training samples, and (3) ambiguity in annotation protocol design. We design a specialized reward function to guide the agent in developing perception capabilities for degenerate environments. Using the output degeneracy factor as a reference weight, the agent can dynamically adjust the contribution of different sensors to pose optimization. Specifically, the observation distribution is shifted towards the motion model distribution, with the step size determined by a linear interpolation formula related to the degeneracy factor. In addition, we employ a transfer learning module to endow the agent with generalization capabilities across different environments and address the inefficiency of training in degenerate environments. Finally, we conduct ablation studies to demonstrate the rationality of our model design and the role of transfer learning. We also compare the proposed DOA with SOTA methods to prove its superior degeneracy detection and optimization capabilities across various environments.
comment: 10 pages,9 figures
♻ ☆ A Step-by-step Guide on Nonlinear Model Predictive Control for Safe Mobile Robot Navigation
Designing a Model Predictive Control (MPC) scheme that enables a mobile robot to safely navigate through an obstacle-filled environment is a complicated yet essential task in robotics. In this technical report, safety refers to ensuring that the robot respects state and input constraints while avoiding collisions with obstacles despite the presence of disturbances and measurement noise. This report offers a step-by-step approach to implementing Nonlinear Model Predictive Control (NMPC) schemes addressing these safety requirements. Numerous books and survey papers provide comprehensive overviews of linear MPC (LMPC), NMPC, and their applications in various domains, including robotics. This report does not aim to replicate those exhaustive reviews. Instead, it focuses specifically on NMPC as a foundation for safe mobile robot navigation. The goal is to provide a practical and accessible path from theoretical concepts to mathematical proofs and implementation, emphasizing safety and performance guarantees. It is intended for researchers, robotics engineers, and practitioners seeking to bridge the gap between theoretical NMPC formulations and real-world robotic applications. This report is not necessarily meant to remain fixed over time. If someone finds an error in the presented theory, please reach out via the given email addresses. We are happy to update the document if necessary.
comment: 51 pages, 3 figures
♻ ☆ Competency-Aware Planning for Probabilistically Safe Navigation Under Perception Uncertainty
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
♻ ☆ Interleaved Multitask Learning with Energy Modulated Learning Progress
As humans learn new skills and apply their existing knowledge while maintaining previously learned information, "continual learning" in machine learning aims to incorporate new data while retaining and utilizing past knowledge. However, existing machine learning methods often does not mimic human learning where tasks are intermixed due to individual preferences and environmental conditions. Humans typically switch between tasks instead of completely mastering one task before proceeding to the next. To explore how human-like task switching can enhance learning efficiency, we propose a multi task learning architecture that alternates tasks based on task-agnostic measures such as "learning progress" and "neural computational energy expenditure". To evaluate the efficacy of our method, we run several systematic experiments by using a set of effect-prediction tasks executed by a simulated manipulator robot. The experiments show that our approach surpasses random interleaved and sequential task learning in terms of average learning accuracy. Moreover, by including energy expenditure in the task switching logic, our approach can still perform favorably while reducing neural energy expenditure.
comment: submitted to Neural Networks Journal (under review), 48 pages, 11 figures
♻ ☆ Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training
End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.
♻ ☆ GSplatVNM: Point-of-View Synthesis for Visual Navigation Models Using Gaussian Splatting
This paper presents a novel approach to image-goal navigation by integrating 3D Gaussian Splatting (3DGS) with Visual Navigation Models (VNMs), a method we refer to as GSplatVNM. VNMs offer a promising paradigm for image-goal navigation by guiding a robot through a sequence of point-of-view images without requiring metrical localization or environment-specific training. However, constructing a dense and traversable sequence of target viewpoints from start to goal remains a central challenge, particularly when the available image database is sparse. To address these challenges, we propose a 3DGS-based viewpoint synthesis framework for VNMs that synthesizes intermediate viewpoints to seamlessly bridge gaps in sparse data while significantly reducing storage overhead. Experimental results in a photorealistic simulator demonstrate that our approach not only enhances navigation efficiency but also exhibits robustness under varying levels of image database sparsity.
comment: 8 pages, 4 figures
♻ ☆ Safe and Real-Time Consistent Planning for Autonomous Vehicles in Partially Observed Environments via Parallel Consensus Optimization
Ensuring safety and driving consistency is a significant challenge for autonomous vehicles operating in partially observed environments. This work introduces a consistent parallel trajectory optimization (CPTO) approach to enable safe and consistent driving in dense obstacle environments with perception uncertainties. Utilizing discrete-time barrier function theory, we develop a consensus safety barrier module that ensures reliable safety coverage within the spatiotemporal trajectory space across potential obstacle configurations. Following this, a bi-convex parallel trajectory optimization problem is derived that facilitates decomposition into a series of low-dimensional quadratic programming problems to accelerate computation. By leveraging the consensus alternating direction method of multipliers (ADMM) for parallel optimization, each generated candidate trajectory corresponds to a possible environment configuration while sharing a common consensus trajectory segment. This ensures driving safety and consistency when executing the consensus trajectory segment for the ego vehicle in real time. We validate our CPTO framework through extensive comparisons with state-of-the-art baselines across multiple driving tasks in partially observable environments. Our results demonstrate improved safety and consistency using both synthetic and real-world traffic datasets.
comment: 16 pages, 7 figures
Artificial Intelligence 55
☆ PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.
☆ RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time. While RAG demonstrates strong performance on benchmarks largely derived from general-domain corpora like Wikipedia, its effectiveness under realistic, diverse retrieval scenarios remains underexplored. We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations: retrieval mainly benefits smaller models, rerankers add minimal value, and no single retrieval source consistently excels. Moreover, current LLMs struggle to route queries across heterogeneous knowledge sources. These findings highlight the need for adaptive retrieval strategies before deploying RAG in real-world settings. Our code and data can be found at https://github.com/ritaranx/RAG_in_the_Wild.
comment: Work in Progress. Code will be published at: https://github.com/ritaranx/RAG_in_the_Wild
☆ FaRMamba: Frequency-based learning and Reconstruction aided Mamba for Medical Segmentation
Accurate medical image segmentation remains challenging due to blurred lesion boundaries (LBA), loss of high-frequency details (LHD), and difficulty in modeling long-range anatomical structures (DC-LRSS). Vision Mamba employs one-dimensional causal state-space recurrence to efficiently model global dependencies, thereby substantially mitigating DC-LRSS. However, its patch tokenization and 1D serialization disrupt local pixel adjacency and impose a low-pass filtering effect, resulting in Local High-frequency Information Capture Deficiency (LHICD) and two-dimensional Spatial Structure Degradation (2D-SSD), which in turn exacerbate LBA and LHD. In this work, we propose FaRMamba, a novel extension that explicitly addresses LHICD and 2D-SSD through two complementary modules. A Multi-Scale Frequency Transform Module (MSFM) restores attenuated high-frequency cues by isolating and reconstructing multi-band spectra via wavelet, cosine, and Fourier transforms. A Self-Supervised Reconstruction Auxiliary Encoder (SSRAE) enforces pixel-level reconstruction on the shared Mamba encoder to recover full 2D spatial correlations, enhancing both fine textures and global context. Extensive evaluations on CAMUS echocardiography, MRI-based Mouse-cochlea, and Kvasir-Seg endoscopy demonstrate that FaRMamba consistently outperforms competitive CNN-Transformer hybrids and existing Mamba variants, delivering superior boundary accuracy, detail preservation, and global coherence without prohibitive computational overhead. This work provides a flexible frequency-aware framework for future segmentation models that directly mitigates core challenges in medical imaging.
☆ Irredundant $k$-Fold Cross-Validation
In traditional k-fold cross-validation, each instance is used ($k-1$) times for training and once for testing, leading to redundancy that lets many instances disproportionately influence the learning phase. We introduce Irredundant $k$-fold cross-validation, a novel method that guarantees each instance is used exactly once for training and once for testing across the entire validation procedure. This approach ensures a more balanced utilization of the dataset, mitigates overfitting due to instance repetition, and enables sharper distinctions in comparative model analysis. The method preserves stratification and remains model-agnostic, i.e., compatible with any classifier. Experimental results demonstrate that it delivers consistent performance estimates across diverse datasets -- comparable to $k$-fold cross-validation -- while providing less optimistic variance estimates because training partitions are non-overlapping, and significantly reducing the overall computational cost.
☆ TAPS : Frustratingly Simple Test Time Active Learning for VLMs
Test-Time Optimization enables models to adapt to new data during inference by updating parameters on-the-fly. Recent advances in Vision-Language Models (VLMs) have explored learning prompts at test time to improve performance in downstream tasks. In this work, we extend this idea by addressing a more general and practical challenge: Can we effectively utilize an oracle in a continuous data stream where only one sample is available at a time, requiring an immediate query decision while respecting latency and memory constraints? To tackle this, we propose a novel Test-Time Active Learning (TTAL) framework that adaptively queries uncertain samples and updates prompts dynamically. Unlike prior methods that assume batched data or multiple gradient updates, our approach operates in a real-time streaming scenario with a single test sample per step. We introduce a dynamically adjusted entropy threshold for active querying, a class-balanced replacement strategy for memory efficiency, and a class-aware distribution alignment technique to enhance adaptation. The design choices are justified using careful theoretical analysis. Extensive experiments across 10 cross-dataset transfer benchmarks and 4 domain generalization datasets demonstrate consistent improvements over state-of-the-art methods while maintaining reasonable latency and memory overhead. Our framework provides a practical and effective solution for real-world deployment in safety-critical applications such as autonomous systems and medical diagnostics.
☆ When Engineering Outruns Intelligence: A Re-evaluation of Instruction-Guided Navigation
Large language models (LLMs) are often credited with recent leaps in ObjectGoal Navigation, yet the extent to which they improve planning remains unclear. We revisit this question on the HM3D-v1 validation split. First, we strip InstructNav of its Dynamic Chain-of-Navigation prompt, open-vocabulary GLEE detector and Intuition saliency map, and replace them with a simple Distance-Weighted Frontier Explorer (DWFE). This geometry-only heuristic raises Success from 58.0% to 61.1% and lifts SPL from 20.9% to 36.0% over 2 000 validation episodes, outperforming all previous training-free baselines. Second, we add a lightweight language prior (SHF); on a 200-episode subset this yields a further +2% Success and +0.9% SPL while shortening paths by five steps on average. Qualitative trajectories confirm the trend: InstructNav back-tracks and times-out, DWFE reaches the goal after a few islands, and SHF follows an almost straight route. Our results indicate that frontier geometry, not emergent LLM reasoning, drives most reported gains, and suggest that metric-aware prompts or offline semantic graphs are necessary before attributing navigation success to "LLM intelligence."
☆ Anomaly Detection in Human Language via Meta-Learning: A Few-Shot Approach
We propose a meta learning framework for detecting anomalies in human language across diverse domains with limited labeled data. Anomalies in language ranging from spam and fake news to hate speech pose a major challenge due to their sparsity and variability. We treat anomaly detection as a few shot binary classification problem and leverage meta-learning to train models that generalize across tasks. Using datasets from domains such as SMS spam, COVID-19 fake news, and hate speech, we evaluate model generalization on unseen tasks with minimal labeled anomalies. Our method combines episodic training with prototypical networks and domain resampling to adapt quickly to new anomaly detection tasks. Empirical results show that our method outperforms strong baselines in F1 and AUC scores. We also release the code and benchmarks to facilitate further research in few-shot text anomaly detection.
comment: 15 pages. PyTorch code for few-shot anomaly detection using meta-learning is available upon request or can be shared via GitHub
☆ FedSWA: Improving Generalization in Federated Learning with Highly Heterogeneous Data via Momentum-Based Stochastic Controlled Weight Averaging
For federated learning (FL) algorithms such as FedSAM, their generalization capability is crucial for real-word applications. In this paper, we revisit the generalization problem in FL and investigate the impact of data heterogeneity on FL generalization. We find that FedSAM usually performs worse than FedAvg in the case of highly heterogeneous data, and thus propose a novel and effective federated learning algorithm with Stochastic Weight Averaging (called \texttt{FedSWA}), which aims to find flatter minima in the setting of highly heterogeneous data. Moreover, we introduce a new momentum-based stochastic controlled weight averaging FL algorithm (\texttt{FedMoSWA}), which is designed to better align local and global models. Theoretically, we provide both convergence analysis and generalization bounds for \texttt{FedSWA} and \texttt{FedMoSWA}. We also prove that the optimization and generalization errors of \texttt{FedMoSWA} are smaller than those of their counterparts, including FedSAM and its variants. Empirically, experimental results on CIFAR10/100 and Tiny ImageNet demonstrate the superiority of the proposed algorithms compared to their counterparts. Open source code at: https://github.com/junkangLiu0/FedSWA.
comment: icml 2025
☆ Policy-Driven AI in Dataspaces: Taxonomy, Explainability, and Pathways for Compliant Innovation
As AI-driven dataspaces become integral to data sharing and collaborative analytics, ensuring privacy, performance, and policy compliance presents significant challenges. This paper provides a comprehensive review of privacy-preserving and policy-aware AI techniques, including Federated Learning, Differential Privacy, Trusted Execution Environments, Homomorphic Encryption, and Secure Multi-Party Computation, alongside strategies for aligning AI with regulatory frameworks such as GDPR and the EU AI Act. We propose a novel taxonomy to classify these techniques based on privacy levels, performance impacts, and compliance complexity, offering a clear framework for practitioners and researchers to navigate trade-offs. Key performance metrics -- latency, throughput, cost overhead, model utility, fairness, and explainability -- are analyzed to highlight the multi-dimensional optimization required in dataspaces. The paper identifies critical research gaps, including the lack of standardized privacy-performance KPIs, challenges in explainable AI for federated ecosystems, and semantic policy enforcement amidst regulatory fragmentation. Future directions are outlined, proposing a conceptual framework for policy-driven alignment, automated compliance validation, standardized benchmarking, and integration with European initiatives like GAIA-X, IDS, and Eclipse EDC. By synthesizing technical, ethical, and regulatory perspectives, this work lays the groundwork for developing trustworthy, efficient, and compliant AI systems in dataspaces, fostering innovation in secure and responsible data-driven ecosystems.
☆ Finding Personalized Good-Enough Solutions to Unsatisfiable Stable Roommates Problems
The Stable Roommates problems are characterized by the preferences of agents over other agents as roommates. A solution is a partition of the agents into pairs that are acceptable to each other (i.e., they are in the preference lists of each other), and the matching is stable (i.e., there do not exist any two agents who prefer each other to their roommates, and thus block the matching). Motivated by real-world applications, and considering that stable roommates problems do not always have solutions, we continue our studies to compute "good-enough" matchings. In addition to the agents' habits and habitual preferences, we consider their networks of preferred friends, and introduce a method to generate personalized solutions to stable roommates problems. We illustrate the usefulness of our method with examples and empirical evaluations.
☆ Robust Taxi Fare Prediction Under Noisy Conditions: A Comparative Study of GAT, TimesNet, and XGBoost
Precise fare prediction is crucial in ride-hailing platforms and urban mobility systems. This study examines three machine learning models-Graph Attention Networks (GAT), XGBoost, and TimesNet to evaluate their predictive capabilities for taxi fares using a real-world dataset comprising over 55 million records. Both raw (noisy) and denoised versions of the dataset are analyzed to assess the impact of data quality on model performance. The study evaluated the models along multiple axes, including predictive accuracy, calibration, uncertainty estimation, out-of-distribution (OOD) robustness, and feature sensitivity. We also explore pre-processing strategies, including KNN imputation, Gaussian noise injection, and autoencoder-based denoising. The study reveals critical differences between classical and deep learning models under realistic conditions, offering practical guidelines for building robust and scalable models in urban fare prediction systems.
comment: 10 pages, 9 figures, prepared with LaTeX, GitHub link: https://github.com/padmavathi026/Smart-Fare-Prediction
☆ Matching Game Preferences Through Dialogical Large Language Models: A Perspective
This perspective paper explores the future potential of "conversational intelligence" by examining how Large Language Models (LLMs) could be combined with GRAPHYP's network system to better understand human conversations and preferences. Using recent research and case studies, we propose a conceptual framework that could make AI rea-soning transparent and traceable, allowing humans to see and understand how AI reaches its conclusions. We present the conceptual perspective of "Matching Game Preferences through Dialogical Large Language Models (D-LLMs)," a proposed system that would allow multiple users to share their different preferences through structured conversations. This approach envisions personalizing LLMs by embedding individual user preferences directly into how the model makes decisions. The proposed D-LLM framework would require three main components: (1) reasoning processes that could analyze different search experiences and guide performance, (2) classification systems that would identify user preference patterns, and (3) dialogue approaches that could help humans resolve conflicting information. This perspective framework aims to create an interpretable AI system where users could examine, understand, and combine the different human preferences that influence AI responses, detected through GRAPHYP's search experience networks. The goal of this perspective is to envision AI systems that would not only provide answers but also show users how those answers were reached, making artificial intelligence more transparent and trustworthy for human decision-making.
comment: 28 pages, 1 figure. Published in Applied Sciences
☆ VLQA: The First Comprehensive, Large, and High-Quality Vietnamese Dataset for Legal Question Answering
The advent of large language models (LLMs) has led to significant achievements in various domains, including legal text processing. Leveraging LLMs for legal tasks is a natural evolution and an increasingly compelling choice. However, their capabilities are often portrayed as greater than they truly are. Despite the progress, we are still far from the ultimate goal of fully automating legal tasks using artificial intelligence (AI) and natural language processing (NLP). Moreover, legal systems are deeply domain-specific and exhibit substantial variation across different countries and languages. The need for building legal text processing applications for different natural languages is, therefore, large and urgent. However, there is a big challenge for legal NLP in low-resource languages such as Vietnamese due to the scarcity of resources and annotated data. The need for labeled legal corpora for supervised training, validation, and supervised fine-tuning is critical. In this paper, we introduce the VLQA dataset, a comprehensive and high-quality resource tailored for the Vietnamese legal domain. We also conduct a comprehensive statistical analysis of the dataset and evaluate its effectiveness through experiments with state-of-the-art models on legal information retrieval and question-answering tasks.
☆ NIRS: An Ontology for Non-Invasive Respiratory Support in Acute Care
Objective: Develop a Non Invasive Respiratory Support (NIRS) ontology to support knowledge representation in acute care settings. Materials and Methods: We developed the NIRS ontology using Web Ontology Language (OWL) semantics and Protege to organize clinical concepts and relationships. To enable rule-based clinical reasoning beyond hierarchical structures, we added Semantic Web Rule Language (SWRL) rules. We evaluated logical reasoning by adding 17 hypothetical patient clinical scenarios. We used SPARQL queries and data from the Electronic Intensive Care Unit (eICU) Collaborative Research Database to retrieve and test targeted inferences. Results: The ontology has 132 classes, 12 object properties, and 17 data properties across 882 axioms that establish concept relationships. To standardize clinical concepts, we added 350 annotations, including descriptive definitions based on controlled vocabularies. SPARQL queries successfully validated all test cases (rules) by retrieving appropriate patient outcomes, for instance, a patient treated with HFNC (high-flow nasal cannula) for 2 hours due to acute respiratory failure may avoid endotracheal intubation. Discussion: The NIRS ontology formally represents domain-specific concepts, including ventilation modalities, patient characteristics, therapy parameters, and outcomes. SPARQL query evaluations on clinical scenarios confirmed the ability of the ontology to support rule based reasoning and therapy recommendations, providing a foundation for consistent documentation practices, integration into clinical data models, and advanced analysis of NIRS outcomes. Conclusion: We unified NIRS concepts into an ontological framework and demonstrated its applicability through the evaluation of hypothetical patient scenarios and alignment with standardized vocabularies.
comment: Submitted to the Journal of the American Medical Informatics Association (JAMIA)
☆ Improving the Performance of Sequential Recommendation Systems with an Extended Large Language Model
Recently, competition in the field of artificial intelligence (AI) has intensified among major technological companies, resulting in the continuous release of new large-language models (LLMs) that exhibit improved language understanding and context-based reasoning capabilities. It is expected that these advances will enable more efficient personalized recommendations in LLM-based recommendation systems through improved quality of training data and architectural design. However, many studies have not considered these recent developments. In this study, it was proposed to improve LLM-based recommendation systems by replacing Llama2 with Llama3 in the LlamaRec framework. To ensure a fair comparison, random seed values were set and identical input data was provided during preprocessing and training. The experimental results show average performance improvements of 38.65\%, 8.69\%, and 8.19\% for the ML-100K, Beauty, and Games datasets, respectively, thus confirming the practicality of this method. Notably, the significant improvements achieved by model replacement indicate that the recommendation quality can be improved cost-effectively without the need to make structural changes to the system. Based on these results, it is our contention that the proposed approach is a viable solution for improving the performance of current recommendation systems.
☆ CLASP: General-Purpose Clothes Manipulation with Semantic Keypoints
Clothes manipulation, such as folding or hanging, is a critical capability for home service robots. Despite recent advances, most existing methods remain limited to specific tasks and clothes types, due to the complex, high-dimensional geometry of clothes. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP), which aims at general-purpose clothes manipulation over different clothes types, T-shirts, shorts, skirts, long dresses, ... , as well as different tasks, folding, flattening, hanging, ... . The core idea of CLASP is semantic keypoints -- e.g., ''left sleeve'', ''right shoulder'', etc. -- a sparse spatial-semantic representation that is salient for both perception and action. Semantic keypoints of clothes can be reliably extracted from RGB-D images and provide an effective intermediate representation of clothes manipulation policies. CLASP uses semantic keypoints to bridge high-level task planning and low-level action execution. At the high level, it exploits vision language models (VLMs) to predict task plans over the semantic keypoints. At the low level, it executes the plans with the help of a simple pre-built manipulation skill library. Extensive simulation experiments show that CLASP outperforms state-of-the-art baseline methods on multiple tasks across diverse clothes types, demonstrating strong performance and generalization. Further experiments with a Franka dual-arm system on four distinct tasks -- folding, flattening, hanging, and placing -- confirm CLASP's performance on a real robot.
A roadmap for AI in robotics
AI technologies, including deep learning, large-language models have gone from one breakthrough to the other. As a result, we are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives. However, action and sensing in the physical world pose greater and different challenges than analysing data in isolation. As the development and application of AI in robotic products advances, it is important to reflect on which technologies, among the vast array of network architectures and learning models now available in the AI field, are most likely to be successfully applied to robots; how they can be adapted to specific robot designs, tasks, environments; which challenges must be overcome. This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises. These range from keeping up-to-date large datasets, representatives of a diversity of tasks robots may have to perform, and of environments they may encounter, to designing AI algorithms tailored specifically to robotics problems but generic enough to apply to a wide range of applications and transfer easily to a variety of robotic platforms. For robots to collaborate effectively with humans, they must predict human behavior without relying on bias-based profiling. Explainability and transparency in AI-driven robot control are not optional but essential for building trust, preventing misuse, and attributing responsibility in accidents. We close on what we view as the primary long-term challenges, that is, to design robots capable of lifelong learning, while guaranteeing safe deployment and usage, and sustainable computational costs.
☆ Digital Twin Channel-Enabled Online Resource Allocation for 6G: Principle, Architecture and Application
Emerging applications such as holographic communication, autonomous driving, and the industrial Internet of Things impose stringent requirements on flexible, low-latency, and reliable resource allocation in 6G networks. Conventional methods, which rely on statistical modeling, have proven effective in general contexts but may fail to achieve optimal performance in specific and dynamic environments. Furthermore, acquiring real-time channel state information (CSI) typically requires excessive pilot overhead. To address these challenges, a digital twin channel (DTC)-enabled online optimization framework is proposed, in which DTC is employed to predict CSI based on environmental sensing. The predicted CSI is then utilized by lightweight game-theoretic algorithms to perform online resource allocation in a timely and efficient manner. Simulation results based on a digital replica of a realistic industrial workshop demonstrate that the proposed method achieves throughput improvements of up to 11.5\% compared with pilot-based ideal CSI schemes, validating its effectiveness for scalable, low-overhead, and environment-aware communication in future 6G networks.
☆ Leveraging Fine-Tuned Large Language Models for Interpretable Pancreatic Cystic Lesion Feature Extraction and Risk Categorization
Background: Manual extraction of pancreatic cystic lesion (PCL) features from radiology reports is labor-intensive, limiting large-scale studies needed to advance PCL research. Purpose: To develop and evaluate large language models (LLMs) that automatically extract PCL features from MRI/CT reports and assign risk categories based on guidelines. Materials and Methods: We curated a training dataset of 6,000 abdominal MRI/CT reports (2005-2024) from 5,134 patients that described PCLs. Labels were generated by GPT-4o using chain-of-thought (CoT) prompting to extract PCL and main pancreatic duct features. Two open-source LLMs were fine-tuned using QLoRA on GPT-4o-generated CoT data. Features were mapped to risk categories per institutional guideline based on the 2017 ACR White Paper. Evaluation was performed on 285 held-out human-annotated reports. Model outputs for 100 cases were independently reviewed by three radiologists. Feature extraction was evaluated using exact match accuracy, risk categorization with macro-averaged F1 score, and radiologist-model agreement with Fleiss' Kappa. Results: CoT fine-tuning improved feature extraction accuracy for LLaMA (80% to 97%) and DeepSeek (79% to 98%), matching GPT-4o (97%). Risk categorization F1 scores also improved (LLaMA: 0.95; DeepSeek: 0.94), closely matching GPT-4o (0.97), with no statistically significant differences. Radiologist inter-reader agreement was high (Fleiss' Kappa = 0.888) and showed no statistically significant difference with the addition of DeepSeek-FT-CoT (Fleiss' Kappa = 0.893) or GPT-CoT (Fleiss' Kappa = 0.897), indicating that both models achieved agreement levels on par with radiologists. Conclusion: Fine-tuned open-source LLMs with CoT supervision enable accurate, interpretable, and efficient phenotyping for large-scale PCL research, achieving performance comparable to GPT-4o.
☆ Dimer-Enhanced Optimization: A First-Order Approach to Escaping Saddle Points in Neural Network Training
First-order optimization methods, such as SGD and Adam, are widely used for training large-scale deep neural networks due to their computational efficiency and robust performance. However, relying solely on gradient information, these methods often struggle to navigate complex loss landscapes with flat regions, plateaus, and saddle points. Second-order methods, which use curvature information from the Hessian matrix, can address these challenges but are computationally infeasible for large models. The Dimer method, a first-order technique that constructs two closely spaced points to probe the local geometry of a potential energy surface, efficiently estimates curvature using only gradient information. Inspired by its use in molecular dynamics simulations for locating saddle points, we propose Dimer-Enhanced Optimization (DEO), a novel framework to escape saddle points in neural network training. DEO adapts the Dimer method to explore a broader region of the loss landscape, approximating the Hessian's smallest eigenvector without computing the full matrix. By periodically projecting the gradient onto the subspace orthogonal to the minimum curvature direction, DEO guides the optimizer away from saddle points and flat regions, enhancing training efficiency with non-stepwise updates. Preliminary experiments on a Transformer toy model show DEO achieves competitive performance compared to standard first-order methods, improving navigation of complex loss landscapes. Our work repurposes physics-inspired, first-order curvature estimation to enhance neural network training in high-dimensional spaces.
comment: 8 pages, 2 figures
☆ Pic2Diagnosis: A Method for Diagnosis of Cardiovascular Diseases from the Printed ECG Pictures
The electrocardiogram (ECG) is a vital tool for diagnosing heart diseases. However, many disease patterns are derived from outdated datasets and traditional stepwise algorithms with limited accuracy. This study presents a method for direct cardiovascular disease (CVD) diagnosis from ECG images, eliminating the need for digitization. The proposed approach utilizes a two-step curriculum learning framework, beginning with the pre-training of a classification model on segmentation masks, followed by fine-tuning on grayscale, inverted ECG images. Robustness is further enhanced through an ensemble of three models with averaged outputs, achieving an AUC of 0.9534 and an F1 score of 0.7801 on the BHF ECG Challenge dataset, outperforming individual models. By effectively handling real-world artifacts and simplifying the diagnostic process, this method offers a reliable solution for automated CVD diagnosis, particularly in resource-limited settings where printed or scanned ECG images are commonly used. Such an automated procedure enables rapid and accurate diagnosis, which is critical for timely intervention in CVD cases that often demand urgent care.
comment: To appear in: Proceedings of the 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2025
☆ Predicting Brain Responses To Natural Movies With Multimodal LLMs
We present MedARC's team solution to the Algonauts 2025 challenge. Our pipeline leveraged rich multimodal representations from various state-of-the-art pretrained models across video (V-JEPA2), speech (Whisper), text (Llama 3.2), vision-text (InternVL3), and vision-text-audio (Qwen2.5-Omni). These features extracted from the models were linearly projected to a latent space, temporally aligned to the fMRI time series, and finally mapped to cortical parcels through a lightweight encoder comprising a shared group head plus subject-specific residual heads. We trained hundreds of model variants across hyperparameter settings, validated them on held-out movies and assembled ensembles targeted to each parcel in each subject. Our final submission achieved a mean Pearson's correlation of 0.2085 on the test split of withheld out-of-distribution movies, placing our team in fourth place for the competition. We further discuss a last-minute optimization that would have raised us to second place. Our results highlight how combining features from models trained in different modalities, using a simple architecture consisting of shared-subject and single-subject components, and conducting comprehensive model selection and ensembling improves generalization of encoding models to novel movie stimuli. All code is available on GitHub.
comment: Code available at https://github.com/MedARC-AI/algonauts2025
☆ RARE: Refine Any Registration of Pairwise Point Clouds via Zero-Shot Learning
Recent research leveraging large-scale pretrained diffusion models has demonstrated the potential of using diffusion features to establish semantic correspondences in images. Inspired by advancements in diffusion-based techniques, we propose a novel zero-shot method for refining point cloud registration algorithms. Our approach leverages correspondences derived from depth images to enhance point feature representations, eliminating the need for a dedicated training dataset. Specifically, we first project the point cloud into depth maps from multiple perspectives and extract implicit knowledge from a pretrained diffusion network as depth diffusion features. These features are then integrated with geometric features obtained from existing methods to establish more accurate correspondences between point clouds. By leveraging these refined correspondences, our approach achieves significantly improved registration accuracy. Extensive experiments demonstrate that our method not only enhances the performance of existing point cloud registration techniques but also exhibits robust generalization capabilities across diverse datasets. Codes are available at https://github.com/zhengcy-lambo/RARE.git.
☆ Deep Learning Based Joint Channel Estimation and Positioning for Sparse XL-MIMO OFDM Systems
This paper investigates joint channel estimation and positioning in near-field sparse extra-large multiple-input multiple-output (XL-MIMO) orthogonal frequency division multiplexing (OFDM) systems. To achieve cooperative gains between channel estimation and positioning, we propose a deep learning-based two-stage framework comprising positioning and channel estimation. In the positioning stage, the user's coordinates are predicted and utilized in the channel estimation stage, thereby enhancing the accuracy of channel estimation. Within this framework, we propose a U-shaped Mamba architecture for channel estimation and positioning, termed as CP-Mamba. This network integrates the strengths of the Mamba model with the structural advantages of U-shaped convolutional networks, enabling effective capture of local spatial features and long-range temporal dependencies of the channel. Numerical simulation results demonstrate that the proposed two-stage approach with CP-Mamba architecture outperforms existing baseline methods. Moreover, sparse arrays (SA) exhibit significantly superior performance in both channel estimation and positioning accuracy compared to conventional compact arrays.
comment: 5 pages,8 figures
☆ DynamiX: Large-Scale Dynamic Social Network Simulator
Understanding the intrinsic mechanisms of social platforms is an urgent demand to maintain social stability. The rise of large language models provides significant potential for social network simulations to capture attitude dynamics and reproduce collective behaviors. However, existing studies mainly focus on scaling up agent populations, neglecting the dynamic evolution of social relationships. To address this gap, we introduce DynamiX, a novel large-scale social network simulator dedicated to dynamic social network modeling. DynamiX uses a dynamic hierarchy module for selecting core agents with key characteristics at each timestep, enabling accurate alignment of real-world adaptive switching of user roles. Furthermore, we design distinct dynamic social relationship modeling strategies for different user types. For opinion leaders, we propose an information-stream-based link prediction method recommending potential users with similar stances, simulating homogeneous connections, and autonomous behavior decisions. For ordinary users, we construct an inequality-oriented behavior decision-making module, effectively addressing unequal social interactions and capturing the patterns of relationship adjustments driven by multi-dimensional factors. Experimental results demonstrate that DynamiX exhibits marked improvements in attitude evolution simulation and collective behavior analysis compared to static networks. Besides, DynamiX opens a new theoretical perspective on follower growth prediction, providing empirical evidence for opinion leaders cultivation.
☆ A mini-batch training strategy for deep subspace clustering networks
Mini-batch training is a cornerstone of modern deep learning, offering computational efficiency and scalability for training complex architectures. However, existing deep subspace clustering (DSC) methods, which typically combine an autoencoder with a self-expressive layer, rely on full-batch processing. The bottleneck arises from the self-expressive module, which requires representations of the entire dataset to construct a self-representation coefficient matrix. In this work, we introduce a mini-batch training strategy for DSC by integrating a memory bank that preserves global feature representations. Our approach enables scalable training of deep architectures for subspace clustering with high-resolution images, overcoming previous limitations. Additionally, to efficiently fine-tune large-scale pre-trained encoders for subspace clustering, we propose a decoder-free framework that leverages contrastive learning instead of autoencoding for representation learning. This design not only eliminates the computational overhead of decoder training but also provides competitive performance. Extensive experiments demonstrate that our approach not only achieves performance comparable to full-batch methods, but outperforms other state-of-the-art subspace clustering methods on the COIL100 and ORL datasets by fine-tuning deep networks.
☆ The Impact of Fine-tuning Large Language Models on Automated Program Repair
Automated Program Repair (APR) uses various tools and techniques to help developers achieve functional and error-free code faster. In recent years, Large Language Models (LLMs) have gained popularity as components in APR tool chains because of their performance and flexibility. However, training such models requires a significant amount of resources. Fine-tuning techniques have been developed to adapt pre-trained LLMs to specific tasks, such as APR, and enhance their performance at far lower computational costs than training from scratch. In this study, we empirically investigate the impact of various fine-tuning techniques on the performance of LLMs used for APR. Our experiments provide insights into the performance of a selection of state-of-the-art LLMs pre-trained on code. The evaluation is done on three popular APR benchmarks (i.e., QuixBugs, Defects4J and HumanEval-Java) and considers six different LLMs with varying parameter sizes (resp. CodeGen, CodeT5, StarCoder, DeepSeekCoder, Bloom, and CodeLlama-2). We consider three training regimens: no fine-tuning, full fine-tuning, and parameter-efficient fine-tuning (PEFT) using LoRA and IA3. We observe that full fine-tuning techniques decrease the benchmarking performance of various models due to different data distributions and overfitting. By using parameter-efficient fine-tuning methods, we restrict models in the amount of trainable parameters and achieve better results. Keywords: large language models, automated program repair, parameter-efficient fine-tuning, AI4Code, AI4SE, ML4SE.
comment: Accepted for publication in the research track of the 41th International Conference on Software Maintenance and Evolution (ICSME 2025)
☆ CrossPL: Evaluating Large Language Models on Cross Programming Language Code Generation
As large language models (LLMs) become increasingly embedded in software engineering workflows, a critical capability remains underexplored: generating correct code that enables cross-programming-language (CPL) interoperability. This skill is essential for building complex systems that integrate components written in multiple languages via mechanisms like inter-process communication (IPC). To bridge this gap, we present CrossPL, the first benchmark designed to systematically evaluate LLMs' ability to generate CPL-interoperating code. CrossPL comprises 1,982 tasks centered around IPC, covering six widely-used programming languages and seven representative CPL techniques. We construct this benchmark by (i) analyzing 19,169 multi-language GitHub repositories using 156 hand-crafted finite state machines (FSMs), and (ii) developing an LLM-based pipeline that automatically extracts CPL code snippets, generates task instructions, and validates functional correctness. We evaluate 14 state-of-the-art general-purpose LLMs and 6 code-oriented LLMs released in the past three years on CrossPL via FSM-based validation. Results reveal that even the best-performing models struggle with CPL scenarios, underscoring the need for more targeted research in this space. Our benchmark and code are available at: https://anonymous.4open.science/r/crosspl-2814.
☆ AgentMesh: A Cooperative Multi-Agent Generative AI Framework for Software Development Automation
Software development is a complex, multi-phase process traditionally requiring collaboration among individuals with diverse expertise. We propose AgentMesh, a Python-based framework that uses multiple cooperating LLM-powered agents to automate software development tasks. In AgentMesh, specialized agents - a Planner, Coder, Debugger, and Reviewer - work in concert to transform a high-level requirement into fully realized code. The Planner agent first decomposes user requests into concrete subtasks; the Coder agent implements each subtask in code; the Debugger agent tests and fixes the code; and the Reviewer agent validates the final output for correctness and quality. We describe the architecture and design of these agents and their communication, and provide implementation details including prompt strategies and workflow orchestration. A case study illustrates AgentMesh handling a non-trivial development request via sequential task planning, code generation, iterative debugging, and final code review. We discuss how dividing responsibilities among cooperative agents leverages the strengths of large language models while mitigating single-agent limitations. Finally, we examine current limitations - such as error propagation and context scaling - and outline future work toward more robust, scalable multi-agent AI systems for software engineering automation.
♻ ☆ Moving Out: Physically-grounded Human-AI Collaboration
The ability to adapt to physical actions and constraints in an environment is crucial for embodied agents (e.g., robots) to effectively collaborate with humans. Such physically grounded human-AI collaboration must account for the increased complexity of the continuous state-action space and constrained dynamics caused by physical constraints. In this paper, we introduce Moving Out, a new human-AI collaboration benchmark that resembles a wide range of collaboration modes affected by physical attributes and constraints, such as moving heavy items together and maintaining consistent actions to move a big item around a corner. Using Moving Out, we designed two tasks and collected human-human interaction data to evaluate models' abilities to adapt to diverse human behaviors and unseen physical attributes. To address the challenges in physical environments, we propose a novel method, BASS (Behavior Augmentation, Simulation, and Selection), to enhance the diversity of agents and their understanding of the outcome of actions. Our experiments show that BASS outperforms state-of-the-art models in AI-AI and human-AI collaboration. The project page is available at https://live-robotics-uva.github.io/movingout_ai/.
comment: 24 pages, 8 figures
♻ ☆ Compliance Brain Assistant: Conversational Agentic AI for Assisting Compliance Tasks in Enterprise Environments
This paper presents Compliance Brain Assistant (CBA), a conversational, agentic AI assistant designed to boost the efficiency of daily compliance tasks for personnel in enterprise environments. To strike a good balance between response quality and latency, we design a user query router that can intelligently choose between (i) FastTrack mode: to handle simple requests that only need additional relevant context retrieved from knowledge corpora; and (ii) FullAgentic mode: to handle complicated requests that need composite actions and tool invocations to proactively discover context across various compliance artifacts, and/or involving other APIs/models for accommodating requests. A typical example would be to start with a user query, use its description to find a specific entity and then use the entity's information to query other APIs for curating and enriching the final AI response. Our experimental evaluations compared CBA against an out-of-the-box LLM on various real-world privacy/compliance-related queries targeting various personas. We found that CBA substantially improved upon the vanilla LLM's performance on metrics such as average keyword match rate (83.7% vs. 41.7%) and LLM-judge pass rate (82.0% vs. 20.0%). We also compared metrics for the full routing-based design against the `fast-track only` and `full-agentic` modes and found that it had a better average match-rate and pass-rate while keeping the run-time approximately the same. This finding validated our hypothesis that the routing mechanism leads to a good trade-off between the two worlds.
♻ ☆ TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound ICCV 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation.
comment: Accepted to ICCV 2025 Workshop CVAMD
♻ ☆ MemeBLIP2: A novel lightweight multimodal system to detect harmful memes IJCAI-25
Memes often merge visuals with brief text to share humor or opinions, yet some memes contain harmful messages such as hate speech. In this paper, we introduces MemeBLIP2, a light weight multimodal system that detects harmful memes by combining image and text features effectively. We build on previous studies by adding modules that align image and text representations into a shared space and fuse them for better classification. Using BLIP-2 as the core vision-language model, our system is evaluated on the PrideMM datasets. The results show that MemeBLIP2 can capture subtle cues in both modalities, even in cases with ironic or culturally specific content, thereby improving the detection of harmful material.
comment: 11 pages, 3 figures. Accepted at the First Workshop on Multimodal Knowledge and Language Modeling (MKLM), IJCAI-25
♻ ☆ Quantifying Security Vulnerabilities: A Metric-Driven Security Analysis of Gaps in Current AI Standards
As AI systems integrate into critical infrastructure, security gaps in AI compliance frameworks demand urgent attention. This paper audits and quantifies security risks in three major AI governance standards: NIST AI RMF 1.0, UK's AI and Data Protection Risk Toolkit, and the EU's ALTAI. Using a novel risk assessment methodology, we develop four key metrics: Risk Severity Index (RSI), Attack Potential Index (AVPI), Compliance-Security Gap Percentage (CSGP), and Root Cause Vulnerability Score (RCVS). Our analysis identifies 136 concerns across the frameworks, exposing significant gaps. NIST fails to address 69.23 percent of identified risks, ALTAI has the highest attack vector vulnerability (AVPI = 0.51) and the ICO Toolkit has the largest compliance-security gap, with 80.00 percent of high-risk concerns remaining unresolved. Root cause analysis highlights under-defined processes (ALTAI RCVS = 033) and weak implementation guidance (NIST and ICO RCVS = 0.25) as critical weaknesses. These findings emphasize the need for stronger, enforceable security controls in AI compliance. We offer targeted recommendations to enhance security posture and bridge the gap between compliance and real-world AI risks.
♻ ☆ Selective Prompt Anchoring for Code Generation ICML'25
Recent advances in large language models (LLMs) have transformed software development by automatically generating code from natural language. Yet challenges remain in generating fully correct code that aligns with user intent. Our study reveals that LLMs tend to pay less attention to user prompts as more code tokens are generated. We hypothesize that this attention dilution issue is an important reason for code generation errors. To mitigate this issue, we propose Selective Prompt Anchoring (SPA) to guide code LLMs to pay more attention to user intent when generating code. We evaluate SPA using six base LLMs across six benchmarks. Our results demonstrate that SPA enhances Pass@1 by up to 12.9%, consistently outperforming SOTA code generation methods in all settings. Our code is available at https://github.com/magic-YuanTian/Selective-Prompt-Anchoring.
comment: Accepted by ICML'25
♻ ☆ Conformal Safety Shielding for Imperfect-Perception Agents
We consider the problem of safe control in discrete autonomous agents that use learned components for imperfect perception (or more generally, state estimation) from high-dimensional observations. We propose a shield construction that provides run-time safety guarantees under perception errors by restricting the actions available to an agent, modeled as a Markov decision process, as a function of the state estimates. Our construction uses conformal prediction for the perception component, which guarantees that for each observation, the predicted set of estimates includes the actual state with a user-specified probability. The shield allows an action only if it is allowed for all the estimates in the predicted set, resulting in local safety. We also articulate and prove a global safety property of existing shield constructions for perfect-perception agents bounding the probability of reaching unsafe states if the agent always chooses actions prescribed by the shield. We illustrate our approach with a case-study of an experimental autonomous system that guides airplanes on taxiways using high-dimensional perception DNNs.
comment: 32 pages; Equal contribution by W. Scarbro and C. Imrie; Accepted at 25th International Conference on Runtime Verification, 2025 (RV25)
♻ ☆ Competency-Aware Planning for Probabilistically Safe Navigation Under Perception Uncertainty
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
♻ ☆ A Practice of Post-Training on Llama-3 70B with Optimal Selection of Additional Language Mixture Ratio
Large Language Models (LLM) often need to be Continual Pre-Trained (CPT) to obtain unfamiliar language skills or adapt to new domains. The huge training cost of CPT often asks for cautious choice of key hyper-parameters such as the mixture ratio of extra language or domain corpus. However, there is no systematic study that bridges the gap between the optimal mixture ratio and the actual model performance, and the gap between experimental scaling law and the actual deployment in the full model size. In this paper, we perform CPT on Llama-3 8B and 70B to enhance its Chinese ability. We study the optimal correlation between the Additional Language Mixture Ratio (ALMR) and the Learning Rate (LR) on the 8B size which directly indicates the optimal experimental setup. By thorough choice of hyper-parameter, and subsequent fine-tuning, the model capability is improved not only on the Chinese-related benchmark but also in some specific domains including math, coding, and emotional intelligence. We deploy the final 70B version of LLM on a real-life chat system which obtains satisfying performance.
comment: 12 pages, 2 figures
♻ ☆ HeLo: Heterogeneous Multi-Modal Fusion with Label Correlation for Emotion Distribution Learning
Multi-modal emotion recognition has garnered increasing attention as it plays a significant role in human-computer interaction (HCI) in recent years. Since different discrete emotions may exist at the same time, compared with single-class emotion recognition, emotion distribution learning (EDL) that identifies a mixture of basic emotions has gradually emerged as a trend. However, existing EDL methods face challenges in mining the heterogeneity among multiple modalities. Besides, rich semantic correlations across arbitrary basic emotions are not fully exploited. In this paper, we propose a multi-modal emotion distribution learning framework, named HeLo, aimed at fully exploring the heterogeneity and complementary information in multi-modal emotional data and label correlation within mixed basic emotions. Specifically, we first adopt cross-attention to effectively fuse the physiological data. Then, an optimal transport (OT)-based heterogeneity mining module is devised to mine the interaction and heterogeneity between the physiological and behavioral representations. To facilitate label correlation learning, we introduce a learnable label embedding optimized by correlation matrix alignment. Finally, the learnable label embeddings and label correlation matrices are integrated with the multi-modal representations through a novel label correlation-driven cross-attention mechanism for accurate emotion distribution learning. Experimental results on two publicly available datasets demonstrate the superiority of our proposed method in emotion distribution learning.
♻ ☆ MeTHanol: Modularized Thinking Language Models with Intermediate Layer Thinking, Decoding and Bootstrapping Reasoning
Current research efforts are focused on enhancing the thinking and reasoning capability of large language model (LLM) by prompting, data-driven emergence and inference-time computation. In this study, we consider stimulating language model's thinking and cognitive abilities from a modular perspective, which mimics the human brain architecture. We select a specific intermediate attention layer with newly implemented language heads. We conduct dual-layer fine-tuning by annotated (query, thought, answer) samples and show that the intermediate layer can also learn to decode fluent and reasonable language tokens. A two-pass inference mechanism is designed to generate thoughts then formal responses. The entire framework is called modularized thinking language model (MeTHanol) which can enhance LLM's cognitive behaviors as indicated by Theory of Mind (ToM) and Vignette-based experiments. Case studies also show that MeTHanol can plan and self-reflect and generate human-like thoughts and answers, even on unseen and open-domain tasks. MeTHanol can also adapt to a personalized prompt and behave as the specified character. Our study holds promise for significant cognitive gains from a modular perspective. Our code, model and data are available at https://bachozean.github.io/methanol-page
comment: 19 pages, 7 figures
♻ ☆ GLC++: Source-Free Universal Domain Adaptation through Global-Local Clustering and Contrastive Affinity Learning CVPR
Deep neural networks often exhibit sub-optimal performance under covariate and category shifts. Source-Free Domain Adaptation (SFDA) presents a promising solution to this dilemma, yet most SFDA approaches are restricted to closed-set scenarios. In this paper, we explore Source-Free Universal Domain Adaptation (SF-UniDA) aiming to accurately classify "known" data belonging to common categories and segregate them from target-private "unknown" data. We propose a novel Global and Local Clustering (GLC) technique, which comprises an adaptive one-vs-all global clustering algorithm to discern between target classes, complemented by a local k-NN clustering strategy to mitigate negative transfer. Despite the effectiveness, the inherent closed-set source architecture leads to uniform treatment of "unknown" data, impeding the identification of distinct "unknown" categories. To address this, we evolve GLC to GLC++, integrating a contrastive affinity learning strategy. We examine the superiority of GLC and GLC++ across multiple benchmarks and category shift scenarios. Remarkably, in the most challenging open-partial-set scenarios, GLC and GLC++ surpass GATE by 16.8\% and 18.9\% in H-score on VisDA, respectively. GLC++ enhances the novel category clustering accuracy of GLC by 4.1\% in open-set scenarios on Office-Home. Furthermore, the introduced contrastive learning strategy not only enhances GLC but also significantly facilitates existing methodologies. The code is available at https://github.com/ispc-lab/GLC-plus.
comment: A substantial extension of the CVPR paper "Upcycling Models under Domain and Category Shift", recently accepted by IEEE-TPAMI. arXiv admin note: text overlap with arXiv:2303.07110
♻ ☆ Epitome: Pioneering an Experimental Platform for AI-Social Science Integration
The integration of Large Language Models (LLMs) into social science experiments represents a transformative approach to understanding human-AI interactions and their societal impacts. We introduce Epitome, the world's first open experimental platform dedicated to the deep integration of artificial intelligence and social science. Rooted in theoretical foundations from management, communication studies, sociology, psychology, and ethics, Epitome focuses on the interactive impacts of AI on individuals, organizations, and society during its real-world deployment. It constructs a theoretical support system through cross-disciplinary experiments. The platform offers a one-stop comprehensive experimental solution spanning "foundation models-complex application development-user feedback" through seven core modules, while embedding the classical "control-comparison-comparative causal logic" of social science experiments into multilevel human-computer interaction environments, including dialogues, group chats, and multi-agent virtual scenarios. With its canvas-style, user-friendly interface, Epitome enables researchers to easily design and run complex experimental scenarios, facilitating systematic investigations into the social impacts of AI and exploration of integrated solutions.To demonstrate its capabilities, we replicated three seminal social science experiments involving LLMs, showcasing Epitome's potential to streamline complex experimental designs and produce robust results, suitable for publishing in the top selective journals. Our findings highlight the platform's utility in enhancing the efficiency and quality of human-AI interactions, providing valuable insights into the societal implications of AI technologies. Epitome thus offers a powerful tool for advancing interdisciplinary research at the intersection of AI and social science, with potential applications in policy-making, ...
comment: 18 pages, 5figures
♻ ☆ NestQuant: Nested Lattice Quantization for Matrix Products and LLMs ICML 2025
Post-training quantization (PTQ) has emerged as a critical technique for efficient deployment of large language models (LLMs). This work proposes NestQuant, a novel PTQ scheme for weights and activations that is based on self-similar nested lattices. Recent works have mathematically shown such quantizers to be information-theoretically optimal for low-precision matrix multiplication. We implement a practical low-complexity version of NestQuant based on Gosset lattice, making it a drop-in quantizer for any matrix multiplication step (e.g., in self-attention, MLP etc). For example, NestQuant quantizes weights, KV-cache, and activations of Llama-3-8B to 4 bits, achieving perplexity of 6.6 on wikitext2. This represents more than 55% reduction in perplexity gap with respect to unquantized model (perplexity of 6.14) compared to state-of-the-art Metas SpinQuant (perplexity 7.3), OstQuant (7.3) and QuaRot (8.2). Comparisons on bigger models (up to 70B) and on various LLM evaluation benchmarks confirm uniform superiority of NestQuant.
comment: 23 pages; Accepted at the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Extensive experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based, Transformer-based, and diffusion-based methods while maintaining high computational efficiency. The code is available at https://github.com/EnVision-Research/MTMamba.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ An AI Capability Threshold for Rent-Funded Universal Basic Income in an AI-Automated Economy
We derive the first closed-form condition under which artificial intelligence (AI) capital profits could sustainably finance a universal basic income (UBI) without additional taxes or new job creation. In a Solow-Zeira economy characterized by a continuum of automatable tasks, a constant net saving rate $s$, and task-elasticity $\sigma < 1$, we analyze how the AI capability threshold--defined as the productivity level of AI relative to pre-AI automation--varies under different economic scenarios. At present economic parameters, we find that AI systems must achieve only approximately 5-6 times existing automation productivity to finance an 11%-of-GDP UBI, in the worst case situation where *no* new jobs or tasks are created. Our analysis also reveals some specific policy levers: raising public revenue share (e.g. profit taxation) of AI capital from the current 15% to about 33% halves the required AI capability threshold to attain UBI to 3 times existing automotion productivity, but gains diminish beyond 50% public revenue share, especially if regulatory costs increase. Market structure also strongly affects outcomes: monopolistic or concentrated oligopolistic markets reduce the threshold by increasing economic rents, whereas heightened competition significantly raises it. Overall, these results suggest a couple policy recommendations: maximizing public revenue share up to a point so that operating costs are minimized, and strategically managing market competition can ensure AI's growing capabilities translate into meaningful social benefits within realistic technological progress scenarios.
comment: 9 pages, 3 figures, added more clarifications and refs
♻ ☆ $K^2$VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
Probabilistic Time Series Forecasting (PTSF) plays a crucial role in decision-making across various fields, including economics, energy, and transportation. Most existing methods excell at short-term forecasting, while overlooking the hurdles of Long-term Probabilistic Time Series Forecasting (LPTSF). As the forecast horizon extends, the inherent nonlinear dynamics have a significant adverse effect on prediction accuracy, and make generative models inefficient by increasing the cost of each iteration. To overcome these limitations, we introduce $K^2$VAE, an efficient VAE-based generative model that leverages a KoopmanNet to transform nonlinear time series into a linear dynamical system, and devises a KalmanNet to refine predictions and model uncertainty in such linear system, which reduces error accumulation in long-term forecasting. Extensive experiments demonstrate that $K^2$VAE outperforms state-of-the-art methods in both short- and long-term PTSF, providing a more efficient and accurate solution.
♻ ☆ Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization ACM MM'25
Dynamic Facial Expression Recognition (DFER) plays a critical role in affective computing and human-computer interaction. Although existing methods achieve comparable performance, they inevitably suffer from performance degradation under sample heterogeneity caused by multi-source data and individual expression variability. To address these challenges, we propose a novel framework, called Heterogeneity-aware Distributional Framework (HDF), and design two plug-and-play modules to enhance time-frequency modeling and mitigate optimization imbalance caused by hard samples. Specifically, the Time-Frequency Distributional Attention Module (DAM) captures both temporal consistency and frequency robustness through a dual-branch attention design, improving tolerance to sequence inconsistency and visual style shifts. Then, based on gradient sensitivity and information bottleneck principles, an adaptive optimization module Distribution-aware Scaling Module (DSM) is introduced to dynamically balance classification and contrastive losses, enabling more stable and discriminative representation learning. Extensive experiments on two widely used datasets, DFEW and FERV39k, demonstrate that HDF significantly improves both recognition accuracy and robustness. Our method achieves superior weighted average recall (WAR) and unweighted average recall (UAR) while maintaining strong generalization across diverse and imbalanced scenarios. Codes are released at https://github.com/QIcita/HDF_DFER.
comment: Accepted by ACM MM'25
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-$45^\circ$ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
comment: 97 pages, 37 figures
♻ ☆ The Correspondence Between Bounded Graph Neural Networks and Fragments of First-Order Logic
Graph Neural Networks (GNNs) address two key challenges in applying deep learning to graph-structured data: they handle varying size input graphs and ensure invariance under graph isomorphism. While GNNs have demonstrated broad applicability, understanding their expressive power remains an important question. In this paper, we propose GNN architectures that correspond precisely to prominent fragments of first-order logic (FO), including various modal logics as well as more expressive two-variable fragments. To establish these results, we apply methods from finite model theory of first-order and modal logics to the domain of graph representation learning. Our results provide a unifying framework for understanding the logical expressiveness of GNNs within FO.
comment: 21 pages
♻ ☆ Tractable Representation Learning with Probabilistic Circuits
Probabilistic circuits (PCs) are powerful probabilistic models that enable exact and tractable inference, making them highly suitable for probabilistic reasoning and inference tasks. While dominant in neural networks, representation learning with PCs remains underexplored, with prior approaches relying on external neural embeddings or activation-based encodings. To address this gap, we introduce autoencoding probabilistic circuits (APCs), a novel framework leveraging the tractability of PCs to model probabilistic embeddings explicitly. APCs extend PCs by jointly modeling data and embeddings, obtaining embedding representations through tractable probabilistic inference. The PC encoder allows the framework to natively handle arbitrary missing data and is seamlessly integrated with a neural decoder in a hybrid, end-to-end trainable architecture enabled by differentiable sampling. Our empirical evaluation demonstrates that APCs outperform existing PC-based autoencoding methods in reconstruction quality, generate embeddings competitive with, and exhibit superior robustness in handling missing data compared to neural autoencoders. These results highlight APCs as a powerful and flexible representation learning method that exploits the probabilistic inference capabilities of PCs, showing promising directions for robust inference, out-of-distribution detection, and knowledge distillation.
♻ ☆ Interleaved Multitask Learning with Energy Modulated Learning Progress
As humans learn new skills and apply their existing knowledge while maintaining previously learned information, "continual learning" in machine learning aims to incorporate new data while retaining and utilizing past knowledge. However, existing machine learning methods often does not mimic human learning where tasks are intermixed due to individual preferences and environmental conditions. Humans typically switch between tasks instead of completely mastering one task before proceeding to the next. To explore how human-like task switching can enhance learning efficiency, we propose a multi task learning architecture that alternates tasks based on task-agnostic measures such as "learning progress" and "neural computational energy expenditure". To evaluate the efficacy of our method, we run several systematic experiments by using a set of effect-prediction tasks executed by a simulated manipulator robot. The experiments show that our approach surpasses random interleaved and sequential task learning in terms of average learning accuracy. Moreover, by including energy expenditure in the task switching logic, our approach can still perform favorably while reducing neural energy expenditure.
comment: submitted to Neural Networks Journal (under review), 48 pages, 11 figures
♻ ☆ VerifyBench: A Systematic Benchmark for Evaluating Reasoning Verifiers Across Domains
Large language models (LLMs) increasingly rely on reinforcement learning (RL) to enhance their reasoning capabilities through feedback. A critical challenge is verifying the consistency of model-generated responses and reference answers, since these responses are often lengthy, diverse, and nuanced. Rule-based verifiers struggle with complexity, prompting the use of model-based verifiers. However, specialized verifiers lack flexibility, while general LLM judges can be inconsistent. Existing research primarily focuses on building better verifiers, yet a systematic evaluation of different types of verifiers' performance across domains remains lacking, severely constraining the reliable development of Reinforcement Learning with Verifiable Reward (RLVR). To address this, we propose VerifyBench--a cross-domain comprehensive benchmark for systematically evaluating verifiers. We construct 4,000 expert-level questions covering mathematics, physics, chemistry, and biology. Each question is equipped with reference answers and diverse responses. The reliability of the evaluation is ensured through a rigorous annotation process conducted by a multidisciplinary expert team. We design a four-dimensional experimental framework to comprehensively compare the performance boundaries of specialized verifiers and general LLMs under combined conditions of extracted answers vs. complete responses, and short vs. long outputs. Our evaluation uncovers fundamental trade-offs in verifiers: while specialized verifiers achieve leading accuracy, they exhibit deficiencies in recall; general models show stronger inclusivity but unstable precision. More importantly, we discover verifiers' high sensitivity to input structure and inherent limitations in cross-domain generalization, providing critical insights into the bottlenecks of current verifier technology.
comment: Preprint, Under review
♻ ☆ Faithful Differentiable Reasoning with Reshuffled Region-based Embeddings KR 2025
Knowledge graph (KG) embedding methods learn geometric representations of entities and relations to predict plausible missing knowledge. These representations are typically assumed to capture rule-like inference patterns. However, our theoretical understanding of which inference patterns can be captured remains limited. Ideally, KG embedding methods should be expressive enough such that for any set of rules, there exist relation embeddings that exactly capture these rules. This principle has been studied within the framework of region-based embeddings, but existing models are severely limited in the kinds of rule bases that can be captured. We argue that this stems from the fact that entity embeddings are only compared in a coordinate-wise fashion. As an alternative, we propose RESHUFFLE, a simple model based on ordering constraints that can faithfully capture a much larger class of rule bases than existing approaches. Most notably, RESHUFFLE can capture bounded inference w.r.t. arbitrary sets of closed path rules. The entity embeddings in our framework can be learned by a Graph Neural Network (GNN), which effectively acts as a differentiable rule base.
comment: Accepted for KR 2025
♻ ☆ A Memory-Efficient Framework for Deformable Transformer with Neural Architecture Search
Deformable Attention Transformers (DAT) have shown remarkable performance in computer vision tasks by adaptively focusing on informative image regions. However, their data-dependent sampling mechanism introduces irregular memory access patterns, posing significant challenges for efficient hardware deployment. Existing acceleration methods either incur high hardware overhead or compromise model accuracy. To address these issues, this paper proposes a hardware-friendly optimization framework for DAT. First, a neural architecture search (NAS)-based method with a new slicing strategy is proposed to automatically divide the input feature into uniform patches during the inference process, avoiding memory conflicts without modifying model architecture. The method explores the optimal slice configuration by jointly optimizing hardware cost and inference accuracy. Secondly, an FPGA-based verification system is designed to test the performance of this framework on edge-side hardware. Algorithm experiments on the ImageNet-1K dataset demonstrate that our hardware-friendly framework can maintain have only 0.2% accuracy drop compared to the baseline DAT. Hardware experiments on Xilinx FPGA show the proposed method reduces DRAM access times to 18% compared with existing DAT acceleration methods.
comment: 5 pages
Machine Learning 74
☆ Cluster Purge Loss: Structuring Transformer Embeddings for Equivalent Mutants Detection
Recent pre-trained transformer models achieve superior performance in various code processing objectives. However, although effective at optimizing decision boundaries, common approaches for fine-tuning them for downstream classification tasks - distance-based methods or training an additional classification head - often fail to thoroughly structure the embedding space to reflect nuanced intra-class semantic relationships. Equivalent code mutant detection is one of these tasks, where the quality of the embedding space is crucial to the performance of the models. We introduce a novel framework that integrates cross-entropy loss with a deep metric learning objective, termed Cluster Purge Loss. This objective, unlike conventional approaches, concentrates on adjusting fine-grained differences within each class, encouraging the separation of instances based on semantical equivalency to the class center using dynamically adjusted borders. Employing UniXCoder as the base model, our approach demonstrates state-of-the-art performance in the domain of equivalent mutant detection and produces a more interpretable embedding space.
comment: 11 pages, 6 figures
☆ Sparse Equation Matching: A Derivative-Free Learning for General-Order Dynamical Systems
Equation discovery is a fundamental learning task for uncovering the underlying dynamics of complex systems, with wide-ranging applications in areas such as brain connectivity analysis, climate modeling, gene regulation, and physical system simulation. However, many existing approaches rely on accurate derivative estimation and are limited to first-order dynamical systems, restricting their applicability to real-world scenarios. In this work, we propose sparse equation matching (SEM), a unified framework that encompasses several existing equation discovery methods under a common formulation. SEM introduces an integral-based sparse regression method using Green's functions, enabling derivative-free estimation of differential operators and their associated driving functions in general-order dynamical systems. The effectiveness of SEM is demonstrated through extensive simulations, benchmarking its performance against derivative-based approaches. We then apply SEM to electroencephalographic (EEG) data recorded during multiple oculomotor tasks, collected from 52 participants in a brain-computer interface experiment. Our method identifies active brain regions across participants and reveals task-specific connectivity patterns. These findings offer valuable insights into brain connectivity and the underlying neural mechanisms.
☆ PERRY: Policy Evaluation with Confidence Intervals using Auxiliary Data
Off-policy evaluation (OPE) methods aim to estimate the value of a new reinforcement learning (RL) policy prior to deployment. Recent advances have shown that leveraging auxiliary datasets, such as those synthesized by generative models, can improve the accuracy of these value estimates. Unfortunately, such auxiliary datasets may also be biased, and existing methods for using data augmentation for OPE in RL lack principled uncertainty quantification. In high stakes settings like healthcare, reliable uncertainty estimates are important for comparing policy value estimates. In this work, we propose two approaches to construct valid confidence intervals for OPE when using data augmentation. The first provides a confidence interval over the policy performance conditioned on a particular initial state $V^{\pi}(s_0)$-- such intervals are particularly important for human-centered applications. To do so we introduce a new conformal prediction method for high dimensional state MDPs. Second, we consider the more common task of estimating the average policy performance over many initial states; to do so we draw on ideas from doubly robust estimation and prediction powered inference. Across simulators spanning robotics, healthcare and inventory management, and a real healthcare dataset from MIMIC-IV, we find that our methods can use augmented data and still consistently produce intervals that cover the ground truth values, unlike previously proposed methods.
☆ PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.
☆ Geometric Operator Learning with Optimal Transport
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries. Classical geometric learning methods typically represent domains as meshes, graphs, or point clouds. Our approach generalizes discretized meshes to mesh density functions, formulating geometry embedding as an OT problem that maps these functions to a uniform density in a reference space. Compared to previous methods relying on interpolation or shared deformation, our OT-based method employs instance-dependent deformation, offering enhanced flexibility and effectiveness. For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space. By performing computations directly on this 2D representation of the surface manifold, it achieves significant computational efficiency gains compared to volumetric simulation. Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses in terms of both time and memory usage compared to existing machine learning models. Additionally, our model demonstrates significantly improved accuracy on the FlowBench dataset, underscoring the benefits of employing instance-dependent deformation for datasets with highly variable geometries.
☆ Strategic Filtering for Content Moderation: Free Speech or Free of Distortion?
User-generated content (UGC) on social media platforms is vulnerable to incitements and manipulations, necessitating effective regulations. To address these challenges, those platforms often deploy automated content moderators tasked with evaluating the harmfulness of UGC and filtering out content that violates established guidelines. However, such moderation inevitably gives rise to strategic responses from users, who strive to express themselves within the confines of guidelines. Such phenomena call for a careful balance between: 1. ensuring freedom of speech -- by minimizing the restriction of expression; and 2. reducing social distortion -- measured by the total amount of content manipulation. We tackle the problem of optimizing this balance through the lens of mechanism design, aiming at optimizing the trade-off between minimizing social distortion and maximizing free speech. Although determining the optimal trade-off is NP-hard, we propose practical methods to approximate the optimal solution. Additionally, we provide generalization guarantees determining the amount of finite offline data required to approximate the optimal moderator effectively.
☆ ModShift: Model Privacy via Designed Shifts
In this paper, shifts are introduced to preserve model privacy against an eavesdropper in federated learning. Model learning is treated as a parameter estimation problem. This perspective allows us to derive the Fisher Information matrix of the model updates from the shifted updates and drive them to singularity, thus posing a hard estimation problem for Eve. The shifts are securely shared with the central server to maintain model accuracy at the server and participating devices. A convergence test is proposed to detect if model updates have been tampered with and we show that our scheme passes this test. Numerical results show that our scheme achieves a higher model shift when compared to a noise injection scheme while requiring a lesser bandwidth secret channel.
comment: To appear in the 2025 Asilomar Conference on Signals, Systems and Computers
☆ RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time. While RAG demonstrates strong performance on benchmarks largely derived from general-domain corpora like Wikipedia, its effectiveness under realistic, diverse retrieval scenarios remains underexplored. We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations: retrieval mainly benefits smaller models, rerankers add minimal value, and no single retrieval source consistently excels. Moreover, current LLMs struggle to route queries across heterogeneous knowledge sources. These findings highlight the need for adaptive retrieval strategies before deploying RAG in real-world settings. Our code and data can be found at https://github.com/ritaranx/RAG_in_the_Wild.
comment: Work in Progress. Code will be published at: https://github.com/ritaranx/RAG_in_the_Wild
☆ Predicting Parkinson's Disease Progression Using Statistical and Neural Mixed Effects Models: A Comparative Study on Longitudinal Biomarkers
Predicting Parkinson's Disease (PD) progression is crucial, and voice biomarkers offer a non-invasive method for tracking symptom severity (UPDRS scores) through telemonitoring. Analyzing this longitudinal data is challenging due to within-subject correlations and complex, nonlinear patient-specific progression patterns. This study benchmarks LMMs against two advanced hybrid approaches: the Generalized Neural Network Mixed Model (GNMM) (Mandel 2021), which embeds a neural network within a GLMM structure, and the Neural Mixed Effects (NME) model (Wortwein 2023), allowing nonlinear subject-specific parameters throughout the network. Using the Oxford Parkinson's telemonitoring voice dataset, we evaluate these models' performance in predicting Total UPDRS to offer practical guidance for PD research and clinical applications.
comment: 20pages,3 figures,currently under review
☆ What Can Grokking Teach Us About Learning Under Nonstationarity?
In continual learning problems, it is often necessary to overwrite components of a neural network's learned representation in response to changes in the data stream; however, neural networks often exhibit \primacy bias, whereby early training data hinders the network's ability to generalize on later tasks. While feature-learning dynamics of nonstationary learning problems are not well studied, the emergence of feature-learning dynamics is known to drive the phenomenon of grokking, wherein neural networks initially memorize their training data and only later exhibit perfect generalization. This work conjectures that the same feature-learning dynamics which facilitate generalization in grokking also underlie the ability to overwrite previous learned features as well, and methods which accelerate grokking by facilitating feature-learning dynamics are promising candidates for addressing primacy bias in non-stationary learning problems. We then propose a straightforward method to induce feature-learning dynamics as needed throughout training by increasing the effective learning rate, i.e. the ratio between parameter and update norms. We show that this approach both facilitates feature-learning and improves generalization in a variety of settings, including grokking, warm-starting neural network training, and reinforcement learning tasks.
☆ Improving Deep Learning-based Respiratory Sound Analysis with Frequency Selection and Attention Mechanism
Accurate classification of respiratory sounds requires deep learning models that effectively capture fine-grained acoustic features and long-range temporal dependencies. Convolutional Neural Networks (CNNs) are well-suited for extracting local time-frequency patterns but are limited in modeling global context. In contrast, transformer-based models can capture long-range dependencies, albeit with higher computational demands. To address these limitations, we propose a compact CNN-Temporal Self-Attention (CNN-TSA) network that integrates lightweight self-attention into an efficient CNN backbone. Central to our approach is a Frequency Band Selection (FBS) module that suppresses noisy and non-informative frequency regions, substantially improving accuracy and reducing FLOPs by up to 50%. We also introduce age-specific models to enhance robustness across diverse patient groups. Evaluated on the SPRSound-2022/2023 and ICBHI-2017 lung sound datasets, CNN-TSA with FBS sets new benchmarks on SPRSound and achieves state-of-the-art performance on ICBHI, all with a significantly smaller computational footprint. Furthermore, integrating FBS into an existing transformer baseline yields a new record on ICBHI, confirming FBS as an effective drop-in enhancement. These results demonstrate that our framework enables reliable, real-time respiratory sound analysis suitable for deployment in resource-constrained settings.
☆ $K^4$: Online Log Anomaly Detection Via Unsupervised Typicality Learning
Existing Log Anomaly Detection (LogAD) methods are often slow, dependent on error-prone parsing, and use unrealistic evaluation protocols. We introduce $K^4$, an unsupervised and parser-independent framework for high-performance online detection. $K^4$ transforms arbitrary log embeddings into compact four-dimensional descriptors (Precision, Recall, Density, Coverage) using efficient k-nearest neighbor (k-NN) statistics. These descriptors enable lightweight detectors to accurately score anomalies without retraining. Using a more realistic online evaluation protocol, $K^4$ sets a new state-of-the-art (AUROC: 0.995-0.999), outperforming baselines by large margins while being orders of magnitude faster, with training under 4 seconds and inference as low as 4 $\mu$s.
☆ Irredundant $k$-Fold Cross-Validation
In traditional k-fold cross-validation, each instance is used ($k-1$) times for training and once for testing, leading to redundancy that lets many instances disproportionately influence the learning phase. We introduce Irredundant $k$-fold cross-validation, a novel method that guarantees each instance is used exactly once for training and once for testing across the entire validation procedure. This approach ensures a more balanced utilization of the dataset, mitigates overfitting due to instance repetition, and enables sharper distinctions in comparative model analysis. The method preserves stratification and remains model-agnostic, i.e., compatible with any classifier. Experimental results demonstrate that it delivers consistent performance estimates across diverse datasets -- comparable to $k$-fold cross-validation -- while providing less optimistic variance estimates because training partitions are non-overlapping, and significantly reducing the overall computational cost.
☆ Improving Audio Classification by Transitioning from Zero- to Few-Shot
State-of-the-art audio classification often employs a zero-shot approach, which involves comparing audio embeddings with embeddings from text describing the respective audio class. These embeddings are usually generated by neural networks trained through contrastive learning to align audio and text representations. Identifying the optimal text description for an audio class is challenging, particularly when the class comprises a wide variety of sounds. This paper examines few-shot methods designed to improve classification accuracy beyond the zero-shot approach. Specifically, audio embeddings are grouped by class and processed to replace the inherently noisy text embeddings. Our results demonstrate that few-shot classification typically outperforms the zero-shot baseline.
comment: Submitted to Interspeech 2025
☆ When Engineering Outruns Intelligence: A Re-evaluation of Instruction-Guided Navigation
Large language models (LLMs) are often credited with recent leaps in ObjectGoal Navigation, yet the extent to which they improve planning remains unclear. We revisit this question on the HM3D-v1 validation split. First, we strip InstructNav of its Dynamic Chain-of-Navigation prompt, open-vocabulary GLEE detector and Intuition saliency map, and replace them with a simple Distance-Weighted Frontier Explorer (DWFE). This geometry-only heuristic raises Success from 58.0% to 61.1% and lifts SPL from 20.9% to 36.0% over 2 000 validation episodes, outperforming all previous training-free baselines. Second, we add a lightweight language prior (SHF); on a 200-episode subset this yields a further +2% Success and +0.9% SPL while shortening paths by five steps on average. Qualitative trajectories confirm the trend: InstructNav back-tracks and times-out, DWFE reaches the goal after a few islands, and SHF follows an almost straight route. Our results indicate that frontier geometry, not emergent LLM reasoning, drives most reported gains, and suggest that metric-aware prompts or offline semantic graphs are necessary before attributing navigation success to "LLM intelligence."
☆ FedSWA: Improving Generalization in Federated Learning with Highly Heterogeneous Data via Momentum-Based Stochastic Controlled Weight Averaging
For federated learning (FL) algorithms such as FedSAM, their generalization capability is crucial for real-word applications. In this paper, we revisit the generalization problem in FL and investigate the impact of data heterogeneity on FL generalization. We find that FedSAM usually performs worse than FedAvg in the case of highly heterogeneous data, and thus propose a novel and effective federated learning algorithm with Stochastic Weight Averaging (called \texttt{FedSWA}), which aims to find flatter minima in the setting of highly heterogeneous data. Moreover, we introduce a new momentum-based stochastic controlled weight averaging FL algorithm (\texttt{FedMoSWA}), which is designed to better align local and global models. Theoretically, we provide both convergence analysis and generalization bounds for \texttt{FedSWA} and \texttt{FedMoSWA}. We also prove that the optimization and generalization errors of \texttt{FedMoSWA} are smaller than those of their counterparts, including FedSAM and its variants. Empirically, experimental results on CIFAR10/100 and Tiny ImageNet demonstrate the superiority of the proposed algorithms compared to their counterparts. Open source code at: https://github.com/junkangLiu0/FedSWA.
comment: icml 2025
☆ Robust Taxi Fare Prediction Under Noisy Conditions: A Comparative Study of GAT, TimesNet, and XGBoost
Precise fare prediction is crucial in ride-hailing platforms and urban mobility systems. This study examines three machine learning models-Graph Attention Networks (GAT), XGBoost, and TimesNet to evaluate their predictive capabilities for taxi fares using a real-world dataset comprising over 55 million records. Both raw (noisy) and denoised versions of the dataset are analyzed to assess the impact of data quality on model performance. The study evaluated the models along multiple axes, including predictive accuracy, calibration, uncertainty estimation, out-of-distribution (OOD) robustness, and feature sensitivity. We also explore pre-processing strategies, including KNN imputation, Gaussian noise injection, and autoencoder-based denoising. The study reveals critical differences between classical and deep learning models under realistic conditions, offering practical guidelines for building robust and scalable models in urban fare prediction systems.
comment: 10 pages, 9 figures, prepared with LaTeX, GitHub link: https://github.com/padmavathi026/Smart-Fare-Prediction
☆ Efficient Vocal-Conditioned Music Generation via Soft Alignment Attention and Latent Diffusion
We present a lightweight latent diffusion model for vocal-conditioned musical accompaniment generation that addresses critical limitations in existing music AI systems. Our approach introduces a novel soft alignment attention mechanism that adaptively combines local and global temporal dependencies based on diffusion timesteps, enabling efficient capture of multi-scale musical structure. Operating in the compressed latent space of a pre-trained variational autoencoder, the model achieves a 220 times parameter reduction compared to state-of-the-art systems while delivering 52 times faster inference. Experimental evaluation demonstrates competitive performance with only 15M parameters, outperforming OpenAI Jukebox in production quality and content unity while maintaining reasonable musical coherence. The ultra-lightweight architecture enables real-time deployment on consumer hardware, making AI-assisted music creation accessible for interactive applications and resource-constrained environments.
comment: 6 page, 3 figures
☆ Visual Analytics Using Tensor Unified Linear Comparative Analysis IEEE VIS 2025
Comparing tensors and identifying their (dis)similar structures is fundamental in understanding the underlying phenomena for complex data. Tensor decomposition methods help analysts extract tensors' essential characteristics and aid in visual analytics for tensors. In contrast to dimensionality reduction (DR) methods designed only for analyzing a matrix (i.e., second-order tensor), existing tensor decomposition methods do not support flexible comparative analysis. To address this analysis limitation, we introduce a new tensor decomposition method, named tensor unified linear comparative analysis (TULCA), by extending its DR counterpart, ULCA, for tensor analysis. TULCA integrates discriminant analysis and contrastive learning schemes for tensor decomposition, enabling flexible comparison of tensors. We also introduce an effective method to visualize a core tensor extracted from TULCA into a set of 2D visualizations. We integrate TULCA's functionalities into a visual analytics interface to support analysts in interpreting and refining the TULCA results. We demonstrate the efficacy of TULCA and the visual analytics interface with computational evaluations and two case studies, including an analysis of log data collected from a supercomputer.
comment: To appear in IEEE Transactions on Visualization and Computer Graphics and IEEE VIS 2025
☆ Extreme value theory for singular subspace estimation in the matrix denoising model
This paper studies fine-grained singular subspace estimation in the matrix denoising model where a deterministic low-rank signal matrix is additively perturbed by a stochastic matrix of Gaussian noise. We establish that the maximum Euclidean row norm (i.e., the two-to-infinity norm) of the aligned difference between the leading sample and population singular vectors approaches the Gumbel distribution in the large-matrix limit, under suitable signal-to-noise conditions and after appropriate centering and scaling. We apply our novel asymptotic distributional theory to test hypotheses of low-rank signal structure encoded in the leading singular vectors and their corresponding principal subspace. We provide de-biased estimators for the corresponding nuisance signal singular values and show that our proposed plug-in test statistic has desirable properties. Notably, compared to using the Frobenius norm subspace distance, our test statistic based on the two-to-infinity norm has higher power to detect structured alternatives that differ from the null in only a few matrix entries or rows. Our main results are obtained by a novel synthesis of and technical analysis involving entrywise matrix perturbation analysis, extreme value theory, saddle point approximation methods, and random matrix theory. Our contributions complement the existing literature for matrix denoising focused on minimaxity, mean squared error analysis, unitarily invariant distances between subspaces, component-wise asymptotic distributional theory, and row-wise uniform error bounds. Numerical simulations illustrate our main results and demonstrate the robustness properties of our testing procedure to non-Gaussian noise distributions.
comment: 64 pages, 8 figures
A roadmap for AI in robotics
AI technologies, including deep learning, large-language models have gone from one breakthrough to the other. As a result, we are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives. However, action and sensing in the physical world pose greater and different challenges than analysing data in isolation. As the development and application of AI in robotic products advances, it is important to reflect on which technologies, among the vast array of network architectures and learning models now available in the AI field, are most likely to be successfully applied to robots; how they can be adapted to specific robot designs, tasks, environments; which challenges must be overcome. This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises. These range from keeping up-to-date large datasets, representatives of a diversity of tasks robots may have to perform, and of environments they may encounter, to designing AI algorithms tailored specifically to robotics problems but generic enough to apply to a wide range of applications and transfer easily to a variety of robotic platforms. For robots to collaborate effectively with humans, they must predict human behavior without relying on bias-based profiling. Explainability and transparency in AI-driven robot control are not optional but essential for building trust, preventing misuse, and attributing responsibility in accidents. We close on what we view as the primary long-term challenges, that is, to design robots capable of lifelong learning, while guaranteeing safe deployment and usage, and sustainable computational costs.
☆ SkinDualGen: Prompt-Driven Diffusion for Simultaneous Image-Mask Generation in Skin Lesions
Medical image analysis plays a pivotal role in the early diagnosis of diseases such as skin lesions. However, the scarcity of data and the class imbalance significantly hinder the performance of deep learning models. We propose a novel method that leverages the pretrained Stable Diffusion-2.0 model to generate high-quality synthetic skin lesion images and corresponding segmentation masks. This approach augments training datasets for classification and segmentation tasks. We adapt Stable Diffusion-2.0 through domain-specific Low-Rank Adaptation (LoRA) fine-tuning and joint optimization of multi-objective loss functions, enabling the model to simultaneously generate clinically relevant images and segmentation masks conditioned on textual descriptions in a single step. Experimental results show that the generated images, validated by FID scores, closely resemble real images in quality. A hybrid dataset combining real and synthetic data markedly enhances the performance of classification and segmentation models, achieving substantial improvements in accuracy and F1-score of 8% to 15%, with additional positive gains in other key metrics such as the Dice coefficient and IoU. Our approach offers a scalable solution to address the challenges of medical imaging data, contributing to improved accuracy and reliability in diagnosing rare diseases.
☆ Dimer-Enhanced Optimization: A First-Order Approach to Escaping Saddle Points in Neural Network Training
First-order optimization methods, such as SGD and Adam, are widely used for training large-scale deep neural networks due to their computational efficiency and robust performance. However, relying solely on gradient information, these methods often struggle to navigate complex loss landscapes with flat regions, plateaus, and saddle points. Second-order methods, which use curvature information from the Hessian matrix, can address these challenges but are computationally infeasible for large models. The Dimer method, a first-order technique that constructs two closely spaced points to probe the local geometry of a potential energy surface, efficiently estimates curvature using only gradient information. Inspired by its use in molecular dynamics simulations for locating saddle points, we propose Dimer-Enhanced Optimization (DEO), a novel framework to escape saddle points in neural network training. DEO adapts the Dimer method to explore a broader region of the loss landscape, approximating the Hessian's smallest eigenvector without computing the full matrix. By periodically projecting the gradient onto the subspace orthogonal to the minimum curvature direction, DEO guides the optimizer away from saddle points and flat regions, enhancing training efficiency with non-stepwise updates. Preliminary experiments on a Transformer toy model show DEO achieves competitive performance compared to standard first-order methods, improving navigation of complex loss landscapes. Our work repurposes physics-inspired, first-order curvature estimation to enhance neural network training in high-dimensional spaces.
comment: 8 pages, 2 figures
Who Owns This Sample: Cross-Client Membership Inference Attack in Federated Graph Neural Networks
Graph-structured data is prevalent in many real-world applications, including social networks, financial systems, and molecular biology. Graph Neural Networks (GNNs) have become the de facto standard for learning from such data due to their strong representation capabilities. As GNNs are increasingly deployed in federated learning (FL) settings to preserve data locality and privacy, new privacy threats arise from the interaction between graph structures and decentralized training. In this paper, we present the first systematic study of cross-client membership inference attacks (CC-MIA) against node classification tasks of federated GNNs (FedGNNs), where a malicious client aims to infer which client owns the given data. Unlike prior centralized-focused work that focuses on whether a sample was included in training, our attack targets sample-to-client attribution, a finer-grained privacy risk unique to federated settings. We design a general attack framework that exploits FedGNNs' aggregation behaviors, gradient updates, and embedding proximity to link samples to their source clients across training rounds. We evaluate our attack across multiple graph datasets under realistic FL setups. Results show that our method achieves high performance on both membership inference and ownership identification. Our findings highlight a new privacy threat in federated graph learning-client identity leakage through structural and model-level cues, motivating the need for attribution-robust GNN design.
☆ Spatial Language Likelihood Grounding Network for Bayesian Fusion of Human-Robot Observations
Fusing information from human observations can help robots overcome sensing limitations in collaborative tasks. However, an uncertainty-aware fusion framework requires a grounded likelihood representing the uncertainty of human inputs. This paper presents a Feature Pyramid Likelihood Grounding Network (FP-LGN) that grounds spatial language by learning relevant map image features and their relationships with spatial relation semantics. The model is trained as a probability estimator to capture aleatoric uncertainty in human language using three-stage curriculum learning. Results showed that FP-LGN matched expert-designed rules in mean Negative Log-Likelihood (NLL) and demonstrated greater robustness with lower standard deviation. Collaborative sensing results demonstrated that the grounded likelihood successfully enabled uncertainty-aware fusion of heterogeneous human language observations and robot sensor measurements, achieving significant improvements in human-robot collaborative task performance.
comment: Accepted to the 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
☆ Deep Learning Based Joint Channel Estimation and Positioning for Sparse XL-MIMO OFDM Systems
This paper investigates joint channel estimation and positioning in near-field sparse extra-large multiple-input multiple-output (XL-MIMO) orthogonal frequency division multiplexing (OFDM) systems. To achieve cooperative gains between channel estimation and positioning, we propose a deep learning-based two-stage framework comprising positioning and channel estimation. In the positioning stage, the user's coordinates are predicted and utilized in the channel estimation stage, thereby enhancing the accuracy of channel estimation. Within this framework, we propose a U-shaped Mamba architecture for channel estimation and positioning, termed as CP-Mamba. This network integrates the strengths of the Mamba model with the structural advantages of U-shaped convolutional networks, enabling effective capture of local spatial features and long-range temporal dependencies of the channel. Numerical simulation results demonstrate that the proposed two-stage approach with CP-Mamba architecture outperforms existing baseline methods. Moreover, sparse arrays (SA) exhibit significantly superior performance in both channel estimation and positioning accuracy compared to conventional compact arrays.
comment: 5 pages,8 figures
☆ The Impact of Fine-tuning Large Language Models on Automated Program Repair
Automated Program Repair (APR) uses various tools and techniques to help developers achieve functional and error-free code faster. In recent years, Large Language Models (LLMs) have gained popularity as components in APR tool chains because of their performance and flexibility. However, training such models requires a significant amount of resources. Fine-tuning techniques have been developed to adapt pre-trained LLMs to specific tasks, such as APR, and enhance their performance at far lower computational costs than training from scratch. In this study, we empirically investigate the impact of various fine-tuning techniques on the performance of LLMs used for APR. Our experiments provide insights into the performance of a selection of state-of-the-art LLMs pre-trained on code. The evaluation is done on three popular APR benchmarks (i.e., QuixBugs, Defects4J and HumanEval-Java) and considers six different LLMs with varying parameter sizes (resp. CodeGen, CodeT5, StarCoder, DeepSeekCoder, Bloom, and CodeLlama-2). We consider three training regimens: no fine-tuning, full fine-tuning, and parameter-efficient fine-tuning (PEFT) using LoRA and IA3. We observe that full fine-tuning techniques decrease the benchmarking performance of various models due to different data distributions and overfitting. By using parameter-efficient fine-tuning methods, we restrict models in the amount of trainable parameters and achieve better results. Keywords: large language models, automated program repair, parameter-efficient fine-tuning, AI4Code, AI4SE, ML4SE.
comment: Accepted for publication in the research track of the 41th International Conference on Software Maintenance and Evolution (ICSME 2025)
☆ TS-Insight: Visualizing Thompson Sampling for Verification and XAI IEEE VIS 2025
Thompson Sampling (TS) and its variants are powerful Multi-Armed Bandit algorithms used to balance exploration and exploitation strategies in active learning. Yet, their probabilistic nature often turns them into a ``black box'', hindering debugging and trust. We introduce TS-Insight, a visual analytics tool explicitly designed to shed light on the internal decision mechanisms of Thompson Sampling-based algorithms, for model developers. It comprises multiple plots, tracing for each arm the evolving posteriors, evidence counts, and sampling outcomes, enabling the verification, diagnosis, and explainability of exploration/exploitation dynamics. This tool aims at fostering trust and facilitating effective debugging and deployment in complex binary decision-making scenarios especially in sensitive domains requiring interpretable decision-making.
comment: Accepted as a poster at IEEE VIS 2025 ("TS-Insight: Visual Fingerprinting of Multi-Armed Bandits"). Open-source tool available at https://github.com/parsavares/ts-insight
☆ Nonconvex Optimization Framework for Group-Sparse Feedback Linear-Quadratic Optimal Control. II: Non-Penalty Approach
This work is a companion paper of [8], where the distributed linear-quadratic problem with fixed communication topology (DFT-LQ) and the sparse feedback LQ problem (SF-LQ) are formulated into a nonsmooth and nonconvex optimization problem with affine constraints. Moreover, a penalty approach is considered in \cite{feng-part1}, and the PALM (proximal alternating linearized minimization) algorithm is studied with convergence and complexity analysis. In this paper, we aim to address the inherent drawbacks of the penalty approach, such as the challenge of tuning the penalty parameter and the risk of introducing spurious stationary points. Specifically, we first reformulate the SF-LQ problem and the DFT-LQ problem from an epi-composition function perspective, aiming to solve the constrained problem directly. Then, from a theoretical viewpoint, we revisit the alternating direction method of multipliers (ADMM) and establish its convergence to the set of cluster points under certain assumptions. When these assumptions do not hold, we can effectively utilize alternative approaches combining subgradient descent with Difference-of-Convex relaxation methods. In summary, our results enable the direct design of group-sparse feedback gains with theoretical guarantees, without resorting to convex surrogates, restrictive structural assumptions, or penalty formulations that incorporate constraints into the cost function.
comment: arXiv admin note: substantial text overlap with arXiv:2507.18114
☆ A Survey on Generative Model Unlearning: Fundamentals, Taxonomy, Evaluation, and Future Direction
With the rapid advancement of generative models, associated privacy concerns have attracted growing attention. To address this, researchers have begun adapting machine unlearning techniques from traditional classification models to generative settings. Although notable progress has been made in this area, a unified framework for systematically organizing and integrating existing work is still lacking. The substantial differences among current studies in terms of unlearning objectives and evaluation protocols hinder the objective and fair comparison of various approaches. While some studies focus on specific types of generative models, they often overlook the commonalities and systematic characteristics inherent in Generative Model Unlearning (GenMU). To bridge this gap, we provide a comprehensive review of current research on GenMU and propose a unified analytical framework for categorizing unlearning objectives, methodological strategies, and evaluation metrics. In addition, we explore the connections between GenMU and related techniques, including model editing, reinforcement learning from human feedback, and controllable generation. We further highlight the potential practical value of unlearning techniques in real-world applications. Finally, we identify key challenges and outline future research directions aimed at laying a solid foundation for further advancements in this field. We consistently maintain the related open-source materials at https://github.com/caxLee/Generative-model-unlearning-survey.
☆ CLoRA: Parameter-Efficient Continual Learning with Low-Rank Adaptation
In the past, continual learning (CL) was mostly concerned with the problem of catastrophic forgetting in neural networks, that arises when incrementally learning a sequence of tasks. Current CL methods function within the confines of limited data access, without any restrictions imposed on computational resources. However, in real-world scenarios, the latter takes precedence as deployed systems are often computationally constrained. A major drawback of most CL methods is the need to retrain the entire model for each new task. The computational demands of retraining large models can be prohibitive, limiting the applicability of CL in environments with limited resources. Through CLoRA, we explore the applicability of Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method for class-incremental semantic segmentation. CLoRA leverages a small set of parameters of the model and uses the same set for learning across all tasks. Results demonstrate the efficacy of CLoRA, achieving performance on par with and exceeding the baseline methods. We further evaluate CLoRA using NetScore, underscoring the need to factor in resource efficiency and evaluate CL methods beyond task performance. CLoRA significantly reduces the hardware requirements for training, making it well-suited for CL in resource-constrained environments after deployment.
comment: Accepted at CoLLAs 2025
☆ RestoreAI -- Pattern-based Risk Estimation Of Remaining Explosives
Landmine removal is a slow, resource-intensive process affecting over 60 countries. While AI has been proposed to enhance explosive ordnance (EO) detection, existing methods primarily focus on object recognition, with limited attention to prediction of landmine risk based on spatial pattern information. This work aims to answer the following research question: How can AI be used to predict landmine risk from landmine patterns to improve clearance time efficiency? To that effect, we introduce RestoreAI, an AI system for pattern-based risk estimation of remaining explosives. RestoreAI is the first AI system that leverages landmine patterns for risk prediction, improving the accuracy of estimating the residual risk of missing EO prior to land release. We particularly focus on the implementation of three instances of RestoreAI, respectively, linear, curved and Bayesian pattern deminers. First, the linear pattern deminer uses linear landmine patterns from a principal component analysis (PCA) for the landmine risk prediction. Second, the curved pattern deminer uses curved landmine patterns from principal curves. Finally, the Bayesian pattern deminer incorporates prior expert knowledge by using a Bayesian pattern risk prediction. Evaluated on real-world landmine data, RestoreAI significantly boosts clearance efficiency. The top-performing pattern-based deminers achieved a 14.37 percentage point increase in the average share of cleared landmines per timestep and required 24.45% less time than the best baseline deminer to locate all landmines. Interestingly, linear and curved pattern deminers showed no significant performance difference, suggesting that more efficient linear patterns are a viable option for risk prediction.
☆ Quantum-Informed Machine Learning for Chaotic Systems
Learning the behaviour of chaotic systems remains challenging due to instability in long-term predictions and difficulties in accurately capturing invariant statistical properties. While quantum machine learning offers a promising route to efficiently capture physical properties from high-dimensional data, its practical deployment is hindered by current hardware noise and limited scalability. We introduce a quantum-informed machine learning framework for learning partial differential equations, with an application focus on chaotic systems. A quantum circuit Born machine is employed to learn the invariant properties of chaotic dynamical systems, achieving substantial memory efficiency by representing these complex physical statistics with a compact set of trainable circuit parameters. This approach reduces the data storage requirement by over two orders of magnitude compared to the raw simulation data. The resulting statistical quantum-informed prior is then incorporated into a Koopman-based auto-regressive model to address issues such as gradient vanishing or explosion, while maintaining long-term statistical fidelity. The framework is evaluated on three representative systems: the Kuramoto-Sivashinsky equation, two-dimensional Kolmogorov flow and turbulent channel flow. In all cases, the quantum-informed model achieves superior performance compared to its classical counterparts without quantum priors. This hybrid architecture offers a practical route for learning dynamical systems using near-term quantum hardware.
comment: 33 pages, 4 figures
☆ Taming Domain Shift in Multi-source CT-Scan Classification via Input-Space Standardization ICCV
Multi-source CT-scan classification suffers from domain shifts that impair cross-source generalization. While preprocessing pipelines combining Spatial-Slice Feature Learning (SSFL++) and Kernel-Density-based Slice Sampling (KDS) have shown empirical success, the mechanisms underlying their domain robustness remain underexplored. This study analyzes how this input-space standardization manages the trade-off between local discriminability and cross-source generalization. The SSFL++ and KDS pipeline performs spatial and temporal standardization to reduce inter-source variance, effectively mapping disparate inputs into a consistent target space. This preemptive alignment mitigates domain shift and simplifies the learning task for network optimization. Experimental validation demonstrates consistent improvements across architectures, proving the benefits stem from the preprocessing itself. The approach's effectiveness was validated by securing first place in a competitive challenge, supporting input-space standardization as a robust and practical solution for multi-institutional medical imaging.
comment: Accepted by ICCVW 2025, Winner solution of PHAROS-AFE-AIMI Workshop's Multi-Source Covid-19 Detection Challenge
☆ Agentic Reinforced Policy Optimization
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO
comment: Working on progress
☆ VAE-GAN Based Price Manipulation in Coordinated Local Energy Markets
This paper introduces a model for coordinating prosumers with heterogeneous distributed energy resources (DERs), participating in the local energy market (LEM) that interacts with the market-clearing entity. The proposed LEM scheme utilizes a data-driven, model-free reinforcement learning approach based on the multi-agent deep deterministic policy gradient (MADDPG) framework, enabling prosumers to make real-time decisions on whether to buy, sell, or refrain from any action while facilitating efficient coordination for optimal energy trading in a dynamic market. In addition, we investigate a price manipulation strategy using a variational auto encoder-generative adversarial network (VAE-GAN) model, which allows utilities to adjust price signals in a way that induces financial losses for the prosumers. Our results show that under adversarial pricing, heterogeneous prosumer groups, particularly those lacking generation capabilities, incur financial losses. The same outcome holds across LEMs of different sizes. As the market size increases, trading stabilizes and fairness improves through emergent cooperation among agents.
comment: 2025 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)
☆ Hybrid Deep Learning and Handcrafted Feature Fusion for Mammographic Breast Cancer Classification
Automated breast cancer classification from mammography remains a significant challenge due to subtle distinctions between benign and malignant tissue. In this work, we present a hybrid framework combining deep convolutional features from a ResNet-50 backbone with handcrafted descriptors and transformer-based embeddings. Using the CBIS-DDSM dataset, we benchmark our ResNet-50 baseline (AUC: 78.1%) and demonstrate that fusing handcrafted features with deep ResNet-50 and DINOv2 features improves AUC to 79.6% (setup d1), with a peak recall of 80.5% (setup d1) and highest F1 score of 67.4% (setup d1). Our experiments show that handcrafted features not only complement deep representations but also enhance performance beyond transformer-based embeddings. This hybrid fusion approach achieves results comparable to state-of-the-art methods while maintaining architectural simplicity and computational efficiency, making it a practical and effective solution for clinical decision support.
comment: Accepted at IPTA2025
♻ ☆ Moving Out: Physically-grounded Human-AI Collaboration
The ability to adapt to physical actions and constraints in an environment is crucial for embodied agents (e.g., robots) to effectively collaborate with humans. Such physically grounded human-AI collaboration must account for the increased complexity of the continuous state-action space and constrained dynamics caused by physical constraints. In this paper, we introduce Moving Out, a new human-AI collaboration benchmark that resembles a wide range of collaboration modes affected by physical attributes and constraints, such as moving heavy items together and maintaining consistent actions to move a big item around a corner. Using Moving Out, we designed two tasks and collected human-human interaction data to evaluate models' abilities to adapt to diverse human behaviors and unseen physical attributes. To address the challenges in physical environments, we propose a novel method, BASS (Behavior Augmentation, Simulation, and Selection), to enhance the diversity of agents and their understanding of the outcome of actions. Our experiments show that BASS outperforms state-of-the-art models in AI-AI and human-AI collaboration. The project page is available at https://live-robotics-uva.github.io/movingout_ai/.
comment: 24 pages, 8 figures
♻ ☆ AI/ML Life Cycle Management for Interoperable AI Native RAN
Artificial intelligence (AI) and machine learning (ML) models are rapidly permeating the 5G Radio Access Network (RAN), powering beam management, channel state information (CSI) feedback, positioning, and mobility prediction. However, without a standardized life-cycle management (LCM) framework, challenges, such as model drift, vendor lock-in, and limited transparency, hinder large-scale adoption. 3GPP Releases 16-20 progressively evolve AI/ML from experimental features to managed, interoperable network functions. Beginning with the Network Data Analytics Function (NWDAF) in Rel-16, subsequent releases introduced standardized interfaces for model transfer, execution, performance monitoring, and closed-loop control, culminating in Rel-20's two-sided CSI-compression Work Item and vendor-agnostic LCM profile. This article reviews the resulting five-block LCM architecture, KPI-driven monitoring mechanisms, and inter-vendor collaboration schemes, while identifying open challenges in resource-efficient monitoring, environment drift detection, intelligent decision-making, and flexible model training. These developments lay the foundation for AI-native transceivers as a key enabler for 6G.
comment: 8 pages, 4 figures, 2 table. This work has been submitted to the IEEE for possible publication
♻ ☆ Multi-Person Interaction Generation from Two-Person Motion Priors SIGGRAPH 2025
Generating realistic human motion with high-level controls is a crucial task for social understanding, robotics, and animation. With high-quality MOCAP data becoming more available recently, a wide range of data-driven approaches have been presented. However, modelling multi-person interactions still remains a less explored area. In this paper, we present Graph-driven Interaction Sampling, a method that can generate realistic and diverse multi-person interactions by leveraging existing two-person motion diffusion models as motion priors. Instead of training a new model specific to multi-person interaction synthesis, our key insight is to spatially and temporally separate complex multi-person interactions into a graph structure of two-person interactions, which we name the Pairwise Interaction Graph. We thus decompose the generation task into simultaneous single-person motion generation conditioned on one other's motion. In addition, to reduce artifacts such as interpenetrations of body parts in generated multi-person interactions, we introduce two graph-dependent guidance terms into the diffusion sampling scheme. Unlike previous work, our method can produce various high-quality multi-person interactions without having repetitive individual motions. Extensive experiments demonstrate that our approach consistently outperforms existing methods in reducing artifacts when generating a wide range of two-person and multi-person interactions.
comment: SIGGRAPH 2025 Conference Papers, project page at http://wenningxu.github.io/multicharacter/
♻ ☆ Selective Prompt Anchoring for Code Generation ICML'25
Recent advances in large language models (LLMs) have transformed software development by automatically generating code from natural language. Yet challenges remain in generating fully correct code that aligns with user intent. Our study reveals that LLMs tend to pay less attention to user prompts as more code tokens are generated. We hypothesize that this attention dilution issue is an important reason for code generation errors. To mitigate this issue, we propose Selective Prompt Anchoring (SPA) to guide code LLMs to pay more attention to user intent when generating code. We evaluate SPA using six base LLMs across six benchmarks. Our results demonstrate that SPA enhances Pass@1 by up to 12.9%, consistently outperforming SOTA code generation methods in all settings. Our code is available at https://github.com/magic-YuanTian/Selective-Prompt-Anchoring.
comment: Accepted by ICML'25
♻ ☆ Preference learning made easy: Everything should be understood through win rate ICML 2025
Preference learning, or the task of aligning generative models to preference comparison data, has yet to reach the conceptual maturity of classification, density estimation, etc. To close this gap, this work presents a framework to understand preference learning starting from the sampling distribution of pairwise preference data. First, we prove that the only evaluation of a generative model that respects both preferences and prevalences in the data distribution is a form of win rate, justifying win rate as the focal point to understand preference learning. We then analyze preference learning methods as win rate optimization (WRO) or non-WRO. We present novel instances of WRO beyond existing examples (RLHF, NLHF) and identify two key theoretical benefits of all such methods. We prove that common non-WRO methods like DPO and SFT on preferred samples lack these properties and suggest ways to mitigate such theoretical limitations. We also show that WRO underperforms in practice due optimization difficulties and that optimization success predicts performance better than choices which affect the objective's solution. Our analysis highlights best practices for existing methods and provides recommendations for future research, guided by the principle that one should either align non-WRO methods more closely with WRO or improve the optimization of WRO objectives.
comment: ICML 2025
♻ ☆ Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization
Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications, including telecommunications, imaging, sensing, and quantum information processing. PDD is an iterative, five-step process that consists of: i) deriving device behavior from design parameters, ii) simulating device performance, iii) finding the optimal candidate designs from simulations, iv) fabricating the optimal device, and v) measuring device performance. Classically, all these steps involve Bayesian optimization, material science, control theory, and direct physics-driven numerical methods. However, many of these techniques are computationally intractable, monetarily costly, or difficult to implement at scale. In addition, PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes. However, the advent of machine learning over the past decade has provided novel, data-driven strategies for tackling these challenges, including surrogate estimators for speeding up computations, generative modeling for noisy measurement modeling and data augmentation, reinforcement learning for fabrication, and active learning for experimental physical discovery. In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD (ML-PDD) for efficient design optimization with powerful generative models, fast simulation and characterization modeling under noisy measurements, and reinforcement learning for fabrication. This review will provide researchers from diverse backgrounds with valuable insights into this emerging topic, fostering interdisciplinary efforts to accelerate the development of complex photonic devices and systems.
♻ ☆ Conformal Safety Shielding for Imperfect-Perception Agents
We consider the problem of safe control in discrete autonomous agents that use learned components for imperfect perception (or more generally, state estimation) from high-dimensional observations. We propose a shield construction that provides run-time safety guarantees under perception errors by restricting the actions available to an agent, modeled as a Markov decision process, as a function of the state estimates. Our construction uses conformal prediction for the perception component, which guarantees that for each observation, the predicted set of estimates includes the actual state with a user-specified probability. The shield allows an action only if it is allowed for all the estimates in the predicted set, resulting in local safety. We also articulate and prove a global safety property of existing shield constructions for perfect-perception agents bounding the probability of reaching unsafe states if the agent always chooses actions prescribed by the shield. We illustrate our approach with a case-study of an experimental autonomous system that guides airplanes on taxiways using high-dimensional perception DNNs.
comment: 32 pages; Equal contribution by W. Scarbro and C. Imrie; Accepted at 25th International Conference on Runtime Verification, 2025 (RV25)
♻ ☆ A Practice of Post-Training on Llama-3 70B with Optimal Selection of Additional Language Mixture Ratio
Large Language Models (LLM) often need to be Continual Pre-Trained (CPT) to obtain unfamiliar language skills or adapt to new domains. The huge training cost of CPT often asks for cautious choice of key hyper-parameters such as the mixture ratio of extra language or domain corpus. However, there is no systematic study that bridges the gap between the optimal mixture ratio and the actual model performance, and the gap between experimental scaling law and the actual deployment in the full model size. In this paper, we perform CPT on Llama-3 8B and 70B to enhance its Chinese ability. We study the optimal correlation between the Additional Language Mixture Ratio (ALMR) and the Learning Rate (LR) on the 8B size which directly indicates the optimal experimental setup. By thorough choice of hyper-parameter, and subsequent fine-tuning, the model capability is improved not only on the Chinese-related benchmark but also in some specific domains including math, coding, and emotional intelligence. We deploy the final 70B version of LLM on a real-life chat system which obtains satisfying performance.
comment: 12 pages, 2 figures
♻ ☆ PaRCE: Probabilistic and Reconstruction-based Competency Estimation for CNN-based Image Classification
Convolutional neural networks (CNNs) are extremely popular and effective for image classification tasks but tend to be overly confident in their predictions. Various works have sought to quantify uncertainty associated with these models, detect out-of-distribution (OOD) inputs, or identify anomalous regions in an image, but limited work has sought to develop a holistic approach that can accurately estimate perception model confidence across various sources of uncertainty. We develop a probabilistic and reconstruction-based competency estimation (PaRCE) method and compare it to existing approaches for uncertainty quantification and OOD detection. We find that our method can best distinguish between correctly classified, misclassified, and OOD samples with anomalous regions, as well as between samples with visual image modifications resulting in high, medium, and low prediction accuracy. We describe how to extend our approach for anomaly localization tasks and demonstrate the ability of our approach to distinguish between regions in an image that are familiar to the perception model from those that are unfamiliar. We find that our method generates interpretable scores that most reliably capture a holistic notion of perception model confidence.
comment: arXiv admin note: text overlap with arXiv:2409.06111
♻ ☆ HeLo: Heterogeneous Multi-Modal Fusion with Label Correlation for Emotion Distribution Learning
Multi-modal emotion recognition has garnered increasing attention as it plays a significant role in human-computer interaction (HCI) in recent years. Since different discrete emotions may exist at the same time, compared with single-class emotion recognition, emotion distribution learning (EDL) that identifies a mixture of basic emotions has gradually emerged as a trend. However, existing EDL methods face challenges in mining the heterogeneity among multiple modalities. Besides, rich semantic correlations across arbitrary basic emotions are not fully exploited. In this paper, we propose a multi-modal emotion distribution learning framework, named HeLo, aimed at fully exploring the heterogeneity and complementary information in multi-modal emotional data and label correlation within mixed basic emotions. Specifically, we first adopt cross-attention to effectively fuse the physiological data. Then, an optimal transport (OT)-based heterogeneity mining module is devised to mine the interaction and heterogeneity between the physiological and behavioral representations. To facilitate label correlation learning, we introduce a learnable label embedding optimized by correlation matrix alignment. Finally, the learnable label embeddings and label correlation matrices are integrated with the multi-modal representations through a novel label correlation-driven cross-attention mechanism for accurate emotion distribution learning. Experimental results on two publicly available datasets demonstrate the superiority of our proposed method in emotion distribution learning.
♻ ☆ MeTHanol: Modularized Thinking Language Models with Intermediate Layer Thinking, Decoding and Bootstrapping Reasoning
Current research efforts are focused on enhancing the thinking and reasoning capability of large language model (LLM) by prompting, data-driven emergence and inference-time computation. In this study, we consider stimulating language model's thinking and cognitive abilities from a modular perspective, which mimics the human brain architecture. We select a specific intermediate attention layer with newly implemented language heads. We conduct dual-layer fine-tuning by annotated (query, thought, answer) samples and show that the intermediate layer can also learn to decode fluent and reasonable language tokens. A two-pass inference mechanism is designed to generate thoughts then formal responses. The entire framework is called modularized thinking language model (MeTHanol) which can enhance LLM's cognitive behaviors as indicated by Theory of Mind (ToM) and Vignette-based experiments. Case studies also show that MeTHanol can plan and self-reflect and generate human-like thoughts and answers, even on unseen and open-domain tasks. MeTHanol can also adapt to a personalized prompt and behave as the specified character. Our study holds promise for significant cognitive gains from a modular perspective. Our code, model and data are available at https://bachozean.github.io/methanol-page
comment: 19 pages, 7 figures
♻ ☆ GLC++: Source-Free Universal Domain Adaptation through Global-Local Clustering and Contrastive Affinity Learning CVPR
Deep neural networks often exhibit sub-optimal performance under covariate and category shifts. Source-Free Domain Adaptation (SFDA) presents a promising solution to this dilemma, yet most SFDA approaches are restricted to closed-set scenarios. In this paper, we explore Source-Free Universal Domain Adaptation (SF-UniDA) aiming to accurately classify "known" data belonging to common categories and segregate them from target-private "unknown" data. We propose a novel Global and Local Clustering (GLC) technique, which comprises an adaptive one-vs-all global clustering algorithm to discern between target classes, complemented by a local k-NN clustering strategy to mitigate negative transfer. Despite the effectiveness, the inherent closed-set source architecture leads to uniform treatment of "unknown" data, impeding the identification of distinct "unknown" categories. To address this, we evolve GLC to GLC++, integrating a contrastive affinity learning strategy. We examine the superiority of GLC and GLC++ across multiple benchmarks and category shift scenarios. Remarkably, in the most challenging open-partial-set scenarios, GLC and GLC++ surpass GATE by 16.8\% and 18.9\% in H-score on VisDA, respectively. GLC++ enhances the novel category clustering accuracy of GLC by 4.1\% in open-set scenarios on Office-Home. Furthermore, the introduced contrastive learning strategy not only enhances GLC but also significantly facilitates existing methodologies. The code is available at https://github.com/ispc-lab/GLC-plus.
comment: A substantial extension of the CVPR paper "Upcycling Models under Domain and Category Shift", recently accepted by IEEE-TPAMI. arXiv admin note: text overlap with arXiv:2303.07110
♻ ☆ The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The use of machine learning to estimate the energy of a group of atoms, and the forces that drive them to more stable configurations, has revolutionized the fields of computational chemistry and materials discovery. In this domain, rigorous enforcement of symmetry and conservation laws has traditionally been considered essential. For this reason, interatomic forces are usually computed as the derivatives of the potential energy, ensuring energy conservation. Several recent works have questioned this physically constrained approach, suggesting that directly predicting the forces yields a better trade-off between accuracy and computational efficiency, and that energy conservation can be learned during training. This work investigates the applicability of such non-conservative models in microscopic simulations. We identify and demonstrate several fundamental issues, from ill-defined convergence of geometry optimization to instability in various types of molecular dynamics. Given the difficulty in monitoring and correcting the lack of energy conservation, direct forces should be used with great care. We show that the best approach to exploit the acceleration they afford is to use them in conjunction with conservative forces. A model can be pre-trained efficiently on direct forces, then fine-tuned using backpropagation. At evaluation time, both force types can be used together to avoid unphysical effects while still benefitting almost entirely from the computational efficiency of direct forces.
comment: 10 pages (including references) + appendix Conference format
♻ ☆ Recurrent neural network wave functions for Rydberg atom arrays on kagome lattice
Rydberg atom array experiments have demonstrated the ability to act as powerful quantum simulators, preparing strongly-correlated phases of matter which are challenging to study for conventional computer simulations. A key direction has been the implementation of interactions on frustrated geometries, in an effort to prepare exotic many-body states such as spin liquids and glasses. In this paper, we apply two-dimensional recurrent neural network (RNN) wave functions to study the ground states of Rydberg atom arrays on the kagome lattice. We implement an annealing scheme to find the RNN variational parameters in regions of the phase diagram where exotic phases may occur, corresponding to rough optimization landscapes. For Rydberg atom array Hamiltonians studied previously on the kagome lattice, our RNN ground states show no evidence of exotic spin liquid or emergent glassy behavior. In the latter case, we argue that the presence of a non-zero Edwards-Anderson order parameter is an artifact of the long autocorrelations times experienced with quantum Monte Carlo (QMC) simulations, and we show that autocorrelations can be systematically reduced by increasing numerical effort. This result emphasizes the utility of autoregressive models, such as RNNs, in conjunction with QMC, to explore Rydberg atom array physics on frustrated lattices and beyond.
comment: 15 pages, 7 figures, 6 tables. Link to GitHub repository: https://github.com/mhibatallah/RNNWavefunctions
♻ ☆ Robust Data Watermarking in Language Models by Injecting Fictitious Knowledge ACL 2025
Data watermarking in language models injects traceable signals, such as specific token sequences or stylistic patterns, into copyrighted text, allowing copyright holders to track and verify training data ownership. Previous data watermarking techniques primarily focus on effective memorization during pretraining, while overlooking challenges that arise in other stages of the LLM lifecycle, such as the risk of watermark filtering during data preprocessing and verification difficulties due to API-only access. To address these challenges, we propose a novel data watermarking approach that injects plausible yet fictitious knowledge into training data using generated passages describing a fictitious entity and its associated attributes. Our watermarks are designed to be memorized by the LLM through seamlessly integrating in its training data, making them harder to detect lexically during preprocessing. We demonstrate that our watermarks can be effectively memorized by LLMs, and that increasing our watermarks' density, length, and diversity of attributes strengthens their memorization. We further show that our watermarks remain effective after continual pretraining and supervised finetuning. Finally, we show that our data watermarks can be evaluated even under API-only access via question answering.
comment: Accepted to ACL 2025 Findings
♻ ☆ The Origin of Self-Attention: Pairwise Affinity Matrices in Feature Selection and the Emergence of Self-Attention
The self-attention mechanism, now central to deep learning architectures such as Transformers, is a modern instance of a more general computational principle: learning and using pairwise affinity matrices to control how information flows through a model. This paper traces the conceptual origins of self-attention across multiple domains, including computer vision, natural language processing, and graph learning, through their shared reliance on an affinity matrix, denoted as A. We highlight Infinite Feature Selection (Inf-FS) as a foundational approach that generalizes the idea of affinity-based weighting. Unlike the fixed dot-product structure used in Transformers, Inf-FS defines A either through domain knowledge or by learning, and computes feature relevance through multi-hop propagation over the affinity graph. From this perspective, self-attention can be seen as a special case of Inf-FS: it uses a single-hop affinity computation where A is dynamically built from token similarities. We argue that the underlying structure, reasoning over pairwise relationships, is preserved across both approaches, and the key differences lie in how the affinity matrix is defined and applied. By situating self-attention within the broader paradigm of affinity-based computation, we unify several strands of machine learning research and highlight a common mathematical foundation that underpins diverse models and tasks.
comment: 24 pages, 10 figures, submitted for review. Companion code and reproducibility materials available
♻ ☆ MegaScale-Infer: Serving Mixture-of-Experts at Scale with Disaggregated Expert Parallelism
Mixture-of-Experts (MoE) showcases tremendous potential to scale large language models (LLMs) with enhanced performance and reduced computational complexity. However, its sparsely activated architecture shifts feed-forward networks (FFNs) from being compute-intensive to memory-intensive during inference, leading to substantially lower GPU utilization and increased operational costs. We present MegaScale-Infer, an efficient and cost-effective system for serving large-scale MoE models. MegaScale-Infer disaggregates attention and FFN modules within each model layer, enabling independent scaling, tailored parallelism strategies, and heterogeneous deployment for both modules. To fully exploit disaggregation in the presence of MoE's sparsity, MegaScale-Infer introduces ping-pong pipeline parallelism, which partitions a request batch into micro-batches and shuttles them between attention and FFNs for inference. Combined with distinct model parallelism for each module, MegaScale-Infer effectively hides communication overhead and maximizes GPU utilization. To adapt to disaggregated attention and FFN modules and minimize data transmission overhead (e.g., token dispatch), MegaScale-Infer provides a high-performance M2N communication library that eliminates unnecessary GPU-to-CPU data copies, group initialization overhead, and GPU synchronization. Experimental results indicate that MegaScale-Infer achieves up to 1.90x higher per-GPU throughput than state-of-the-art solutions.
♻ ☆ NestQuant: Nested Lattice Quantization for Matrix Products and LLMs ICML 2025
Post-training quantization (PTQ) has emerged as a critical technique for efficient deployment of large language models (LLMs). This work proposes NestQuant, a novel PTQ scheme for weights and activations that is based on self-similar nested lattices. Recent works have mathematically shown such quantizers to be information-theoretically optimal for low-precision matrix multiplication. We implement a practical low-complexity version of NestQuant based on Gosset lattice, making it a drop-in quantizer for any matrix multiplication step (e.g., in self-attention, MLP etc). For example, NestQuant quantizes weights, KV-cache, and activations of Llama-3-8B to 4 bits, achieving perplexity of 6.6 on wikitext2. This represents more than 55% reduction in perplexity gap with respect to unquantized model (perplexity of 6.14) compared to state-of-the-art Metas SpinQuant (perplexity 7.3), OstQuant (7.3) and QuaRot (8.2). Comparisons on bigger models (up to 70B) and on various LLM evaluation benchmarks confirm uniform superiority of NestQuant.
comment: 23 pages; Accepted at the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Large-Scale Mixed-Traffic and Intersection Control using Multi-agent Reinforcement Learning IROS
Traffic congestion remains a significant challenge in modern urban networks. Autonomous driving technologies have emerged as a potential solution. Among traffic control methods, reinforcement learning has shown superior performance over traffic signals in various scenarios. However, prior research has largely focused on small-scale networks or isolated intersections, leaving large-scale mixed traffic control largely unexplored. This study presents the first attempt to use decentralized multi-agent reinforcement learning for large-scale mixed traffic control in which some intersections are managed by traffic signals and others by robot vehicles. Evaluating a real-world network in Colorado Springs, CO, USA with 14 intersections, we measure traffic efficiency via average waiting time of vehicles at intersections and the number of vehicles reaching their destinations within a time window (i.e., throughput). At 80% RV penetration rate, our method reduces waiting time from 6.17s to 5.09s and increases throughput from 454 vehicles per 500 seconds to 493 vehicles per 500 seconds, outperforming the baseline of fully signalized intersections. These findings suggest that integrating reinforcement learning-based control large-scale traffic can improve overall efficiency and may inform future urban planning strategies.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
♻ ☆ Preconditioned Inexact Stochastic ADMM for Deep Model
The recent advancement of foundation models (FMs) has brought about a paradigm shift, revolutionizing various sectors worldwide. The popular optimizers used to train these models are stochastic gradient descent-based algorithms, which face inherent limitations, such as slow convergence and stringent assumptions for convergence. In particular, data heterogeneity arising from distributed settings poses significant challenges to their theoretical and numerical performance. This paper develops an algorithm, PISA (\textbf{P}reconditioned \textbf{I}nexact \textbf{S}tochastic \textbf{A}lternating Direction Method of Multipliers), which enables scalable parallel computing and supports various preconditions, such as second-order information, second moment, and orthogonalized momentum by Newton-Schulz iterations. Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz continuity of the gradient on a bounded region, thereby removing the need for other conditions commonly imposed by stochastic methods. This capability enables PISA to tackle the challenge of data heterogeneity effectively. Comprehensive experimental evaluations for training or fine-tuning diverse deep models, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art optimizers.
♻ ☆ $K^2$VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
Probabilistic Time Series Forecasting (PTSF) plays a crucial role in decision-making across various fields, including economics, energy, and transportation. Most existing methods excell at short-term forecasting, while overlooking the hurdles of Long-term Probabilistic Time Series Forecasting (LPTSF). As the forecast horizon extends, the inherent nonlinear dynamics have a significant adverse effect on prediction accuracy, and make generative models inefficient by increasing the cost of each iteration. To overcome these limitations, we introduce $K^2$VAE, an efficient VAE-based generative model that leverages a KoopmanNet to transform nonlinear time series into a linear dynamical system, and devises a KalmanNet to refine predictions and model uncertainty in such linear system, which reduces error accumulation in long-term forecasting. Extensive experiments demonstrate that $K^2$VAE outperforms state-of-the-art methods in both short- and long-term PTSF, providing a more efficient and accurate solution.
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Negative Dependence as a toolbox for machine learning : review and new developments
Negative dependence is becoming a key driver in advancing learning capabilities beyond the limits of traditional independence. Recent developments have evidenced support towards negatively dependent systems as a learning paradigm in a broad range of fundamental machine learning challenges including optimization, sampling, dimensionality reduction and sparse signal recovery, often surpassing the performance of current methods based on statistical independence. The most popular negatively dependent model has been that of determinantal point processes (DPPs), which have their origins in quantum theory. However, other models, such as perturbed lattice models, strongly Rayleigh measures, zeros of random functions have gained salience in various learning applications. In this article, we review this burgeoning field of research, as it has developed over the past two decades or so. We also present new results on applications of DPPs to the parsimonious representation of neural networks. In the limited scope of the article, we mostly focus on aspects of this area to which the authors contributed over the recent years, including applications to Monte Carlo methods, coresets and stochastic gradient descent, stochastic networks, signal processing and connections to quantum computation. However, starting from basics of negative dependence for the uninitiated reader, extensive references are provided to a broad swath of related developments which could not be covered within our limited scope. While existing works and reviews generally focus on specific negatively dependent models (e.g. DPPs), a notable feature of this article is that it addresses negative dependence as a machine learning methodology as a whole. In this vein, it covers within its span an array of negatively dependent models and their applications well beyond DPPs, thereby putting forward a very general and rather unique perspective.
comment: Dedicated to the memory of Prof K.R. Parthasarathy: visionary, guru, and scientist par excellence
♻ ☆ Simple Policy Optimization
Model-free reinforcement learning algorithms have seen remarkable progress, but key challenges remain. Trust Region Policy Optimization (TRPO) is known for ensuring monotonic policy improvement through conservative updates within a trust region, backed by strong theoretical guarantees. However, its reliance on complex second-order optimization limits its practical efficiency. Proximal Policy Optimization (PPO) addresses this by simplifying TRPO's approach using ratio clipping, improving efficiency but sacrificing some theoretical robustness. This raises a natural question: Can we combine the strengths of both methods? In this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained first-order algorithm. By slightly modifying the policy loss used in PPO, SPO can achieve the best of both worlds. Our new objective improves upon ratio clipping, offering stronger theoretical properties and better constraining the probability ratio within the trust region. Empirical results demonstrate that SPO outperforms PPO with a simple implementation, particularly for training large, complex network architectures end-to-end.
♻ ☆ Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-$45^\circ$ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
comment: 97 pages, 37 figures
♻ ☆ ReCA: A Parametric ReLU Composite Activation Function
Activation functions have been shown to affect the performance of deep neural networks significantly. While the Rectified Linear Unit (ReLU) remains the dominant choice in practice, the optimal activation function for deep neural networks remains an open research question. In this paper, we propose a novel parametric activation function, ReCA, based on ReLU, which has been shown to outperform all baselines on state-of-the-art datasets using different complex neural network architectures.
♻ ☆ Efficient Shallow Ritz Method For 1D Diffusion-Reaction Problems
This paper studies the shallow Ritz method for solving one-dimensional diffusion-reaction problems. The method is capable of improving the order of approximation for non-smooth problems. By following a similar approach to the one presented in [9], we present a damped block Newton (dBN) method to achieve nearly optimal order of approximation. The dBN method optimizes the Ritz functional by alternating between the linear and non-linear parameters of the shallow ReLU neural network (NN). For diffusion-reaction problems, new difficulties arise: (1) for the linear parameters, the mass matrix is dense and even more ill-conditioned than the stiffness matrix, and (2) for the non-linear parameters, the Hessian matrix is dense and may be singular. This paper addresses these challenges, resulting in a dBN method with computational cost of ${\cal O}(n)$. The ideas presented for diffusion-reaction problems can also be applied to least-squares approximation problems. For both applications, starting with the non-linear parameters as a uniform partition, numerical experiments show that the dBN method moves the mesh points to nearly optimal locations.
♻ ☆ Tractable Representation Learning with Probabilistic Circuits
Probabilistic circuits (PCs) are powerful probabilistic models that enable exact and tractable inference, making them highly suitable for probabilistic reasoning and inference tasks. While dominant in neural networks, representation learning with PCs remains underexplored, with prior approaches relying on external neural embeddings or activation-based encodings. To address this gap, we introduce autoencoding probabilistic circuits (APCs), a novel framework leveraging the tractability of PCs to model probabilistic embeddings explicitly. APCs extend PCs by jointly modeling data and embeddings, obtaining embedding representations through tractable probabilistic inference. The PC encoder allows the framework to natively handle arbitrary missing data and is seamlessly integrated with a neural decoder in a hybrid, end-to-end trainable architecture enabled by differentiable sampling. Our empirical evaluation demonstrates that APCs outperform existing PC-based autoencoding methods in reconstruction quality, generate embeddings competitive with, and exhibit superior robustness in handling missing data compared to neural autoencoders. These results highlight APCs as a powerful and flexible representation learning method that exploits the probabilistic inference capabilities of PCs, showing promising directions for robust inference, out-of-distribution detection, and knowledge distillation.
♻ ☆ Interleaved Multitask Learning with Energy Modulated Learning Progress
As humans learn new skills and apply their existing knowledge while maintaining previously learned information, "continual learning" in machine learning aims to incorporate new data while retaining and utilizing past knowledge. However, existing machine learning methods often does not mimic human learning where tasks are intermixed due to individual preferences and environmental conditions. Humans typically switch between tasks instead of completely mastering one task before proceeding to the next. To explore how human-like task switching can enhance learning efficiency, we propose a multi task learning architecture that alternates tasks based on task-agnostic measures such as "learning progress" and "neural computational energy expenditure". To evaluate the efficacy of our method, we run several systematic experiments by using a set of effect-prediction tasks executed by a simulated manipulator robot. The experiments show that our approach surpasses random interleaved and sequential task learning in terms of average learning accuracy. Moreover, by including energy expenditure in the task switching logic, our approach can still perform favorably while reducing neural energy expenditure.
comment: submitted to Neural Networks Journal (under review), 48 pages, 11 figures
♻ ☆ Elucidating the Design Choice of Probability Paths in Flow Matching for Forecasting
Flow matching has recently emerged as a powerful paradigm for generative modeling and has been extended to probabilistic time series forecasting in latent spaces. However, the impact of the specific choice of probability path model on forecasting performance remains under-explored. In this work, we demonstrate that forecasting spatio-temporal data with flow matching is highly sensitive to the selection of the probability path model. Motivated by this insight, we propose a novel probability path model designed to improve forecasting performance. Our empirical results across various dynamical system benchmarks show that our model achieves faster convergence during training and improved predictive performance compared to existing probability path models. Importantly, our approach is efficient during inference, requiring only a few sampling steps. This makes our proposed model practical for real-world applications and opens new avenues for probabilistic forecasting.
comment: 35 pages
♻ ☆ SoftPipe: A Soft-Guided Reinforcement Learning Framework for Automated Data Preparation
Data preparation is a foundational yet notoriously challenging component of the machine learning lifecycle, characterized by a vast combinatorial search space. While reinforcement learning (RL) offers a promising direction, state-of-the-art methods suffer from a critical limitation: to manage the search space, they rely on rigid ``hard constraints'' that prematurely prune the search space and often preclude optimal solutions. To address this, we introduce SoftPipe, a novel RL framework that replaces these constraints with a flexible ``soft guidance'' paradigm. SoftPipe formulates action selection as a Bayesian inference problem. A high-level strategic prior, generated by a Large Language Model (LLM), probabilistically guides exploration. This prior is combined with empirical estimators from two sources through a collaborative process: a fine-grained quality score from a supervised Learning-to-Rank (LTR) model and a long-term value estimate from the agent's Q-function. Through extensive experiments on 18 diverse datasets, we demonstrate that SoftPipe achieves up to a 13.9\% improvement in pipeline quality and 2.8$\times$ faster convergence compared to existing methods.
♻ ☆ Faithful Differentiable Reasoning with Reshuffled Region-based Embeddings KR 2025
Knowledge graph (KG) embedding methods learn geometric representations of entities and relations to predict plausible missing knowledge. These representations are typically assumed to capture rule-like inference patterns. However, our theoretical understanding of which inference patterns can be captured remains limited. Ideally, KG embedding methods should be expressive enough such that for any set of rules, there exist relation embeddings that exactly capture these rules. This principle has been studied within the framework of region-based embeddings, but existing models are severely limited in the kinds of rule bases that can be captured. We argue that this stems from the fact that entity embeddings are only compared in a coordinate-wise fashion. As an alternative, we propose RESHUFFLE, a simple model based on ordering constraints that can faithfully capture a much larger class of rule bases than existing approaches. Most notably, RESHUFFLE can capture bounded inference w.r.t. arbitrary sets of closed path rules. The entity embeddings in our framework can be learned by a Graph Neural Network (GNN), which effectively acts as a differentiable rule base.
comment: Accepted for KR 2025
♻ ☆ CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation
Multivariate Time Series Imputation (MTSI) is crucial for many applications, such as healthcare monitoring and traffic management, where incomplete data can compromise decision-making. Existing state-of-the-art methods, like Denoising Diffusion Probabilistic Models (DDPMs), achieve high imputation accuracy; however, they suffer from significant computational costs and are notably time-consuming due to their iterative nature. In this work, we propose CoSTI, an innovative adaptation of Consistency Models (CMs) for the MTSI domain. CoSTI employs Consistency Training to achieve comparable imputation quality to DDPMs while drastically reducing inference times, making it more suitable for real-time applications. We evaluate CoSTI across multiple datasets and missing data scenarios, demonstrating up to a 98% reduction in imputation time with performance on par with diffusion-based models. This work bridges the gap between efficiency and accuracy in generative imputation tasks, providing a scalable solution for handling missing data in critical spatio-temporal systems.
comment: 14 pages, 7 figures, 13 tables
♻ ☆ DRL-AdaPart: DRL-Driven Adaptive STAR-RIS Partitioning for Fair and Frugal Resource Utilization
In this work, we propose a method for efficient resource utilization of simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) elements to ensure fair and high data rates. We introduce a subsurface assignment variable that determines the number of STAR-RIS elements allocated to each user and maximizes the sum of the data rates by jointly optimizing the phase shifts of the STAR-RIS and the subsurface assignment variables using an appropriately tailored deep reinforcement learning (DRL) algorithm. The proposed DRL method is also compared with a Dinkelbach algorithm and the designed hybrid DRL approach. A penalty term is incorporated into the DRL model to enhance resource utilization by intelligently deactivating STAR-RIS elements when not required. The proposed DRL method can achieve fair and high data rates for static and mobile users while ensuring efficient resource utilization through extensive simulations. Using the proposed DRL method, up to 27% and 21% of STAR-RIS elements can be deactivated in static and mobile scenarios, respectively, without affecting performance.
♻ ☆ Numerical Artifacts in Learning Dynamical Systems
In many applications, one needs to learn a dynamical system from its solutions sampled at a finite number of time points. The learning problem is often formulated as an optimization problem over a chosen function class. However, in the optimization procedure, it is necessary to employ a numerical scheme to integrate candidate dynamical systems and assess how their solutions fit the data. This paper reveals potentially serious effects of a chosen numerical scheme on the learning outcome. In particular, our analysis demonstrates that a damped oscillatory system may be incorrectly identified as having "anti-damping" and exhibiting a reversed oscillation direction, despite adequately fitting the given data points.
♻ ☆ Training Neural Networks for Modularity aids Interpretability
An approach to improve network interpretability is via clusterability, i.e., splitting a model into disjoint clusters that can be studied independently. We find pretrained models to be highly unclusterable and thus train models to be more modular using an ``enmeshment loss'' function that encourages the formation of non-interacting clusters. Using automated interpretability measures, we show that our method finds clusters that learn different, disjoint, and smaller circuits for CIFAR-10 labels. Our approach provides a promising direction for making neural networks easier to interpret.
comment: Some of the interpretations of the results in this paper were incorrect, and we found on further experiments that the techniques did not scale well - we have the corrected results in a different submission (due to a significant change in both content and authors it needed to be a new submission). Please check https://arxiv.org/abs/2502.02470 for the updated paper.
♻ ☆ MultiKernelBench: A Multi-Platform Benchmark for Kernel Generation
The automatic generation of deep learning (DL) kernels using large language models (LLMs) has emerged as a promising approach to reduce the manual effort and hardware-specific expertise required for writing high-performance operator implementations. However, existing benchmarks for evaluating LLMs in this domain suffer from limited hardware support, coarse-grained kernel categorization, and imbalanced task coverage. To address these limitations, we introduce MultiKernelBench, the first comprehensive, multi-platform benchmark for LLM-based DL kernel generation. MultiKernelBench spans 285 tasks across 14 well-defined kernel categories and supports three major hardware platforms: Nvidia GPUs, Huawei NPUs, and Google TPUs. To enable future extensibility, we design a modular backend abstraction layer that decouples platform-specific logic from the core benchmarking infrastructure, allowing easy integration of new hardware platforms. We further propose a simple yet effective category-aware one-shot prompting method that improves generation quality by providing in-category exemplars. Through systematic evaluations of seven state-of-the-art LLMs, we reveal significant variation in task difficulty, poor generalization to platforms with less training exposure, and the effectiveness of targeted prompting strategies. MultiKernelBench is publicly available at https://github.com/wzzll123/MultiKernelBench.
Computer Vision and Pattern Recognition 56
☆ KB-DMGen: Knowledge-Based Global Guidance and Dynamic Pose Masking for Human Image Generation
Recent methods using diffusion models have made significant progress in human image generation with various control signals such as pose priors. In portrait generation, both the accuracy of human pose and the overall visual quality are crucial for realistic synthesis. Most existing methods focus on controlling the accuracy of generated poses, but ignore the quality assurance of the entire image. In order to ensure the global image quality and pose accuracy, we propose Knowledge-Based Global Guidance and Dynamic pose Masking for human image Generation (KB-DMGen). The Knowledge Base (KB) is designed not only to enhance pose accuracy but also to leverage image feature information to maintain overall image quality. Dynamic Masking (DM) dynamically adjusts the importance of pose-related regions. Experiments demonstrate the effectiveness of our model, achieving new state-of-the-art results in terms of AP and CAP on the HumanArt dataset. The code will be made publicly available.
☆ The Devil is in the EOS: Sequence Training for Detailed Image Captioning
Despite significant advances in vision-language models (VLMs), image captioning often suffers from a lack of detail, with base models producing short, generic captions. This limitation persists even though VLMs are equipped with strong vision and language backbones. While supervised data and complex reward functions have been proposed to improve detailed image captioning, we identify a simpler underlying issue: a bias towards the end-of-sequence (EOS) token, which is introduced during cross-entropy training. We propose an unsupervised method to debias the model's tendency to predict the EOS token prematurely. By reducing this bias, we encourage the generation of longer, more detailed captions without the need for intricate reward functions or supervision. Our approach is straightforward, effective, and easily applicable to any pretrained model. We demonstrate its effectiveness through experiments with three VLMs and on three detailed captioning benchmarks. Our results show a substantial increase in caption length and relevant details, albeit with an expected increase in the rate of hallucinations.
comment: Accepted to COLM 2025
☆ FaRMamba: Frequency-based learning and Reconstruction aided Mamba for Medical Segmentation
Accurate medical image segmentation remains challenging due to blurred lesion boundaries (LBA), loss of high-frequency details (LHD), and difficulty in modeling long-range anatomical structures (DC-LRSS). Vision Mamba employs one-dimensional causal state-space recurrence to efficiently model global dependencies, thereby substantially mitigating DC-LRSS. However, its patch tokenization and 1D serialization disrupt local pixel adjacency and impose a low-pass filtering effect, resulting in Local High-frequency Information Capture Deficiency (LHICD) and two-dimensional Spatial Structure Degradation (2D-SSD), which in turn exacerbate LBA and LHD. In this work, we propose FaRMamba, a novel extension that explicitly addresses LHICD and 2D-SSD through two complementary modules. A Multi-Scale Frequency Transform Module (MSFM) restores attenuated high-frequency cues by isolating and reconstructing multi-band spectra via wavelet, cosine, and Fourier transforms. A Self-Supervised Reconstruction Auxiliary Encoder (SSRAE) enforces pixel-level reconstruction on the shared Mamba encoder to recover full 2D spatial correlations, enhancing both fine textures and global context. Extensive evaluations on CAMUS echocardiography, MRI-based Mouse-cochlea, and Kvasir-Seg endoscopy demonstrate that FaRMamba consistently outperforms competitive CNN-Transformer hybrids and existing Mamba variants, delivering superior boundary accuracy, detail preservation, and global coherence without prohibitive computational overhead. This work provides a flexible frequency-aware framework for future segmentation models that directly mitigates core challenges in medical imaging.
☆ Digital and Robotic Twinning for Validation of Proximity Operations and Formation Flying
In spacecraft Rendezvous, Proximity Operations (RPO), and Formation Flying (FF), the Guidance Navigation and Control (GNC) system is safety-critical and must meet strict performance requirements. However, validating such systems is challenging due to the complexity of the space environment, necessitating a verification and validation (V&V) process that bridges simulation and real-world behavior. The key contribution of this paper is a unified, end-to-end digital and robotic twinning framework that enables software- and hardware-in-the-loop testing for multi-modal GNC systems. The robotic twin includes three testbeds at Stanford's Space Rendezvous Laboratory (SLAB): the GNSS and Radiofrequency Autonomous Navigation Testbed for Distributed Space Systems (GRAND) to validate RF-based navigation techniques, and the Testbed for Rendezvous and Optical Navigation (TRON) and Optical Stimulator (OS) to validate vision-based methods. The test article for this work is an integrated multi-modal GNC software stack for RPO and FF developed at SLAB. This paper introduces the hybrid framework and summarizes calibration and error characterization for the robotic twin. Then, the GNC stack's performance and robustness is characterized using the integrated digital and robotic twinning pipeline for a full-range RPO mission scenario in Low-Earth Orbit (LEO). The results shown in the paper demonstrate consistency between digital and robotic twins, validating the hybrid twinning pipeline as a reliable framework for realistic assessment and verification of GNC systems.
comment: 23 pages, 12 figures. 2025 Astrodynamics Specialist Conference
☆ TAPS : Frustratingly Simple Test Time Active Learning for VLMs
Test-Time Optimization enables models to adapt to new data during inference by updating parameters on-the-fly. Recent advances in Vision-Language Models (VLMs) have explored learning prompts at test time to improve performance in downstream tasks. In this work, we extend this idea by addressing a more general and practical challenge: Can we effectively utilize an oracle in a continuous data stream where only one sample is available at a time, requiring an immediate query decision while respecting latency and memory constraints? To tackle this, we propose a novel Test-Time Active Learning (TTAL) framework that adaptively queries uncertain samples and updates prompts dynamically. Unlike prior methods that assume batched data or multiple gradient updates, our approach operates in a real-time streaming scenario with a single test sample per step. We introduce a dynamically adjusted entropy threshold for active querying, a class-balanced replacement strategy for memory efficiency, and a class-aware distribution alignment technique to enhance adaptation. The design choices are justified using careful theoretical analysis. Extensive experiments across 10 cross-dataset transfer benchmarks and 4 domain generalization datasets demonstrate consistent improvements over state-of-the-art methods while maintaining reasonable latency and memory overhead. Our framework provides a practical and effective solution for real-world deployment in safety-critical applications such as autonomous systems and medical diagnostics.
Region-based Cluster Discrimination for Visual Representation Learning ICCV 2025
Learning visual representations is foundational for a broad spectrum of downstream tasks. Although recent vision-language contrastive models, such as CLIP and SigLIP, have achieved impressive zero-shot performance via large-scale vision-language alignment, their reliance on global representations constrains their effectiveness for dense prediction tasks, such as grounding, OCR, and segmentation. To address this gap, we introduce Region-Aware Cluster Discrimination (RICE), a novel method that enhances region-level visual and OCR capabilities. We first construct a billion-scale candidate region dataset and propose a Region Transformer layer to extract rich regional semantics. We further design a unified region cluster discrimination loss that jointly supports object and OCR learning within a single classification framework, enabling efficient and scalable distributed training on large-scale data. Extensive experiments show that RICE consistently outperforms previous methods on tasks, including segmentation, dense detection, and visual perception for Multimodal Large Language Models (MLLMs). The pre-trained models have been released at https://github.com/deepglint/MVT.
comment: Accepted as a highlight paper at ICCV 2025
☆ VAMPIRE: Uncovering Vessel Directional and Morphological Information from OCTA Images for Cardiovascular Disease Risk Factor Prediction MICCAI 2025
Cardiovascular disease (CVD) remains the leading cause of death worldwide, requiring urgent development of effective risk assessment methods for timely intervention. While current research has introduced non-invasive and efficient approaches to predict CVD risk from retinal imaging with deep learning models, the commonly used fundus photographs and Optical Coherence Tomography (OCT) fail to capture detailed vascular features critical for CVD assessment compared with OCT angiography (OCTA) images. Moreover, existing methods typically classify CVD risk only as high or low, without providing a deeper analysis on CVD-related blood factor conditions, thus limiting prediction accuracy and clinical utility. As a result, we propose a novel multi-purpose paradigm of CVD risk assessment that jointly performs CVD risk and CVD-related condition prediction, aligning with clinical experiences. Based on this core idea, we introduce OCTA-CVD, the first OCTA dataset for CVD risk assessment, and a Vessel-Aware Mamba-based Prediction model with Informative Enhancement (VAMPIRE) based on OCTA enface images. Our proposed model aims to extract crucial vascular characteristics through two key components: (1) a Mamba-Based Directional (MBD) Module that captures fine-grained vascular trajectory features and (2) an Information-Enhanced Morphological (IEM) Module that incorporates comprehensive vessel morphology knowledge. Experimental results demonstrate that our method can surpass standard classification backbones, OCTA-based detection methods, and ophthalmologic foundation models. Our codes and the collected OCTA-CVD dataset are available at https://github.com/xmed-lab/VAMPIRE.
comment: Accepted in MICCAI 2025
☆ FROSS: Faster-than-Real-Time Online 3D Semantic Scene Graph Generation from RGB-D Images
The ability to abstract complex 3D environments into simplified and structured representations is crucial across various domains. 3D semantic scene graphs (SSGs) achieve this by representing objects as nodes and their interrelationships as edges, facilitating high-level scene understanding. Existing methods for 3D SSG generation, however, face significant challenges, including high computational demands and non-incremental processing that hinder their suitability for real-time open-world applications. To address this issue, we propose FROSS (Faster-than-Real-Time Online 3D Semantic Scene Graph Generation), an innovative approach for online and faster-than-real-time 3D SSG generation that leverages the direct lifting of 2D scene graphs to 3D space and represents objects as 3D Gaussian distributions. This framework eliminates the dependency on precise and computationally-intensive point cloud processing. Furthermore, we extend the Replica dataset with inter-object relationship annotations, creating the ReplicaSSG dataset for comprehensive evaluation of FROSS. The experimental results from evaluations on ReplicaSSG and 3DSSG datasets show that FROSS can achieve superior performance while operating significantly faster than prior 3D SSG generation methods. Our implementation and dataset are publicly available at https://github.com/Howardkhh/FROSS.
☆ SkinDualGen: Prompt-Driven Diffusion for Simultaneous Image-Mask Generation in Skin Lesions
Medical image analysis plays a pivotal role in the early diagnosis of diseases such as skin lesions. However, the scarcity of data and the class imbalance significantly hinder the performance of deep learning models. We propose a novel method that leverages the pretrained Stable Diffusion-2.0 model to generate high-quality synthetic skin lesion images and corresponding segmentation masks. This approach augments training datasets for classification and segmentation tasks. We adapt Stable Diffusion-2.0 through domain-specific Low-Rank Adaptation (LoRA) fine-tuning and joint optimization of multi-objective loss functions, enabling the model to simultaneously generate clinically relevant images and segmentation masks conditioned on textual descriptions in a single step. Experimental results show that the generated images, validated by FID scores, closely resemble real images in quality. A hybrid dataset combining real and synthetic data markedly enhances the performance of classification and segmentation models, achieving substantial improvements in accuracy and F1-score of 8% to 15%, with additional positive gains in other key metrics such as the Dice coefficient and IoU. Our approach offers a scalable solution to address the challenges of medical imaging data, contributing to improved accuracy and reliability in diagnosing rare diseases.
☆ Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.
☆ Pic2Diagnosis: A Method for Diagnosis of Cardiovascular Diseases from the Printed ECG Pictures
The electrocardiogram (ECG) is a vital tool for diagnosing heart diseases. However, many disease patterns are derived from outdated datasets and traditional stepwise algorithms with limited accuracy. This study presents a method for direct cardiovascular disease (CVD) diagnosis from ECG images, eliminating the need for digitization. The proposed approach utilizes a two-step curriculum learning framework, beginning with the pre-training of a classification model on segmentation masks, followed by fine-tuning on grayscale, inverted ECG images. Robustness is further enhanced through an ensemble of three models with averaged outputs, achieving an AUC of 0.9534 and an F1 score of 0.7801 on the BHF ECG Challenge dataset, outperforming individual models. By effectively handling real-world artifacts and simplifying the diagnostic process, this method offers a reliable solution for automated CVD diagnosis, particularly in resource-limited settings where printed or scanned ECG images are commonly used. Such an automated procedure enables rapid and accurate diagnosis, which is critical for timely intervention in CVD cases that often demand urgent care.
comment: To appear in: Proceedings of the 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2025
☆ Predicting Brain Responses To Natural Movies With Multimodal LLMs
We present MedARC's team solution to the Algonauts 2025 challenge. Our pipeline leveraged rich multimodal representations from various state-of-the-art pretrained models across video (V-JEPA2), speech (Whisper), text (Llama 3.2), vision-text (InternVL3), and vision-text-audio (Qwen2.5-Omni). These features extracted from the models were linearly projected to a latent space, temporally aligned to the fMRI time series, and finally mapped to cortical parcels through a lightweight encoder comprising a shared group head plus subject-specific residual heads. We trained hundreds of model variants across hyperparameter settings, validated them on held-out movies and assembled ensembles targeted to each parcel in each subject. Our final submission achieved a mean Pearson's correlation of 0.2085 on the test split of withheld out-of-distribution movies, placing our team in fourth place for the competition. We further discuss a last-minute optimization that would have raised us to second place. Our results highlight how combining features from models trained in different modalities, using a simple architecture consisting of shared-subject and single-subject components, and conducting comprehensive model selection and ensembling improves generalization of encoding models to novel movie stimuli. All code is available on GitHub.
comment: Code available at https://github.com/MedARC-AI/algonauts2025
☆ RARE: Refine Any Registration of Pairwise Point Clouds via Zero-Shot Learning
Recent research leveraging large-scale pretrained diffusion models has demonstrated the potential of using diffusion features to establish semantic correspondences in images. Inspired by advancements in diffusion-based techniques, we propose a novel zero-shot method for refining point cloud registration algorithms. Our approach leverages correspondences derived from depth images to enhance point feature representations, eliminating the need for a dedicated training dataset. Specifically, we first project the point cloud into depth maps from multiple perspectives and extract implicit knowledge from a pretrained diffusion network as depth diffusion features. These features are then integrated with geometric features obtained from existing methods to establish more accurate correspondences between point clouds. By leveraging these refined correspondences, our approach achieves significantly improved registration accuracy. Extensive experiments demonstrate that our method not only enhances the performance of existing point cloud registration techniques but also exhibits robust generalization capabilities across diverse datasets. Codes are available at https://github.com/zhengcy-lambo/RARE.git.
☆ AF-CLIP: Zero-Shot Anomaly Detection via Anomaly-Focused CLIP Adaptation ACM MM' 25
Visual anomaly detection has been widely used in industrial inspection and medical diagnosis. Existing methods typically demand substantial training samples, limiting their utility in zero-/few-shot scenarios. While recent efforts have leveraged CLIP's zero-shot recognition capability for this task, they often ignore optimizing visual features to focus on local anomalies, reducing their efficacy. In this work, we propose AF-CLIP (Anomaly-Focused CLIP) by dramatically enhancing its visual representations to focus on local defects. Our approach introduces a lightweight adapter that emphasizes anomaly-relevant patterns in visual features, simultaneously optimizing both class-level features for image classification and patch-level features for precise localization. To capture anomalies of different sizes and improve detection accuracy, prior to the adapter, we develop a multi-scale spatial aggregation mechanism to effectively consolidate neighborhood context. Complementing these visual enhancements, we design learnable textual prompts that generically characterize normal and abnormal states. After optimization on auxiliary datasets using a composite objective function, AF-CLIP demonstrates strong zero-shot detection capability. Our method is also extended to few-shot scenarios by extra memory banks. Experimental results across diverse industrial and medical datasets demonstrate the effectiveness and generalization of our proposed method. Code is available at https://github.com/Faustinaqq/AF-CLIP.
comment: The paper is accepted by ACM MM' 25
☆ UniCT Depth: Event-Image Fusion Based Monocular Depth Estimation with Convolution-Compensated ViT Dual SA Block IJCAI 2025
Depth estimation plays a crucial role in 3D scene understanding and is extensively used in a wide range of vision tasks. Image-based methods struggle in challenging scenarios, while event cameras offer high dynamic range and temporal resolution but face difficulties with sparse data. Combining event and image data provides significant advantages, yet effective integration remains challenging. Existing CNN-based fusion methods struggle with occlusions and depth disparities due to limited receptive fields, while Transformer-based fusion methods often lack deep modality interaction. To address these issues, we propose UniCT Depth, an event-image fusion method that unifies CNNs and Transformers to model local and global features. We propose the Convolution-compensated ViT Dual SA (CcViT-DA) Block, designed for the encoder, which integrates Context Modeling Self-Attention (CMSA) to capture spatial dependencies and Modal Fusion Self-Attention (MFSA) for effective cross-modal fusion. Furthermore, we design the tailored Detail Compensation Convolution (DCC) Block to improve texture details and enhances edge representations. Experiments show that UniCT Depth outperforms existing image, event, and fusion-based monocular depth estimation methods across key metrics.
comment: Accepted by IJCAI 2025 (International Joint Conference on Artificial Intelligence)
☆ LLMControl: Grounded Control of Text-to-Image Diffusion-based Synthesis with Multimodal LLMs
Recent spatial control methods for text-to-image (T2I) diffusion models have shown compelling results. However, these methods still fail to precisely follow the control conditions and generate the corresponding images, especially when encountering the textual prompts that contain multiple objects or have complex spatial compositions. In this work, we present a LLM-guided framework called LLM\_Control to address the challenges of the controllable T2I generation task. By improving grounding capabilities, LLM\_Control is introduced to accurately modulate the pre-trained diffusion models, where visual conditions and textual prompts influence the structures and appearance generation in a complementary way. We utilize the multimodal LLM as a global controller to arrange spatial layouts, augment semantic descriptions and bind object attributes. The obtained control signals are injected into the denoising network to refocus and enhance attention maps according to novel sampling constraints. Extensive qualitative and quantitative experiments have demonstrated that LLM\_Control achieves competitive synthesis quality compared to other state-of-the-art methods across various pre-trained T2I models. It is noteworthy that LLM\_Control allows the challenging input conditions on which most of the existing methods
☆ MambaVesselNet++: A Hybrid CNN-Mamba Architecture for Medical Image Segmentation
Medical image segmentation plays an important role in computer-aided diagnosis. Traditional convolution-based U-shape segmentation architectures are usually limited by the local receptive field. Existing vision transformers have been widely applied to diverse medical segmentation frameworks due to their superior capabilities of capturing global contexts. Despite the advantage, the real-world application of vision transformers is challenged by their non-linear self-attention mechanism, requiring huge computational costs. To address this issue, the selective state space model (SSM) Mamba has gained recognition for its adeptness in modeling long-range dependencies in sequential data, particularly noted for its efficient memory costs. In this paper, we propose MambaVesselNet++, a Hybrid CNN-Mamba framework for medical image segmentation. Our MambaVesselNet++ is comprised of a hybrid image encoder (Hi-Encoder) and a bifocal fusion decoder (BF-Decoder). In Hi-Encoder, we first devise the texture-aware layer to capture low-level semantic features by leveraging convolutions. Then, we utilize Mamba to effectively model long-range dependencies with linear complexity. The Bi-Decoder adopts skip connections to combine local and global information of the Hi-Encoder for the accurate generation of segmentation masks. Extensive experiments demonstrate that MambaVesselNet++ outperforms current convolution-based, transformer-based, and Mamba-based state-of-the-arts across diverse medical 2D, 3D, and instance segmentation tasks. The code is available at https://github.com/CC0117/MambaVesselNet.
comment: Accepted by TOMM
☆ A Fast Parallel Median Filtering Algorithm Using Hierarchical Tiling
Median filtering is a non-linear smoothing technique widely used in digital image processing to remove noise while retaining sharp edges. It is particularly well suited to removing outliers (impulse noise) or granular artifacts (speckle noise). However, the high computational cost of median filtering can be prohibitive. Sorting-based algorithms excel with small kernels but scale poorly with increasing kernel diameter, in contrast to constant-time methods characterized by higher constant factors but better scalability, such as histogram-based approaches or the 2D wavelet matrix. This paper introduces a novel algorithm, leveraging the separability of the sorting problem through hierarchical tiling to minimize redundant computations. We propose two variants: a data-oblivious selection network that can operate entirely within registers, and a data-aware version utilizing random-access memory. These achieve per-pixel complexities of $O(k \log(k))$ and $O(k)$, respectively, for a $k \times k$ kernel - unprecedented for sorting-based methods. Our CUDA implementation is up to 5 times faster than the current state of the art on a modern GPU and is the fastest median filter in most cases for 8-, 16-, and 32-bit data types and kernels from $3 \times 3$ to $75 \times 75$.
comment: 8 pages, 8 figures
☆ HumanSAM: Classifying Human-centric Forgery Videos in Human Spatial, Appearance, and Motion Anomaly ICCV 2025
Numerous synthesized videos from generative models, especially human-centric ones that simulate realistic human actions, pose significant threats to human information security and authenticity. While progress has been made in binary forgery video detection, the lack of fine-grained understanding of forgery types raises concerns regarding both reliability and interpretability, which are critical for real-world applications. To address this limitation, we propose HumanSAM, a new framework that builds upon the fundamental challenges of video generation models. Specifically, HumanSAM aims to classify human-centric forgeries into three distinct types of artifacts commonly observed in generated content: spatial, appearance, and motion anomaly.To better capture the features of geometry, semantics and spatiotemporal consistency, we propose to generate the human forgery representation by fusing two branches of video understanding and spatial depth. We also adopt a rank-based confidence enhancement strategy during the training process to learn more robust representation by introducing three prior scores. For training and evaluation, we construct the first public benchmark, the Human-centric Forgery Video (HFV) dataset, with all types of forgeries carefully annotated semi-automatically. In our experiments, HumanSAM yields promising results in comparison with state-of-the-art methods, both in binary and multi-class forgery classification.
comment: ICCV 2025. Project page: https://dejian-lc.github.io/humansam/
☆ A mini-batch training strategy for deep subspace clustering networks
Mini-batch training is a cornerstone of modern deep learning, offering computational efficiency and scalability for training complex architectures. However, existing deep subspace clustering (DSC) methods, which typically combine an autoencoder with a self-expressive layer, rely on full-batch processing. The bottleneck arises from the self-expressive module, which requires representations of the entire dataset to construct a self-representation coefficient matrix. In this work, we introduce a mini-batch training strategy for DSC by integrating a memory bank that preserves global feature representations. Our approach enables scalable training of deep architectures for subspace clustering with high-resolution images, overcoming previous limitations. Additionally, to efficiently fine-tune large-scale pre-trained encoders for subspace clustering, we propose a decoder-free framework that leverages contrastive learning instead of autoencoding for representation learning. This design not only eliminates the computational overhead of decoder training but also provides competitive performance. Extensive experiments demonstrate that our approach not only achieves performance comparable to full-batch methods, but outperforms other state-of-the-art subspace clustering methods on the COIL100 and ORL datasets by fine-tuning deep networks.
☆ DriveIndia: An Object Detection Dataset for Diverse Indian Traffic Scenes SC 2025
We introduce \textbf{DriveIndia}, a large-scale object detection dataset purpose-built to capture the complexity and unpredictability of Indian traffic environments. The dataset contains \textbf{66,986 high-resolution images} annotated in YOLO format across \textbf{24 traffic-relevant object categories}, encompassing diverse conditions such as varied weather (fog, rain), illumination changes, heterogeneous road infrastructure, and dense, mixed traffic patterns and collected over \textbf{120+ hours} and covering \textbf{3,400+ kilometers} across urban, rural, and highway routes. DriveIndia offers a comprehensive benchmark for real-world autonomous driving challenges. We provide baseline results using state-of-the-art \textbf{YOLO family models}, with the top-performing variant achieving a $mAP_{50}$ of \textbf{78.7\%}. Designed to support research in robust, generalizable object detection under uncertain road conditions, DriveIndia will be publicly available via the TiHAN-IIT Hyderabad dataset repository (https://tihan.iith.ac.in/tiand-datasets/).
comment: Accepted at ITSC 2025 Conference
☆ TrackAny3D: Transferring Pretrained 3D Models for Category-unified 3D Point Cloud Tracking
3D LiDAR-based single object tracking (SOT) relies on sparse and irregular point clouds, posing challenges from geometric variations in scale, motion patterns, and structural complexity across object categories. Current category-specific approaches achieve good accuracy but are impractical for real-world use, requiring separate models for each category and showing limited generalization. To tackle these issues, we propose TrackAny3D, the first framework to transfer large-scale pretrained 3D models for category-agnostic 3D SOT. We first integrate parameter-efficient adapters to bridge the gap between pretraining and tracking tasks while preserving geometric priors. Then, we introduce a Mixture-of-Geometry-Experts (MoGE) architecture that adaptively activates specialized subnetworks based on distinct geometric characteristics. Additionally, we design a temporal context optimization strategy that incorporates learnable temporal tokens and a dynamic mask weighting module to propagate historical information and mitigate temporal drift. Experiments on three commonly-used benchmarks show that TrackAny3D establishes new state-of-the-art performance on category-agnostic 3D SOT, demonstrating strong generalization and competitiveness. We hope this work will enlighten the community on the importance of unified models and further expand the use of large-scale pretrained models in this field.
☆ ConSeg: Contextual Backdoor Attack Against Semantic Segmentation
Despite significant advancements in computer vision, semantic segmentation models may be susceptible to backdoor attacks. These attacks, involving hidden triggers, aim to cause the models to misclassify instances of the victim class as the target class when triggers are present, posing serious threats to the reliability of these models. To further explore the field of backdoor attacks against semantic segmentation, in this paper, we propose a simple yet effective backdoor attack called Contextual Segmentation Backdoor Attack (ConSeg). ConSeg leverages the contextual information inherent in semantic segmentation models to enhance backdoor performance. Our method is motivated by an intriguing observation, i.e., when the target class is set as the `co-occurring' class of the victim class, the victim class can be more easily `mis-segmented'. Building upon this insight, ConSeg mimics the contextual information of the target class and rebuilds it in the victim region to establish the contextual relationship between the target class and the victim class, making the attack easier. Our experiments reveal that ConSeg achieves improvements in Attack Success Rate (ASR) with increases of 15.55\%, compared to existing methods, while exhibiting resilience against state-of-the-art backdoor defenses.
☆ Interpretable Open-Vocabulary Referring Object Detection with Reverse Contrast Attention
We propose Reverse Contrast Attention (RCA), a plug-in method that enhances object localization in vision-language transformers without retraining. RCA reweights final-layer attention by suppressing extremes and amplifying mid-level activations to let semantically relevant but subdued tokens guide predictions. We evaluate it on Open Vocabulary Referring Object Detection (OV-RefOD), introducing FitAP, a confidence-free average precision metric based on IoU and box area. RCA improves FitAP in 11 out of 15 open-source VLMs, with gains up to $+26.6\%$. Effectiveness aligns with attention sharpness and fusion timing; while late-fusion models benefit consistently, models like $\texttt{DeepSeek-VL2}$ also improve, pointing to capacity and disentanglement as key factors. RCA offers both interpretability and performance gains for multimodal transformers.
comment: 10 pages with supplementary material, 6 main figures, 2 main tables; github: earl-juanico/rca
☆ CLoRA: Parameter-Efficient Continual Learning with Low-Rank Adaptation
In the past, continual learning (CL) was mostly concerned with the problem of catastrophic forgetting in neural networks, that arises when incrementally learning a sequence of tasks. Current CL methods function within the confines of limited data access, without any restrictions imposed on computational resources. However, in real-world scenarios, the latter takes precedence as deployed systems are often computationally constrained. A major drawback of most CL methods is the need to retrain the entire model for each new task. The computational demands of retraining large models can be prohibitive, limiting the applicability of CL in environments with limited resources. Through CLoRA, we explore the applicability of Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method for class-incremental semantic segmentation. CLoRA leverages a small set of parameters of the model and uses the same set for learning across all tasks. Results demonstrate the efficacy of CLoRA, achieving performance on par with and exceeding the baseline methods. We further evaluate CLoRA using NetScore, underscoring the need to factor in resource efficiency and evaluate CL methods beyond task performance. CLoRA significantly reduces the hardware requirements for training, making it well-suited for CL in resource-constrained environments after deployment.
comment: Accepted at CoLLAs 2025
☆ FedS2R: One-Shot Federated Domain Generalization for Synthetic-to-Real Semantic Segmentation in Autonomous Driving
Federated domain generalization has shown promising progress in image classification by enabling collaborative training across multiple clients without sharing raw data. However, its potential in the semantic segmentation of autonomous driving remains underexplored. In this paper, we propose FedS2R, the first one-shot federated domain generalization framework for synthetic-to-real semantic segmentation in autonomous driving. FedS2R comprises two components: an inconsistency-driven data augmentation strategy that generates images for unstable classes, and a multi-client knowledge distillation scheme with feature fusion that distills a global model from multiple client models. Experiments on five real-world datasets, Cityscapes, BDD100K, Mapillary, IDD, and ACDC, show that the global model significantly outperforms individual client models and is only 2 mIoU points behind the model trained with simultaneous access to all client data. These results demonstrate the effectiveness of FedS2R in synthetic-to-real semantic segmentation for autonomous driving under federated learning
☆ Efficient Self-Supervised Neuro-Analytic Visual Servoing for Real-time Quadrotor Control
This work introduces a self-supervised neuro-analytical, cost efficient, model for visual-based quadrotor control in which a small 1.7M parameters student ConvNet learns automatically from an analytical teacher, an improved image-based visual servoing (IBVS) controller. Our IBVS system solves numerical instabilities by reducing the classical visual servoing equations and enabling efficient stable image feature detection. Through knowledge distillation, the student model achieves 11x faster inference compared to the teacher IBVS pipeline, while demonstrating similar control accuracy at a significantly lower computational and memory cost. Our vision-only self-supervised neuro-analytic control, enables quadrotor orientation and movement without requiring explicit geometric models or fiducial markers. The proposed methodology leverages simulation-to-reality transfer learning and is validated on a small drone platform in GPS-denied indoor environments. Our key contributions include: (1) an analytical IBVS teacher that solves numerical instabilities inherent in classical approaches, (2) a two-stage segmentation pipeline combining YOLOv11 with a U-Net-based mask splitter for robust anterior-posterior vehicle segmentation to correctly estimate the orientation of the target, and (3) an efficient knowledge distillation dual-path system, which transfers geometric visual servoing capabilities from the analytical IBVS teacher to a compact and small student neural network that outperforms the teacher, while being suitable for real-time onboard deployment.
comment: Accepted at the International Conference on Computer Vision Workshops 2025
☆ ATCTrack: Aligning Target-Context Cues with Dynamic Target States for Robust Vision-Language Tracking ICCV2025
Vision-language tracking aims to locate the target object in the video sequence using a template patch and a language description provided in the initial frame. To achieve robust tracking, especially in complex long-term scenarios that reflect real-world conditions as recently highlighted by MGIT, it is essential not only to characterize the target features but also to utilize the context features related to the target. However, the visual and textual target-context cues derived from the initial prompts generally align only with the initial target state. Due to their dynamic nature, target states are constantly changing, particularly in complex long-term sequences. It is intractable for these cues to continuously guide Vision-Language Trackers (VLTs). Furthermore, for the text prompts with diverse expressions, our experiments reveal that existing VLTs struggle to discern which words pertain to the target or the context, complicating the utilization of textual cues. In this work, we present a novel tracker named ATCTrack, which can obtain multimodal cues Aligned with the dynamic target states through comprehensive Target-Context feature modeling, thereby achieving robust tracking. Specifically, (1) for the visual modality, we propose an effective temporal visual target-context modeling approach that provides the tracker with timely visual cues. (2) For the textual modality, we achieve precise target words identification solely based on textual content, and design an innovative context words calibration method to adaptively utilize auxiliary context words. (3) We conduct extensive experiments on mainstream benchmarks and ATCTrack achieves a new SOTA performance. The code and models will be released at: https://github.com/XiaokunFeng/ATCTrack.
comment: Accepted by ICCV2025 Highlight ~
♻ ☆ MemeBLIP2: A novel lightweight multimodal system to detect harmful memes IJCAI-25
Memes often merge visuals with brief text to share humor or opinions, yet some memes contain harmful messages such as hate speech. In this paper, we introduces MemeBLIP2, a light weight multimodal system that detects harmful memes by combining image and text features effectively. We build on previous studies by adding modules that align image and text representations into a shared space and fuse them for better classification. Using BLIP-2 as the core vision-language model, our system is evaluated on the PrideMM datasets. The results show that MemeBLIP2 can capture subtle cues in both modalities, even in cases with ironic or culturally specific content, thereby improving the detection of harmful material.
comment: 11 pages, 3 figures. Accepted at the First Workshop on Multimodal Knowledge and Language Modeling (MKLM), IJCAI-25
♻ ☆ Egocentric Action-aware Inertial Localization in Point Clouds with Vision-Language Guidance ICCV 2025
This paper presents a novel inertial localization framework named Egocentric Action-aware Inertial Localization (EAIL), which leverages egocentric action cues from head-mounted IMU signals to localize the target individual within a 3D point cloud. Human inertial localization is challenging due to IMU sensor noise that causes trajectory drift over time. The diversity of human actions further complicates IMU signal processing by introducing various motion patterns. Nevertheless, we observe that some actions captured by the head-mounted IMU correlate with spatial environmental structures (e.g., bending down to look inside an oven, washing dishes next to a sink), thereby serving as spatial anchors to compensate for the localization drift. The proposed EAIL framework learns such correlations via hierarchical multi-modal alignment with vision-language guidance. By assuming that the 3D point cloud of the environment is available, it contrastively learns modality encoders that align short-term egocentric action cues in IMU signals with local environmental features in the point cloud. The learning process is enhanced using concurrently collected vision and language signals to improve multimodal alignment. The learned encoders are then used in reasoning the IMU data and the point cloud over time and space to perform inertial localization. Interestingly, these encoders can further be utilized to recognize the corresponding sequence of actions as a by-product. Extensive experiments demonstrate the effectiveness of the proposed framework over state-of-the-art inertial localization and inertial action recognition baselines.
comment: ICCV 2025
♻ ☆ DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes CVPR 2025
We present DeSiRe-GS, a self-supervised gaussian splatting representation, enabling effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios. Our approach employs a two-stage optimization pipeline of dynamic street Gaussians. In the first stage, we extract 2D motion masks based on the observation that 3D Gaussian Splatting inherently can reconstruct only the static regions in dynamic environments. These extracted 2D motion priors are then mapped into the Gaussian space in a differentiable manner, leveraging an efficient formulation of dynamic Gaussians in the second stage. Combined with the introduced geometric regularizations, our method are able to address the over-fitting issues caused by data sparsity in autonomous driving, reconstructing physically plausible Gaussians that align with object surfaces rather than floating in air. Furthermore, we introduce temporal cross-view consistency to ensure coherence across time and viewpoints, resulting in high-quality surface reconstruction. Comprehensive experiments demonstrate the efficiency and effectiveness of DeSiRe-GS, surpassing prior self-supervised arts and achieving accuracy comparable to methods relying on external 3D bounding box annotations. Code is available at https://github.com/chengweialan/DeSiRe-GS
comment: CVPR 2025
♻ ☆ A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision ICCV 2025
We present a novel framework for training 3D image-conditioned diffusion models using only 2D supervision. Recovering 3D structure from 2D images is inherently ill-posed due to the ambiguity of possible reconstructions, making generative models a natural choice. However, most existing 3D generative models rely on full 3D supervision, which is impractical due to the scarcity of large-scale 3D datasets. To address this, we propose leveraging sparse-view supervision as a scalable alternative. While recent reconstruction models use sparse-view supervision with differentiable rendering to lift 2D images to 3D, they are predominantly deterministic, failing to capture the diverse set of plausible solutions and producing blurry predictions in uncertain regions. A key challenge in training 3D diffusion models with 2D supervision is that the standard training paradigm requires both the denoising process and supervision to be in the same modality. We address this by decoupling the noisy samples being denoised from the supervision signal, allowing the former to remain in 3D while the latter is provided in 2D. Our approach leverages suboptimal predictions from a deterministic image-to-3D model-acting as a "teacher"-to generate noisy 3D inputs, enabling effective 3D diffusion training without requiring full 3D ground truth. We validate our framework on both object-level and scene-level datasets, using two different 3D Gaussian Splat (3DGS) teachers. Our results show that our approach consistently improves upon these deterministic teachers, demonstrating its effectiveness in scalable and high-fidelity 3D generative modeling. See our project page at https://lesson-in-splats.github.io/
comment: ICCV 2025
♻ ☆ Multi-Person Interaction Generation from Two-Person Motion Priors SIGGRAPH 2025
Generating realistic human motion with high-level controls is a crucial task for social understanding, robotics, and animation. With high-quality MOCAP data becoming more available recently, a wide range of data-driven approaches have been presented. However, modelling multi-person interactions still remains a less explored area. In this paper, we present Graph-driven Interaction Sampling, a method that can generate realistic and diverse multi-person interactions by leveraging existing two-person motion diffusion models as motion priors. Instead of training a new model specific to multi-person interaction synthesis, our key insight is to spatially and temporally separate complex multi-person interactions into a graph structure of two-person interactions, which we name the Pairwise Interaction Graph. We thus decompose the generation task into simultaneous single-person motion generation conditioned on one other's motion. In addition, to reduce artifacts such as interpenetrations of body parts in generated multi-person interactions, we introduce two graph-dependent guidance terms into the diffusion sampling scheme. Unlike previous work, our method can produce various high-quality multi-person interactions without having repetitive individual motions. Extensive experiments demonstrate that our approach consistently outperforms existing methods in reducing artifacts when generating a wide range of two-person and multi-person interactions.
comment: SIGGRAPH 2025 Conference Papers, project page at http://wenningxu.github.io/multicharacter/
♻ ☆ Activator: GLU Activation Function as the Core Component of a Vision Transformer
The transformer architecture has driven many successes in a variety of tasks within the field of deep learning, in particular the recent advances in natural language processing (NLP) culminating with large language models (LLM). Adding to that success, transformer architecture has found widespread interest from computer vision (CV) researchers and practitioners, allowing for many advancements in vision-related tasks and opening the door for multitask and multi-modal deep learning architectures that share the same principle of operation. One drawback to these architectures is their reliance on the scaled dot product attention mechanism with the softmax activation function, which is computationally expensive and requires large compute capabilities for both training and inference. This paper investigates substituting the MLP and attention mechanism usually adopted for transformer architecture with an architecture based on incorporating a gated linear unit (GLU) activation function structure with the aim of reducing the computational cost. The equalized experimental assessments conducted in this work show that the proposed modification with the targeted reductions in computational complexity offers competitive performance compared to the selected baseline architectures. The results are significantly in support of the aims of this work, in which the focus was to extensively utilize GLU-based MLPs, establishing a more efficient but capable alternative to the traditional MLP and the attention mechanism as the core component in the design of transformer architectures.
♻ ☆ Histogram Layers for Neural Engineered Features
In the computer vision literature, many effective histogram-based features have been developed. These engineered features include local binary patterns and edge histogram descriptors among others and they have been shown to be informative features for a variety of computer vision tasks. In this paper, we explore whether these features can be learned through histogram layers embedded in a neural network and, therefore, be leveraged within deep learning frameworks. By using histogram features, local statistics of the feature maps from the convolution neural networks can be used to better represent the data. We present neural versions of local binary pattern and edge histogram descriptors that jointly improve the feature representation and perform image classification. Experiments are presented on benchmark and real-world datasets.
comment: 13 pages, 8 Figures; Accepted to IEEE Transactions on Artificial Intelligence
♻ ☆ Generative AI in Agriculture: Creating Image Datasets Using DALL.E's Advanced Large Language Model Capabilities
The field of agricultural communication is evolving rapidly with the advent of generative artificial intelligence (AI), particularly image generation technologies. As these tools begin to influence how agricultural data is visualized and disseminated, the sector's diversity spanning both technical and non-technical researchers, demands a rigorous foundational study to demystify the image generation process. This research investigated the role of artificial intelligence (AI), specifically the DALL.E model by OpenAI, in advancing data generation and visualization techniques in agriculture. DALL.E, an advanced AI image generator, works alongside ChatGPT's language processing to transform text descriptions and image clues into realistic visual representations of the content. The study used both approaches of image generation: text-to-image and image-to-image (variation). Six types of datasets depicting fruit crop environment were generated. These AI-generated images were then compared against ground truth images captured by sensors in real agricultural fields. The comparison was based on Peak Signal-to-Noise Ratio (PSNR) and Feature Similarity Index (FSIM) metrics. The image-to-image generation exhibited a 5.78% increase in average PSNR over text-to-image methods, signifying superior image clarity and quality. However, this method also resulted in a 10.23% decrease in average FSIM, indicating a diminished structural and textural similarity to the original images. Similar to these measures, human evaluation also showed that images generated using image-to-image-based method were more realistic compared to those generated with text-to-image approach. The results highlighted DALL.E's potential in generating realistic agricultural image datasets and thus accelerating the development and adoption of imaging-based precision agricultural solutions.
♻ ☆ The DeepSpeak Dataset
Deepfakes represent a growing concern across domains such as impostor hiring, fraud, and disinformation. Despite significant efforts to develop robust detection classifiers to distinguish the real from the fake, commonly used training datasets remain inadequate: relying on low-quality and outdated deepfake generators, consisting of content scraped from online repositories without participant consent, lacking in multimodal coverage, and rarely employing identity-matching protocols to ensure realistic fakes. To overcome these limitations, we present the DeepSpeak dataset, a diverse and multimodal dataset comprising over 100 hours of authentic and deepfake audiovisual content. We contribute: i) more than 50 hours of real, self-recorded data collected from 500 diverse and consenting participants using a custom-built data collection tool, ii) more than 50 hours of state-of-the-art audio and visual deepfakes generated using 14 video synthesis engines and three voice cloning engines, and iii) an embedding-based, identity-matching approach to ensure the creation of convincing, high-quality identity swaps that realistically simulate adversarial deepfake attacks. We also perform large-scale evaluations of state-of-the-art deepfake detectors and show that, without retraining, these detectors fail to generalize to the DeepSpeak dataset. These evaluations highlight the importance of a large and diverse dataset containing deepfakes from the latest generative-AI tools.
♻ ☆ Mitigating Object Hallucinations via Sentence-Level Early Intervention
Multimodal large language models (MLLMs) have revolutionized cross-modal understanding but continue to struggle with hallucinations - fabricated content contradicting visual inputs. Existing hallucination mitigation methods either incur prohibitive computational costs or introduce distribution mismatches between training data and model outputs. We identify a critical insight: hallucinations predominantly emerge at the early stages of text generation and propagate through subsequent outputs. To address this, we propose SENTINEL (Sentence-level Early iNtervention Through IN-domain prEference Learning), a framework that eliminates dependency on human annotations. Specifically, we first bootstrap high-quality in-domain preference pairs by iteratively sampling model outputs, validating object existence through cross-checking with two open-vocabulary detectors, and classifying sentences into hallucinated/non-hallucinated categories. Subsequently, we use context-coherent positive samples and hallucinated negative samples to build context-aware preference data iteratively. Finally, we train models using a context-aware preference loss (C-DPO) that emphasizes discriminative learning at the sentence level where hallucinations initially manifest. Experimental results show that SENTINEL can reduce hallucinations by over 90% compared to the original model and outperforms the previous state-of-the-art method on both hallucination benchmarks and general capabilities benchmarks, demonstrating its superiority and generalization ability. The models, datasets, and code are available at https://github.com/pspdada/SENTINEL.
♻ ☆ Competency-Aware Planning for Probabilistically Safe Navigation Under Perception Uncertainty
Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.
♻ ☆ PaRCE: Probabilistic and Reconstruction-based Competency Estimation for CNN-based Image Classification
Convolutional neural networks (CNNs) are extremely popular and effective for image classification tasks but tend to be overly confident in their predictions. Various works have sought to quantify uncertainty associated with these models, detect out-of-distribution (OOD) inputs, or identify anomalous regions in an image, but limited work has sought to develop a holistic approach that can accurately estimate perception model confidence across various sources of uncertainty. We develop a probabilistic and reconstruction-based competency estimation (PaRCE) method and compare it to existing approaches for uncertainty quantification and OOD detection. We find that our method can best distinguish between correctly classified, misclassified, and OOD samples with anomalous regions, as well as between samples with visual image modifications resulting in high, medium, and low prediction accuracy. We describe how to extend our approach for anomaly localization tasks and demonstrate the ability of our approach to distinguish between regions in an image that are familiar to the perception model from those that are unfamiliar. We find that our method generates interpretable scores that most reliably capture a holistic notion of perception model confidence.
comment: arXiv admin note: text overlap with arXiv:2409.06111
♻ ☆ Unreal is all you need: Multimodal ISAC Data Simulation with Only One Engine
Scaling laws have achieved success in LLM and foundation models. To explore their potential in ISAC research, we propose Great-X. This single-engine multimodal data twin platform reconstructs the ray-tracing computation of Sionna within Unreal Engine and is deeply integrated with autonomous driving tools. This enables efficient and synchronized simulation of multimodal data, including CSI, RGB, Radar, and LiDAR. Based on this platform, we construct an open-source, large-scale, low-altitude UAV multimodal synaesthesia dataset named Great-MSD, and propose a baseline CSI-based UAV 3D localization algorithm, demonstrating its feasibility and generalizability across different CSI simulation engines. The related code and dataset will be made available at: https://github.com/hkw-xg/Great-MCD.
♻ ☆ GLC++: Source-Free Universal Domain Adaptation through Global-Local Clustering and Contrastive Affinity Learning CVPR
Deep neural networks often exhibit sub-optimal performance under covariate and category shifts. Source-Free Domain Adaptation (SFDA) presents a promising solution to this dilemma, yet most SFDA approaches are restricted to closed-set scenarios. In this paper, we explore Source-Free Universal Domain Adaptation (SF-UniDA) aiming to accurately classify "known" data belonging to common categories and segregate them from target-private "unknown" data. We propose a novel Global and Local Clustering (GLC) technique, which comprises an adaptive one-vs-all global clustering algorithm to discern between target classes, complemented by a local k-NN clustering strategy to mitigate negative transfer. Despite the effectiveness, the inherent closed-set source architecture leads to uniform treatment of "unknown" data, impeding the identification of distinct "unknown" categories. To address this, we evolve GLC to GLC++, integrating a contrastive affinity learning strategy. We examine the superiority of GLC and GLC++ across multiple benchmarks and category shift scenarios. Remarkably, in the most challenging open-partial-set scenarios, GLC and GLC++ surpass GATE by 16.8\% and 18.9\% in H-score on VisDA, respectively. GLC++ enhances the novel category clustering accuracy of GLC by 4.1\% in open-set scenarios on Office-Home. Furthermore, the introduced contrastive learning strategy not only enhances GLC but also significantly facilitates existing methodologies. The code is available at https://github.com/ispc-lab/GLC-plus.
comment: A substantial extension of the CVPR paper "Upcycling Models under Domain and Category Shift", recently accepted by IEEE-TPAMI. arXiv admin note: text overlap with arXiv:2303.07110
♻ ☆ VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning ICCV 2025
Recent progress in diffusion models significantly advances various image generation tasks. However, the current mainstream approach remains focused on building task-specific models, which have limited efficiency when supporting a wide range of different needs. While universal models attempt to address this limitation, they face critical challenges, including generalizable task instruction, appropriate task distributions, and unified architectural design. To tackle these challenges, we propose VisualCloze, a universal image generation framework, which supports a wide range of in-domain tasks, generalization to unseen ones, unseen unification of multiple tasks, and reverse generation. Unlike existing methods that rely on language-based task instruction, leading to task ambiguity and weak generalization, we integrate visual in-context learning, allowing models to identify tasks from visual demonstrations. Meanwhile, the inherent sparsity of visual task distributions hampers the learning of transferable knowledge across tasks. To this end, we introduce Graph200K, a graph-structured dataset that establishes various interrelated tasks, enhancing task density and transferable knowledge. Furthermore, we uncover that our unified image generation formulation shared a consistent objective with image infilling, enabling us to leverage the strong generative priors of pre-trained infilling models without modifying the architectures.
comment: Accepted at ICCV 2025. Project page: https://visualcloze.github.io
♻ ☆ The Origin of Self-Attention: Pairwise Affinity Matrices in Feature Selection and the Emergence of Self-Attention
The self-attention mechanism, now central to deep learning architectures such as Transformers, is a modern instance of a more general computational principle: learning and using pairwise affinity matrices to control how information flows through a model. This paper traces the conceptual origins of self-attention across multiple domains, including computer vision, natural language processing, and graph learning, through their shared reliance on an affinity matrix, denoted as A. We highlight Infinite Feature Selection (Inf-FS) as a foundational approach that generalizes the idea of affinity-based weighting. Unlike the fixed dot-product structure used in Transformers, Inf-FS defines A either through domain knowledge or by learning, and computes feature relevance through multi-hop propagation over the affinity graph. From this perspective, self-attention can be seen as a special case of Inf-FS: it uses a single-hop affinity computation where A is dynamically built from token similarities. We argue that the underlying structure, reasoning over pairwise relationships, is preserved across both approaches, and the key differences lie in how the affinity matrix is defined and applied. By situating self-attention within the broader paradigm of affinity-based computation, we unify several strands of machine learning research and highlight a common mathematical foundation that underpins diverse models and tasks.
comment: 24 pages, 10 figures, submitted for review. Companion code and reproducibility materials available
♻ ☆ Model Reveals What to Cache: Profiling-Based Feature Reuse for Video Diffusion Models
Recent advances in diffusion models have demonstrated remarkable capabilities in video generation. However, the computational intensity remains a significant challenge for practical applications. While feature caching has been proposed to reduce the computational burden of diffusion models, existing methods typically overlook the heterogeneous significance of individual blocks, resulting in suboptimal reuse and degraded output quality. To this end, we address this gap by introducing ProfilingDiT, a novel adaptive caching strategy that explicitly disentangles foreground and background-focused blocks. Through a systematic analysis of attention distributions in diffusion models, we reveal a key observation: 1) Most layers exhibit a consistent preference for either foreground or background regions. 2) Predicted noise shows low inter-step similarity initially, which stabilizes as denoising progresses. This finding inspires us to formulate a selective caching strategy that preserves full computation for dynamic foreground elements while efficiently caching static background features. Our approach substantially reduces computational overhead while preserving visual fidelity. Extensive experiments demonstrate that our framework achieves significant acceleration (e.g., 2.01 times speedup for Wan2.1) while maintaining visual fidelity across comprehensive quality metrics, establishing a viable method for efficient video generation.
♻ ☆ MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Extensive experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based, Transformer-based, and diffusion-based methods while maintaining high computational efficiency. The code is available at https://github.com/EnVision-Research/MTMamba.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ BadPatch: Diffusion-Based Generation of Physical Adversarial Patches
Physical adversarial patches printed on clothing can enable individuals to evade person detectors, but most existing methods prioritize attack effectiveness over stealthiness, resulting in aesthetically unpleasing patches. While generative adversarial networks and diffusion models can produce more natural-looking patches, they often fail to balance stealthiness with attack effectiveness and lack flexibility for user customization. To address these limitations, we propose BadPatch, a novel diffusion-based framework for generating customizable and naturalistic adversarial patches. Our approach allows users to start from a reference image (rather than random noise) and incorporates masks to create patches of various shapes, not limited to squares. To preserve the original semantics during the diffusion process, we employ Null-text inversion to map random noise samples to a single input image and generate patches through Incomplete Diffusion Optimization (IDO). Our method achieves attack performance comparable to state-of-the-art non-naturalistic patches while maintaining a natural appearance. Using BadPatch, we construct AdvT-shirt-1K, the first physical adversarial T-shirt dataset comprising over a thousand images captured in diverse scenarios. AdvT-shirt-1K can serve as a useful dataset for training or testing future defense methods.
♻ ☆ Chimera: Improving Generalist Model with Domain-Specific Experts ICCV-2025
Recent advancements in Large Multi-modal Models (LMMs) underscore the importance of scaling by increasing image-text paired data, achieving impressive performance on general tasks. Despite their effectiveness in broad applications, generalist models are primarily trained on web-scale datasets dominated by natural images, resulting in the sacrifice of specialized capabilities for domain-specific tasks that require extensive domain prior knowledge. Moreover, directly integrating expert models tailored for specific domains is challenging due to the representational gap and imbalanced optimization between the generalist model and experts. To address these challenges, we introduce Chimera, a scalable and low-cost multi-modal pipeline designed to boost the ability of existing LMMs with domain-specific experts. Specifically, we design a progressive training strategy to integrate features from expert models into the input of a generalist LMM. To address the imbalanced optimization caused by the well-aligned general visual encoder, we introduce a novel Generalist-Specialist Collaboration Masking (GSCM) mechanism. This results in a versatile model that excels across the chart, table, math, and document domains, achieving state-of-the-art performance on multi-modal reasoning and visual content extraction tasks, both of which are challenging tasks for assessing existing LMMs.
comment: Accepted by ICCV-2025, Chimera Homepage: https://alpha-innovator.github.io/chimera_page
♻ ☆ Mcity Data Engine: Iterative Model Improvement Through Open-Vocabulary Data Selection SC 2025
With an ever-increasing availability of data, it has become more and more challenging to select and label appropriate samples for the training of machine learning models. It is especially difficult to detect long-tail classes of interest in large amounts of unlabeled data. This holds especially true for Intelligent Transportation Systems (ITS), where vehicle fleets and roadside perception systems generate an abundance of raw data. While industrial, proprietary data engines for such iterative data selection and model training processes exist, researchers and the open-source community suffer from a lack of an openly available system. We present the Mcity Data Engine, which provides modules for the complete data-based development cycle, beginning at the data acquisition phase and ending at the model deployment stage. The Mcity Data Engine focuses on rare and novel classes through an open-vocabulary data selection process. All code is publicly available on GitHub under an MIT license: https://github.com/mcity/mcity_data_engine
comment: Accepted for publication at ITSC 2025
♻ ☆ Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization ACM MM'25
Dynamic Facial Expression Recognition (DFER) plays a critical role in affective computing and human-computer interaction. Although existing methods achieve comparable performance, they inevitably suffer from performance degradation under sample heterogeneity caused by multi-source data and individual expression variability. To address these challenges, we propose a novel framework, called Heterogeneity-aware Distributional Framework (HDF), and design two plug-and-play modules to enhance time-frequency modeling and mitigate optimization imbalance caused by hard samples. Specifically, the Time-Frequency Distributional Attention Module (DAM) captures both temporal consistency and frequency robustness through a dual-branch attention design, improving tolerance to sequence inconsistency and visual style shifts. Then, based on gradient sensitivity and information bottleneck principles, an adaptive optimization module Distribution-aware Scaling Module (DSM) is introduced to dynamically balance classification and contrastive losses, enabling more stable and discriminative representation learning. Extensive experiments on two widely used datasets, DFEW and FERV39k, demonstrate that HDF significantly improves both recognition accuracy and robustness. Our method achieves superior weighted average recall (WAR) and unweighted average recall (UAR) while maintaining strong generalization across diverse and imbalanced scenarios. Codes are released at https://github.com/QIcita/HDF_DFER.
comment: Accepted by ACM MM'25
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-$45^\circ$ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
comment: 97 pages, 37 figures
♻ ☆ TriDi: Trilateral Diffusion of 3D Humans, Objects, and Interactions ICCV
Modeling 3D human-object interaction (HOI) is a problem of great interest for computer vision and a key enabler for virtual and mixed-reality applications. Existing methods work in a one-way direction: some recover plausible human interactions conditioned on a 3D object; others recover the object pose conditioned on a human pose. Instead, we provide the first unified model - TriDi which works in any direction. Concretely, we generate Human, Object, and Interaction modalities simultaneously with a new three-way diffusion process, allowing to model seven distributions with one network. We implement TriDi as a transformer attending to the various modalities' tokens, thereby discovering conditional relations between them. The user can control the interaction either as a text description of HOI or a contact map. We embed these two representations into a shared latent space, combining the practicality of text descriptions with the expressiveness of contact maps. Using a single network, TriDi unifies all the special cases of prior work and extends to new ones, modeling a family of seven distributions. Remarkably, despite using a single model, TriDi generated samples surpass one-way specialized baselines on GRAB and BEHAVE in terms of both qualitative and quantitative metrics, and demonstrating better diversity. We show the applicability of TriDi to scene population, generating objects for human-contact datasets, and generalization to unseen object geometry. The project page is available at: https://virtualhumans.mpi-inf.mpg.de/tridi.
comment: 2025 IEEE/CVF International Conference on Computer Vision (ICCV)
♻ ☆ iSEARLE: Improving Textual Inversion for Zero-Shot Composed Image Retrieval ICCV2023
Given a query consisting of a reference image and a relative caption, Composed Image Retrieval (CIR) aims to retrieve target images visually similar to the reference one while incorporating the changes specified in the relative caption. The reliance of supervised methods on labor-intensive manually labeled datasets hinders their broad applicability. In this work, we introduce a new task, Zero-Shot CIR (ZS-CIR), that addresses CIR without the need for a labeled training dataset. We propose an approach named iSEARLE (improved zero-Shot composEd imAge Retrieval with textuaL invErsion) that involves mapping the visual information of the reference image into a pseudo-word token in CLIP token embedding space and combining it with the relative caption. To foster research on ZS-CIR, we present an open-domain benchmarking dataset named CIRCO (Composed Image Retrieval on Common Objects in context), the first CIR dataset where each query is labeled with multiple ground truths and a semantic categorization. The experimental results illustrate that iSEARLE obtains state-of-the-art performance on three different CIR datasets -- FashionIQ, CIRR, and the proposed CIRCO -- and two additional evaluation settings, namely domain conversion and object composition. The dataset, the code, and the model are publicly available at https://github.com/miccunifi/SEARLE.
comment: Accepted at TPAMI, extended version of the ICCV2023 paper arXiv:2303.15247
♻ ☆ A Memory-Efficient Framework for Deformable Transformer with Neural Architecture Search
Deformable Attention Transformers (DAT) have shown remarkable performance in computer vision tasks by adaptively focusing on informative image regions. However, their data-dependent sampling mechanism introduces irregular memory access patterns, posing significant challenges for efficient hardware deployment. Existing acceleration methods either incur high hardware overhead or compromise model accuracy. To address these issues, this paper proposes a hardware-friendly optimization framework for DAT. First, a neural architecture search (NAS)-based method with a new slicing strategy is proposed to automatically divide the input feature into uniform patches during the inference process, avoiding memory conflicts without modifying model architecture. The method explores the optimal slice configuration by jointly optimizing hardware cost and inference accuracy. Secondly, an FPGA-based verification system is designed to test the performance of this framework on edge-side hardware. Algorithm experiments on the ImageNet-1K dataset demonstrate that our hardware-friendly framework can maintain have only 0.2% accuracy drop compared to the baseline DAT. Hardware experiments on Xilinx FPGA show the proposed method reduces DRAM access times to 18% compared with existing DAT acceleration methods.
comment: 5 pages
♻ ☆ Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training
End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.
Graphics 5
☆ Visual Analytics Using Tensor Unified Linear Comparative Analysis IEEE VIS 2025
Comparing tensors and identifying their (dis)similar structures is fundamental in understanding the underlying phenomena for complex data. Tensor decomposition methods help analysts extract tensors' essential characteristics and aid in visual analytics for tensors. In contrast to dimensionality reduction (DR) methods designed only for analyzing a matrix (i.e., second-order tensor), existing tensor decomposition methods do not support flexible comparative analysis. To address this analysis limitation, we introduce a new tensor decomposition method, named tensor unified linear comparative analysis (TULCA), by extending its DR counterpart, ULCA, for tensor analysis. TULCA integrates discriminant analysis and contrastive learning schemes for tensor decomposition, enabling flexible comparison of tensors. We also introduce an effective method to visualize a core tensor extracted from TULCA into a set of 2D visualizations. We integrate TULCA's functionalities into a visual analytics interface to support analysts in interpreting and refining the TULCA results. We demonstrate the efficacy of TULCA and the visual analytics interface with computational evaluations and two case studies, including an analysis of log data collected from a supercomputer.
comment: To appear in IEEE Transactions on Visualization and Computer Graphics and IEEE VIS 2025
☆ ChoreoMuse: Robust Music-to-Dance Video Generation with Style Transfer and Beat-Adherent Motion ACM MM 2025
Modern artistic productions increasingly demand automated choreography generation that adapts to diverse musical styles and individual dancer characteristics. Existing approaches often fail to produce high-quality dance videos that harmonize with both musical rhythm and user-defined choreography styles, limiting their applicability in real-world creative contexts. To address this gap, we introduce ChoreoMuse, a diffusion-based framework that uses SMPL format parameters and their variation version as intermediaries between music and video generation, thereby overcoming the usual constraints imposed by video resolution. Critically, ChoreoMuse supports style-controllable, high-fidelity dance video generation across diverse musical genres and individual dancer characteristics, including the flexibility to handle any reference individual at any resolution. Our method employs a novel music encoder MotionTune to capture motion cues from audio, ensuring that the generated choreography closely follows the beat and expressive qualities of the input music. To quantitatively evaluate how well the generated dances match both musical and choreographic styles, we introduce two new metrics that measure alignment with the intended stylistic cues. Extensive experiments confirm that ChoreoMuse achieves state-of-the-art performance across multiple dimensions, including video quality, beat alignment, dance diversity, and style adherence, demonstrating its potential as a robust solution for a wide range of creative applications. Video results can be found on our project page: https://choreomuse.github.io.
comment: 10 pages, 5 figures, accepted by the 33rd ACM International Conference on Multimedia (ACM MM 2025), demo page: https://choreomuse.github.io
☆ Taking Language Embedded 3D Gaussian Splatting into the Wild
Recent advances in leveraging large-scale Internet photo collections for 3D reconstruction have enabled immersive virtual exploration of landmarks and historic sites worldwide. However, little attention has been given to the immersive understanding of architectural styles and structural knowledge, which remains largely confined to browsing static text-image pairs. Therefore, can we draw inspiration from 3D in-the-wild reconstruction techniques and use unconstrained photo collections to create an immersive approach for understanding the 3D structure of architectural components? To this end, we extend language embedded 3D Gaussian splatting (3DGS) and propose a novel framework for open-vocabulary scene understanding from unconstrained photo collections. Specifically, we first render multiple appearance images from the same viewpoint as the unconstrained image with the reconstructed radiance field, then extract multi-appearance CLIP features and two types of language feature uncertainty maps-transient and appearance uncertainty-derived from the multi-appearance features to guide the subsequent optimization process. Next, we propose a transient uncertainty-aware autoencoder, a multi-appearance language field 3DGS representation, and a post-ensemble strategy to effectively compress, learn, and fuse language features from multiple appearances. Finally, to quantitatively evaluate our method, we introduce PT-OVS, a new benchmark dataset for assessing open-vocabulary segmentation performance on unconstrained photo collections. Experimental results show that our method outperforms existing methods, delivering accurate open-vocabulary segmentation and enabling applications such as interactive roaming with open-vocabulary queries, architectural style pattern recognition, and 3D scene editing.
comment: Visit our project page at https://yuzewang1998.github.io/takinglangsplatw/
☆ Mitigation of Social Media Platforms Impact on the Users SC
Social media platforms offer numerous benefits and allow people to come together for various causes. Many communities, academia, government agencies, institutions, healthcare, entertainment, and businesses are on social media platforms. They are intuitive and free for users. It has become unimaginable to live without social media. Their architecture and data handling are geared towards scalability, uninterrupted availability, and both personal and collaborative revenue generation. Primarily, artificial intelligence algorithms are employed on stored user data for optimization and feeds. This has the potential to impact user safety, privacy, and security, even when metadata is used. A new decentralized data arrangement framework based on the Fractal-tree and L-Systems algorithm is proposed to mitigate some of the impacts of social media platforms. Future work will focus on demonstrating the effectiveness of the new decentralized framework by comparing its results against state-of-the-art security methods currently used in databases. A cryptographic algorithm could also be implemented for the framework, employing a new key generation for each branch. This will strengthen database security; for example, if a user key is leaked, regenerating the key for each branch will keep the data secure by applying defense mechanisms in the proposed L-System-based tree framework.
comment: WSCG 2025 33. International Conference on Computer Graphics, Visualization and Computer Vision 2025
♻ ☆ Multi-Person Interaction Generation from Two-Person Motion Priors SIGGRAPH 2025
Generating realistic human motion with high-level controls is a crucial task for social understanding, robotics, and animation. With high-quality MOCAP data becoming more available recently, a wide range of data-driven approaches have been presented. However, modelling multi-person interactions still remains a less explored area. In this paper, we present Graph-driven Interaction Sampling, a method that can generate realistic and diverse multi-person interactions by leveraging existing two-person motion diffusion models as motion priors. Instead of training a new model specific to multi-person interaction synthesis, our key insight is to spatially and temporally separate complex multi-person interactions into a graph structure of two-person interactions, which we name the Pairwise Interaction Graph. We thus decompose the generation task into simultaneous single-person motion generation conditioned on one other's motion. In addition, to reduce artifacts such as interpenetrations of body parts in generated multi-person interactions, we introduce two graph-dependent guidance terms into the diffusion sampling scheme. Unlike previous work, our method can produce various high-quality multi-person interactions without having repetitive individual motions. Extensive experiments demonstrate that our approach consistently outperforms existing methods in reducing artifacts when generating a wide range of two-person and multi-person interactions.
comment: SIGGRAPH 2025 Conference Papers, project page at http://wenningxu.github.io/multicharacter/
Robotics 49
☆ Efficient Lines Detection for Robot Soccer
Self-localization is essential in robot soccer, where accurate detection of visual field features, such as lines and boundaries, is critical for reliable pose estimation. This paper presents a lightweight and efficient method for detecting soccer field lines using the ELSED algorithm, extended with a classification step that analyzes RGB color transitions to identify lines belonging to the field. We introduce a pipeline based on Particle Swarm Optimization (PSO) for threshold calibration to optimize detection performance, requiring only a small number of annotated samples. Our approach achieves accuracy comparable to a state-of-the-art deep learning model while offering higher processing speed, making it well-suited for real-time applications on low-power robotic platforms.
comment: 12 pages, 8 figures, RoboCup Symposium 2025
☆ Fast Learning of Non-Cooperative Spacecraft 3D Models through Primitive Initialization
The advent of novel view synthesis techniques such as NeRF and 3D Gaussian Splatting (3DGS) has enabled learning precise 3D models only from posed monocular images. Although these methods are attractive, they hold two major limitations that prevent their use in space applications: they require poses during training, and have high computational cost at training and inference. To address these limitations, this work contributes: (1) a Convolutional Neural Network (CNN) based primitive initializer for 3DGS using monocular images; (2) a pipeline capable of training with noisy or implicit pose estimates; and (3) and analysis of initialization variants that reduce the training cost of precise 3D models. A CNN takes a single image as input and outputs a coarse 3D model represented as an assembly of primitives, along with the target's pose relative to the camera. This assembly of primitives is then used to initialize 3DGS, significantly reducing the number of training iterations and input images needed -- by at least an order of magnitude. For additional flexibility, the CNN component has multiple variants with different pose estimation techniques. This work performs a comparison between these variants, evaluating their effectiveness for downstream 3DGS training under noisy or implicit pose estimates. The results demonstrate that even with imperfect pose supervision, the pipeline is able to learn high-fidelity 3D representations, opening the door for the use of novel view synthesis in space applications.
☆ EffiComm: Bandwidth Efficient Multi Agent Communication SC 2025
Collaborative perception allows connected vehicles to exchange sensor information and overcome each vehicle's blind spots. Yet transmitting raw point clouds or full feature maps overwhelms Vehicle-to-Vehicle (V2V) communications, causing latency and scalability problems. We introduce EffiComm, an end-to-end framework that transmits less than 40% of the data required by prior art while maintaining state-of-the-art 3D object detection accuracy. EffiComm operates on Bird's-Eye-View (BEV) feature maps from any modality and applies a two-stage reduction pipeline: (1) Selective Transmission (ST) prunes low-utility regions with a confidence mask; (2) Adaptive Grid Reduction (AGR) uses a Graph Neural Network (GNN) to assign vehicle-specific keep ratios according to role and network load. The remaining features are fused with a soft-gated Mixture-of-Experts (MoE) attention layer, offering greater capacity and specialization for effective feature integration. On the OPV2V benchmark, EffiComm reaches 0.84 mAP@0.7 while sending only an average of approximately 1.5 MB per frame, outperforming previous methods on the accuracy-per-bit curve. These results highlight the value of adaptive, learned communication for scalable Vehicle-to-Everything (V2X) perception.
comment: Accepted for publication at ITSC 2025
☆ How Age Influences the Interpretation of Emotional Body Language in Humanoid Robots -- long paper version
This paper presents an empirical study investigating how individuals across different age groups, children, young and older adults, interpret emotional body language expressed by the humanoid robot NAO. The aim is to offer insights into how users perceive and respond to emotional cues from robotic agents, through an empirical evaluation of the robot's effectiveness in conveying emotions to different groups of users. By analyzing data collected from elderly participants and comparing these findings with previously gathered data from young adults and children, the study highlights similarities and differences between the groups, with younger and older users more similar but different from young adults.
☆ Foundation Model-Driven Grasping of Unknown Objects via Center of Gravity Estimation
This study presents a grasping method for objects with uneven mass distribution by leveraging diffusion models to localize the center of gravity (CoG) on unknown objects. In robotic grasping, CoG deviation often leads to postural instability, where existing keypoint-based or affordance-driven methods exhibit limitations. We constructed a dataset of 790 images featuring unevenly distributed objects with keypoint annotations for CoG localization. A vision-driven framework based on foundation models was developed to achieve CoG-aware grasping. Experimental evaluations across real-world scenarios demonstrate that our method achieves a 49\% higher success rate compared to conventional keypoint-based approaches and an 11\% improvement over state-of-the-art affordance-driven methods. The system exhibits strong generalization with a 76\% CoG localization accuracy on unseen objects, providing a novel solution for precise and stable grasping tasks.
☆ Towards Multimodal Social Conversations with Robots: Using Vision-Language Models
Large language models have given social robots the ability to autonomously engage in open-domain conversations. However, they are still missing a fundamental social skill: making use of the multiple modalities that carry social interactions. While previous work has focused on task-oriented interactions that require referencing the environment or specific phenomena in social interactions such as dialogue breakdowns, we outline the overall needs of a multimodal system for social conversations with robots. We then argue that vision-language models are able to process this wide range of visual information in a sufficiently general manner for autonomous social robots. We describe how to adapt them to this setting, which technical challenges remain, and briefly discuss evaluation practices.
comment: Submitted to the workshop "Human - Foundation Models Interaction: A Focus On Multimodal Information" (FoMo-HRI) at IEEE RO-MAN 2025
☆ ReCoDe: Reinforcement Learning-based Dynamic Constraint Design for Multi-Agent Coordination
Constraint-based optimization is a cornerstone of robotics, enabling the design of controllers that reliably encode task and safety requirements such as collision avoidance or formation adherence. However, handcrafted constraints can fail in multi-agent settings that demand complex coordination. We introduce ReCoDe--Reinforcement-based Constraint Design--a decentralized, hybrid framework that merges the reliability of optimization-based controllers with the adaptability of multi-agent reinforcement learning. Rather than discarding expert controllers, ReCoDe improves them by learning additional, dynamic constraints that capture subtler behaviors, for example, by constraining agent movements to prevent congestion in cluttered scenarios. Through local communication, agents collectively constrain their allowed actions to coordinate more effectively under changing conditions. In this work, we focus on applications of ReCoDe to multi-agent navigation tasks requiring intricate, context-based movements and consensus, where we show that it outperforms purely handcrafted controllers, other hybrid approaches, and standard MARL baselines. We give empirical (real robot) and theoretical evidence that retaining a user-defined controller, even when it is imperfect, is more efficient than learning from scratch, especially because ReCoDe can dynamically change the degree to which it relies on this controller.
☆ Diverse and Adaptive Behavior Curriculum for Autonomous Driving: A Student-Teacher Framework with Multi-Agent RL IROS 2025
Autonomous driving faces challenges in navigating complex real-world traffic, requiring safe handling of both common and critical scenarios. Reinforcement learning (RL), a prominent method in end-to-end driving, enables agents to learn through trial and error in simulation. However, RL training often relies on rule-based traffic scenarios, limiting generalization. Additionally, current scenario generation methods focus heavily on critical scenarios, neglecting a balance with routine driving behaviors. Curriculum learning, which progressively trains agents on increasingly complex tasks, is a promising approach to improving the robustness and coverage of RL driving policies. However, existing research mainly emphasizes manually designed curricula, focusing on scenery and actor placement rather than traffic behavior dynamics. This work introduces a novel student-teacher framework for automatic curriculum learning. The teacher, a graph-based multi-agent RL component, adaptively generates traffic behaviors across diverse difficulty levels. An adaptive mechanism adjusts task difficulty based on student performance, ensuring exposure to behaviors ranging from common to critical. The student, though exchangeable, is realized as a deep RL agent with partial observability, reflecting real-world perception constraints. Results demonstrate the teacher's ability to generate diverse traffic behaviors. The student, trained with automatic curricula, outperformed agents trained on rule-based traffic, achieving higher rewards and exhibiting balanced, assertive driving.
comment: Paper accepted in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Monocular Vision-Based Swarm Robot Localization Using Equilateral Triangular Formations
Localization of mobile robots is crucial for deploying robots in real-world applications such as search and rescue missions. This work aims to develop an accurate localization system applicable to swarm robots equipped only with low-cost monocular vision sensors and visual markers. The system is designed to operate in fully open spaces, without landmarks or support from positioning infrastructures. To achieve this, we propose a localization method based on equilateral triangular formations. By leveraging the geometric properties of equilateral triangles, the accurate two-dimensional position of each participating robot is estimated using one-dimensional lateral distance information between robots, which can be reliably and accurately obtained with a low-cost monocular vision sensor. Experimental and simulation results demonstrate that, as travel time increases, the positioning error of the proposed method becomes significantly smaller than that of a conventional dead-reckoning system, another low-cost localization approach applicable to open environments.
☆ Bot Appétit! Exploring how Robot Morphology Shapes Perceived Affordances via a Mise en Place Scenario in a VR Kitchen
This study explores which factors of the visual design of a robot may influence how humans would place it in a collaborative cooking scenario and how these features may influence task delegation. Human participants were placed in a Virtual Reality (VR) environment and asked to set up a kitchen for cooking alongside a robot companion while considering the robot's morphology. We collected multimodal data for the arrangements created by the participants, transcripts of their think-aloud as they were performing the task, and transcripts of their answers to structured post-task questionnaires. Based on analyzing this data, we formulate several hypotheses: humans prefer to collaborate with biomorphic robots; human beliefs about the sensory capabilities of robots are less influenced by the morphology of the robot than beliefs about action capabilities; and humans will implement fewer avoidance strategies when sharing space with gracile robots. We intend to verify these hypotheses in follow-up studies.
comment: Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ SmartPNT-MSF: A Multi-Sensor Fusion Dataset for Positioning and Navigation Research
High-precision navigation and positioning systems are critical for applications in autonomous vehicles and mobile mapping, where robust and continuous localization is essential. To test and enhance the performance of algorithms, some research institutions and companies have successively constructed and publicly released datasets. However, existing datasets still suffer from limitations in sensor diversity and environmental coverage. To address these shortcomings and advance development in related fields, the SmartPNT Multisource Integrated Navigation, Positioning, and Attitude Dataset has been developed. This dataset integrates data from multiple sensors, including Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU), optical cameras, and LiDAR, to provide a rich and versatile resource for research in multi-sensor fusion and high-precision navigation. The dataset construction process is thoroughly documented, encompassing sensor configurations, coordinate system definitions, and calibration procedures for both cameras and LiDAR. A standardized framework for data collection and processing ensures consistency and scalability, enabling large-scale analysis. Validation using state-of-the-art Simultaneous Localization and Mapping (SLAM) algorithms, such as VINS-Mono and LIO-SAM, demonstrates the dataset's applicability for advanced navigation research. Covering a wide range of real-world scenarios, including urban areas, campuses, tunnels, and suburban environments, the dataset offers a valuable tool for advancing navigation technologies and addressing challenges in complex environments. By providing a publicly accessible, high-quality dataset, this work aims to bridge gaps in sensor diversity, data accessibility, and environmental representation, fostering further innovation in the field.
☆ Frequency Response Data-Driven Disturbance Observer Design for Flexible Joint Robots
Motion control of flexible joint robots (FJR) is challenged by inherent flexibility and configuration-dependent variations in system dynamics. While disturbance observers (DOB) can enhance system robustness, their performance is often limited by the elasticity of the joints and the variations in system parameters, which leads to a conservative design of the DOB. This paper presents a novel frequency response function (FRF)-based optimization method aimed at improving DOB performance, even in the presence of flexibility and system variability. The proposed method maximizes control bandwidth and effectively suppresses vibrations, thus enhancing overall system performance. Closed-loop stability is rigorously proven using the Nyquist stability criterion. Experimental validation on a FJR demonstrates that the proposed approach significantly improves robustness and motion performance, even under conditions of joint flexibility and system variation.
☆ GEAR: Gaze-Enabled Human-Robot Collaborative Assembly IROS 2025
Recent progress in robot autonomy and safety has significantly improved human-robot interactions, enabling robots to work alongside humans on various tasks. However, complex assembly tasks still present significant challenges due to inherent task variability and the need for precise operations. This work explores deploying robots in an assistive role for such tasks, where the robot assists by fetching parts while the skilled worker provides high-level guidance and performs the assembly. We introduce GEAR, a gaze-enabled system designed to enhance human-robot collaboration by allowing robots to respond to the user's gaze. We evaluate GEAR against a touch-based interface where users interact with the robot through a touchscreen. The experimental study involved 30 participants working on two distinct assembly scenarios of varying complexity. Results demonstrated that GEAR enabled participants to accomplish the assembly with reduced physical demand and effort compared to the touchscreen interface, especially for complex tasks, maintaining great performance, and receiving objects effectively. Participants also reported enhanced user experience while performing assembly tasks. Project page: sites.google.com/view/gear-hri
comment: Accepted for publication at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Assessing the Reliability and Validity of a Balance Mat for Measuring Postural Stability: A Combined Robot-Human Approach
Postural sway assessment is important for detecting balance problems and identifying people at risk of falls. Force plates (FP) are considered the gold standard postural sway assessment method in laboratory conditions, but their lack of portability and requirement of high-level expertise limit their widespread usage. This study evaluates the reliability and validity of a novel Balance Mat (BM) device, a low-cost portable alternative that uses optical fibre technology. The research includes two studies: a robot study and a human study. In the robot study, a UR10 robotic arm was used to obtain controlled sway patterns to assess the reliability and sensitivity of the BM. In the human study, 51 healthy young participants performed balance tasks on the BM in combination with an FP to evaluate the BM's validity. Sway metrics such as sway mean, sway absolute mean, sway root mean square (RMS), sway path, sway range, and sway velocity were calculated from both BM and FP and compared. Reliability was evaluated using the intra-class correlation coefficient (ICC), where values greater than 0.9 were considered excellent and values between 0.75 and 0.9 were considered good. Results from the robot study demonstrated good to excellent ICC values in both single and double-leg stances. The human study showed moderate to strong correlations for sway path and range. Using Bland-Altman plots for agreement analysis revealed proportional bias between the BM and the FP where the BM overestimated sway metrics compared to the FP. Calibration was used to improve the agreement between the devices. The device demonstrated consistent sway measurement across varied stance conditions, establishing both reliability and validity following appropriate calibration.
☆ GMM-Based Time-Varying Coverage Control
In coverage control problems that involve time-varying density functions, the coverage control law depends on spatial integrals of the time evolution of the density function. The latter is often neglected, replaced with an upper bound or calculated as a numerical approximation of the spatial integrals involved. In this paper, we consider a special case of time-varying density functions modeled as Gaussian Mixture Models (GMMs) that evolve with time via a set of time-varying sources (with known corresponding velocities). By imposing this structure, we obtain an efficient time-varying coverage controller that fully incorporates the time evolution of the density function. We show that the induced trajectories under our control law minimise the overall coverage cost. We elicit the structure of the proposed controller and compare it with a classical time-varying coverage controller, against which we benchmark the coverage performance in simulation. Furthermore, we highlight that the computationally efficient and distributed nature of the proposed control law makes it ideal for multi-vehicle robotic applications involving time-varying coverage control problems. We employ our method in plume monitoring using a swarm of drones. In an experimental field trial we show that drones guided by the proposed controller are able to track a simulated time-varying chemical plume in a distributed manner.
comment: Submitted to CDC 2025
A Fast and Light-weight Non-Iterative Visual Odometry with RGB-D Cameras
In this paper, we introduce a novel approach for efficiently estimating the 6-Degree-of-Freedom (DoF) robot pose with a decoupled, non-iterative method that capitalizes on overlapping planar elements. Conventional RGB-D visual odometry(RGBD-VO) often relies on iterative optimization solvers to estimate pose and involves a process of feature extraction and matching. This results in significant computational burden and time delays. To address this, our innovative method for RGBD-VO separates the estimation of rotation and translation. Initially, we exploit the overlaid planar characteristics within the scene to calculate the rotation matrix. Following this, we utilize a kernel cross-correlator (KCC) to ascertain the translation. By sidestepping the resource-intensive iterative optimization and feature extraction and alignment procedures, our methodology offers improved computational efficacy, achieving a performance of 71Hz on a lower-end i5 CPU. When the RGBD-VO does not rely on feature points, our technique exhibits enhanced performance in low-texture degenerative environments compared to state-of-the-art methods.
☆ Success in Humanoid Reinforcement Learning under Partial Observation
Reinforcement learning has been widely applied to robotic control, but effective policy learning under partial observability remains a major challenge, especially in high-dimensional tasks like humanoid locomotion. To date, no prior work has demonstrated stable training of humanoid policies with incomplete state information in the benchmark Gymnasium Humanoid-v4 environment. The objective in this environment is to walk forward as fast as possible without falling, with rewards provided for staying upright and moving forward, and penalties incurred for excessive actions and external contact forces. This research presents the first successful instance of learning under partial observability in this environment. The learned policy achieves performance comparable to state-of-the-art results with full state access, despite using only one-third to two-thirds of the original states. Moreover, the policy exhibits adaptability to robot properties, such as variations in body part masses. The key to this success is a novel history encoder that processes a fixed-length sequence of past observations in parallel. Integrated into a standard model-free algorithm, the encoder enables performance on par with fully observed baselines. We hypothesize that it reconstructs essential contextual information from recent observations, thereby enabling robust decision-making.
comment: 11 pages, 3 figures, and 4 tables. Not published anywhere else
☆ Perspective from a Higher Dimension: Can 3D Geometric Priors Help Visual Floorplan Localization? ACM MM 2025
Since a building's floorplans are easily accessible, consistent over time, and inherently robust to changes in visual appearance, self-localization within the floorplan has attracted researchers' interest. However, since floorplans are minimalist representations of a building's structure, modal and geometric differences between visual perceptions and floorplans pose challenges to this task. While existing methods cleverly utilize 2D geometric features and pose filters to achieve promising performance, they fail to address the localization errors caused by frequent visual changes and view occlusions due to variously shaped 3D objects. To tackle these issues, this paper views the 2D Floorplan Localization (FLoc) problem from a higher dimension by injecting 3D geometric priors into the visual FLoc algorithm. For the 3D geometric prior modeling, we first model geometrically aware view invariance using multi-view constraints, i.e., leveraging imaging geometric principles to provide matching constraints between multiple images that see the same points. Then, we further model the view-scene aligned geometric priors, enhancing the cross-modal geometry-color correspondences by associating the scene's surface reconstruction with the RGB frames of the sequence. Both 3D priors are modeled through self-supervised contrastive learning, thus no additional geometric or semantic annotations are required. These 3D priors summarized in extensive realistic scenes bridge the modal gap while improving localization success without increasing the computational burden on the FLoc algorithm. Sufficient comparative studies demonstrate that our method significantly outperforms state-of-the-art methods and substantially boosts the FLoc accuracy. All data and code will be released after the anonymous review.
comment: Accepted by ACM MM 2025
☆ PhysVarMix: Physics-Informed Variational Mixture Model for Multi-Modal Trajectory Prediction
Accurate prediction of future agent trajectories is a critical challenge for ensuring safe and efficient autonomous navigation, particularly in complex urban environments characterized by multiple plausible future scenarios. In this paper, we present a novel hybrid approach that integrates learning-based with physics-based constraints to address the multi-modality inherent in trajectory prediction. Our method employs a variational Bayesian mixture model to effectively capture the diverse range of potential future behaviors, moving beyond traditional unimodal assumptions. Unlike prior approaches that predominantly treat trajectory prediction as a data-driven regression task, our framework incorporates physical realism through sector-specific boundary conditions and Model Predictive Control (MPC)-based smoothing. These constraints ensure that predicted trajectories are not only data-consistent but also physically plausible, adhering to kinematic and dynamic principles. Furthermore, our method produces interpretable and diverse trajectory predictions, enabling enhanced downstream decision-making and planning in autonomous driving systems. We evaluate our approach on two benchmark datasets, demonstrating superior performance compared to existing methods. Comprehensive ablation studies validate the contributions of each component and highlight their synergistic impact on prediction accuracy and reliability. By balancing data-driven insights with physics-informed constraints, our approach offers a robust and scalable solution for navigating the uncertainties of real-world urban environments.
☆ Co-Win: Joint Object Detection and Instance Segmentation in LiDAR Point Clouds via Collaborative Window Processing
Accurate perception and scene understanding in complex urban environments is a critical challenge for ensuring safe and efficient autonomous navigation. In this paper, we present Co-Win, a novel bird's eye view (BEV) perception framework that integrates point cloud encoding with efficient parallel window-based feature extraction to address the multi-modality inherent in environmental understanding. Our method employs a hierarchical architecture comprising a specialized encoder, a window-based backbone, and a query-based decoder head to effectively capture diverse spatial features and object relationships. Unlike prior approaches that treat perception as a simple regression task, our framework incorporates a variational approach with mask-based instance segmentation, enabling fine-grained scene decomposition and understanding. The Co-Win architecture processes point cloud data through progressive feature extraction stages, ensuring that predicted masks are both data-consistent and contextually relevant. Furthermore, our method produces interpretable and diverse instance predictions, enabling enhanced downstream decision-making and planning in autonomous driving systems.
☆ RAKOMO: Reachability-Aware K-Order Markov Path Optimization for Quadrupedal Loco-Manipulation
Legged manipulators, such as quadrupeds equipped with robotic arms, require motion planning techniques that account for their complex kinematic constraints in order to perform manipulation tasks both safely and effectively. However, trajectory optimization methods often face challenges due to the hybrid dynamics introduced by contact discontinuities, and tend to neglect leg limitations during planning for computational reasons. In this work, we propose RAKOMO, a path optimization technique that integrates the strengths of K-Order Markov Optimization (KOMO) with a kinematically-aware criterion based on the reachable region defined as reachability margin. We leverage a neural-network to predict the margin and optimize it by incorporating it in the standard KOMO formulation. This approach enables rapid convergence of gradient-based motion planning -- commonly tailored for continuous systems -- while adapting it effectively to legged manipulators, successfully executing loco-manipulation tasks. We benchmark RAKOMO against a baseline KOMO approach through a set of simulations for pick-and-place tasks with the HyQReal quadruped robot equipped with a Kinova Gen3 robotic arm.
☆ GABRIL: Gaze-Based Regularization for Mitigating Causal Confusion in Imitation Learning IROS 2025
Imitation Learning (IL) is a widely adopted approach which enables agents to learn from human expert demonstrations by framing the task as a supervised learning problem. However, IL often suffers from causal confusion, where agents misinterpret spurious correlations as causal relationships, leading to poor performance in testing environments with distribution shift. To address this issue, we introduce GAze-Based Regularization in Imitation Learning (GABRIL), a novel method that leverages the human gaze data gathered during the data collection phase to guide the representation learning in IL. GABRIL utilizes a regularization loss which encourages the model to focus on causally relevant features identified through expert gaze and consequently mitigates the effects of confounding variables. We validate our approach in Atari environments and the Bench2Drive benchmark in CARLA by collecting human gaze datasets and applying our method in both domains. Experimental results show that the improvement of GABRIL over behavior cloning is around 179% more than the same number for other baselines in the Atari and 76% in the CARLA setup. Finally, we show that our method provides extra explainability when compared to regular IL agents.
comment: IROS 2025 camera-ready version. First two authors contributed equally
☆ Reward-Augmented Reinforcement Learning for Continuous Control in Precision Autonomous Parking via Policy Optimization Methods
Autonomous parking (AP) represents a critical yet complex subset of intelligent vehicle automation, characterized by tight spatial constraints, frequent close-range obstacle interactions, and stringent safety margins. However, conventional rule-based and model-predictive methods often lack the adaptability and generalization needed to handle the nonlinear and environment-dependent complexities of AP. To address these limitations, we propose a reward-augmented learning framework for AP (RARLAP), that mitigates the inherent complexities of continuous-domain control by leveraging structured reward design to induce smooth and adaptable policy behavior, trained entirely within a high-fidelity Unity-based custom 3D simulation environment. We systematically design and assess three structured reward strategies: goal-only reward (GOR), dense proximity reward (DPR), and milestone-augmented reward (MAR), each integrated with both on-policy and off-policy optimization paradigms. Empirical evaluations demonstrate that the on-policy MAR achieves a 91\% success rate, yielding smoother trajectories and more robust behavior, while GOR and DPR fail to guide effective learning. Convergence and trajectory analyses demonstrate that the proposed framework enhances policy adaptability, accelerates training, and improves safety in continuous control. Overall, RARLAP establishes that reward augmentation effectively addresses complex autonomous parking challenges, enabling scalable and efficient policy optimization with both on- and off-policy methods. To support reproducibility, the code accompanying this paper is publicly available.
☆ Extending Group Relative Policy Optimization to Continuous Control: A Theoretical Framework for Robotic Reinforcement Learning
Group Relative Policy Optimization (GRPO) has shown promise in discrete action spaces by eliminating value function dependencies through group-based advantage estimation. However, its application to continuous control remains unexplored, limiting its utility in robotics where continuous actions are essential. This paper presents a theoretical framework extending GRPO to continuous control environments, addressing challenges in high-dimensional action spaces, sparse rewards, and temporal dynamics. Our approach introduces trajectory-based policy clustering, state-aware advantage estimation, and regularized policy updates designed for robotic applications. We provide theoretical analysis of convergence properties and computational complexity, establishing a foundation for future empirical validation in robotic systems including locomotion and manipulation tasks.
comment: 13 pages, 2 figures
♻ ☆ RoboCar: A Rapidly Deployable Open-Source Platform for Autonomous Driving Research
This paper introduces RoboCar, an open-source research platform for autonomous driving developed at the University of Luxembourg. RoboCar provides a modular, cost-effective framework for the development of experimental Autonomous Driving Systems (ADS), utilizing the 2018 KIA Soul EV. The platform integrates a robust hardware and software architecture that aligns with the vehicle's existing systems, minimizing the need for extensive modifications. It supports various autonomous driving functions and has undergone real-world testing on public roads in Luxembourg City. This paper outlines the platform's architecture, integration challenges, and initial test results, offering insights into its application in advancing autonomous driving research. RoboCar is available to anyone at https://github.com/sntubix/robocar and is released under an open-source MIT license.
♻ ☆ ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.
comment: 12 pages,9 figures
♻ ☆ HuNavSim 2.0: An Enhanced Human Navigation Simulator for Human-Aware Robot Navigation
This work presents a new iteration of the Human Navigation Simulator (HuNavSim), a novel open-source tool for the simulation of different human-agent navigation behaviors in scenarios with mobile robots. The tool, programmed under the ROS 2 framework, can be used together with different well-known robotics simulators such as Gazebo or NVidia Isaac Sim. The main goal is to facilitate the development and evaluation of human-aware robot navigation systems in simulation. In this new version, several features have been improved and new ones added, such as the extended set of actions and conditions that can be combined in Behavior Trees to compound complex and realistic human behaviors.
comment: Preprint submitted to the 8th Iberian Robotics Conference (ROBOT 2025)
♻ ☆ Prolonging Tool Life: Learning Skillful Use of General-purpose Tools through Lifespan-guided Reinforcement Learning
In inaccessible environments with uncertain task demands, robots often rely on general-purpose tools that lack predefined usage strategies. These tools are not tailored for particular operations, making their longevity highly sensitive to how they are used. This creates a fundamental challenge: how can a robot learn a tool-use policy that both completes the task and prolongs the tool's lifespan? In this work, we address this challenge by introducing a reinforcement learning (RL) framework that incorporates tool lifespan as a factor during policy optimization. Our framework leverages Finite Element Analysis (FEA) and Miner's Rule to estimate Remaining Useful Life (RUL) based on accumulated stress, and integrates the RUL into the RL reward to guide policy learning toward lifespan-guided behavior. To handle the fact that RUL can only be estimated after task execution, we introduce an Adaptive Reward Normalization (ARN) mechanism that dynamically adjusts reward scaling based on estimated RULs, ensuring stable learning signals. We validate our method across simulated and real-world tool use tasks, including Object-Moving and Door-Opening with multiple general-purpose tools. The learned policies consistently prolong tool lifespan (up to 8.01x in simulation) and transfer effectively to real-world settings, demonstrating the practical value of learning lifespan-guided tool use strategies.
comment: Under review
♻ ☆ Towards Generalized Range-View LiDAR Segmentation in Adverse Weather
LiDAR segmentation has emerged as an important task to enrich scene perception and understanding. Range-view-based methods have gained popularity due to their high computational efficiency and compatibility with real-time deployment. However, their generalized performance under adverse weather conditions remains underexplored, limiting their reliability in real-world environments. In this work, we identify and analyze the unique challenges that affect the generalization of range-view LiDAR segmentation in severe weather. To address these challenges, we propose a modular and lightweight framework that enhances robustness without altering the core architecture of existing models. Our method reformulates the initial stem block of standard range-view networks into two branches to process geometric attributes and reflectance intensity separately. Specifically, a Geometric Abnormality Suppression (GAS) module reduces the influence of weather-induced spatial noise, and a Reflectance Distortion Calibration (RDC) module corrects reflectance distortions through memory-guided adaptive instance normalization. The processed features are then fused and passed to the original segmentation pipeline. Extensive experiments on different benchmarks and baseline models demonstrate that our approach significantly improves generalization to adverse weather with minimal inference overhead, offering a practical and effective solution for real-world LiDAR segmentation.
♻ ☆ Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning ICCV 2025
Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
comment: Accepted at ICCV 2025 (Highlight)
♻ ☆ $S^2M^2$: Scalable Stereo Matching Model for Reliable Depth Estimation ICCV
The pursuit of a generalizable stereo matching model, capable of performing across varying resolutions and disparity ranges without dataset-specific fine-tuning, has revealed a fundamental trade-off. Iterative local search methods achieve high scores on constrained benchmarks, but their core mechanism inherently limits the global consistency required for true generalization. On the other hand, global matching architectures, while theoretically more robust, have been historically rendered infeasible by prohibitive computational and memory costs. We resolve this dilemma with $S^2M^2$: a global matching architecture that achieves both state-of-the-art accuracy and high efficiency without relying on cost volume filtering or deep refinement stacks. Our design integrates a multi-resolution transformer for robust long-range correspondence, trained with a novel loss function that concentrates probability on feasible matches. This approach enables a more robust joint estimation of disparity, occlusion, and confidence. $S^2M^2$ establishes a new state of the art on the Middlebury v3 and ETH3D benchmarks, significantly outperforming prior methods across most metrics while reconstructing high-quality details with competitive efficiency.
comment: 8 pages, 5 figures, ICCV accepted paper
♻ ☆ Signal Temporal Logic Compliant Co-design of Planning and Control
This work presents a novel co-design strategy that integrates trajectory planning and control to handle STL-based tasks in autonomous robots. The method consists of two phases: $(i)$ learning spatio-temporal motion primitives to encapsulate the inherent robot-specific constraints and $(ii)$ constructing an STL-compliant motion plan from these primitives. Initially, we employ reinforcement learning to construct a library of control policies that perform trajectories described by the motion primitives. Then, we map motion primitives to spatio-temporal characteristics. Subsequently, we present a sampling-based STL-compliant motion planning strategy tailored to meet the STL specification. The proposed model-free approach, which generates feasible STL-compliant motion plans across various environments, is validated on differential-drive and quadruped robots across various STL specifications. Demonstration videos are available at https://tinyurl.com/m6zp7rsm.
♻ ☆ Cuddle-Fish: Exploring a Soft Floating Robot with Flapping Wings for Physical Interactions
Flying robots, such as quadrotor drones, offer new possibilities for human-robot interaction but often pose safety risks due to fast-spinning propellers, rigid structures, and noise. In contrast, lighter-than-air flapping-wing robots, inspired by animal movement, offer a soft, quiet, and touch-safe alternative. Building on these advantages, we present Cuddle-Fish, a soft flapping-wing floating robot designed for close-proximity interactions in indoor spaces. Through a user study with 24 participants, we explored their perceptions of the robot and experiences during a series of co-located demonstrations in which the robot moved near them. Results showed that participants felt safe, willingly engaged in touch-based interactions with the robot, and exhibited spontaneous affective behaviours, such as patting, stroking, hugging, and cheek-touching, without external prompting. They also reported positive emotional responses towards the robot. These findings suggest that the soft floating robot with flapping wings can serve as a novel and socially acceptable alternative to traditional rigid flying robots, opening new potential for applications in companionship, affective interaction, and play in everyday indoor environments.
comment: Augmented Humans International Conference 2025 (AHs '25)
♻ ☆ Integration of a Graph-Based Path Planner and Mixed-Integer MPC for Robot Navigation in Cluttered Environments
The ability to update a path plan is a required capability for autonomous mobile robots navigating through uncertain environments. This paper proposes a re-planning strategy using a multilayer planning and control framework for cases where the robot's environment is partially known. A medial axis graph-based planner defines a global path plan based on known obstacles, where each edge in the graph corresponds to a unique corridor. A mixed-integer model predictive control (MPC) method detects if a terminal constraint derived from the global plan is infeasible, subject to a non-convex description of the local environment. Infeasibility detection is used to trigger efficient global re-planning via medial axis graph edge deletion. The proposed re-planning strategy is demonstrated experimentally.
♻ ☆ Fast-Revisit Coverage Path Planning for Autonomous Mobile Patrol Robots Using Long-Range Sensor Information IROS
The utilization of Unmanned Ground Vehicles (UGVs) for patrolling industrial sites has expanded significantly. These UGVs typically are equipped with perception systems, e.g., computer vision, with limited range due to sensor limitations or site topology. High-level control of the UGVs requires Coverage Path Planning (CPP) algorithms that navigate all relevant waypoints and promptly start the next cycle. In this paper, we propose the novel Fast-Revisit Coverage Path Planning (FaRe-CPP) algorithm using a greedy heuristic approach to propose waypoints for maximum coverage area and a random search-based path optimization technique to obtain a path along the proposed waypoints with minimum revisit time. We evaluated the algorithm in a simulated environment using Gazebo and a camera-equipped TurtleBot3 against a number of existing algorithms. Compared to their average path lengths and revisit times, our FaRe-CPP algorithm showed a reduction of at least 21% and 33%, respectively, in these highly relevant performance indicators.
comment: accepted for presentation at the International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ SE-VLN: A Self-Evolving Vision-Language Navigation Framework Based on Multimodal Large Language Models
Recent advances in vision-language navigation (VLN) were mainly attributed to emerging large language models (LLMs). These methods exhibited excellent generalization capabilities in instruction understanding and task reasoning. However, they were constrained by the fixed knowledge bases and reasoning abilities of LLMs, preventing fully incorporating experiential knowledge and thus resulting in a lack of efficient evolutionary capacity. To address this, we drew inspiration from the evolution capabilities of natural agents, and proposed a self-evolving VLN framework (SE-VLN) to endow VLN agents with the ability to continuously evolve during testing. To the best of our knowledge, it was the first time that an multimodal LLM-powered self-evolving VLN framework was proposed. Specifically, SE-VLN comprised three core modules, i.e., a hierarchical memory module to transfer successful and failure cases into reusable knowledge, a retrieval-augmented thought-based reasoning module to retrieve experience and enable multi-step decision-making, and a reflection module to realize continual evolution. Comprehensive tests illustrated that the SE-VLN achieved navigation success rates of 57% and 35.2% in unseen environments, representing absolute performance improvements of 23.9% and 15.0% over current state-of-the-art methods on R2R and REVERSE datasets, respectively. Moreover, the SE-VLN showed performance improvement with increasing experience repository, elucidating its great potential as a self-evolving agent framework for VLN.
♻ ☆ Exploring 6G Potential for Industrial Digital Twinning and Swarm Intelligence in Obstacle-Rich Environments
With the advent of Sixth Generation (6G) technology, the demand for efficient and intelligent systems in industrial applications has surged, driving the need for advanced solutions in target localization. Utilizing swarm robots to locate unknown targets involves navigating increasingly complex environments. digital twin (DT) offers a robust solution by creating a virtual replica of the physical world, which enhances the swarm's navigation capabilities. Our framework leverages DT and integrates swarm intelligence (SI) to store physical map information in the cloud, enabling robots to efficiently locate unknown targets. The simulation results demonstrate that the DT framework, augmented by SI, significantly improves target location efficiency in obstacle-rich environments compared to traditional methods. This research underscores the potential of combining DT and swarm intelligence to advance the field of robotic navigation and target localization in complex industrial settings.
comment: Submitted to IEEE VTM
♻ ☆ RAMBO: RL-augmented Model-based Whole-body Control for Loco-manipulation
Loco-manipulation, physical interaction of various objects that is concurrently coordinated with locomotion, remains a major challenge for legged robots due to the need for both precise end-effector control and robustness to unmodeled dynamics. While model-based controllers provide precise planning via online optimization, they are limited by model inaccuracies. In contrast, learning-based methods offer robustness, but they struggle with precise modulation of interaction forces. We introduce RAMBO, a hybrid framework that integrates model-based whole-body control within a feedback policy trained with reinforcement learning. The model-based module generates feedforward torques by solving a quadratic program, while the policy provides feedback corrective terms to enhance robustness. We validate our framework on a quadruped robot across a diverse set of real-world loco-manipulation tasks, such as pushing a shopping cart, balancing a plate, and holding soft objects, in both quadrupedal and bipedal walking. Our experiments demonstrate that RAMBO enables precise manipulation capabilities while achieving robust and dynamic locomotion.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ DyWA: Dynamics-adaptive World Action Model for Generalizable Non-prehensile Manipulation
Nonprehensile manipulation is crucial for handling objects that are too thin, large, or otherwise ungraspable in unstructured environments. While conventional planning-based approaches struggle with complex contact modeling, learning-based methods have recently emerged as a promising alternative. However, existing learning-based approaches face two major limitations: they heavily rely on multi-view cameras and precise pose tracking, and they fail to generalize across varying physical conditions, such as changes in object mass and table friction. To address these challenges, we propose the Dynamics-Adaptive World Action Model (DyWA), a novel framework that enhances action learning by jointly predicting future states while adapting to dynamics variations based on historical trajectories. By unifying the modeling of geometry, state, physics, and robot actions, DyWA enables more robust policy learning under partial observability. Compared to baselines, our method improves the success rate by 31.5% using only single-view point cloud observations in the simulation. Furthermore, DyWA achieves an average success rate of 68% in real-world experiments, demonstrating its ability to generalize across diverse object geometries, adapt to varying table friction, and robustness in challenging scenarios such as half-filled water bottles and slippery surfaces.
comment: Project Page:https://pku-epic.github.io/DyWA/
♻ ☆ Anti-Degeneracy Scheme for Lidar SLAM based on Particle Filter in Geometry Feature-Less Environments
Simultaneous localization and mapping (SLAM) based on particle filtering has been extensively employed in indoor scenarios due to its high efficiency. However, in geometry feature-less scenes, the accuracy is severely reduced due to lack of constraints. In this article, we propose an anti-degeneracy system based on deep learning. Firstly, we design a scale-invariant linear mapping to convert coordinates in continuous space into discrete indexes, in which a data augmentation method based on Gaussian model is proposed to ensure the model performance by effectively mitigating the impact of changes in the number of particles on the feature distribution. Secondly, we develop a degeneracy detection model using residual neural networks (ResNet) and transformer which is able to identify degeneracy by scrutinizing the distribution of the particle population. Thirdly, an adaptive anti-degeneracy strategy is designed, which first performs fusion and perturbation on the resample process to provide rich and accurate initial values for the pose optimization, and use a hierarchical pose optimization combining coarse and fine matching, which is able to adaptively adjust the optimization frequency and the sensor trustworthiness according to the degree of degeneracy, in order to enhance the ability of searching the global optimal pose. Finally, we demonstrate the optimality of the model, as well as the improvement of the image matrix method and GPU on the computation time through ablation experiments, and verify the performance of the anti-degeneracy system in different scenarios through simulation experiments and real experiments. This work has been submitted to IEEE for publication. Copyright may be transferred without notice, after which this version may no longer be available.
comment: 8 pages, 9 figures, IEEE Robotics and Automation Letters
♻ ☆ Collision-free Control Barrier Functions for General Ellipsoids via Separating Hyperplane
This paper presents a novel collision avoidance method for general ellipsoids based on control barrier functions (CBFs) and separating hyperplanes. First, collision-free conditions for general ellipsoids are analytically derived using the concept of dual cones. These conditions are incorporated into the CBF framework by extending the system dynamics of controlled objects with separating hyperplanes, enabling efficient and reliable collision avoidance. The validity of the proposed collision-free CBFs is rigorously proven, ensuring their effectiveness in enforcing safety constraints. The proposed method requires only single-level optimization, significantly reducing computational time compared to state-of-the-art methods. Numerical simulations and real-world experiments demonstrate the effectiveness and practicality of the proposed algorithm.
♻ ☆ Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
Multi-agent reinforcement learning (MARL) for cyber-physical vehicle systems usually requires a significantly long training time due to their inherent complexity. Furthermore, deploying the trained policies in the real world demands a feature-rich environment along with multiple physical embodied agents, which may not be feasible due to monetary, physical, energy, or safety constraints. This work seeks to address these pain points by presenting a mixed-reality (MR) digital twin (DT) framework capable of: (i) boosting training speeds by selectively scaling parallelized simulation workloads on-demand, and (ii) immersing the MARL policies across hybrid simulation-to-reality (sim2real) experiments. The viability and performance of the proposed framework are highlighted through two representative use cases, which cover cooperative as well as competitive classes of MARL problems. We study the effect of: (i) agent and environment parallelization on training time, and (ii) systematic domain randomization on zero-shot sim2real transfer, across both case studies. Results indicate up to 76.3% reduction in training time with the proposed parallelization scheme and sim2real gap as low as 2.9% using the proposed deployment method.
comment: Accepted in IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Motion Synthesis with Sparse and Flexible Keyjoint Control ICCV 2025
Creating expressive character animations is labor-intensive, requiring intricate manual adjustment of animators across space and time. Previous works on controllable motion generation often rely on a predefined set of dense spatio-temporal specifications (e.g., dense pelvis trajectories with exact per-frame timing), limiting practicality for animators. To process high-level intent and intuitive control in diverse scenarios, we propose a practical controllable motions synthesis framework that respects sparse and flexible keyjoint signals. Our approach employs a decomposed diffusion-based motion synthesis framework that first synthesizes keyjoint movements from sparse input control signals and then synthesizes full-body motion based on the completed keyjoint trajectories. The low-dimensional keyjoint movements can easily adapt to various control signal types, such as end-effector position for diverse goal-driven motion synthesis, or incorporate functional constraints on a subset of keyjoints. Additionally, we introduce a time-agnostic control formulation, eliminating the need for frame-specific timing annotations and enhancing control flexibility. Then, the shared second stage can synthesize a natural whole-body motion that precisely satisfies the task requirement from dense keyjoint movements. We demonstrate the effectiveness of sparse and flexible keyjoint control through comprehensive experiments on diverse datasets and scenarios.
comment: Accepted to ICCV 2025. Project Page: http://inwoohwang.me/SFControl
♻ ☆ Incremental Learning for Robot Shared Autonomy
Shared autonomy holds promise for improving the usability and accessibility of assistive robotic arms, but current methods often rely on costly expert demonstrations and remain static after pretraining, limiting their ability to handle real-world variations. Even with extensive training data, unforeseen challenges--especially those that fundamentally alter task dynamics, such as unexpected obstacles or spatial constraints--can cause assistive policies to break down, leading to ineffective or unreliable assistance. To address this, we propose ILSA, an Incrementally Learned Shared Autonomy framework that continuously refines its assistive policy through user interactions, adapting to real-world challenges beyond the scope of pre-collected data. At the core of ILSA is a structured fine-tuning mechanism that enables continual improvement with each interaction by effectively integrating limited new interaction data while preserving prior knowledge, ensuring a balance between adaptation and generalization. A user study with 20 participants demonstrates ILSA's effectiveness, showing faster task completion and improved user experience compared to static alternatives. Code and videos are available at https://ilsa-robo.github.io/.
♻ ☆ A Systematic Digital Engineering Approach to Verification & Validation of Autonomous Ground Vehicles in Off-Road Environments
The engineering community currently encounters significant challenges in the systematic development and validation of autonomy algorithms for off-road ground vehicles. These challenges are posed by unusually high test parameters and algorithmic variants. In order to address these pain points, this work presents an optimized digital engineering framework that tightly couples digital twin simulations with model-based systems engineering (MBSE) and model-based design (MBD) workflows. The efficacy of the proposed framework is demonstrated through an end-to-end case study of an autonomous light tactical vehicle (LTV) performing visual servoing to drive along a dirt road and reacting to any obstacles or environmental changes. The presented methodology allows for traceable requirements engineering, efficient variant management, granular parameter sweep setup, systematic test-case definition, and automated execution of the simulations. The candidate off-road autonomy algorithm is evaluated for satisfying requirements against a battery of 128 test cases, which is procedurally generated based on the test parameters (times of the day and weather conditions) and algorithmic variants (perception, planning, and control sub-systems). Finally, the test results and key performance indicators are logged, and the test report is generated automatically. This then allows for manual as well as automated data analysis with traceability and tractability across the digital thread.
comment: Accepted at Modeling, Estimation and Control Conference (MECC) 2025. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC9523
♻ ☆ MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation
In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.
♻ ☆ TrafficMCTS: A Closed-Loop Traffic Flow Generation Framework with Group-Based Monte Carlo Tree Search
Traffic flow simulation within the domain of intelligent transportation systems is garnering significant attention, and generating realistic, diverse, and human-like traffic patterns presents critical challenges that must be addressed. Current approaches often hinge on predefined driver models, objective optimization, or reliance on pre-recorded driving datasets, imposing limitations on their scalability, versatility, and adaptability. In this paper, we introduce TrafficMCTS, an innovative framework that harnesses the synergy of group-based Monte Carlo tree search (MCTS) and Social Value Orientation (SVO) to engender a multifaceted traffic flow with varying driving styles and cooperative tendencies. Anchored by a closed-loop architecture, our framework enables vehicles to dynamically adapt to their environment in real time, and ensure feasible collision-free trajectories. Through comprehensive comparisons with state-of-the-art methods, we illuminate the advantages of our approach in terms of computational efficiency, planning success rate, intention completion time, and diversity metrics. Besides, we simulate multiple scenarios to illustrate the effectiveness of the proposed framework and highlight its ability to induce diverse social behaviors within the traffic flow. Finally, we validate the scalability of TrafficMCTS by demonstrating its capability to efficiently simulate diverse traffic scenarios involving numerous interacting vehicles within a complex road network, capturing the intricate dynamics of human-like driving behaviors.
comment: Published in IEEE Transactions on Intelligent Transportation Systems
♻ ☆ DogLegs: Robust Proprioceptive State Estimation for Legged Robots Using Multiple Leg-Mounted IMUs
Robust and accurate proprioceptive state estimation of the main body is crucial for legged robots to execute tasks in extreme environments where exteroceptive sensors, such as LiDARs and cameras, may become unreliable. In this paper, we propose DogLegs, a state estimation system for legged robots that fuses the measurements from a body-mounted inertial measurement unit (Body-IMU), joint encoders, and multiple leg-mounted IMUs (Leg-IMU) using an extended Kalman filter (EKF). The filter system contains the error states of all IMU frames. The Leg-IMUs are used to detect foot contact, thereby providing zero-velocity measurements to update the state of the Leg-IMU frames. Additionally, we compute the relative position constraints between the Body-IMU and Leg-IMUs by the leg kinematics and use them to update the main body state and reduce the error drift of the individual IMU frames. Field experimental results have shown that our proposed DogLegs system achieves better state estimation accuracy compared to the traditional leg odometry method (using only Body-IMU and joint encoders) across various terrains. We make our datasets publicly available to benefit the research community (https://github.com/YibinWu/leg-odometry).
comment: 8 pages, 8 figures
♻ ☆ Affordance-Guided Reinforcement Learning via Visual Prompting IROS
Robots equipped with reinforcement learning (RL) have the potential to learn a wide range of skills solely from a reward signal. However, obtaining a robust and dense reward signal for general manipulation tasks remains a challenge. Existing learning-based approaches require significant data, such as human demonstrations of success and failure, to learn task-specific reward functions. Recently, there is also a growing adoption of large multi-modal foundation models for robotics that can perform visual reasoning in physical contexts and generate coarse robot motions for manipulation tasks. Motivated by this range of capability, in this work, we present Keypoint-based Affordance Guidance for Improvements (KAGI), a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL. State-of-the-art VLMs have demonstrated impressive zero-shot reasoning about affordances through keypoints, and we use these to define dense rewards that guide autonomous robotic learning. On diverse real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 30K online fine-tuning steps. Additionally, we demonstrate the robustness of KAGI to reductions in the number of in-domain demonstrations used for pre-training, reaching similar performance in 45K online fine-tuning steps. Project website: https://sites.google.com/view/affordance-guided-rl
comment: 8 pages, 6 figures. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
Computer Vision and Pattern Recognition 140
☆ HairCUP: Hair Compositional Universal Prior for 3D Gaussian Avatars ICCV 2025
We present a universal prior model for 3D head avatars with explicit hair compositionality. Existing approaches to build generalizable priors for 3D head avatars often adopt a holistic modeling approach, treating the face and hair as an inseparable entity. This overlooks the inherent compositionality of the human head, making it difficult for the model to naturally disentangle face and hair representations, especially when the dataset is limited. Furthermore, such holistic models struggle to support applications like 3D face and hairstyle swapping in a flexible and controllable manner. To address these challenges, we introduce a prior model that explicitly accounts for the compositionality of face and hair, learning their latent spaces separately. A key enabler of this approach is our synthetic hairless data creation pipeline, which removes hair from studio-captured datasets using estimated hairless geometry and texture derived from a diffusion prior. By leveraging a paired dataset of hair and hairless captures, we train disentangled prior models for face and hair, incorporating compositionality as an inductive bias to facilitate effective separation. Our model's inherent compositionality enables seamless transfer of face and hair components between avatars while preserving identity. Additionally, we demonstrate that our model can be fine-tuned in a few-shot manner using monocular captures to create high-fidelity, hair-compositional 3D head avatars for unseen subjects. These capabilities highlight the practical applicability of our approach in real-world scenarios, paving the way for flexible and expressive 3D avatar generation.
comment: ICCV 2025. Project Page: https://bjkim95.github.io/haircup/
☆ MMBench-GUI: Hierarchical Multi-Platform Evaluation Framework for GUI Agents
We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI automation agents across Windows, macOS, Linux, iOS, Android, and Web platforms. It comprises four levels: GUI Content Understanding, Element Grounding, Task Automation, and Task Collaboration, covering essential skills for GUI agents. In addition, we propose a novel Efficiency-Quality Area (EQA) metric to assess GUI agent execution efficiency in online automation scenarios. Through MMBench-GUI, we identify accurate visual grounding as a critical determinant of overall task success, emphasizing the substantial benefits of modular frameworks that integrate specialized grounding modules. Furthermore, to achieve reliable GUI automation, an agent requires strong task planning and cross-platform generalization abilities, with long-context memory, a broad action space, and long-term reasoning playing a critical role. More important, task efficiency remains a critically underexplored dimension, and all models suffer from substantial inefficiencies, with excessive redundant steps even when tasks are ultimately completed. The integration of precise localization, effective planning, and early stopping strategies is indispensable to enable truly efficient and scalable GUI automation. Our benchmark code, evaluation data, and running environment will be publicly available at https://github.com/open-compass/MMBench-GUI.
comment: in progress
☆ DINO-SLAM: DINO-informed RGB-D SLAM for Neural Implicit and Explicit Representations
This paper presents DINO-SLAM, a DINO-informed design strategy to enhance neural implicit (Neural Radiance Field -- NeRF) and explicit representations (3D Gaussian Splatting -- 3DGS) in SLAM systems through more comprehensive scene representations. Purposely, we rely on a Scene Structure Encoder (SSE) that enriches DINO features into Enhanced DINO ones (EDINO) to capture hierarchical scene elements and their structural relationships. Building upon it, we propose two foundational paradigms for NeRF and 3DGS SLAM systems integrating EDINO features. Our DINO-informed pipelines achieve superior performance on the Replica, ScanNet, and TUM compared to state-of-the-art methods.
☆ Efficient Lines Detection for Robot Soccer
Self-localization is essential in robot soccer, where accurate detection of visual field features, such as lines and boundaries, is critical for reliable pose estimation. This paper presents a lightweight and efficient method for detecting soccer field lines using the ELSED algorithm, extended with a classification step that analyzes RGB color transitions to identify lines belonging to the field. We introduce a pipeline based on Particle Swarm Optimization (PSO) for threshold calibration to optimize detection performance, requiring only a small number of annotated samples. Our approach achieves accuracy comparable to a state-of-the-art deep learning model while offering higher processing speed, making it well-suited for real-time applications on low-power robotic platforms.
comment: 12 pages, 8 figures, RoboCup Symposium 2025
☆ Back to the Features: DINO as a Foundation for Video World Models
We present DINO-world, a powerful generalist video world model trained to predict future frames in the latent space of DINOv2. By leveraging a pre-trained image encoder and training a future predictor on a large-scale uncurated video dataset, DINO-world learns the temporal dynamics of diverse scenes, from driving and indoor scenes to simulated environments. We show that DINO-world outperforms previous models on a variety of video prediction benchmarks, e.g. segmentation and depth forecasting, and demonstrates strong understanding of intuitive physics. Furthermore, we show that it is possible to fine-tune the predictor on observation-action trajectories. The resulting action-conditioned world model can be used for planning by simulating candidate trajectories in latent space.
☆ Fast Learning of Non-Cooperative Spacecraft 3D Models through Primitive Initialization
The advent of novel view synthesis techniques such as NeRF and 3D Gaussian Splatting (3DGS) has enabled learning precise 3D models only from posed monocular images. Although these methods are attractive, they hold two major limitations that prevent their use in space applications: they require poses during training, and have high computational cost at training and inference. To address these limitations, this work contributes: (1) a Convolutional Neural Network (CNN) based primitive initializer for 3DGS using monocular images; (2) a pipeline capable of training with noisy or implicit pose estimates; and (3) and analysis of initialization variants that reduce the training cost of precise 3D models. A CNN takes a single image as input and outputs a coarse 3D model represented as an assembly of primitives, along with the target's pose relative to the camera. This assembly of primitives is then used to initialize 3DGS, significantly reducing the number of training iterations and input images needed -- by at least an order of magnitude. For additional flexibility, the CNN component has multiple variants with different pose estimation techniques. This work performs a comparison between these variants, evaluating their effectiveness for downstream 3DGS training under noisy or implicit pose estimates. The results demonstrate that even with imperfect pose supervision, the pipeline is able to learn high-fidelity 3D representations, opening the door for the use of novel view synthesis in space applications.
GS-Occ3D: Scaling Vision-only Occupancy Reconstruction for Autonomous Driving with Gaussian Splatting ICCV 2025
Occupancy is crucial for autonomous driving, providing essential geometric priors for perception and planning. However, existing methods predominantly rely on LiDAR-based occupancy annotations, which limits scalability and prevents leveraging vast amounts of potential crowdsourced data for auto-labeling. To address this, we propose GS-Occ3D, a scalable vision-only framework that directly reconstructs occupancy. Vision-only occupancy reconstruction poses significant challenges due to sparse viewpoints, dynamic scene elements, severe occlusions, and long-horizon motion. Existing vision-based methods primarily rely on mesh representation, which suffer from incomplete geometry and additional post-processing, limiting scalability. To overcome these issues, GS-Occ3D optimizes an explicit occupancy representation using an Octree-based Gaussian Surfel formulation, ensuring efficiency and scalability. Additionally, we decompose scenes into static background, ground, and dynamic objects, enabling tailored modeling strategies: (1) Ground is explicitly reconstructed as a dominant structural element, significantly improving large-area consistency; (2) Dynamic vehicles are separately modeled to better capture motion-related occupancy patterns. Extensive experiments on the Waymo dataset demonstrate that GS-Occ3D achieves state-of-the-art geometry reconstruction results. By curating vision-only binary occupancy labels from diverse urban scenes, we show their effectiveness for downstream occupancy models on Occ3D-Waymo and superior zero-shot generalization on Occ3D-nuScenes. It highlights the potential of large-scale vision-based occupancy reconstruction as a new paradigm for autonomous driving perception. Project Page: https://gs-occ3d.github.io/
comment: ICCV 2025. Project Page: https://gs-occ3d.github.io/
☆ CircuitProbe: Dissecting Spatiotemporal Visual Semantics with Circuit Tracing
The processing mechanisms underlying language and image understanding in large vision-language models (LVLMs) have been extensively studied. However, the internal reasoning mechanisms of LVLMs for spatiotemporal understanding remain poorly understood. In this work, we introduce a systematic, circuit-based framework designed to investigate how spatiotemporal visual semantics are represented and processed within these LVLMs. Specifically, our framework comprises three circuits: visual auditing circuit, semantic tracing circuit, and attention flow circuit. Through the lens of these circuits, we discover that visual semantics are highly localized to specific object tokens--removing these tokens can degrade model performance by up to 92.6%. Furthermore, we identify that interpretable concepts of objects and actions emerge and become progressively refined in the middle-to-late layers of LVLMs. In contrary to the current works that solely focus on objects in one image, we reveal that the middle-to-late layers of LVLMs exhibit specialized functional localization for spatiotemporal semantics. Our findings offer significant mechanistic insights into spatiotemporal semantics analysis of LVLMs, laying a foundation for designing more robust and interpretable models.
☆ DEFNet: Multitasks-based Deep Evidential Fusion Network for Blind Image Quality Assessment
Blind image quality assessment (BIQA) methods often incorporate auxiliary tasks to improve performance. However, existing approaches face limitations due to insufficient integration and a lack of flexible uncertainty estimation, leading to suboptimal performance. To address these challenges, we propose a multitasks-based Deep Evidential Fusion Network (DEFNet) for BIQA, which performs multitask optimization with the assistance of scene and distortion type classification tasks. To achieve a more robust and reliable representation, we design a novel trustworthy information fusion strategy. It first combines diverse features and patterns across sub-regions to enhance information richness, and then performs local-global information fusion by balancing fine-grained details with coarse-grained context. Moreover, DEFNet exploits advanced uncertainty estimation technique inspired by evidential learning with the help of normal-inverse gamma distribution mixture. Extensive experiments on both synthetic and authentic distortion datasets demonstrate the effectiveness and robustness of the proposed framework. Additional evaluation and analysis are carried out to highlight its strong generalization capability and adaptability to previously unseen scenarios.
☆ Modality Agnostic Efficient Long Range Encoder
The long-context capability of recent large transformer models can be surmised to rely on techniques such as attention/model parallelism, as well as hardware-level optimizations. While these strategies allow input lengths to scale to millions of tokens, they do not fundamentally mitigate the quadratic computational and memory complexity of the core attention mechanism. In this paper, we address the challenge of long-context processing on a single device using generic implementations by reducing the quadratic memory footprint and inference cost. Existing approaches to extend the context length for generic single device implementations -- such as token merging and modified attentions -- are often modality specific and attain a suboptimal tradeoff between accuracy and efficiency. To overcome these limitations, we propose MAELRE (Modality Agnostic Efficient Long Range Encoder), a unified and efficient transformer architecture designed for long-range encoding across diverse modalities. MAELRE integrates token merging with attention approximation, progressively merging tokens at different stages of internal computational blocks. It employs a lightweight attention approximation when the number of tokens is large, and switches to standard dot-product attention as the sequence becomes shorter through successive aggregation. We demonstrate that MAELRE achieves superior accuracy while reducing computational cost compared to existing long-context models on classification tasks spanning multiple modalities, including text, time series, audio, and vision.
☆ CXR-CML: Improved zero-shot classification of long-tailed multi-label diseases in Chest X-Rays
Chest radiography (CXR) plays a crucial role in the diagnosis of various diseases. However, the inherent class imbalance in the distribution of clinical findings presents a significant challenge for current self-supervised deep learning models. These models often fail to accurately classify long-tailed classes. Current Vision-Language models such as Contrastive Language Image Pre-training (CLIP) models effectively model the manifold distribution of the latent space, enabling high zero-shot classification accuracies. Although CLIP performs well on most of the primary classes in the dataset, our work reveals that its effectiveness decreases significantly for classes with a long-tailed distribution. Our approach employs a class-weighting mechanism that directly aligns with the distribution of classes within the latent space. This method ensures a substantial improvement in overall classification performance, with particular emphasis on enhancing the recognition and accuracy of rarely observed classes. We accomplish this by applying Gaussian Mixture Model (GMM) clustering to the latent space. The subsequent clusters are further refined by Student t-distribution, followed by a metric loss that utilizes the altered embeddings. Our approach facilitates stable and adaptive clustering of the features. This results in a notable average improvement of 7\% points in zero-shot AUC scores across 40 classes in the MIMIC-CXR-JPG dataset from previous SOTA models.
☆ BEV-LLM: Leveraging Multimodal BEV Maps for Scene Captioning in Autonomous Driving
Autonomous driving technology has the potential to transform transportation, but its wide adoption depends on the development of interpretable and transparent decision-making systems. Scene captioning, which generates natural language descriptions of the driving environment, plays a crucial role in enhancing transparency, safety, and human-AI interaction. We introduce BEV-LLM, a lightweight model for 3D captioning of autonomous driving scenes. BEV-LLM leverages BEVFusion to combine 3D LiDAR point clouds and multi-view images, incorporating a novel absolute positional encoding for view-specific scene descriptions. Despite using a small 1B parameter base model, BEV-LLM achieves competitive performance on the nuCaption dataset, surpassing state-of-the-art by up to 5\% in BLEU scores. Additionally, we release two new datasets - nuView (focused on environmental conditions and viewpoints) and GroundView (focused on object grounding) - to better assess scene captioning across diverse driving scenarios and address gaps in current benchmarks, along with initial benchmarking results demonstrating their effectiveness.
☆ LOTUS: A Leaderboard for Detailed Image Captioning from Quality to Societal Bias and User Preferences ACL 2025
Large Vision-Language Models (LVLMs) have transformed image captioning, shifting from concise captions to detailed descriptions. We introduce LOTUS, a leaderboard for evaluating detailed captions, addressing three main gaps in existing evaluations: lack of standardized criteria, bias-aware assessments, and user preference considerations. LOTUS comprehensively evaluates various aspects, including caption quality (e.g., alignment, descriptiveness), risks (\eg, hallucination), and societal biases (e.g., gender bias) while enabling preference-oriented evaluations by tailoring criteria to diverse user preferences. Our analysis of recent LVLMs reveals no single model excels across all criteria, while correlations emerge between caption detail and bias risks. Preference-oriented evaluations demonstrate that optimal model selection depends on user priorities.
comment: Accepted to ACL 2025. Leaderboard: huggingface.co/spaces/nvidia/lotus-vlm-bias-leaderboard
☆ EA-ViT: Efficient Adaptation for Elastic Vision Transformer ICCV 2025
Vision Transformers (ViTs) have emerged as a foundational model in computer vision, excelling in generalization and adaptation to downstream tasks. However, deploying ViTs to support diverse resource constraints typically requires retraining multiple, size-specific ViTs, which is both time-consuming and energy-intensive. To address this issue, we propose an efficient ViT adaptation framework that enables a single adaptation process to generate multiple models of varying sizes for deployment on platforms with various resource constraints. Our approach comprises two stages. In the first stage, we enhance a pre-trained ViT with a nested elastic architecture that enables structural flexibility across MLP expansion ratio, number of attention heads, embedding dimension, and network depth. To preserve pre-trained knowledge and ensure stable adaptation, we adopt a curriculum-based training strategy that progressively increases elasticity. In the second stage, we design a lightweight router to select submodels according to computational budgets and downstream task demands. Initialized with Pareto-optimal configurations derived via a customized NSGA-II algorithm, the router is then jointly optimized with the backbone. Extensive experiments on multiple benchmarks demonstrate the effectiveness and versatility of EA-ViT. The code is available at https://github.com/zcxcf/EA-ViT.
comment: Published as a conference paper at ICCV 2025
☆ SemGes: Semantics-aware Co-Speech Gesture Generation using Semantic Coherence and Relevance Learning ICCV
Creating a virtual avatar with semantically coherent gestures that are aligned with speech is a challenging task. Existing gesture generation research mainly focused on generating rhythmic beat gestures, neglecting the semantic context of the gestures. In this paper, we propose a novel approach for semantic grounding in co-speech gesture generation that integrates semantic information at both fine-grained and global levels. Our approach starts with learning the motion prior through a vector-quantized variational autoencoder. Built on this model, a second-stage module is applied to automatically generate gestures from speech, text-based semantics and speaker identity that ensures consistency between the semantic relevance of generated gestures and co-occurring speech semantics through semantic coherence and relevance modules. Experimental results demonstrate that our approach enhances the realism and coherence of semantic gestures. Extensive experiments and user studies show that our method outperforms state-of-the-art approaches across two benchmarks in co-speech gesture generation in both objective and subjective metrics. The qualitative results of our model, code, dataset and pre-trained models can be viewed at https://semgesture.github.io/.
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV) 2025
☆ EffiComm: Bandwidth Efficient Multi Agent Communication SC 2025
Collaborative perception allows connected vehicles to exchange sensor information and overcome each vehicle's blind spots. Yet transmitting raw point clouds or full feature maps overwhelms Vehicle-to-Vehicle (V2V) communications, causing latency and scalability problems. We introduce EffiComm, an end-to-end framework that transmits less than 40% of the data required by prior art while maintaining state-of-the-art 3D object detection accuracy. EffiComm operates on Bird's-Eye-View (BEV) feature maps from any modality and applies a two-stage reduction pipeline: (1) Selective Transmission (ST) prunes low-utility regions with a confidence mask; (2) Adaptive Grid Reduction (AGR) uses a Graph Neural Network (GNN) to assign vehicle-specific keep ratios according to role and network load. The remaining features are fused with a soft-gated Mixture-of-Experts (MoE) attention layer, offering greater capacity and specialization for effective feature integration. On the OPV2V benchmark, EffiComm reaches 0.84 mAP@0.7 while sending only an average of approximately 1.5 MB per frame, outperforming previous methods on the accuracy-per-bit curve. These results highlight the value of adaptive, learned communication for scalable Vehicle-to-Everything (V2X) perception.
comment: Accepted for publication at ITSC 2025
☆ NerT-CA: Efficient Dynamic Reconstruction from Sparse-view X-ray Coronary Angiography
Three-dimensional (3D) and dynamic 3D+time (4D) reconstruction of coronary arteries from X-ray coronary angiography (CA) has the potential to improve clinical procedures. However, there are multiple challenges to be addressed, most notably, blood-vessel structure sparsity, poor background and blood vessel distinction, sparse-views, and intra-scan motion. State-of-the-art reconstruction approaches rely on time-consuming manual or error-prone automatic segmentations, limiting clinical usability. Recently, approaches based on Neural Radiance Fields (NeRF) have shown promise for automatic reconstructions in the sparse-view setting. However, they suffer from long training times due to their dependence on MLP-based representations. We propose NerT-CA, a hybrid approach of Neural and Tensorial representations for accelerated 4D reconstructions with sparse-view CA. Building on top of the previous NeRF-based work, we model the CA scene as a decomposition of low-rank and sparse components, utilizing fast tensorial fields for low-rank static reconstruction and neural fields for dynamic sparse reconstruction. Our approach outperforms previous works in both training time and reconstruction accuracy, yielding reasonable reconstructions from as few as three angiogram views. We validate our approach quantitatively and qualitatively on representative 4D phantom datasets.
☆ SIDE: Sparse Information Disentanglement for Explainable Artificial Intelligence
Understanding the decisions made by deep neural networks is essential in high-stakes domains such as medical imaging and autonomous driving. Yet, these models often lack transparency, particularly in computer vision. Prototypical-parts-based neural networks have emerged as a promising solution by offering concept-level explanations. However, most are limited to fine-grained classification tasks, with few exceptions such as InfoDisent. InfoDisent extends prototypical models to large-scale datasets like ImageNet, but produces complex explanations. We introduce Sparse Information Disentanglement for Explainability (SIDE), a novel method that improves the interpretability of prototypical parts through a dedicated training and pruning scheme that enforces sparsity. Combined with sigmoid activations in place of softmax, this approach allows SIDE to associate each class with only a small set of relevant prototypes. Extensive experiments show that SIDE matches the accuracy of existing methods while reducing explanation size by over $90\%$, substantially enhancing the understandability of prototype-based explanations.
☆ Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes IROS 2025
Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy. To address real-world challenges in outdoor 3D object detection, fusion of LiDAR and RGB input has started gaining traction. However, effective integration of these modalities for precise object detection task still remains a largely open problem. To address that, we propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities. The network follows a three-stream structure. Its LiDAR-PillarNet stream extracts sparse 2D pillar features from the LiDAR input while the LiDAR-Height Compression stream computes Bird's-Eye View features. An additional 3D Multimodal stream combines RGB and LiDAR features using UV mapping and polar coordinate indexing. Eventually, the features containing comprehensive spatial, textural and geometric information are carefully fused and fed to a detection head for 3D object detection. Our extensive evaluation on the challenging KITTI Object Detection Benchmark using public testing server at https://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=d162ec699d6992040e34314d19ab7f5c217075e0 establishes the efficacy of our method by achieving new state-of-the-art or highly competitive results in different categories while remaining among the most efficient methods. Our code will be released through MuStD GitHub repository at https://github.com/IbrahimUWA/MuStD.git
comment: This paper has been accepted by IEEE/RSJ IROS 2025 for oral presentation on 19 Oct. 2025
☆ ABCD: Automatic Blood Cell Detection via Attention-Guided Improved YOLOX
Detection of blood cells in microscopic images has become a major focus of medical image analysis, playing a crucial role in gaining valuable insights into a patient's health. Manual blood cell checks for disease detection are known to be time-consuming, inefficient, and error-prone. To address these limitations, analyzing blood cells using deep learning-based object detectors can be regarded as a feasible solution. In this study, we propose automatic blood cell detection method (ABCD) based on an improved version of YOLOX, an object detector, for detecting various types of blood cells, including white blood cells, red blood cells, and platelets. Firstly, we introduce the Convolutional Block Attention Module (CBAM) into the network's backbone to enhance the efficiency of feature extraction. Furthermore, we introduce the Adaptively Spatial Feature Fusion (ASFF) into the network's neck, which optimizes the fusion of different features extracted from various stages of the network. Finally, to speed up the model's convergence, we substitute the Intersection over Union (IOU) loss function with the Complete Intersection over Union (CIOU) loss function. The experimental results demonstrate that the proposed method is more effective than other existing methods for BCCD dataset. Compared to the baseline algorithm, our method ABCD achieved 95.49 % mAP@0.5 and 86.89 % mAP@0.5-0.9, which are 2.8% and 23.41% higher, respectively, and increased the detection speed by 2.9%, making it highly efficient for real-time applications.
☆ PINO: Person-Interaction Noise Optimization for Long-Duration and Customizable Motion Generation of Arbitrary-Sized Groups ICCV 2025
Generating realistic group interactions involving multiple characters remains challenging due to increasing complexity as group size expands. While existing conditional diffusion models incrementally generate motions by conditioning on previously generated characters, they rely on single shared prompts, limiting nuanced control and leading to overly simplified interactions. In this paper, we introduce Person-Interaction Noise Optimization (PINO), a novel, training-free framework designed for generating realistic and customizable interactions among groups of arbitrary size. PINO decomposes complex group interactions into semantically relevant pairwise interactions, and leverages pretrained two-person interaction diffusion models to incrementally compose group interactions. To ensure physical plausibility and avoid common artifacts such as overlapping or penetration between characters, PINO employs physics-based penalties during noise optimization. This approach allows precise user control over character orientation, speed, and spatial relationships without additional training. Comprehensive evaluations demonstrate that PINO generates visually realistic, physically coherent, and adaptable multi-person interactions suitable for diverse animation, gaming, and robotics applications.
comment: Accepted to ICCV 2025, Project page: https://sinc865.github.io/pino/
☆ Relaxed Total Generalized Variation Regularized Piecewise Smooth Mumford-Shah Model for Triangulated Surface Segmentation
The Mumford-Shah (MS) model is an important technique for mesh segmentation. Many existing researches focus on piecewise constant MS mesh segmentation model with total variation regularization, which pursue the shortest length of boundaries. Different from previous efforts, in this article, we propose a novel piecewise smooth MS mesh segmentation model by utilizing the relaxed total generalized variation regularization (rTGV). The new model assumes that the feature function of a mesh can be approximated by the sum of piecewise constant function and asmooth function, and the rTGV regularization is able to characterize the high order discontinuity of the geometric structure. The newly introduced method is effective in segmenting meshes with irregular structures and getting the better boundaries rather than the shortest boundaries. We solve the new model by alternating minimization and alternating direction method of multipliers (ADMM). Our algorithm is discussed from several aspects, and comparisons with several state-of-art methods. Experimental results show that our method can yield competitive results when compared to other approaches. In addition, our results compare favorably to those of the several state-of-art techniques when evaluated on the Princeton Segmentation Benchmark. Furthermore, the quantitative errors and computational costs confirm the robustness and efficiency of the proposed method.
☆ SAM2-Aug: Prior knowledge-based Augmentation for Target Volume Auto-Segmentation in Adaptive Radiation Therapy Using Segment Anything Model 2
Purpose: Accurate tumor segmentation is vital for adaptive radiation therapy (ART) but remains time-consuming and user-dependent. Segment Anything Model 2 (SAM2) shows promise for prompt-based segmentation but struggles with tumor accuracy. We propose prior knowledge-based augmentation strategies to enhance SAM2 for ART. Methods: Two strategies were introduced to improve SAM2: (1) using prior MR images and annotations as contextual inputs, and (2) improving prompt robustness via random bounding box expansion and mask erosion/dilation. The resulting model, SAM2-Aug, was fine-tuned and tested on the One-Seq-Liver dataset (115 MRIs from 31 liver cancer patients), and evaluated without retraining on Mix-Seq-Abdomen (88 MRIs, 28 patients) and Mix-Seq-Brain (86 MRIs, 37 patients). Results: SAM2-Aug outperformed convolutional, transformer-based, and prompt-driven models across all datasets, achieving Dice scores of 0.86(liver), 0.89(abdomen), and 0.90(brain). It demonstrated strong generalization across tumor types and imaging sequences, with improved performance in boundary-sensitive metrics. Conclusions: Incorporating prior images and enhancing prompt diversity significantly boosts segmentation accuracy and generalizability. SAM2-Aug offers a robust, efficient solution for tumor segmentation in ART. Code and models will be released at https://github.com/apple1986/SAM2-Aug.
comment: 26 pages, 10 figures
☆ RemoteReasoner: Towards Unifying Geospatial Reasoning Workflow
Remote sensing imagery presents vast, inherently unstructured spatial data, demanding sophisticated reasoning to interpret complex user intents and contextual relationships beyond simple recognition tasks. In this paper, we aim to construct an Earth observation workflow to handle complex queries by reasoning about spatial context and user intent. As a reasoning workflow, it should be somewhat autonomous, where predefined ground-truth reasoning paths do not constrain the learning process. Furthermore, its architecture ought to be unified yet flexible, enabling the model to perform diverse reasoning tasks with distinct output formats through a single forward pass. Existing remote sensing approaches fail to address these requirements, as they rely on supervised fine-tuning paradigms that constrain the autonomy of reasoning. To this end, we propose RemoteReasoner, a flexible and robust workflow for remote sensing reasoning tasks. The design of RemoteReasoner integrates a multi-modal large language model (MLLM) for interpreting user instructions and localizing targets, together with task adaptation strategies that enable multi-granularity output generation. In contrast to existing methods, our framework is trained with reinforcement learning (RL) to endow the MLLM sufficient autonomy for precise reasoning. At the inference stage, our adaptation strategies enable diverse output formats at inference time without requiring task-specific decoders or further fine-tuning. Preliminary experiments demonstrated that RemoteReasoner achieves remarkable performance across multi-granularity reasoning tasks, including region-level and pixel-level. Additionally, our framework enables novel capabilities such as the contour extraction task beyond the reach of existing reasoning pipelines.
☆ Video Self-Distillation for Single-Image Encoders: A Step Toward Physically Plausible Perception
Self-supervised image encoders such as DINO have recently gained significant interest for learning robust visual features without labels. However, most SSL methods train on static images and miss the temporal cues inherent in videos. We introduce a video-distilled single-image encoder trained to predict the next-frame representation from the current frame. This simple objective injects 3D spatial and temporal priors without optical flow or tracking. When pre-training on a single 2-hour video, our approach raises the mean Intersection-over-Union (mIoU) on ADE20K from 35.0 (DoRA) to 36.4 while remaining a drop-in replacement for image-only pipelines. Our results highlight video self-distillation as a lightweight route to geometry-aware perception an essential ingredient for physically plausible world models and Physical AI.
comment: 4 pages, 2 figures, 2 tables
☆ SimMLM: A Simple Framework for Multi-modal Learning with Missing Modality
In this paper, we propose SimMLM, a simple yet powerful framework for multimodal learning with missing modalities. Unlike existing approaches that rely on sophisticated network architectures or complex data imputation techniques, SimMLM provides a generic and effective solution that can adapt to various missing modality scenarios with improved accuracy and robustness. Specifically, SimMLM consists of a generic Dynamic Mixture of Modality Experts (DMoME) architecture, featuring a dynamic, learnable gating mechanism that automatically adjusts each modality's contribution in both full and partial modality settings. A key innovation of SimMLM is the proposed More vs. Fewer (MoFe) ranking loss, which ensures that task accuracy improves or remains stable as more modalities are made available. This aligns the model with an intuitive principle: removing one or more modalities should not increase accuracy. We validate SimMLM on multimodal medical image segmentation (BraTS 2018) and multimodal classification (UPMC Food-101, avMNIST) tasks, where it consistently surpasses competitive methods, demonstrating superior accuracy, interpretability, robustness, and reliability across both complete and missing modality scenarios at test time.
☆ OVFact: Measuring and Improving Open-Vocabulary Factuality for Long Caption Models
Large vision-language models (VLMs) often struggle to generate long and factual captions. However, traditional measures for hallucination and factuality are not well suited for evaluating longer, more diverse captions and in settings where ground-truth human-annotated captions are unavailable. We introduce OV-Fact, a novel method for measuring caption factuality of long captions that leverages open-vocabulary visual grounding and tool-based verification without depending on human annotations. Our method improves agreement with human judgments and captures both caption descriptiveness (recall) and factual precision in the same metric. Furthermore, unlike previous metrics, our reference-free method design enables new applications towards factuality-based data filtering. We observe models trained on an OVFact-filtered (2.5-5x less) subset of a large-scale, noisy (VLM-generated) pretraining set meaningfully improve factuality precision without sacrificing caption descriptiveness across a range of downstream long caption benchmarks.
☆ BridgeNet: A Unified Multimodal Framework for Bridging 2D and 3D Industrial Anomaly Detection
Industrial anomaly detection for 2D objects has gained significant attention and achieved progress in anomaly detection (AD) methods. However, identifying 3D depth anomalies using only 2D information is insufficient. Despite explicitly fusing depth information into RGB images or using point cloud backbone networks to extract depth features, both approaches struggle to adequately represent 3D information in multimodal scenarios due to the disparities among different modal information. Additionally, due to the scarcity of abnormal samples in industrial data, especially in multimodal scenarios, it is necessary to perform anomaly generation to simulate real-world abnormal samples. Therefore, we propose a novel unified multimodal anomaly detection framework to address these issues. Our contributions consist of 3 key aspects. (1) We extract visible depth information from 3D point cloud data simply and use 2D RGB images to represent appearance, which disentangles depth and appearance to support unified anomaly generation. (2) Benefiting from the flexible input representation, the proposed Multi-Scale Gaussian Anomaly Generator and Unified Texture Anomaly Generator can generate richer anomalies in RGB and depth. (3) All modules share parameters for both RGB and depth data, effectively bridging 2D and 3D anomaly detection. Subsequent modules can directly leverage features from both modalities without complex fusion. Experiments show our method outperforms state-of-the-art (SOTA) on MVTec-3D AD and Eyecandies datasets. Code available at: https://github.com/Xantastic/BridgeNet
☆ CoopTrack: Exploring End-to-End Learning for Efficient Cooperative Sequential Perception ICCV 2025
Cooperative perception aims to address the inherent limitations of single-vehicle autonomous driving systems through information exchange among multiple agents. Previous research has primarily focused on single-frame perception tasks. However, the more challenging cooperative sequential perception tasks, such as cooperative 3D multi-object tracking, have not been thoroughly investigated. Therefore, we propose CoopTrack, a fully instance-level end-to-end framework for cooperative tracking, featuring learnable instance association, which fundamentally differs from existing approaches. CoopTrack transmits sparse instance-level features that significantly enhance perception capabilities while maintaining low transmission costs. Furthermore, the framework comprises two key components: Multi-Dimensional Feature Extraction, and Cross-Agent Association and Aggregation, which collectively enable comprehensive instance representation with semantic and motion features, and adaptive cross-agent association and fusion based on a feature graph. Experiments on both the V2X-Seq and Griffin datasets demonstrate that CoopTrack achieves excellent performance. Specifically, it attains state-of-the-art results on V2X-Seq, with 39.0\% mAP and 32.8\% AMOTA. The project is available at https://github.com/zhongjiaru/CoopTrack.
comment: Accepted by ICCV 2025 (Highlight)
☆ Event-Driven Storytelling with Multiple Lifelike Humans in a 3D Scene
In this work, we propose a framework that creates a lively virtual dynamic scene with contextual motions of multiple humans. Generating multi-human contextual motion requires holistic reasoning over dynamic relationships among human-human and human-scene interactions. We adapt the power of a large language model (LLM) to digest the contextual complexity within textual input and convert the task into tangible subproblems such that we can generate multi-agent behavior beyond the scale that was not considered before. Specifically, our event generator formulates the temporal progression of a dynamic scene into a sequence of small events. Each event calls for a well-defined motion involving relevant characters and objects. Next, we synthesize the motions of characters at positions sampled based on spatial guidance. We employ a high-level module to deliver scalable yet comprehensive context, translating events into relative descriptions that enable the retrieval of precise coordinates. As the first to address this problem at scale and with diversity, we offer a benchmark to assess diverse aspects of contextual reasoning. Benchmark results and user studies show that our framework effectively captures scene context with high scalability. The code and benchmark, along with result videos, are available at our project page: https://rms0329.github.io/Event-Driven-Storytelling/.
comment: 16 pages, project page: https://rms0329.github.io/Event-Driven-Storytelling/
☆ Unstable Prompts, Unreliable Segmentations: A Challenge for Longitudinal Lesion Analysis
Longitudinal lesion analysis is crucial for oncological care, yet automated tools often struggle with temporal consistency. While universal lesion segmentation models have advanced, they are typically designed for single time points. This paper investigates the performance of the ULS23 segmentation model in a longitudinal context. Using a public clinical dataset of baseline and follow-up CT scans, we evaluated the model's ability to segment and track lesions over time. We identified two critical, interconnected failure modes: a sharp degradation in segmentation quality in follow-up cases due to inter-scan registration errors, and a subsequent breakdown of the lesion correspondence process. To systematically probe this vulnerability, we conducted a controlled experiment where we artificially displaced the input volume relative to the true lesion center. Our results demonstrate that the model's performance is highly dependent on its assumption of a centered lesion; segmentation accuracy collapses when the lesion is sufficiently displaced. These findings reveal a fundamental limitation of applying single-timepoint models to longitudinal data. We conclude that robust oncological tracking requires a paradigm shift away from cascading single-purpose tools towards integrated, end-to-end models inherently designed for temporal analysis.
☆ Face2VoiceSync: Lightweight Face-Voice Consistency for Text-Driven Talking Face Generation
Recent studies in speech-driven talking face generation achieve promising results, but their reliance on fixed-driven speech limits further applications (e.g., face-voice mismatch). Thus, we extend the task to a more challenging setting: given a face image and text to speak, generating both talking face animation and its corresponding speeches. Accordingly, we propose a novel framework, Face2VoiceSync, with several novel contributions: 1) Voice-Face Alignment, ensuring generated voices match facial appearance; 2) Diversity \& Manipulation, enabling generated voice control over paralinguistic features space; 3) Efficient Training, using a lightweight VAE to bridge visual and audio large-pretrained models, with significantly fewer trainable parameters than existing methods; 4) New Evaluation Metric, fairly assessing the diversity and identity consistency. Experiments show Face2VoiceSync achieves both visual and audio state-of-the-art performances on a single 40GB GPU.
☆ PRE-MAP: Personalized Reinforced Eye-tracking Multimodal LLM for High-Resolution Multi-Attribute Point Prediction
Visual selective attention, driven by individual preferences, regulates human prioritization of visual stimuli by bridging subjective cognitive mechanisms with objective visual elements, thereby steering the semantic interpretation and hierarchical processing of dynamic visual scenes. However, existing models and datasets predominantly neglect the influence of subjective cognitive diversity on fixation behavior. Conventional saliency prediction models, typically employing segmentation approaches, rely on low-resolution imagery to generate saliency heatmaps, subsequently upscaled to native resolutions, which limiting their capacity to capture personalized attention patterns. Furthermore, MLLMs are constrained by factors such as hallucinations, making it very costly to strictly adhere to the expected format in tasks involving multiple point predictions, and achieving precise point positioning is challenging. To address these limitations, we present Subjective Personalized Attention for Advertisement Videos, namely SPA-ADV, a large-scale multimodal dataset capturing gaze behaviors from over 4,500 participants varying in age and gender with 486 videos. Furthermore, we propose PRE-MAP, a novel eye-tracking saliency model that characterizes Personalized visual disparities through Reinforcement learning-optimized Eye-tracking, built upon MLLMs and guided by Multi-Attribute user profiles to predict Points. To ensure MLLMs produce prediction points that are both format-correct and spatially accurate, we introduce Consistency Group Relative Policy Optimization (C-GRPO), inspired by the variability in eye movement points and Multi-Attribute profiles. Extensive experiments on SPA-ADV and other benchmarks demonstrate the effectiveness of our approach. The code and dataset are available at \href{https://github.com/mininglamp-MLLM/PRE-MAP}{this URL}.
☆ Querying Autonomous Vehicle Point Clouds: Enhanced by 3D Object Counting with CounterNet
Autonomous vehicles generate massive volumes of point cloud data, yet only a subset is relevant for specific tasks such as collision detection, traffic analysis, or congestion monitoring. Effectively querying this data is essential to enable targeted analytics. In this work, we formalize point cloud querying by defining three core query types: RETRIEVAL, COUNT, and AGGREGATION, each aligned with distinct analytical scenarios. All these queries rely heavily on accurate object counts to produce meaningful results, making precise object counting a critical component of query execution. Prior work has focused on indexing techniques for 2D video data, assuming detection models provide accurate counting information. However, when applied to 3D point cloud data, state-of-the-art detection models often fail to generate reliable object counts, leading to substantial errors in query results. To address this limitation, we propose CounterNet, a heatmap-based network designed for accurate object counting in large-scale point cloud data. Rather than focusing on accurate object localization, CounterNet detects object presence by finding object centers to improve counting accuracy. We further enhance its performance with a feature map partitioning strategy using overlapping regions, enabling better handling of both small and large objects in complex traffic scenes. To adapt to varying frame characteristics, we introduce a per-frame dynamic model selection strategy that selects the most effective configuration for each input. Evaluations on three real-world autonomous vehicle datasets show that CounterNet improves counting accuracy by 5% to 20% across object categories, resulting in more reliable query outcomes across all supported query types.
☆ Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/
comment: Accepted, ACM Multimedia 2025, 10 pages, 5 figures
☆ Enhancing Diabetic Retinopathy Classification Accuracy through Dual Attention Mechanism in Deep Learning
Automatic classification of Diabetic Retinopathy (DR) can assist ophthalmologists in devising personalized treatment plans, making it a critical component of clinical practice. However, imbalanced data distribution in the dataset becomes a bottleneck in the generalization of deep learning models trained for DR classification. In this work, we combine global attention block (GAB) and category attention block (CAB) into the deep learning model, thus effectively overcoming the imbalanced data distribution problem in DR classification. Our proposed approach is based on an attention mechanism-based deep learning model that employs three pre-trained networks, namely, MobileNetV3-small, Efficientnet-b0, and DenseNet-169 as the backbone architecture. We evaluate the proposed method on two publicly available datasets of retinal fundoscopy images for DR. Experimental results show that on the APTOS dataset, the DenseNet-169 yielded 83.20% mean accuracy, followed by the MobileNetV3-small and EfficientNet-b0, which yielded 82% and 80% accuracies, respectively. On the EYEPACS dataset, the EfficientNet-b0 yielded a mean accuracy of 80%, while the DenseNet-169 and MobileNetV3-small yielded 75.43% and 76.68% accuracies, respectively. In addition, we also compute the F1-score of 82.0%, precision of 82.1%, sensitivity of 83.0%, specificity of 95.5%, and a kappa score of 88.2% for the experiments. Moreover, in our work, the MobileNetV3-small has 1.6 million parameters on the APTOS dataset and 0.90 million parameters on the EYEPACS dataset, which is comparatively less than other methods. The proposed approach achieves competitive performance that is at par with recently reported works on DR classification.
comment: submitted to Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
☆ WACA-UNet: Weakness-Aware Channel Attention for Static IR Drop Prediction in Integrated Circuit Design
Accurate spatial prediction of power integrity issues, such as IR drop, is critical for reliable VLSI design. However, traditional simulation-based solvers are computationally expensive and difficult to scale. We address this challenge by reformulating IR drop estimation as a pixel-wise regression task on heterogeneous multi-channel physical maps derived from circuit layouts. Prior learning-based methods treat all input layers (e.g., metal, via, and current maps) equally, ignoring their varying importance to prediction accuracy. To tackle this, we propose a novel Weakness-Aware Channel Attention (WACA) mechanism, which recursively enhances weak feature channels while suppressing over-dominant ones through a two-stage gating strategy. Integrated into a ConvNeXtV2-based attention U-Net, our approach enables adaptive and balanced feature representation. On the public ICCAD-2023 benchmark, our method outperforms the ICCAD-2023 contest winner by reducing mean absolute error by 61.1% and improving F1-score by 71.0%. These results demonstrate that channel-wise heterogeneity is a key inductive bias in physical layout analysis for VLSI.
comment: 9 pages, 5 figures
☆ VisHall3D: Monocular Semantic Scene Completion from Reconstructing the Visible Regions to Hallucinating the Invisible Regions
This paper introduces VisHall3D, a novel two-stage framework for monocular semantic scene completion that aims to address the issues of feature entanglement and geometric inconsistency prevalent in existing methods. VisHall3D decomposes the scene completion task into two stages: reconstructing the visible regions (vision) and inferring the invisible regions (hallucination). In the first stage, VisFrontierNet, a visibility-aware projection module, is introduced to accurately trace the visual frontier while preserving fine-grained details. In the second stage, OcclusionMAE, a hallucination network, is employed to generate plausible geometries for the invisible regions using a noise injection mechanism. By decoupling scene completion into these two distinct stages, VisHall3D effectively mitigates feature entanglement and geometric inconsistency, leading to significantly improved reconstruction quality. The effectiveness of VisHall3D is validated through extensive experiments on two challenging benchmarks: SemanticKITTI and SSCBench-KITTI-360. VisHall3D achieves state-of-the-art performance, outperforming previous methods by a significant margin and paves the way for more accurate and reliable scene understanding in autonomous driving and other applications.
☆ Reconstruct or Generate: Exploring the Spectrum of Generative Modeling for Cardiac MRI
In medical imaging, generative models are increasingly relied upon for two distinct but equally critical tasks: reconstruction, where the goal is to restore medical imaging (usually inverse problems like inpainting or superresolution), and generation, where synthetic data is created to augment datasets or carry out counterfactual analysis. Despite shared architecture and learning frameworks, they prioritize different goals: generation seeks high perceptual quality and diversity, while reconstruction focuses on data fidelity and faithfulness. In this work, we introduce a "generative model zoo" and systematically analyze how modern latent diffusion models and autoregressive models navigate the reconstruction-generation spectrum. We benchmark a suite of generative models across representative cardiac medical imaging tasks, focusing on image inpainting with varying masking ratios and sampling strategies, as well as unconditional image generation. Our findings show that diffusion models offer superior perceptual quality for unconditional generation but tend to hallucinate as masking ratios increase, whereas autoregressive models maintain stable perceptual performance across masking levels, albeit with generally lower fidelity.
☆ Continual Learning-Based Unified Model for Unpaired Image Restoration Tasks
Restoration of images contaminated by different adverse weather conditions such as fog, snow, and rain is a challenging task due to the varying nature of the weather conditions. Most of the existing methods focus on any one particular weather conditions. However, for applications such as autonomous driving, a unified model is necessary to perform restoration of corrupted images due to different weather conditions. We propose a continual learning approach to propose a unified framework for image restoration. The proposed framework integrates three key innovations: (1) Selective Kernel Fusion layers that dynamically combine global and local features for robust adaptive feature selection; (2) Elastic Weight Consolidation (EWC) to enable continual learning and mitigate catastrophic forgetting across multiple restoration tasks; and (3) a novel Cycle-Contrastive Loss that enhances feature discrimination while preserving semantic consistency during domain translation. Further, we propose an unpaired image restoration approach to reduce the dependance of the proposed approach on the training data. Extensive experiments on standard benchmark datasets for dehazing, desnowing and deraining tasks demonstrate significant improvements in PSNR, SSIM, and perceptual quality over the state-of-the-art.
comment: Under Review
☆ Patch Pruning Strategy Based on Robust Statistical Measures of Attention Weight Diversity in Vision Transformers
Multi-head self-attention is a distinctive feature extraction mechanism of vision transformers that computes pairwise relationships among all input patches, contributing significantly to their high performance. However, it is known to incur a quadratic computational complexity with respect to the number of patches. One promising approach to address this issue is patch pruning, which improves computational efficiency by identifying and removing redundant patches. In this work, we propose a patch pruning strategy that evaluates the importance of each patch based on the variance of attention weights across multiple attention heads. This approach is inspired by the design of multi-head self-attention, which aims to capture diverse attention patterns across different subspaces of feature representations. The proposed method can be easily applied during both training and inference, and achieves improved throughput while maintaining classification accuracy in scenarios such as fine-tuning with pre-trained models. In addition, we also found that using robust statistical measures, such as the median absolute deviation in place of variance, to assess patch importance can similarly lead to strong performance. Furthermore, by introducing overlapping patch embeddings, our method achieves better performance with comparable throughput to conventional approaches that utilize all patches.
☆ PhysDrive: A Multimodal Remote Physiological Measurement Dataset for In-vehicle Driver Monitoring
Robust and unobtrusive in-vehicle physiological monitoring is crucial for ensuring driving safety and user experience. While remote physiological measurement (RPM) offers a promising non-invasive solution, its translation to real-world driving scenarios is critically constrained by the scarcity of comprehensive datasets. Existing resources are often limited in scale, modality diversity, the breadth of biometric annotations, and the range of captured conditions, thereby omitting inherent real-world challenges in driving. Here, we present PhysDrive, the first large-scale multimodal dataset for contactless in-vehicle physiological sensing with dedicated consideration on various modality settings and driving factors. PhysDrive collects data from 48 drivers, including synchronized RGB, near-infrared camera, and raw mmWave radar data, accompanied with six synchronized ground truths (ECG, BVP, Respiration, HR, RR, and SpO2). It covers a wide spectrum of naturalistic driving conditions, including driver motions, dynamic natural light, vehicle types, and road conditions. We extensively evaluate both signal-processing and deep-learning methods on PhysDrive, establishing a comprehensive benchmark across all modalities, and release full open-source code with compatibility for mainstream public toolboxes. We envision PhysDrive will serve as a foundational resource and accelerate research on multimodal driver monitoring and smart-cockpit systems.
comment: It is the initial version, not the final version
☆ Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion
☆ DASH: 4D Hash Encoding with Self-Supervised Decomposition for Real-Time Dynamic Scene Rendering
Dynamic scene reconstruction is a long-term challenge in 3D vision. Existing plane-based methods in dynamic Gaussian splatting suffer from an unsuitable low-rank assumption, causing feature overlap and poor rendering quality. Although 4D hash encoding provides an explicit representation without low-rank constraints, directly applying it to the entire dynamic scene leads to substantial hash collisions and redundancy. To address these challenges, we present DASH, a real-time dynamic scene rendering framework that employs 4D hash encoding coupled with self-supervised decomposition. Our approach begins with a self-supervised decomposition mechanism that separates dynamic and static components without manual annotations or precomputed masks. Next, we introduce a multiresolution 4D hash encoder for dynamic elements, providing an explicit representation that avoids the low-rank assumption. Finally, we present a spatio-temporal smoothness regularization strategy to mitigate unstable deformation artifacts. Experiments on real-world datasets demonstrate that DASH achieves state-of-the-art dynamic rendering performance, exhibiting enhanced visual quality at real-time speeds of 264 FPS on a single 4090 GPU. Code: https://github.com/chenj02/DASH.
☆ Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation
This paper studies the few-shot segmentation (FSS) task, which aims to segment objects belonging to unseen categories in a query image by learning a model on a small number of well-annotated support samples. Our analysis of two mainstream FSS paradigms reveals that the predictions made by prototype learning methods are usually conservative, while those of affinity learning methods tend to be more aggressive. This observation motivates us to balance the conservative and aggressive information captured by these two types of FSS frameworks so as to improve the segmentation performance. To achieve this, we propose a **P**rototype-**A**ffinity **H**ybrid **Net**work (PAHNet), which introduces a Prototype-guided Feature Enhancement (PFE) module and an Attention Score Calibration (ASC) module in each attention block of an affinity learning model (called affinity learner). These two modules utilize the predictions generated by a pre-trained prototype learning model (called prototype predictor) to enhance the foreground information in support and query image representations and suppress the mismatched foreground-background (FG-BG) relationships between them, respectively. In this way, the aggressiveness of the affinity learner can be effectively mitigated, thereby eventually increasing the segmentation accuracy of our PAHNet method. Experimental results show that PAHNet outperforms most recently proposed methods across 1-shot and 5-shot settings on both PASCAL-5$^i$ and COCO-20$^i$ datasets, suggesting its effectiveness. The code is available at: [GitHub - tianyu-zou/PAHNet: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation (ICCV'25)](https://github.com/tianyu-zou/PAHNet)
comment: 8 pages, 7 figures
☆ RealisVSR: Detail-enhanced Diffusion for Real-World 4K Video Super-Resolution
Video Super-Resolution (VSR) has achieved significant progress through diffusion models, effectively addressing the over-smoothing issues inherent in GAN-based methods. Despite recent advances, three critical challenges persist in VSR community: 1) Inconsistent modeling of temporal dynamics in foundational models; 2) limited high-frequency detail recovery under complex real-world degradations; and 3) insufficient evaluation of detail enhancement and 4K super-resolution, as current methods primarily rely on 720P datasets with inadequate details. To address these challenges, we propose RealisVSR, a high-frequency detail-enhanced video diffusion model with three core innovations: 1) Consistency Preserved ControlNet (CPC) architecture integrated with the Wan2.1 video diffusion to model the smooth and complex motions and suppress artifacts; 2) High-Frequency Rectified Diffusion Loss (HR-Loss) combining wavelet decomposition and HOG feature constraints for texture restoration; 3) RealisVideo-4K, the first public 4K VSR benchmark containing 1,000 high-definition video-text pairs. Leveraging the advanced spatio-temporal guidance of Wan2.1, our method requires only 5-25% of the training data volume compared to existing approaches. Extensive experiments on VSR benchmarks (REDS, SPMCS, UDM10, YouTube-HQ, VideoLQ, RealisVideo-720P) demonstrate our superiority, particularly in ultra-high-resolution scenarios.
☆ OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.
comment: Work in progress
☆ MixA-Q: Revisiting Activation Sparsity for Vision Transformers from a Mixed-Precision Quantization Perspective ICCV 2025
In this paper, we propose MixA-Q, a mixed-precision activation quantization framework that leverages intra-layer activation sparsity (a concept widely explored in activation pruning methods) for efficient inference of quantized window-based vision transformers. For a given uniform-bit quantization configuration, MixA-Q separates the batched window computations within Swin blocks and assigns a lower bit width to the activations of less important windows, improving the trade-off between model performance and efficiency. We introduce a Two-Branch Swin Block that processes activations separately in high- and low-bit precision, enabling seamless integration of our method with most quantization-aware training (QAT) and post-training quantization (PTQ) methods, or with simple modifications. Our experimental evaluations over the COCO dataset demonstrate that MixA-Q achieves a training-free 1.35x computational speedup without accuracy loss in PTQ configuration. With QAT, MixA-Q achieves a lossless 1.25x speedup and a 1.53x speedup with only a 1% mAP drop by incorporating activation pruning. Notably, by reducing the quantization error in important regions, our sparsity-aware quantization adaptation improves the mAP of the quantized W4A4 model (with both weights and activations in 4-bit precision) by 0.7%, reducing quantization degradation by 24%.
comment: Accepted to ICCV 2025
☆ Learned Image Compression with Hierarchical Progressive Context Modeling ICCV 2025
Context modeling is essential in learned image compression for accurately estimating the distribution of latents. While recent advanced methods have expanded context modeling capacity, they still struggle to efficiently exploit long-range dependency and diverse context information across different coding steps. In this paper, we introduce a novel Hierarchical Progressive Context Model (HPCM) for more efficient context information acquisition. Specifically, HPCM employs a hierarchical coding schedule to sequentially model the contextual dependencies among latents at multiple scales, which enables more efficient long-range context modeling. Furthermore, we propose a progressive context fusion mechanism that incorporates contextual information from previous coding steps into the current step, effectively exploiting diverse contextual information. Experimental results demonstrate that our method achieves state-of-the-art rate-distortion performance and strikes a better balance between compression performance and computational complexity. The code is available at https://github.com/lyq133/LIC-HPCM.
comment: 17 pages, ICCV 2025
☆ Preserving Topological and Geometric Embeddings for Point Cloud Recovery
Recovering point clouds involves the sequential process of sampling and restoration, yet existing methods struggle to effectively leverage both topological and geometric attributes. To address this, we propose an end-to-end architecture named \textbf{TopGeoFormer}, which maintains these critical features throughout the sampling and restoration phases. First, we revisit traditional feature extraction techniques to yield topological embedding using a continuous mapping of relative relationships between neighboring points, and integrate it in both phases for preserving the structure of the original space. Second, we propose the \textbf{InterTwining Attention} to fully merge topological and geometric embeddings, which queries shape with local awareness in both phases to form a learnable shape context facilitated with point-wise, point-shape-wise, and intra-shape features. Third, we introduce a full geometry loss and a topological constraint loss to optimize the embeddings in both Euclidean and topological spaces. The geometry loss uses inconsistent matching between coarse-to-fine generations and targets for reconstructing better geometric details, and the constraint loss limits embedding variances for better approximation of the topological space. In experiments, we comprehensively analyze the circumstances using the conventional and learning-based sampling/upsampling algorithms. The quantitative and qualitative results demonstrate that our method significantly outperforms existing sampling and recovery methods.
☆ Cross Spatial Temporal Fusion Attention for Remote Sensing Object Detection via Image Feature Matching
Effectively describing features for cross-modal remote sensing image matching remains a challenging task due to the significant geometric and radiometric differences between multimodal images. Existing methods primarily extract features at the fully connected layer but often fail to capture cross-modal similarities effectively. We propose a Cross Spatial Temporal Fusion (CSTF) mechanism that enhances feature representation by integrating scale-invariant keypoints detected independently in both reference and query images. Our approach improves feature matching in two ways: First, by creating correspondence maps that leverage information from multiple image regions simultaneously, and second, by reformulating the similarity matching process as a classification task using SoftMax and Fully Convolutional Network (FCN) layers. This dual approach enables CSTF to maintain sensitivity to distinctive local features while incorporating broader contextual information, resulting in robust matching across diverse remote sensing modalities. To demonstrate the practical utility of improved feature matching, we evaluate CSTF on object detection tasks using the HRSC2016 and DOTA benchmark datasets. Our method achieves state-of-theart performance with an average mAP of 90.99% on HRSC2016 and 90.86% on DOTA, outperforming existing models. The CSTF model maintains computational efficiency with an inference speed of 12.5 FPS. These results validate that our approach to crossmodal feature matching directly enhances downstream remote sensing applications such as object detection.
☆ LISA: A Layer-wise Integration and Suppression Approach for Hallucination Mitigation in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) excel in vision-language tasks such as image captioning but remain prone to object hallucinations, where they describe objects that do not appear in the image. To mitigate this, we propose \textbf{LISA}, a \textbf{L}ayer-wise \textbf{I}ntegration and \textbf{S}uppression \textbf{A}pproach that enhances generation consistency through hierarchical modulation and multi-layer fusion. LISA leverages the functional hierarchy within MLLMs, where shallow layers provide visual grounding, middle layers encode semantics, and deep layers tend to amplify spurious signals. First, zone-specific spectral modulation stabilizes attention by suppressing over-amplified activations in deeper layers while preserving alignment cues in earlier layers. Second, token-level logits from selected layers are fused via anchor-based routing, with token-wise anchor selection and soft logit fusion enabling adaptive integration during decoding. LISA is fully \textbf{plug-and-play} and can be seamlessly integrated into existing MLLMs, including Qwen2.5-VL. Experiments on multiple benchmarks show that LISA reduces hallucinations by up to 53.6\% in $\mathrm{CHAIR}_I$ and improves POPE F1 by 4.5\%, demonstrating strong generalization across models and tasks.
☆ MedSymmFlow: Bridging Generative Modeling and Classification in Medical Imaging through Symmetrical Flow Matching MICCAI 2025
Reliable medical image classification requires accurate predictions and well-calibrated uncertainty estimates, especially in high-stakes clinical settings. This work presents MedSymmFlow, a generative-discriminative hybrid model built on Symmetrical Flow Matching, designed to unify classification, generation, and uncertainty quantification in medical imaging. MedSymmFlow leverages a latent-space formulation that scales to high-resolution inputs and introduces a semantic mask conditioning mechanism to enhance diagnostic relevance. Unlike standard discriminative models, it naturally estimates uncertainty through its generative sampling process. The model is evaluated on four MedMNIST datasets, covering a range of modalities and pathologies. The results show that MedSymmFlow matches or exceeds the performance of established baselines in classification accuracy and AUC, while also delivering reliable uncertainty estimates validated by performance improvements under selective prediction.
comment: DGM4MICCAI 2025
☆ Fine-Grained Traffic Inference from Road to Lane via Spatio-Temporal Graph Node Generation
Fine-grained traffic management and prediction are fundamental to key applications such as autonomous driving, lane change guidance, and traffic signal control. However, obtaining lane-level traffic data has become a critical bottleneck for data-driven models due to limitations in the types and number of sensors and issues with the accuracy of tracking algorithms. To address this, we propose the Fine-grained Road Traffic Inference (FRTI) task, which aims to generate more detailed lane-level traffic information using limited road data, providing a more energy-efficient and cost-effective solution for precise traffic management. This task is abstracted as the first scene of the spatio-temporal graph node generation problem. We designed a two-stage framework--RoadDiff--to solve the FRTI task. solve the FRTI task. This framework leverages the Road-Lane Correlation Autoencoder-Decoder and the Lane Diffusion Module to fully utilize the limited spatio-temporal dependencies and distribution relationships of road data to accurately infer fine-grained lane traffic states. Based on existing research, we designed several baseline models with the potential to solve the FRTI task and conducted extensive experiments on six datasets representing different road conditions to validate the effectiveness of the RoadDiff model in addressing the FRTI task. The relevant datasets and code are available at https://github.com/ShuhaoLii/RoadDiff.
☆ Multi-Task Dense Prediction Fine-Tuning with Mixture of Fine-Grained Experts
Multi-task learning (MTL) for dense prediction has shown promising results but still faces challenges in balancing shared representations with task-specific specialization. In this paper, we introduce a novel Fine-Grained Mixture of Experts (FGMoE) architecture that explores MoE-based MTL models through a combination of three key innovations and fine-tuning. First, we propose intra-task experts that partition along intermediate hidden dimensions of MLPs, enabling finer decomposition of task information while maintaining parameter efficiency. Second, we introduce shared experts that consolidate common information across different contexts of the same task, reducing redundancy, and allowing routing experts to focus on unique aspects. Third, we design a global expert that facilitates adaptive knowledge transfer across tasks based on both input feature and task requirements, promoting beneficial information sharing while preventing harmful interference. In addition, we use the fine-tuning approach to improve parameter efficiency only by training the parameters of the decoder. Extensive experimental results show that the proposed FGMoE uses fewer parameters and significantly outperforms current MoE-based competitive MTL models on two dense prediction datasets (\textit{i.e.,} NYUD-v2, PASCAL-Context) in various metrics.
comment: Accepted to ACM Multimedia 2025 (MM'25)
☆ SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.
comment: 11 pages
☆ A Self-training Framework for Semi-supervised Pulmonary Vessel Segmentation and Its Application in COPD
Background: It is fundamental for accurate segmentation and quantification of the pulmonary vessel, particularly smaller vessels, from computed tomography (CT) images in chronic obstructive pulmonary disease (COPD) patients. Objective: The aim of this study was to segment the pulmonary vasculature using a semi-supervised method. Methods: In this study, a self-training framework is proposed by leveraging a teacher-student model for the segmentation of pulmonary vessels. First, the high-quality annotations are acquired in the in-house data by an interactive way. Then, the model is trained in the semi-supervised way. A fully supervised model is trained on a small set of labeled CT images, yielding the teacher model. Following this, the teacher model is used to generate pseudo-labels for the unlabeled CT images, from which reliable ones are selected based on a certain strategy. The training of the student model involves these reliable pseudo-labels. This training process is iteratively repeated until an optimal performance is achieved. Results: Extensive experiments are performed on non-enhanced CT scans of 125 COPD patients. Quantitative and qualitative analyses demonstrate that the proposed method, Semi2, significantly improves the precision of vessel segmentation by 2.3%, achieving a precision of 90.3%. Further, quantitative analysis is conducted in the pulmonary vessel of COPD, providing insights into the differences in the pulmonary vessel across different severity of the disease. Conclusion: The proposed method can not only improve the performance of pulmonary vascular segmentation, but can also be applied in COPD analysis. The code will be made available at https://github.com/wuyanan513/semi-supervised-learning-for-vessel-segmentation.
☆ Cross-Subject Mind Decoding from Inaccurate Representations
Decoding stimulus images from fMRI signals has advanced with pre-trained generative models. However, existing methods struggle with cross-subject mappings due to cognitive variability and subject-specific differences. This challenge arises from sequential errors, where unidirectional mappings generate partially inaccurate representations that, when fed into diffusion models, accumulate errors and degrade reconstruction fidelity. To address this, we propose the Bidirectional Autoencoder Intertwining framework for accurate decoded representation prediction. Our approach unifies multiple subjects through a Subject Bias Modulation Module while leveraging bidirectional mapping to better capture data distributions for precise representation prediction. To further enhance fidelity when decoding representations into stimulus images, we introduce a Semantic Refinement Module to improve semantic representations and a Visual Coherence Module to mitigate the effects of inaccurate visual representations. Integrated with ControlNet and Stable Diffusion, our method outperforms state-of-the-art approaches on benchmark datasets in both qualitative and quantitative evaluations. Moreover, our framework exhibits strong adaptability to new subjects with minimal training samples.
Negation-Aware Test-Time Adaptation for Vision-Language Models
In this paper, we study a practical but less-touched problem in Vision-Language Models (VLMs), \ie, negation understanding. Specifically, many real-world applications require models to explicitly identify what is false or non-existent, \eg, radiologists may search for images that exclude specific conditions. Despite the impressive transferability of VLMs through large-scale training, they suffer from a critical limitation that fails to handle negation. To address this challenge, existing methods attribute its root cause to the scarcity of negation training data and propose to fine-tune VLMs on massive data containing explicit negation. Undoubtedly, such data-centric solutions demand substantial data and computational resources, limiting their sustainable widespread adoption. To tackle negation in a low-carbon manner, we empirically observe that the key obstacle lies in the dual-concept shifts between the affirmation and negation distributions. Therefore, we propose a Negation-Aware Test-Time Adaptation (NEAT) method to efficiently adjust distribution-related parameters during inference. In brief, NEAT can reduce distribution shift in consistent semantics while eliminating false distributional consistency in unrelated semantics. Extensive experiments on the various negation understanding tasks verify the effectiveness of the proposed method. The code is available at https://github.com/hhc1997/NEAT.
comment: This paper will be submitted to the IEEE for possible publication
☆ Revisiting DETR for Small Object Detection via Noise-Resilient Query Optimization ICME
Despite advancements in Transformer-based detectors for small object detection (SOD), recent studies show that these detectors still face challenges due to inherent noise sensitivity in feature pyramid networks (FPN) and diminished query quality in existing label assignment strategies. In this paper, we propose a novel Noise-Resilient Query Optimization (NRQO) paradigm, which innovatively incorporates the Noise-Tolerance Feature Pyramid Network (NT-FPN) and the Pairwise-Similarity Region Proposal Network (PS-RPN). Specifically, NT-FPN mitigates noise during feature fusion in FPN by preserving spatial and semantic information integrity. Unlike existing label assignment strategies, PS-RPN generates a sufficient number of high-quality positive queries by enhancing anchor-ground truth matching through position and shape similarities, without the need for additional hyperparameters. Extensive experiments on multiple benchmarks consistently demonstrate the superiority of NRQO over state-of-the-art baselines.
comment: 2025 IEEE International Conference on Multimedia and Expo (ICME)
☆ ScenePainter: Semantically Consistent Perpetual 3D Scene Generation with Concept Relation Alignment
Perpetual 3D scene generation aims to produce long-range and coherent 3D view sequences, which is applicable for long-term video synthesis and 3D scene reconstruction. Existing methods follow a "navigate-and-imagine" fashion and rely on outpainting for successive view expansion. However, the generated view sequences suffer from semantic drift issue derived from the accumulated deviation of the outpainting module. To tackle this challenge, we propose ScenePainter, a new framework for semantically consistent 3D scene generation, which aligns the outpainter's scene-specific prior with the comprehension of the current scene. To be specific, we introduce a hierarchical graph structure dubbed SceneConceptGraph to construct relations among multi-level scene concepts, which directs the outpainter for consistent novel views and can be dynamically refined to enhance diversity. Extensive experiments demonstrate that our framework overcomes the semantic drift issue and generates more consistent and immersive 3D view sequences. Project Page: https://xiac20.github.io/ScenePainter/.
☆ Closing the Modality Gap for Mixed Modality Search
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.
comment: Project page: https://yuhui-zh15.github.io/MixedModalitySearch/
☆ Probing Multimodal Fusion in the Brain: The Dominance of Audiovisual Streams in Naturalistic Encoding
Predicting brain activity in response to naturalistic, multimodal stimuli is a key challenge in computational neuroscience. While encoding models are becoming more powerful, their ability to generalize to truly novel contexts remains a critical, often untested, question. In this work, we developed brain encoding models using state-of-the-art visual (X-CLIP) and auditory (Whisper) feature extractors and rigorously evaluated them on both in-distribution (ID) and diverse out-of-distribution (OOD) data. Our results reveal a fundamental trade-off between model complexity and generalization: a higher-capacity attention-based model excelled on ID data, but a simpler linear model was more robust, outperforming a competitive baseline by 18\% on the OOD set. Intriguingly, we found that linguistic features did not improve predictive accuracy, suggesting that for familiar languages, neural encoding may be dominated by the continuous visual and auditory streams over redundant textual information. Spatially, our approach showed marked performance gains in the auditory cortex, underscoring the benefit of high-fidelity speech representations. Collectively, our findings demonstrate that rigorous OOD testing is essential for building robust neuro-AI models and provides nuanced insights into how model architecture, stimulus characteristics, and sensory hierarchies shape the neural encoding of our rich, multimodal world.
☆ A New One-Shot Federated Learning Framework for Medical Imaging Classification with Feature-Guided Rectified Flow and Knowledge Distillation
In multi-center scenarios, One-Shot Federated Learning (OSFL) has attracted increasing attention due to its low communication overhead, requiring only a single round of transmission. However, existing generative model-based OSFL methods suffer from low training efficiency and potential privacy leakage in the healthcare domain. Additionally, achieving convergence within a single round of model aggregation is challenging under non-Independent and Identically Distributed (non-IID) data. To address these challenges, in this paper a modified OSFL framework is proposed, in which a new Feature-Guided Rectified Flow Model (FG-RF) and Dual-Layer Knowledge Distillation (DLKD) aggregation method are developed. FG-RF on the client side accelerates generative modeling in medical imaging scenarios while preserving privacy by synthesizing feature-level images rather than pixel-level images. To handle non-IID distributions, DLKD enables the global student model to simultaneously mimic the output logits and align the intermediate-layer features of client-side teacher models during aggregation. Experimental results on three non-IID medical imaging datasets show that our new framework and method outperform multi-round federated learning approaches, achieving up to 21.73% improvement, and exceeds the baseline FedISCA by an average of 21.75%. Furthermore, our experiments demonstrate that feature-level synthetic images significantly reduce privacy leakage risks compared to pixel-level synthetic images.
comment: Accepted at ECAI 2025
☆ PGKET: A Photonic Gaussian Kernel Enhanced Transformer
Self-Attention Mechanisms (SAMs) enhance model performance by extracting key information but are inefficient when dealing with long sequences. To this end, a photonic Gaussian Kernel Enhanced Transformer (PGKET) is proposed, based on the Photonic Gaussian Kernel Self-Attention Mechanism (PGKSAM). The PGKSAM calculates the Photonic Gaussian Kernel Self-Attention Score (PGKSAS) using photon interferometry and superposition to process multiple inputs in parallel. Experimental results show that PGKET outperforms some state-of-the-art transformers in multi-classification tasks on MedMNIST v2 and CIFAR-10, and is expected to improve performance in complex tasks and accelerate the convergence of Photonic Computing (PC) and machine learning.
☆ Dual Path Learning -- learning from noise and context for medical image denoising
Medical imaging plays a critical role in modern healthcare, enabling clinicians to accurately diagnose diseases and develop effective treatment plans. However, noise, often introduced by imaging devices, can degrade image quality, leading to misinterpretation and compromised clinical outcomes. Existing denoising approaches typically rely either on noise characteristics or on contextual information from the image. Moreover, they are commonly developed and evaluated for a single imaging modality and noise type. Motivated by Geng et.al CNCL, which integrates both noise and context, this study introduces a Dual-Pathway Learning (DPL) model architecture that effectively denoises medical images by leveraging both sources of information and fusing them to generate the final output. DPL is evaluated across multiple imaging modalities and various types of noise, demonstrating its robustness and generalizability. DPL improves PSNR by 3.35% compared to the baseline UNet when evaluated on Gaussian noise and trained across all modalities. The code is available at 10.5281/zenodo.15836053.
comment: 10 pages, 7 figures
☆ A Survey of Multimodal Hallucination Evaluation and Detection
Multi-modal Large Language Models (MLLMs) have emerged as a powerful paradigm for integrating visual and textual information, supporting a wide range of multi-modal tasks. However, these models often suffer from hallucination, producing content that appears plausible but contradicts the input content or established world knowledge. This survey offers an in-depth review of hallucination evaluation benchmarks and detection methods across Image-to-Text (I2T) and Text-to-image (T2I) generation tasks. Specifically, we first propose a taxonomy of hallucination based on faithfulness and factuality, incorporating the common types of hallucinations observed in practice. Then we provide an overview of existing hallucination evaluation benchmarks for both T2I and I2T tasks, highlighting their construction process, evaluation objectives, and employed metrics. Furthermore, we summarize recent advances in hallucination detection methods, which aims to identify hallucinated content at the instance level and serve as a practical complement of benchmark-based evaluation. Finally, we highlight key limitations in current benchmarks and detection methods, and outline potential directions for future research.
comment: 33 pages, 5 figures
☆ MedIQA: A Scalable Foundation Model for Prompt-Driven Medical Image Quality Assessment MICCAI 2025
Rapid advances in medical imaging technology underscore the critical need for precise and automated image quality assessment (IQA) to ensure diagnostic accuracy. Existing medical IQA methods, however, struggle to generalize across diverse modalities and clinical scenarios. In response, we introduce MedIQA, the first comprehensive foundation model for medical IQA, designed to handle variability in image dimensions, modalities, anatomical regions, and types. We developed a large-scale multi-modality dataset with plentiful manually annotated quality scores to support this. Our model integrates a salient slice assessment module to focus on diagnostically relevant regions feature retrieval and employs an automatic prompt strategy that aligns upstream physical parameter pre-training with downstream expert annotation fine-tuning. Extensive experiments demonstrate that MedIQA significantly outperforms baselines in multiple downstream tasks, establishing a scalable framework for medical IQA and advancing diagnostic workflows and clinical decision-making.
comment: We note that the version after peer review of this paper has been provisionally accepted by The 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2025)
☆ Enhancing Reward Models for High-quality Image Generation: Beyond Text-Image Alignment ICCV 2025
Contemporary image generation systems have achieved high fidelity and superior aesthetic quality beyond basic text-image alignment. However, existing evaluation frameworks have failed to evolve in parallel. This study reveals that human preference reward models fine-tuned based on CLIP and BLIP architectures have inherent flaws: they inappropriately assign low scores to images with rich details and high aesthetic value, creating a significant discrepancy with actual human aesthetic preferences. To address this issue, we design a novel evaluation score, ICT (Image-Contained-Text) score, that achieves and surpasses the objectives of text-image alignment by assessing the degree to which images represent textual content. Building upon this foundation, we further train an HP (High-Preference) score model using solely the image modality to enhance image aesthetics and detail quality while maintaining text-image alignment. Experiments demonstrate that the proposed evaluation model improves scoring accuracy by over 10\% compared to existing methods, and achieves significant results in optimizing state-of-the-art text-to-image models. This research provides theoretical and empirical support for evolving image generation technology toward higher-order human aesthetic preferences. Code is available at https://github.com/BarretBa/ICTHP.
comment: Accepted to ICCV 2025
☆ GPSMamba: A Global Phase and Spectral Prompt-guided Mamba for Infrared Image Super-Resolution
Infrared Image Super-Resolution (IRSR) is challenged by the low contrast and sparse textures of infrared data, requiring robust long-range modeling to maintain global coherence. While State-Space Models like Mamba offer proficiency in modeling long-range dependencies for this task, their inherent 1D causal scanning mechanism fragments the global context of 2D images, hindering fine-detail restoration. To address this, we propose Global Phase and Spectral Prompt-guided Mamba (GPSMamba), a framework that synergizes architectural guidance with non-causal supervision. First, our Adaptive Semantic-Frequency State Space Module (ASF-SSM) injects a fused semantic-frequency prompt directly into the Mamba block, integrating non-local context to guide reconstruction. Then, a novel Thermal-Spectral Attention and Phase Consistency Loss provides explicit, non-causal supervision to enforce global structural and spectral fidelity. By combining these two innovations, our work presents a systematic strategy to mitigate the limitations of causal modeling. Extensive experiments demonstrate that GPSMamba achieves state-of-the-art performance, validating our approach as a powerful new paradigm for infrared image restoration. Code is available at https://github.com/yongsongH/GPSMamba.
comment: This manuscript is under review, and copyright will be transferred without notice
☆ UPP: Unified Point-Level Prompting for Robust Point Cloud Analysis ICCV 2025
Pre-trained point cloud analysis models have shown promising advancements in various downstream tasks, yet their effectiveness is typically suffering from low-quality point cloud (i.e., noise and incompleteness), which is a common issue in real scenarios due to casual object occlusions and unsatisfactory data collected by 3D sensors. To this end, existing methods focus on enhancing point cloud quality by developing dedicated denoising and completion models. However, due to the isolation between the point cloud enhancement and downstream tasks, these methods fail to work in various real-world domains. In addition, the conflicting objectives between denoising and completing tasks further limit the ensemble paradigm to preserve critical geometric features. To tackle the above challenges, we propose a unified point-level prompting method that reformulates point cloud denoising and completion as a prompting mechanism, enabling robust analysis in a parameter-efficient manner. We start by introducing a Rectification Prompter to adapt to noisy points through the predicted rectification vector prompts, effectively filtering noise while preserving intricate geometric features essential for accurate analysis. Sequentially, we further incorporate a Completion Prompter to generate auxiliary point prompts based on the rectified point clouds, facilitating their robustness and adaptability. Finally, a Shape-Aware Unit module is exploited to efficiently unify and capture the filtered geometric features for the downstream point cloud analysis.Extensive experiments on four datasets demonstrate the superiority and robustness of our method when handling noisy and incomplete point cloud data against existing state-of-the-art methods. Our code is released at https://github.com/zhoujiahuan1991/ICCV2025-UPP.
comment: Accepted by ICCV 2025 as a Poster
☆ AEDR: Training-Free AI-Generated Image Attribution via Autoencoder Double-Reconstruction
The rapid advancement of image-generation technologies has made it possible for anyone to create photorealistic images using generative models, raising significant security concerns. To mitigate malicious use, tracing the origin of such images is essential. Reconstruction-based attribution methods offer a promising solution, but they often suffer from reduced accuracy and high computational costs when applied to state-of-the-art (SOTA) models. To address these challenges, we propose AEDR (AutoEncoder Double-Reconstruction), a novel training-free attribution method designed for generative models with continuous autoencoders. Unlike existing reconstruction-based approaches that rely on the value of a single reconstruction loss, AEDR performs two consecutive reconstructions using the model's autoencoder, and adopts the ratio of these two reconstruction losses as the attribution signal. This signal is further calibrated using the image homogeneity metric to improve accuracy, which inherently cancels out absolute biases caused by image complexity, with autoencoder-based reconstruction ensuring superior computational efficiency. Experiments on eight top latent diffusion models show that AEDR achieves 25.5% higher attribution accuracy than existing reconstruction-based methods, while requiring only 1% of the computational time.
☆ Underwater Waste Detection Using Deep Learning A Performance Comparison of YOLOv7 to 10 and Faster RCNN
Underwater pollution is one of today's most significant environmental concerns, with vast volumes of garbage found in seas, rivers, and landscapes around the world. Accurate detection of these waste materials is crucial for successful waste management, environmental monitoring, and mitigation strategies. In this study, we investigated the performance of five cutting-edge object recognition algorithms, namely YOLO (You Only Look Once) models, including YOLOv7, YOLOv8, YOLOv9, YOLOv10, and Faster Region-Convolutional Neural Network (R-CNN), to identify which model was most effective at recognizing materials in underwater situations. The models were thoroughly trained and tested on a large dataset containing fifteen different classes under diverse conditions, such as low visibility and variable depths. From the above-mentioned models, YOLOv8 outperformed the others, with a mean Average Precision (mAP) of 80.9%, indicating a significant performance. This increased performance is attributed to YOLOv8's architecture, which incorporates advanced features such as improved anchor-free mechanisms and self-supervised learning, allowing for more precise and efficient recognition of items in a variety of settings. These findings highlight the YOLOv8 model's potential as an effective tool in the global fight against pollution, improving both the detection capabilities and scalability of underwater cleanup operations.
comment: 7 pages, 11 figures, to be published in International Journal of Research in Computing (IJRC)
☆ YOLO for Knowledge Extraction from Vehicle Images: A Baseline Study
Accurate identification of vehicle attributes such as make, colour, and shape is critical for law enforcement and intelligence applications. This study evaluates the effectiveness of three state-of-the-art deep learning approaches YOLO-v11, YOLO-World, and YOLO-Classification on a real-world vehicle image dataset. This dataset was collected under challenging and unconstrained conditions by NSW Police Highway Patrol Vehicles. A multi-view inference (MVI) approach was deployed to enhance the performance of the models' predictions. To conduct the analyses, datasets with 100,000 plus images were created for each of the three metadata prediction tasks, specifically make, shape and colour. The models were tested on a separate dataset with 29,937 images belonging to 1809 number plates. Different sets of experiments have been investigated by varying the models sizes. A classification accuracy of 93.70%, 82.86%, 85.19%, and 94.86% was achieved with the best performing make, shape, colour, and colour-binary models respectively. It was concluded that there is a need to use MVI to get usable models within such complex real-world datasets. Our findings indicated that the object detection models YOLO-v11 and YOLO-World outperformed classification-only models in make and shape extraction. Moreover, smaller YOLO variants perform comparably to larger counterparts, offering substantial efficiency benefits for real-time predictions. This work provides a robust baseline for extracting vehicle metadata in real-world scenarios. Such models can be used in filtering and sorting user queries, minimising the time required to search large vehicle images datasets.
☆ PerioDet: Large-Scale Panoramic Radiograph Benchmark for Clinical-Oriented Apical Periodontitis Detection MICCAI 2025
Apical periodontitis is a prevalent oral pathology that presents significant public health challenges. Despite advances in automated diagnostic systems across various medical fields, the development of Computer-Aided Diagnosis (CAD) applications for apical periodontitis is still constrained by the lack of a large-scale, high-quality annotated dataset. To address this issue, we release a large-scale panoramic radiograph benchmark called "PerioXrays", comprising 3,673 images and 5,662 meticulously annotated instances of apical periodontitis. To the best of our knowledge, this is the first benchmark dataset for automated apical periodontitis diagnosis. This paper further proposes a clinical-oriented apical periodontitis detection (PerioDet) paradigm, which jointly incorporates Background-Denoising Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address the challenges posed by background noise and small targets in automated detection. Extensive experiments on the PerioXrays dataset demonstrate the superiority of PerioDet in advancing automated apical periodontitis detection. Additionally, a well-designed human-computer collaborative experiment underscores the clinical applicability of our method as an auxiliary diagnostic tool for professional dentists.
comment: MICCAI 2025(Early Accept)
Structure Matters: Revisiting Boundary Refinement in Video Object Segmentation
Given an object mask, Semi-supervised Video Object Segmentation (SVOS) technique aims to track and segment the object across video frames, serving as a fundamental task in computer vision. Although recent memory-based methods demonstrate potential, they often struggle with scenes involving occlusion, particularly in handling object interactions and high feature similarity. To address these issues and meet the real-time processing requirements of downstream applications, in this paper, we propose a novel bOundary Amendment video object Segmentation method with Inherent Structure refinement, hereby named OASIS. Specifically, a lightweight structure refinement module is proposed to enhance segmentation accuracy. With the fusion of rough edge priors captured by the Canny filter and stored object features, the module can generate an object-level structure map and refine the representations by highlighting boundary features. Evidential learning for uncertainty estimation is introduced to further address challenges in occluded regions. The proposed method, OASIS, maintains an efficient design, yet extensive experiments on challenging benchmarks demonstrate its superior performance and competitive inference speed compared to other state-of-the-art methods, i.e., achieving the F values of 91.6 (vs. 89.7 on DAVIS-17 validation set) and G values of 86.6 (vs. 86.2 on YouTubeVOS 2019 validation set) while maintaining a competitive speed of 48 FPS on DAVIS.
☆ PDT: Point Distribution Transformation with Diffusion Models
Point-based representations have consistently played a vital role in geometric data structures. Most point cloud learning and processing methods typically leverage the unordered and unconstrained nature to represent the underlying geometry of 3D shapes. However, how to extract meaningful structural information from unstructured point cloud distributions and transform them into semantically meaningful point distributions remains an under-explored problem. We present PDT, a novel framework for point distribution transformation with diffusion models. Given a set of input points, PDT learns to transform the point set from its original geometric distribution into a target distribution that is semantically meaningful. Our method utilizes diffusion models with novel architecture and learning strategy, which effectively correlates the source and the target distribution through a denoising process. Through extensive experiments, we show that our method successfully transforms input point clouds into various forms of structured outputs - ranging from surface-aligned keypoints, and inner sparse joints to continuous feature lines. The results showcase our framework's ability to capture both geometric and semantic features, offering a powerful tool for various 3D geometry processing tasks where structured point distributions are desired. Code will be available at this link: https://github.com/shanemankiw/PDT.
comment: Project page: https://shanemankiw.github.io/PDT/
☆ MGHFT: Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition
Although pre-trained visual models with text have demonstrated strong capabilities in visual feature extraction, sticker emotion understanding remains challenging due to its reliance on multi-view information, such as background knowledge and stylistic cues. To address this, we propose a novel multi-granularity hierarchical fusion transformer (MGHFT), with a multi-view sticker interpreter based on Multimodal Large Language Models. Specifically, inspired by the human ability to interpret sticker emotions from multiple views, we first use Multimodal Large Language Models to interpret stickers by providing rich textual context via multi-view descriptions. Then, we design a hierarchical fusion strategy to fuse the textual context into visual understanding, which builds upon a pyramid visual transformer to extract both global and local sticker features at multiple stages. Through contrastive learning and attention mechanisms, textual features are injected at different stages of the visual backbone, enhancing the fusion of global- and local-granularity visual semantics with textual guidance. Finally, we introduce a text-guided fusion attention mechanism to effectively integrate the overall multimodal features, enhancing semantic understanding. Extensive experiments on 2 public sticker emotion datasets demonstrate that MGHFT significantly outperforms existing sticker emotion recognition approaches, achieving higher accuracy and more fine-grained emotion recognition. Compared to the best pre-trained visual models, our MGHFT also obtains an obvious improvement, 5.4% on F1 and 4.0% on accuracy. The code is released at https://github.com/cccccj-03/MGHFT_ACMMM2025.
comment: Accepted by ACMMM2025
☆ WiSE-OD: Benchmarking Robustness in Infrared Object Detection
Object detection (OD) in infrared (IR) imagery is critical for low-light and nighttime applications. However, the scarcity of large-scale IR datasets forces models to rely on weights pre-trained on RGB images. While fine-tuning on IR improves accuracy, it often compromises robustness under distribution shifts due to the inherent modality gap between RGB and IR. To address this, we introduce LLVIP-C and FLIR-C, two cross-modality out-of-distribution (OOD) benchmarks built by applying corruption to standard IR datasets. Additionally, to fully leverage the complementary knowledge from RGB and infrared trained models, we propose WiSE-OD, a weight-space ensembling method with two variants: WiSE-OD$_{ZS}$, which combines RGB zero-shot and IR fine-tuned weights, and WiSE-OD$_{LP}$, which blends zero-shot and linear probing. Evaluated across three RGB-pretrained detectors and two robust baselines, WiSE-OD improves both cross-modality and corruption robustness without any additional training or inference cost.
comment: 8 pages, conference
☆ Gaussian Set Surface Reconstruction through Per-Gaussian Optimization
3D Gaussian Splatting (3DGS) effectively synthesizes novel views through its flexible representation, yet fails to accurately reconstruct scene geometry. While modern variants like PGSR introduce additional losses to ensure proper depth and normal maps through Gaussian fusion, they still neglect individual placement optimization. This results in unevenly distributed Gaussians that deviate from the latent surface, complicating both reconstruction refinement and scene editing. Motivated by pioneering work on Point Set Surfaces, we propose Gaussian Set Surface Reconstruction (GSSR), a method designed to distribute Gaussians evenly along the latent surface while aligning their dominant normals with the surface normal. GSSR enforces fine-grained geometric alignment through a combination of pixel-level and Gaussian-level single-view normal consistency and multi-view photometric consistency, optimizing both local and global perspectives. To further refine the representation, we introduce an opacity regularization loss to eliminate redundant Gaussians and apply periodic depth- and normal-guided Gaussian reinitialization for a cleaner, more uniform spatial distribution. Our reconstruction results demonstrate significantly improved geometric precision in Gaussian placement, enabling intuitive scene editing and efficient generation of novel Gaussian-based 3D environments. Extensive experiments validate GSSR's effectiveness, showing enhanced geometric accuracy while preserving high-quality rendering performance.
☆ HQ-SMem: Video Segmentation and Tracking Using Memory Efficient Object Embedding With Selective Update and Self-Supervised Distillation Feedback
Video Object Segmentation (VOS) is foundational to numerous computer vision applications, including surveillance, autonomous driving, robotics and generative video editing. However, existing VOS models often struggle with precise mask delineation, deformable objects, topologically transforming objects, tracking drift and long video sequences. In this paper, we introduce HQ-SMem, for High Quality video segmentation and tracking using Smart Memory, a novel method that enhances the performance of VOS base models by addressing these limitations. Our approach incorporates three key innovations: (i) leveraging SAM with High-Quality masks (SAM-HQ) alongside appearance-based candidate-selection to refine coarse segmentation masks, resulting in improved object boundaries; (ii) implementing a dynamic smart memory mechanism that selectively stores relevant key frames while discarding redundant ones, thereby optimizing memory usage and processing efficiency for long-term videos; and (iii) dynamically updating the appearance model to effectively handle complex topological object variations and reduce drift throughout the video. These contributions mitigate several limitations of existing VOS models including, coarse segmentations that mix-in background pixels, fixed memory update schedules, brittleness to drift and occlusions, and prompt ambiguity issues associated with SAM. Extensive experiments conducted on multiple public datasets and state-of-the-art base trackers demonstrate that our method consistently ranks among the top two on VOTS and VOTSt 2024 datasets. Moreover, HQ-SMem sets new benchmarks on Long Video Dataset and LVOS, showcasing its effectiveness in challenging scenarios characterized by complex multi-object dynamics over extended temporal durations.
comment: submit/6651762
☆ Mining Contextualized Visual Associations from Images for Creativity Understanding
Understanding another person's creative output requires a shared language of association. However, when training vision-language models such as CLIP, we rely on web-scraped datasets containing short, predominantly literal, alt-text. In this work, we introduce a method for mining contextualized associations for salient visual elements in an image that can scale to any unlabeled dataset. Given an image, we can use these mined associations to generate high quality creative captions at increasing degrees of abstraction. With our method, we produce a new dataset of visual associations and 1.7m creative captions for the images in MSCOCO. Human evaluation confirms that these captions remain visually grounded while exhibiting recognizably increasing abstraction. Moreover, fine-tuning a visual encoder on this dataset yields meaningful improvements in zero-shot image-text retrieval in two creative domains: poetry and metaphor visualization. We release our dataset, our generation code and our models for use by the broader community.
☆ Dealing with Segmentation Errors in Needle Reconstruction for MRI-Guided Brachytherapy SP
Brachytherapy involves bringing a radioactive source near tumor tissue using implanted needles. Image-guided brachytherapy planning requires amongst others, the reconstruction of the needles. Manually annotating these needles on patient images can be a challenging and time-consuming task for medical professionals. For automatic needle reconstruction, a two-stage pipeline is commonly adopted, comprising a segmentation stage followed by a post-processing stage. While deep learning models are effective for segmentation, their results often contain errors. No currently existing post-processing technique is robust to all possible segmentation errors. We therefore propose adaptations to existing post-processing techniques mainly aimed at dealing with segmentation errors and thereby improving the reconstruction accuracy. Experiments on a prostate cancer dataset, based on MRI scans annotated by medical professionals, demonstrate that our proposed adaptations can help to effectively manage segmentation errors, with the best adapted post-processing technique achieving median needle-tip and needle-bottom point localization errors of $1.07$ (IQR $\pm 1.04$) mm and $0.43$ (IQR $\pm 0.46$) mm, respectively, and median shaft error of $0.75$ (IQR $\pm 0.69$) mm with 0 false positive and 0 false negative needles on a test set of 261 needles.
comment: Published in: Proc. SPIE Medical Imaging 2025, Vol. 13408, 1340826
☆ Perspective from a Higher Dimension: Can 3D Geometric Priors Help Visual Floorplan Localization? ACM MM 2025
Since a building's floorplans are easily accessible, consistent over time, and inherently robust to changes in visual appearance, self-localization within the floorplan has attracted researchers' interest. However, since floorplans are minimalist representations of a building's structure, modal and geometric differences between visual perceptions and floorplans pose challenges to this task. While existing methods cleverly utilize 2D geometric features and pose filters to achieve promising performance, they fail to address the localization errors caused by frequent visual changes and view occlusions due to variously shaped 3D objects. To tackle these issues, this paper views the 2D Floorplan Localization (FLoc) problem from a higher dimension by injecting 3D geometric priors into the visual FLoc algorithm. For the 3D geometric prior modeling, we first model geometrically aware view invariance using multi-view constraints, i.e., leveraging imaging geometric principles to provide matching constraints between multiple images that see the same points. Then, we further model the view-scene aligned geometric priors, enhancing the cross-modal geometry-color correspondences by associating the scene's surface reconstruction with the RGB frames of the sequence. Both 3D priors are modeled through self-supervised contrastive learning, thus no additional geometric or semantic annotations are required. These 3D priors summarized in extensive realistic scenes bridge the modal gap while improving localization success without increasing the computational burden on the FLoc algorithm. Sufficient comparative studies demonstrate that our method significantly outperforms state-of-the-art methods and substantially boosts the FLoc accuracy. All data and code will be released after the anonymous review.
comment: Accepted by ACM MM 2025
☆ Transferable and Undefendable Point Cloud Attacks via Medial Axis Transform
Studying adversarial attacks on point clouds is essential for evaluating and improving the robustness of 3D deep learning models. However, most existing attack methods are developed under ideal white-box settings and often suffer from limited transferability to unseen models and insufficient robustness against common defense mechanisms. In this paper, we propose MAT-Adv, a novel adversarial attack framework that enhances both transferability and undefendability by explicitly perturbing the medial axis transform (MAT) representations, in order to induce inherent adversarialness in the resulting point clouds. Specifically, we employ an autoencoder to project input point clouds into compact MAT representations that capture the intrinsic geometric structure of point clouds. By perturbing these intrinsic representations, MAT-Adv introduces structural-level adversarial characteristics that remain effective across diverse models and defense strategies. To mitigate overfitting and prevent perturbation collapse, we incorporate a dropout strategy into the optimization of MAT perturbations, further improving transferability and undefendability. Extensive experiments demonstrate that MAT-Adv significantly outperforms existing state-of-the-art methods in both transferability and undefendability. Codes will be made public upon paper acceptance.
☆ Phoneme-Level Visual Speech Recognition via Point-Visual Fusion and Language Model Reconstruction
Visual Automatic Speech Recognition (V-ASR) is a challenging task that involves interpreting spoken language solely from visual information, such as lip movements and facial expressions. This task is notably challenging due to the absence of auditory cues and the visual ambiguity of phonemes that exhibit similar visemes-distinct sounds that appear identical in lip motions. Existing methods often aim to predict words or characters directly from visual cues, but they commonly suffer from high error rates due to viseme ambiguity and require large amounts of pre-training data. We propose a novel phoneme-based two-stage framework that fuses visual and landmark motion features, followed by an LLM model for word reconstruction to address these challenges. Stage 1 consists of V-ASR, which outputs the predicted phonemes, thereby reducing training complexity. Meanwhile, the facial landmark features address speaker-specific facial characteristics. Stage 2 comprises an encoder-decoder LLM model, NLLB, that reconstructs the output phonemes back to words. Besides using a large visual dataset for deep learning fine-tuning, our PV-ASR method demonstrates superior performance by achieving 17.4% WER on the LRS2 and 21.0% WER on the LRS3 dataset.
comment: 10 pages, 3 figures
♻ ☆ GVCCS: A Dataset for Contrail Identification and Tracking on Visible Whole Sky Camera Sequences
Aviation's climate impact includes not only CO2 emissions but also significant non-CO2 effects, especially from contrails. These ice clouds can alter Earth's radiative balance, potentially rivaling the warming effect of aviation CO2. Physics-based models provide useful estimates of contrail formation and climate impact, but their accuracy depends heavily on the quality of atmospheric input data and on assumptions used to represent complex processes like ice particle formation and humidity-driven persistence. Observational data from remote sensors, such as satellites and ground cameras, could be used to validate and calibrate these models. However, existing datasets don't explore all aspect of contrail dynamics and formation: they typically lack temporal tracking, and do not attribute contrails to their source flights. To address these limitations, we present the Ground Visible Camera Contrail Sequences (GVCCS), a new open data set of contrails recorded with a ground-based all-sky camera in the visible range. Each contrail is individually labeled and tracked over time, allowing a detailed analysis of its lifecycle. The dataset contains 122 video sequences (24,228 frames) and includes flight identifiers for contrails that form above the camera. As reference, we also propose a unified deep learning framework for contrail analysis using a panoptic segmentation model that performs semantic segmentation (contrail pixel identification), instance segmentation (individual contrail separation), and temporal tracking in a single architecture. By providing high-quality, temporally resolved annotations and a benchmark for model evaluation, our work supports improved contrail monitoring and will facilitate better calibration of physical models. This sets the groundwork for more accurate climate impact understanding and assessments.
♻ ☆ Label Anything: Multi-Class Few-Shot Semantic Segmentation with Visual Prompts
Few-shot semantic segmentation aims to segment objects from previously unseen classes using only a limited number of labeled examples. In this paper, we introduce Label Anything, a novel transformer-based architecture designed for multi-prompt, multi-way few-shot semantic segmentation. Our approach leverages diverse visual prompts -- points, bounding boxes, and masks -- to create a highly flexible and generalizable framework that significantly reduces annotation burden while maintaining high accuracy. Label Anything makes three key contributions: ($\textit{i}$) we introduce a new task formulation that relaxes conventional few-shot segmentation constraints by supporting various types of prompts, multi-class classification, and enabling multiple prompts within a single image; ($\textit{ii}$) we propose a novel architecture based on transformers and attention mechanisms; and ($\textit{iii}$) we design a versatile training procedure allowing our model to operate seamlessly across different $N$-way $K$-shot and prompt-type configurations with a single trained model. Our extensive experimental evaluation on the widely used COCO-$20^i$ benchmark demonstrates that Label Anything achieves state-of-the-art performance among existing multi-way few-shot segmentation methods, while significantly outperforming leading single-class models when evaluated in multi-class settings. Code and trained models are available at https://github.com/pasqualedem/LabelAnything.
comment: ECAI 2025 - 28th European Conference on Artificial Intelligence
♻ ☆ ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.
comment: 12 pages,9 figures
TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance ICCV 2025
Recent advances in text-to-image synthesis largely benefit from sophisticated sampling strategies and classifier-free guidance (CFG) to ensure high-quality generation. However, CFG's reliance on two forward passes, especially when combined with intricate sampling algorithms, results in prohibitively high inference costs. To address this, we introduce TeEFusion (Text Embeddings Fusion), a novel and efficient distillation method that directly incorporates the guidance magnitude into the text embeddings and distills the teacher model's complex sampling strategy. By simply fusing conditional and unconditional text embeddings using linear operations, TeEFusion reconstructs the desired guidance without adding extra parameters, simultaneously enabling the student model to learn from the teacher's output produced via its sophisticated sampling approach. Extensive experiments on state-of-the-art models such as SD3 demonstrate that our method allows the student to closely mimic the teacher's performance with a far simpler and more efficient sampling strategy. Consequently, the student model achieves inference speeds up to 6$\times$ faster than the teacher model, while maintaining image quality at levels comparable to those obtained through the teacher's complex sampling approach. The code is publicly available at https://github.com/AIDC-AI/TeEFusion.
comment: Accepted by ICCV 2025. The code is publicly available at https://github.com/AIDC-AI/TeEFusion
♻ ☆ A Multimodal Seq2Seq Transformer for Predicting Brain Responses to Naturalistic Stimuli
The Algonauts 2025 Challenge called on the community to develop encoding models that predict whole-brain fMRI responses to naturalistic multimodal movies. In this submission, we propose a sequence-to-sequence Transformer that autoregressively predicts fMRI activity from visual, auditory, and language inputs. Stimulus features were extracted using pretrained models including VideoMAE, HuBERT, Qwen, and BridgeTower. The decoder integrates information from prior brain states and current stimuli via dual cross-attention mechanisms that attend to both perceptual information extracted from the stimulus as well as narrative information provided by high-level summaries of the content. One core innovation of our approach is the use of sequences of multimodal context to predict sequences of brain activity, enabling the model to capture long-range temporal structure in both stimuli and neural responses. Another is the combination of a shared encoder with partial subject-specific decoder, which leverages common representational structure across subjects while accounting for individual variability. Our model achieves strong performance on both in-distribution and out-of-distribution data, demonstrating the effectiveness of temporally-aware, multimodal sequence modeling for brain activity prediction. The code is available at https://github.com/Angelneer926/Algonauts_challenge.
♻ ☆ MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation
Accurate and efficient medical image segmentation is crucial but challenging due to anatomical variability and high computational demands on volumetric data. Recent hybrid CNN-Transformer architectures achieve state-of-the-art results but add significant complexity. In this paper, we propose MLRU++, a Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency. It introduces two key innovations: a Lightweight Channel and Bottleneck Attention Module (LCBAM) that enhances contextual feature encoding with minimal overhead, and a Multiscale Bottleneck Block (M2B) in the decoder that captures fine-grained details via multi-resolution feature aggregation. Experiments on four publicly available benchmark datasets (Synapse, BTCV, ACDC, and Decathlon Lung) demonstrate that MLRU++ achieves state-of-the-art performance, with average Dice scores of 87.57% (Synapse), 93.00% (ACDC), and 81.12% (Lung). Compared to existing leading models, MLRU++ improves Dice scores by 5.38% and 2.12% on Synapse and ACDC, respectively, while significantly reducing parameter count and computational cost. Ablation studies evaluating LCBAM and M2B further confirm the effectiveness of the proposed architectural components. Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks. Source code is available at: https://github.com/1027865/MLRUPP
♻ ☆ Registration beyond Points: General Affine Subspace Alignment via Geodesic Distance on Grassmann Manifold
Affine Grassmannian has been favored for expressing proximity between lines and planes due to its theoretical exactness in measuring distances among features. Despite this advantage, the existing method can only measure the proximity without yielding the distance as an explicit function of rigid body transformation. Thus, an optimizable distance function on the manifold has remained underdeveloped, stifling its application in registration problems. This paper is the first to explicitly derive an optimizable cost function between two Grassmannian features with respect to rigid body transformation ($\mathbf{R}$ and $\mathbf{t}$). Specifically, we present a rigorous mathematical proof demonstrating that the bases of high-dimensional linear subspaces can serve as an explicit representation of the cost. Finally, we propose an optimizable cost function based on the transformed bases that can be applied to the registration problem of any affine subspace. Compared to vector parameter-based approaches, our method is able to find a globally optimal solution by directly minimizing the geodesic distance which is agnostic to representation ambiguity. The resulting cost function and its extension to the inlier-set maximizing Branch-and-Bound (BnB) solver have been demonstrated to improve the convergence of existing solutions or outperform them in various computer vision tasks. The code is available on https://github.com/joomeok/GrassmannRegistration.
♻ ☆ Benchmarking of Deep Learning Methods for Generic MRI Multi-Organ Abdominal Segmentation
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.
♻ ☆ VIBE: Video-Input Brain Encoder for fMRI Response Modeling
We present VIBE, a two-stage Transformer that fuses multi-modal video, audio, and text features to predict fMRI activity. Representations from open-source models (Qwen2.5, BEATs, Whisper, SlowFast, V-JEPA) are merged by a modality-fusion transformer and temporally decoded by a prediction transformer with rotary embeddings. Trained on 65 hours of movie data from the CNeuroMod dataset and ensembled across 20 seeds, VIBE attains mean parcel-wise Pearson correlations of 0.3225 on in-distribution Friends S07 and 0.2125 on six out-of-distribution films. An earlier iteration of the same architecture obtained 0.3198 and 0.2096, respectively, winning Phase-1 and placing second overall in the Algonauts 2025 Challenge.
♻ ☆ Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.
comment: 8 pages, 2 figures, 1 table. Invited report, CCN 2025 Algonauts Project session (3rd-place team). Code: https://github.com/erensemih/Algonauts2025_ModalityRNN
♻ ☆ Improving Multislice Electron Ptychography with a Generative Prior
Multislice electron ptychography (MEP) is an inverse imaging technique that computationally reconstructs the highest-resolution images of atomic crystal structures from diffraction patterns. Available algorithms often solve this inverse problem iteratively but are both time consuming and produce suboptimal solutions due to their ill-posed nature. We develop MEP-Diffusion, a diffusion model trained on a large database of crystal structures specifically for MEP to augment existing iterative solvers. MEP-Diffusion is easily integrated as a generative prior into existing reconstruction methods via Diffusion Posterior Sampling (DPS). We find that this hybrid approach greatly enhances the quality of the reconstructed 3D volumes, achieving a 90.50% improvement in SSIM over existing methods.
comment: 16 pages, 10 figures, 5 tables
♻ ☆ Long-Form Answers to Visual Questions from Blind and Low Vision People
Vision language models can now generate long-form answers to questions about images - long-form visual question answers (LFVQA). We contribute VizWiz-LF, a dataset of long-form answers to visual questions posed by blind and low vision (BLV) users. VizWiz-LF contains 4.2k long-form answers to 600 visual questions, collected from human expert describers and six VQA models. We develop and annotate functional roles of sentences of LFVQA and demonstrate that long-form answers contain information beyond the question answer such as explanations and suggestions. We further conduct automatic and human evaluations with BLV and sighted people to evaluate long-form answers. BLV people perceive both human-written and generated long-form answers to be plausible, but generated answers often hallucinate incorrect visual details, especially for unanswerable visual questions (e.g., blurry or irrelevant images). To reduce hallucinations, we evaluate the ability of VQA models to abstain from answering unanswerable questions across multiple prompting strategies.
comment: COLM 2024 Oral Spotlight
♻ ☆ Vid2Coach: Transforming How-To Videos into Task Assistants
People use videos to learn new recipes, exercises, and crafts. Such videos remain difficult for blind and low vision (BLV) people to follow as they rely on visual comparison. Our observations of visual rehabilitation therapists (VRTs) guiding BLV people to follow how-to videos revealed that VRTs provide both proactive and responsive support including detailed descriptions, non-visual workarounds, and progress feedback. We propose Vid2Coach, a system that transforms how-to videos into wearable camera-based assistants that provide accessible instructions and mixed-initiative feedback. From the video, Vid2Coach generates accessible instructions by augmenting narrated instructions with demonstration details and completion criteria for each step. It then uses retrieval-augmented-generation to extract relevant non-visual workarounds from BLV-specific resources. Vid2Coach then monitors user progress with a camera embedded in commercial smart glasses to provide context-aware instructions, proactive feedback, and answers to user questions. BLV participants (N=8) using Vid2Coach completed cooking tasks with 58.5\% fewer errors than when using their typical workflow and wanted to use Vid2Coach in their daily lives. Vid2Coach demonstrates an opportunity for AI visual assistance that strengthens rather than replaces non-visual expertise.
comment: Accepted to UIST 2025 Project website: https://minahuh.com/Vid2Coach/
♻ ☆ Unraveling the geometry of visual relational reasoning
Humans readily generalize abstract relations, such as recognizing "constant" in shape or color, whereas neural networks struggle, limiting their flexible reasoning. To investigate mechanisms underlying such generalization, we introduce SimplifiedRPM, a novel benchmark for systematically evaluating abstract relational reasoning, addressing limitations in prior datasets. In parallel, we conduct human experiments to quantify relational difficulty, enabling direct model-human comparisons. Testing four models, ResNet-50, Vision Transformer, Wild Relation Network, and Scattering Compositional Learner (SCL), we find that SCL generalizes best and most closely aligns with human behavior. Using a geometric approach, we identify key representation properties that accurately predict generalization and uncover a fundamental trade-off between signal and dimensionality: novel relations compress into training-induced subspaces. Layer-wise analysis reveals where relational structure emerges, highlights bottlenecks, and generates concrete hypotheses about abstract reasoning in the brain. Motivated by these insights, we propose SNRloss, a novel objective explicitly balancing representation geometry. Our results establish a geometric foundation for relational reasoning, paving the way for more human-like visual reasoning in AI and opening promising avenues for extending geometric analysis to broader cognitive tasks.
comment: 27 pages, 7 figures, 8 SI figures, 2 SI tables
♻ ☆ ObjectRelator: Enabling Cross-View Object Relation Understanding Across Ego-Centric and Exo-Centric Perspectives ICCV25
Bridging the gap between ego-centric and exo-centric views has been a long-standing question in computer vision. In this paper, we focus on the emerging Ego-Exo object correspondence task, which aims to understand object relations across ego-exo perspectives through segmentation. While numerous segmentation models have been proposed, most operate on a single image (view), making them impractical for cross-view scenarios. PSALM, a recently proposed segmentation method, stands out as a notable exception with its demonstrated zero-shot ability on this task. However, due to the drastic viewpoint change between ego and exo, PSALM fails to accurately locate and segment objects, especially in complex backgrounds or when object appearances change significantly. To address these issues, we propose ObjectRelator, a novel approach featuring two key modules: Multimodal Condition Fusion (MCFuse) and SSL-based Cross-View Object Alignment (XObjAlign). MCFuse introduces language as an additional cue, integrating both visual masks and textual descriptions to improve object localization and prevent incorrect associations. XObjAlign enforces cross-view consistency through self-supervised alignment, enhancing robustness to object appearance variations. Extensive experiments demonstrate ObjectRelator's effectiveness on the large-scale Ego-Exo4D benchmark and HANDAL-X (an adapted dataset for cross-view segmentation) with state-of-the-art performance. Code is made available at: http://yuqianfu.com/ObjectRelator.
comment: Accepted by ICCV25 (Highlight)
♻ ☆ TARS: Traffic-Aware Radar Scene Flow Estimation
Scene flow provides crucial motion information for autonomous driving. Recent LiDAR scene flow models utilize the rigid-motion assumption at the instance level, assuming objects are rigid bodies. However, these instance-level methods are not suitable for sparse radar point clouds. In this work, we present a novel Traffic-Aware Radar Scene-Flow (TARS) estimation method, which utilizes motion rigidity at the traffic level. To address the challenges in radar scene flow, we perform object detection and scene flow jointly and boost the latter. We incorporate the feature map from the object detector, trained with detection losses, to make radar scene flow aware of the environment and road users. From this, we construct a Traffic Vector Field (TVF) in the feature space to achieve holistic traffic-level scene understanding in our scene flow branch. When estimating the scene flow, we consider both point-level motion cues from point neighbors and traffic-level consistency of rigid motion within the space. TARS outperforms the state of the art on a proprietary dataset and the View-of-Delft dataset, improving the benchmarks by 23% and 15%, respectively.
♻ ☆ $S^2M^2$: Scalable Stereo Matching Model for Reliable Depth Estimation ICCV
The pursuit of a generalizable stereo matching model, capable of performing across varying resolutions and disparity ranges without dataset-specific fine-tuning, has revealed a fundamental trade-off. Iterative local search methods achieve high scores on constrained benchmarks, but their core mechanism inherently limits the global consistency required for true generalization. On the other hand, global matching architectures, while theoretically more robust, have been historically rendered infeasible by prohibitive computational and memory costs. We resolve this dilemma with $S^2M^2$: a global matching architecture that achieves both state-of-the-art accuracy and high efficiency without relying on cost volume filtering or deep refinement stacks. Our design integrates a multi-resolution transformer for robust long-range correspondence, trained with a novel loss function that concentrates probability on feasible matches. This approach enables a more robust joint estimation of disparity, occlusion, and confidence. $S^2M^2$ establishes a new state of the art on the Middlebury v3 and ETH3D benchmarks, significantly outperforming prior methods across most metrics while reconstructing high-quality details with competitive efficiency.
comment: 8 pages, 5 figures, ICCV accepted paper
♻ ☆ Multispectral Demosaicing via Dual Cameras
Multispectral (MS) images capture detailed scene information across a wide range of spectral bands, making them invaluable for applications requiring rich spectral data. Integrating MS imaging into multi camera devices, such as smartphones, has the potential to enhance both spectral applications and RGB image quality. A critical step in processing MS data is demosaicing, which reconstructs color information from the mosaic MS images captured by the camera. This paper proposes a method for MS image demosaicing specifically designed for dual-camera setups where both RGB and MS cameras capture the same scene. Our approach leverages co-captured RGB images, which typically have higher spatial fidelity, to guide the demosaicing of lower-fidelity MS images. We introduce the Dual-camera RGB-MS Dataset - a large collection of paired RGB and MS mosaiced images with ground-truth demosaiced outputs - that enables training and evaluation of our method. Experimental results demonstrate that our method achieves state-of-the-art accuracy compared to existing techniques.
comment: https://ms-demosaic.github.io/
♻ ☆ EmbodiedOcc++: Boosting Embodied 3D Occupancy Prediction with Plane Regularization and Uncertainty Sampler ACM MM 2025
Online 3D occupancy prediction provides a comprehensive spatial understanding of embodied environments. While the innovative EmbodiedOcc framework utilizes 3D semantic Gaussians for progressive indoor occupancy prediction, it overlooks the geometric characteristics of indoor environments, which are primarily characterized by planar structures. This paper introduces EmbodiedOcc++, enhancing the original framework with two key innovations: a Geometry-guided Refinement Module (GRM) that constrains Gaussian updates through plane regularization, along with a Semantic-aware Uncertainty Sampler (SUS) that enables more effective updates in overlapping regions between consecutive frames. GRM regularizes the position update to align with surface normals. It determines the adaptive regularization weight using curvature-based and depth-based constraints, allowing semantic Gaussians to align accurately with planar surfaces while adapting in complex regions. To effectively improve geometric consistency from different views, SUS adaptively selects proper Gaussians to update. Comprehensive experiments on the EmbodiedOcc-ScanNet benchmark demonstrate that EmbodiedOcc++ achieves state-of-the-art performance across different settings. Our method demonstrates improved edge accuracy and retains more geometric details while ensuring computational efficiency, which is essential for online embodied perception. The code will be released at: https://github.com/PKUHaoWang/EmbodiedOcc2.
comment: Accepted by ACM MM 2025
Feed-Forward SceneDINO for Unsupervised Semantic Scene Completion ICCV 2025
Semantic scene completion (SSC) aims to infer both the 3D geometry and semantics of a scene from single images. In contrast to prior work on SSC that heavily relies on expensive ground-truth annotations, we approach SSC in an unsupervised setting. Our novel method, SceneDINO, adapts techniques from self-supervised representation learning and 2D unsupervised scene understanding to SSC. Our training exclusively utilizes multi-view consistency self-supervision without any form of semantic or geometric ground truth. Given a single input image, SceneDINO infers the 3D geometry and expressive 3D DINO features in a feed-forward manner. Through a novel 3D feature distillation approach, we obtain unsupervised 3D semantics. In both 3D and 2D unsupervised scene understanding, SceneDINO reaches state-of-the-art segmentation accuracy. Linear probing our 3D features matches the segmentation accuracy of a current supervised SSC approach. Additionally, we showcase the domain generalization and multi-view consistency of SceneDINO, taking the first steps towards a strong foundation for single image 3D scene understanding.
comment: ICCV 2025. Christoph Reich and Aleksandar Jevti\'c - both authors contributed equally. Code: https://github.com/tum-vision/scenedino Project page: https://visinf.github.io/scenedino
♻ ☆ All in One: Visual-Description-Guided Unified Point Cloud Segmentation ICCV2025
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.
comment: Accepted by ICCV2025
♻ ☆ Latent Space Analysis for Melanoma Prevention
Melanoma represents a critical health risk due to its aggressive progression and high mortality, underscoring the need for early, interpretable diagnostic tools. While deep learning has advanced in skin lesion classification, most existing models provide only binary outputs, offering limited clinical insight. This work introduces a novel approach that extends beyond classification, enabling interpretable risk modelling through a Conditional Variational Autoencoder. The proposed method learns a structured latent space that captures semantic relationships among lesions, allowing for a nuanced, continuous assessment of morphological differences. An SVM is also trained on this representation effectively differentiating between benign nevi and melanomas, demonstrating strong and consistent performance. More importantly, the learned latent space supports visual and geometric interpretation of malignancy, with the spatial proximity of a lesion to known melanomas serving as a meaningful indicator of risk. This approach bridges predictive performance with clinical applicability, fostering early detection, highlighting ambiguous cases, and enhancing trust in AI-assisted diagnosis through transparent and interpretable decision-making.
comment: The proposed approach presents some technical imperfections and needs to be refined with further examinations
♻ ☆ SE-VLN: A Self-Evolving Vision-Language Navigation Framework Based on Multimodal Large Language Models
Recent advances in vision-language navigation (VLN) were mainly attributed to emerging large language models (LLMs). These methods exhibited excellent generalization capabilities in instruction understanding and task reasoning. However, they were constrained by the fixed knowledge bases and reasoning abilities of LLMs, preventing fully incorporating experiential knowledge and thus resulting in a lack of efficient evolutionary capacity. To address this, we drew inspiration from the evolution capabilities of natural agents, and proposed a self-evolving VLN framework (SE-VLN) to endow VLN agents with the ability to continuously evolve during testing. To the best of our knowledge, it was the first time that an multimodal LLM-powered self-evolving VLN framework was proposed. Specifically, SE-VLN comprised three core modules, i.e., a hierarchical memory module to transfer successful and failure cases into reusable knowledge, a retrieval-augmented thought-based reasoning module to retrieve experience and enable multi-step decision-making, and a reflection module to realize continual evolution. Comprehensive tests illustrated that the SE-VLN achieved navigation success rates of 57% and 35.2% in unseen environments, representing absolute performance improvements of 23.9% and 15.0% over current state-of-the-art methods on R2R and REVERSE datasets, respectively. Moreover, the SE-VLN showed performance improvement with increasing experience repository, elucidating its great potential as a self-evolving agent framework for VLN.
♻ ☆ Framework of a multiscale data-driven DT of the musculoskeletal system
Musculoskeletal disorders (MSDs) are a leading cause of disability worldwide, requiring advanced diagnostic and therapeutic tools for personalised assessment and treatment. Effective management of MSDs involves the interaction of heterogeneous data sources, making the Digital Twin (DT) paradigm a valuable option. This paper introduces the Musculoskeletal Digital Twin (MS-DT), a novel framework that integrates multiscale biomechanical data with computational modelling to create a detailed, patient-specific representation of the musculoskeletal system. By combining motion capture, ultrasound imaging, electromyography, and medical imaging, the MS-DT enables the analysis of spinal kinematics, posture, and muscle function. An interactive visualisation platform provides clinicians and researchers with an intuitive interface for exploring biomechanical parameters and tracking patient-specific changes. Results demonstrate the effectiveness of MS-DT in extracting precise kinematic and dynamic tissue features, offering a comprehensive tool for monitoring spine biomechanics and rehabilitation. This framework provides high-fidelity modelling and real-time visualization to improve patient-specific diagnosis and intervention planning.
♻ ☆ RoCo-Sim: Enhancing Roadside Collaborative Perception through Foreground Simulation
Roadside Collaborative Perception refers to a system where multiple roadside units collaborate to pool their perceptual data, assisting vehicles in enhancing their environmental awareness. Existing roadside perception methods concentrate on model design but overlook data issues like calibration errors, sparse information, and multi-view consistency, leading to poor performance on recent published datasets. To significantly enhance roadside collaborative perception and address critical data issues, we present the first simulation framework RoCo-Sim for road-side collaborative perception. RoCo-Sim is capable of generating diverse, multi-view consistent simulated roadside data through dynamic foreground editing and full-scene style transfer of a single image. RoCo-Sim consists of four components: (1) Camera Extrinsic Optimization ensures accurate 3D to 2D projection for roadside cameras; (2) A novel Multi-View Occlusion-Aware Sampler (MOAS) determines the placement of diverse digital assets within 3D space; (3) DepthSAM innovatively models foreground-background relationships from single-frame fixed-view images, ensuring multi-view consistency of foreground; and (4) Scalable Post-Processing Toolkit generates more realistic and enriched scenes through style transfer and other enhancements. RoCo-Sim significantly improves roadside 3D object detection, outperforming SOTA methods by 83.74 on Rcooper-Intersection and 83.12 on TUMTraf-V2X for AP70. RoCo-Sim fills a critical gap in roadside perception simulation. Code and pre-trained models will be released soon: https://github.com/duyuwen-duen/RoCo-Sim
♻ ☆ MaskControl: Spatio-Temporal Control for Masked Motion Synthesis ICCV2025
Recent advances in motion diffusion models have enabled spatially controllable text-to-motion generation. However, these models struggle to achieve high-precision control while maintaining high-quality motion generation. To address these challenges, we propose MaskControl, the first approach to introduce controllability to the generative masked motion model. Our approach introduces two key innovations. First, \textit{Logits Regularizer} implicitly perturbs logits at training time to align the distribution of motion tokens with the controlled joint positions, while regularizing the categorical token prediction to ensure high-fidelity generation. Second, \textit{Logit Optimization} explicitly optimizes the predicted logits during inference time, directly reshaping the token distribution that forces the generated motion to accurately align with the controlled joint positions. Moreover, we introduce \textit{Differentiable Expectation Sampling (DES)} to combat the non-differential distribution sampling process encountered by logits regularizer and optimization. Extensive experiments demonstrate that MaskControl outperforms state-of-the-art methods, achieving superior motion quality (FID decreases by ~77\%) and higher control precision (average error 0.91 vs. 1.08). Additionally, MaskControl enables diverse applications, including any-joint-any-frame control, body-part timeline control, and zero-shot objective control. Video visualization can be found at https://www.ekkasit.com/ControlMM-page/
comment: Camera Ready Version. ICCV2025 (Oral). Change name from ControlMM to MaskControl. project page https://exitudio.github.io/ControlMM-page
♻ ☆ Tuned Reverse Distillation: Enhancing Multimodal Industrial Anomaly Detection with Crossmodal Tuners
Knowledge distillation (KD) has been widely studied in unsupervised image Anomaly Detection (AD), but its application to unsupervised multimodal AD remains underexplored. Existing KD-based methods for multimodal AD that use fused multimodal features to obtain teacher representations face challenges. Anomalies that only exist in one modality may not be effectively captured in the fused teacher features, leading to detection failures. Besides, these methods do not fully leverage the rich intra- and inter-modality information that are critical for effective anomaly detection. In this paper, we propose Tuned Reverse Distillation (TRD) based on Multi-branch design to realize Multimodal Industrial AD. By assigning independent branches to each modality, our method enables finer detection of anomalies within each modality. Furthermore, we enhance the interaction between modalities during the distillation process by designing two Crossmodal Tuners including Crossmodal Filter and Amplifier. With the idea of crossmodal mapping, the student network is allowed to better learn normal features while anomalies in all modalities are ensured to be effectively detected. Experimental verifications on multimodal AD datasets demonstrate that our method achieves state-of-the-art performance in multimodal anomaly detection and localization. Code is available at https://github.com/hito2448/TRD.
♻ ☆ Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings
The excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation. To gain insights into this problem, we first conduct extensive empirical studies on the attention behaviors of MLLMs, and summarize three main inference stages in MLLMs: (i) Early fusion between tokens is first accomplished quickly. (ii) Intra-modality modeling then comes to play. (iii) Multimodal reasoning} resumes and lasts until the end of inference. In particular, we reveal that visual tokens will stop contributing to reasoning when the text tokens receive enough image information, yielding obvious visual redundancy. Based on these generalized observations, we propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE). DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer, thereby addressing the observed visual redundancy. To validate VTE, we apply it to a set of MLLMs, including LLaVA, VILA, Eagle and InternVL, and conduct extensive experiments on a bunch of benchmarks. The experiment results not only show the effectiveness of our VTE in improving MLLMs' efficiency, but also yield the general modeling patterns of MLLMs, well facilitating the in-depth understanding of MLLMs. Our code is released at https://github.com/DoubtedSteam/DyVTE.
♻ ☆ FBSDiff: Plug-and-Play Frequency Band Substitution of Diffusion Features for Highly Controllable Text-Driven Image Translation ACM MM 2024
Large-scale text-to-image diffusion models have been a revolutionary milestone in the evolution of generative AI and multimodal technology, allowing wonderful image generation with natural-language text prompt. However, the issue of lacking controllability of such models restricts their practical applicability for real-life content creation. Thus, attention has been focused on leveraging a reference image to control text-to-image synthesis, which is also regarded as manipulating (or editing) a reference image as per a text prompt, namely, text-driven image-to-image translation. This paper contributes a novel, concise, and efficient approach that adapts pre-trained large-scale text-to-image (T2I) diffusion model to the image-to-image (I2I) paradigm in a plug-and-play manner, realizing high-quality and versatile text-driven I2I translation without any model training, model fine-tuning, or online optimization process. To guide T2I generation with a reference image, we propose to decompose diverse guiding factors with different frequency bands of diffusion features in the DCT spectral space, and accordingly devise a novel frequency band substitution layer which realizes dynamic control of the reference image to the T2I generation result in a plug-and-play manner. We demonstrate that our method allows flexible control over both guiding factor and guiding intensity of the reference image simply by tuning the type and bandwidth of the substituted frequency band, respectively. Extensive qualitative and quantitative experiments verify superiority of our approach over related methods in I2I translation visual quality, versatility, and controllability. The code is publicly available at: https://github.com/XiangGao1102/FBSDiff.
comment: Accepted conference paper of ACM MM 2024
♻ ☆ ViCTr: Vital Consistency Transfer for Pathology Aware Image Synthesis ICCV 2025
Synthesizing medical images remains challenging due to limited annotated pathological data, modality domain gaps, and the complexity of representing diffuse pathologies such as liver cirrhosis. Existing methods often struggle to maintain anatomical fidelity while accurately modeling pathological features, frequently relying on priors derived from natural images or inefficient multi-step sampling. In this work, we introduce ViCTr (Vital Consistency Transfer), a novel two-stage framework that combines a rectified flow trajectory with a Tweedie-corrected diffusion process to achieve high-fidelity, pathology-aware image synthesis. First, we pretrain ViCTr on the ATLAS-8k dataset using Elastic Weight Consolidation (EWC) to preserve critical anatomical structures. We then fine-tune the model adversarially with Low-Rank Adaptation (LoRA) modules for precise control over pathology severity. By reformulating Tweedie's formula within a linear trajectory framework, ViCTr supports one-step sampling, reducing inference from 50 steps to just 4, without sacrificing anatomical realism. We evaluate ViCTr on BTCV (CT), AMOS (MRI), and CirrMRI600+ (cirrhosis) datasets. Results demonstrate state-of-the-art performance, achieving a Medical Frechet Inception Distance (MFID) of 17.01 for cirrhosis synthesis 28% lower than existing approaches and improving nnUNet segmentation by +3.8% mDSC when used for data augmentation. Radiologist reviews indicate that ViCTr-generated liver cirrhosis MRIs are clinically indistinguishable from real scans. To our knowledge, ViCTr is the first method to provide fine-grained, pathology-aware MRI synthesis with graded severity control, closing a critical gap in AI-driven medical imaging research.
comment: Accepted in ICCV 2025
♻ ☆ Bilateral Reference for High-Resolution Dichotomous Image Segmentation
We introduce a novel bilateral reference framework (BiRefNet) for high-resolution dichotomous image segmentation (DIS). It comprises two essential components: the localization module (LM) and the reconstruction module (RM) with our proposed bilateral reference (BiRef). The LM aids in object localization using global semantic information. Within the RM, we utilize BiRef for the reconstruction process, where hierarchical patches of images provide the source reference and gradient maps serve as the target reference. These components collaborate to generate the final predicted maps. We also introduce auxiliary gradient supervision to enhance focus on regions with finer details. Furthermore, we outline practical training strategies tailored for DIS to improve map quality and training process. To validate the general applicability of our approach, we conduct extensive experiments on four tasks to evince that BiRefNet exhibits remarkable performance, outperforming task-specific cutting-edge methods across all benchmarks. Our codes are available at https://github.com/ZhengPeng7/BiRefNet.
comment: Version 7, fix the A/B reverse problem in Fig. 9
♻ ☆ Blind Spot Navigation: Evolutionary Discovery of Sensitive Semantic Concepts for LVLMs
Adversarial attacks aim to generate malicious inputs that mislead deep models, but beyond causing model failure, they cannot provide certain interpretable information such as ``\textit{What content in inputs make models more likely to fail?}'' However, this information is crucial for researchers to specifically improve model robustness. Recent research suggests that models may be particularly sensitive to certain semantics in visual inputs (such as ``wet,'' ``foggy''), making them prone to errors. Inspired by this, in this paper we conducted the first exploration on large vision-language models (LVLMs) and found that LVLMs indeed are susceptible to hallucinations and various errors when facing specific semantic concepts in images. To efficiently search for these sensitive concepts, we integrated large language models (LLMs) and text-to-image (T2I) models to propose a novel semantic evolution framework. Randomly initialized semantic concepts undergo LLM-based crossover and mutation operations to form image descriptions, which are then converted by T2I models into visual inputs for LVLMs. The task-specific performance of LVLMs on each input is quantified as fitness scores for the involved semantics and serves as reward signals to further guide LLMs in exploring concepts that induce LVLMs. Extensive experiments on seven mainstream LVLMs and two multimodal tasks demonstrate the effectiveness of our method. Additionally, we provide interesting findings about the sensitive semantics of LVLMs, aiming to inspire further in-depth research.
comment: The paper needs major revisions, so it is being withdrawn
♻ ☆ Enhancing Frequency for Single Image Super-Resolution with Learnable Separable Kernels
Existing approaches often enhance the performance of single-image super-resolution (SISR) methods by incorporating auxiliary structures, such as specialized loss functions, to indirectly boost the quality of low-resolution images. In this paper, we propose a plug-and-play module called Learnable Separable Kernels (LSKs), which are formally rank-one matrices designed to directly enhance image frequency components. We begin by explaining why LSKs are particularly suitable for SISR tasks from a frequency perspective. Baseline methods incorporating LSKs demonstrate a significant reduction of over 60\% in both the number of parameters and computational requirements. This reduction is achieved through the decomposition of LSKs into orthogonal and mergeable one-dimensional kernels. Additionally, we perform an interpretable analysis of the feature maps generated by LSKs. Visualization results reveal the capability of LSKs to enhance image frequency components effectively. Extensive experiments show that incorporating LSKs not only reduces the number of parameters and computational load but also improves overall model performance. Moreover, these experiments demonstrate that models utilizing LSKs exhibit superior performance, particularly as the upscaling factor increases.
♻ ☆ Information Extraction from Unstructured data using Augmented-AI and Computer Vision
Information extraction (IE) from unstructured documents remains a critical challenge in data processing pipelines. Traditional optical character recognition (OCR) methods and conventional parsing engines demonstrate limited effectiveness when processing large-scale document datasets. This paper presents a comprehensive framework for information extraction that combines Augmented Intelligence (A2I) with computer vision and natural language processing techniques. Our approach addresses the limitations of conventional methods by leveraging deep learning architectures for object detection, particularly for tabular data extraction, and integrating cloud-based services for scalable document processing. The proposed methodology demonstrates improved accuracy and efficiency in extracting structured information from diverse document formats including PDFs, images, and scanned documents. Experimental validation shows significant improvements over traditional OCR-based approaches, particularly in handling complex document layouts and multi-modal content extraction.
♻ ☆ GIE-Bench: Towards Grounded Evaluation for Text-Guided Image Editing
Editing images using natural language instructions has become a natural and expressive way to modify visual content; yet, evaluating the performance of such models remains challenging. Existing evaluation approaches often rely on image-text similarity metrics like CLIP, which lack precision. In this work, we introduce a new benchmark designed to evaluate text-guided image editing models in a more grounded manner, along two critical dimensions: (i) functional correctness, assessed via automatically generated multiple-choice questions that verify whether the intended change was successfully applied; and (ii) image content preservation, which ensures that non-targeted regions of the image remain visually consistent using an object-aware masking technique and preservation scoring. The benchmark includes over 1000 high-quality editing examples across 20 diverse content categories, each annotated with detailed editing instructions, evaluation questions, and spatial object masks. We conduct a large-scale study comparing GPT-Image-1, the latest flagship in the text-guided image editing space, against several state-of-the-art editing models, and validate our automatic metrics against human ratings. Results show that GPT-Image-1 leads in instruction-following accuracy, but often over-modifies irrelevant image regions, highlighting a key trade-off in the current model behavior. GIE-Bench provides a scalable, reproducible framework for advancing more accurate evaluation of text-guided image editing.
comment: Project page: https://sueqian6.github.io/GIE-Bench-web/
♻ ☆ Stella Nera: A Differentiable Maddness-Based Hardware Accelerator for Efficient Approximate Matrix Multiplication
Artificial intelligence has surged in recent years, with advancements in machine learning rapidly impacting nearly every area of life. However, the growing complexity of these models has far outpaced advancements in available hardware accelerators, leading to significant computational and energy demands, primarily due to matrix multiplications, which dominate the compute workload. Maddness (i.e., Multiply-ADDitioN-lESS) presents a hash-based version of product quantization, which renders matrix multiplications into lookups and additions, eliminating the need for multipliers entirely. We present Stella Nera, the first Maddness-based accelerator achieving an energy efficiency of 161 TOp/s/W@0.55V, 25x better than conventional MatMul accelerators due to its small components and reduced computational complexity. We further enhance Maddness with a differentiable approximation, allowing for gradient-based fine-tuning and achieving an end-to-end performance of 92.5% Top-1 accuracy on CIFAR-10.
comment: Accepted as full paper at IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2025
♻ ☆ Style-Adaptive Detection Transformer for Single-Source Domain Generalized Object Detection
Single-source domain generalization (SDG) in object detection aims to develop a detector using only source domain data that generalizes well to unseen target domains. Existing methods are primarily CNN-based and improve robustness through data augmentation combined with feature alignment. However, these methods are limited, as augmentation is only effective when the synthetic distribution approximates that of unseen domains, thus failing to ensure generalization across diverse scenarios. While DEtection TRansformer (DETR) has shown strong generalization in domain adaptation due to global context modeling, its potential for SDG remains underexplored. To this end, we propose Style-Adaptive DEtection TRansformer (SA-DETR), a DETR-based detector tailored for SDG. SA-DETR introduces an online domain style adapter that projects the style representation of unseen domains into the source domain via a dynamic memory bank. This bank self-organizes into diverse style prototypes and is continuously updated under a test-time adaptation framework, enabling effective style rectification. Additionally, we design an object-aware contrastive learning module to promote extraction of domain-invariant features. By applying gating masks that constrain contrastive learning in both spatial and semantic dimensions, this module facilitates instance-level cross-domain contrast and enhances generalization. Extensive experiments across five distinct weather scenarios demonstrate that SA-DETR consistently outperforms existing methods in both detection accuracy and domain generalization capability.
comment: Manuscript submitted to IEEE Transactions on Circuits and Systems for Video Technology
♻ ☆ Preserve Anything: Controllable Image Synthesis with Object Preservation ICCV 2025
We introduce \textit{Preserve Anything}, a novel method for controlled image synthesis that addresses key limitations in object preservation and semantic consistency in text-to-image (T2I) generation. Existing approaches often fail (i) to preserve multiple objects with fidelity, (ii) maintain semantic alignment with prompts, or (iii) provide explicit control over scene composition. To overcome these challenges, the proposed method employs an N-channel ControlNet that integrates (i) object preservation with size and placement agnosticism, color and detail retention, and artifact elimination, (ii) high-resolution, semantically consistent backgrounds with accurate shadows, lighting, and prompt adherence, and (iii) explicit user control over background layouts and lighting conditions. Key components of our framework include object preservation and background guidance modules, enforcing lighting consistency and a high-frequency overlay module to retain fine details while mitigating unwanted artifacts. We introduce a benchmark dataset consisting of 240K natural images filtered for aesthetic quality and 18K 3D-rendered synthetic images with metadata such as lighting, camera angles, and object relationships. This dataset addresses the deficiencies of existing benchmarks and allows a complete evaluation. Empirical results demonstrate that our method achieves state-of-the-art performance, significantly improving feature-space fidelity (FID 15.26) and semantic alignment (CLIP-S 32.85) while maintaining competitive aesthetic quality. We also conducted a user study to demonstrate the efficacy of the proposed work on unseen benchmark and observed a remarkable improvement of $\sim25\%$, $\sim19\%$, $\sim13\%$, and $\sim14\%$ in terms of prompt alignment, photorealism, the presence of AI artifacts, and natural aesthetics over existing works.
comment: Accepted at ICCV 2025 (main conference)
♻ ☆ Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning ICCV 2025
Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
comment: Accepted at ICCV 2025 (Highlight)
♻ ☆ Verbalized Representation Learning for Interpretable Few-Shot Generalization ICCV 2025
Humans recognize objects after observing only a few examples, a remarkable capability enabled by their inherent language understanding of the real-world environment. Developing verbalized and interpretable representation can significantly improve model generalization in low-data settings. In this work, we propose Verbalized Representation Learning (VRL), a novel approach for automatically extracting human-interpretable features for object recognition using few-shot data. Our method uniquely captures inter-class differences and intra-class commonalities in the form of natural language by employing a Vision-Language Model (VLM) to identify key discriminative features between different classes and shared characteristics within the same class. These verbalized features are then mapped to numeric vectors through the VLM. The resulting feature vectors can be further utilized to train and infer with downstream classifiers. Experimental results show that, at the same model scale, VRL achieves a 24% absolute improvement over prior state-of-the-art methods while using 95% less data and a smaller mode. Furthermore, compared to human-labeled attributes, the features learned by VRL exhibit a 20% absolute gain when used for downstream classification tasks. Code is available at: https://github.com/joeyy5588/VRL/tree/main.
comment: Accepted to ICCV 2025
♻ ☆ Do Existing Testing Tools Really Uncover Gender Bias in Text-to-Image Models? ACM MM 2025
Text-to-Image (T2I) models have recently gained significant attention due to their ability to generate high-quality images and are consequently used in a wide range of applications. However, there are concerns about the gender bias of these models. Previous studies have shown that T2I models can perpetuate or even amplify gender stereotypes when provided with neutral text prompts. Researchers have proposed automated gender bias uncovering detectors for T2I models, but a crucial gap exists: no existing work comprehensively compares the various detectors and understands how the gender bias detected by them deviates from the actual situation. This study addresses this gap by validating previous gender bias detectors using a manually labeled dataset and comparing how the bias identified by various detectors deviates from the actual bias in T2I models, as verified by manual confirmation. We create a dataset consisting of 6,000 images generated from three cutting-edge T2I models: Stable Diffusion XL, Stable Diffusion 3, and Dreamlike Photoreal 2.0. During the human-labeling process, we find that all three T2I models generate a portion (12.48% on average) of low-quality images (e.g., generate images with no face present), where human annotators cannot determine the gender of the person. Our analysis reveals that all three T2I models show a preference for generating male images, with SDXL being the most biased. Additionally, images generated using prompts containing professional descriptions (e.g., lawyer or doctor) show the most bias. We evaluate seven gender bias detectors and find that none fully capture the actual level of bias in T2I models, with some detectors overestimating bias by up to 26.95%. We further investigate the causes of inaccurate estimations, highlighting the limitations of detectors in dealing with low-quality images. Based on our findings, we propose an enhanced detector...
comment: Accepted to ACM MM 2025
♻ ☆ Concept-TRAK: Understanding how diffusion models learn concepts through concept-level attribution
While diffusion models excel at image generation, their growing adoption raises critical concerns around copyright issues and model transparency. Existing attribution methods identify training examples influencing an entire image, but fall short in isolating contributions to specific elements, such as styles or objects, that matter most to stakeholders. To bridge this gap, we introduce \emph{concept-level attribution} via a novel method called \emph{Concept-TRAK}. Concept-TRAK extends influence functions with two key innovations: (1) a reformulated diffusion training loss based on diffusion posterior sampling, enabling robust, sample-specific attribution; and (2) a concept-aware reward function that emphasizes semantic relevance. We evaluate Concept-TRAK on the AbC benchmark, showing substantial improvements over prior methods. Through diverse case studies--ranging from identifying IP-protected and unsafe content to analyzing prompt engineering and compositional learning--we demonstrate how concept-level attribution yields actionable insights for responsible generative AI development and governance.
comment: Preprint
♻ ☆ Level-Set Parameters: Novel Representation for 3D Shape Analysis
3D shape analysis has been largely focused on traditional 3D representations of point clouds and meshes, but the discrete nature of these data makes the analysis susceptible to variations in input resolutions. Recent development of neural fields brings in level-set parameters from signed distance functions as a novel, continuous, and numerical representation of 3D shapes, where the shape surfaces are defined as zero-level-sets of those functions. This motivates us to extend shape analysis from the traditional 3D data to these novel parameter data. Since the level-set parameters are not Euclidean like point clouds, we establish correlations across different shapes by formulating them as a pseudo-normal distribution, and learn the distribution prior from the respective dataset. To further explore the level-set parameters with shape transformations, we propose to condition a subset of these parameters on rotations and translations, and generate them with a hypernetwork. This simplifies the pose-related shape analysis compared to using traditional data. We demonstrate the promise of the novel representations through applications in shape classification (arbitrary poses), retrieval, and 6D object pose estimation.
♻ ☆ Tell Me What to Track: Infusing Robust Language Guidance for Enhanced Referring Multi-Object Tracking
Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to localize an arbitrary number of targets based on a language expression and continuously track them in a video. This intricate task involves reasoning on multi-modal data and precise target localization with temporal association. However, prior studies overlook the imbalanced data distribution between newborn targets and existing targets due to the nature of the task. In addition, they only indirectly fuse multi-modal features, struggling to deliver clear guidance on newborn target detection. To solve the above issues, we conduct a collaborative matching strategy to alleviate the impact of the imbalance, boosting the ability to detect newborn targets while maintaining tracking performance. In the encoder, we integrate and enhance the cross-modal and multi-scale fusion, overcoming the bottlenecks in previous work, where limited multi-modal information is shared and interacted between feature maps. In the decoder, we also develop a referring-infused adaptation that provides explicit referring guidance through the query tokens. The experiments showcase the superior performance of our model (+3.42%) compared to prior works, demonstrating the effectiveness of our designs.
♻ ☆ Geometric Origins of Bias in Deep Neural Networks: A Human Visual System Perspective
Bias formation in deep neural networks (DNNs) remains a critical yet poorly understood challenge, influencing both fairness and reliability in artificial intelligence systems. Inspired by the human visual system, which decouples object manifolds through hierarchical processing to achieve object recognition, we propose a geometric analysis framework linking the geometric complexity of class-specific perceptual manifolds in DNNs to model bias. Our findings reveal that differences in geometric complexity can lead to varying recognition capabilities across categories, introducing biases. To support this analysis, we present the Perceptual-Manifold-Geometry library, designed for calculating the geometric properties of perceptual manifolds. The toolkit has been downloaded and installed over 4,500 times. This work provides a novel geometric perspective on bias formation in modern learning systems and lays a theoretical foundation for developing more equitable and robust artificial intelligence.
♻ ☆ Motion Synthesis with Sparse and Flexible Keyjoint Control ICCV 2025
Creating expressive character animations is labor-intensive, requiring intricate manual adjustment of animators across space and time. Previous works on controllable motion generation often rely on a predefined set of dense spatio-temporal specifications (e.g., dense pelvis trajectories with exact per-frame timing), limiting practicality for animators. To process high-level intent and intuitive control in diverse scenarios, we propose a practical controllable motions synthesis framework that respects sparse and flexible keyjoint signals. Our approach employs a decomposed diffusion-based motion synthesis framework that first synthesizes keyjoint movements from sparse input control signals and then synthesizes full-body motion based on the completed keyjoint trajectories. The low-dimensional keyjoint movements can easily adapt to various control signal types, such as end-effector position for diverse goal-driven motion synthesis, or incorporate functional constraints on a subset of keyjoints. Additionally, we introduce a time-agnostic control formulation, eliminating the need for frame-specific timing annotations and enhancing control flexibility. Then, the shared second stage can synthesize a natural whole-body motion that precisely satisfies the task requirement from dense keyjoint movements. We demonstrate the effectiveness of sparse and flexible keyjoint control through comprehensive experiments on diverse datasets and scenarios.
comment: Accepted to ICCV 2025. Project Page: http://inwoohwang.me/SFControl
♻ ☆ SceneMI: Motion In-betweening for Modeling Human-Scene Interactions ICCV 2025
Modeling human-scene interactions (HSI) is essential for understanding and simulating everyday human behaviors. Recent approaches utilizing generative modeling have made progress in this domain; however, they are limited in controllability and flexibility for real-world applications. To address these challenges, we propose reformulating the HSI modeling problem as Scene-aware Motion In-betweening - a more tractable and practical task. We introduce SceneMI, a framework that supports several practical applications, including keyframe-guided character animation in 3D scenes and enhancing the motion quality of imperfect HSI data. SceneMI employs dual scene descriptors to comprehensively encode global and local scene context. Furthermore, our framework leverages the inherent denoising nature of diffusion models to generalize on noisy keyframes. Experimental results demonstrate SceneMI's effectiveness in scene-aware keyframe in-betweening and generalization to the real-world GIMO dataset, where motions and scenes are acquired by noisy IMU sensors and smartphones. We further showcase SceneMI's applicability in HSI reconstruction from monocular videos.
comment: Accepted to ICCV 2025. Project page: http://inwoohwang.me/SceneMI
♻ ☆ Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion ACM MM 2025
Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence. The code is available at: https://github.com/zzysteve/MoMADiff
comment: Accepted by ACM MM 2025
♻ ☆ BGM: Background Mixup for X-ray Prohibited Items Detection
Current data-driven approaches for X-ray prohibited items detection remain under-explored, particularly in the design of effective data augmentations. Existing natural image augmentations for reflected light imaging neglect the data characteristics of X-ray security images. Moreover, prior X-ray augmentation methods have predominantly focused on foreground prohibited items, overlooking informative background cues. In this paper, we propose Background Mixup (BGM), a background-based augmentation technique tailored for X-ray security imaging domain. Unlike conventional methods, BGM is founded on an in-depth analysis of physical properties including: 1) X-ray Transmission Imagery: Transmitted X-ray pixels represent composite information from multiple materials along the imaging path. 2) Material-based Pseudo-coloring: Pseudo-coloring in X-ray images correlates directly with material properties, aiding in material distinction. Building upon the above insights, BGM mixes background patches across regions on both 1) texture structure and 2) material variation, to benefit models from complicated background cues. This enhances the model's capability to handle domain-specific challenges such as occlusion-induced discriminative imbalance. Importantly, BGM is orthogonal and fully compatible with existing foreground-focused augmentation techniques, enabling joint use to further enhance detection performance. Extensive experiments on multiple X-ray security benchmarks show that BGM consistently surpasses strong baselines, without additional annotations or significant training overhead. This work pioneers the exploration of background-aware augmentation in X-ray prohibited items detection and provides a lightweight, plug-and-play solution with broad applicability.
♻ ☆ MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes
Controllable generative models for images and videos have seen significant success, yet 3D scene generation, especially in unbounded scenarios like autonomous driving, remains underdeveloped. Existing methods lack flexible controllability and often rely on dense view data collection in controlled environments, limiting their generalizability across common datasets (e.g., nuScenes). In this paper, we introduce MagicDrive3D, a novel framework for controllable 3D street scene generation that combines video-based view synthesis with 3D representation (3DGS) generation. It supports multi-condition control, including road maps, 3D objects, and text descriptions. Unlike previous approaches that require 3D representation before training, MagicDrive3D first trains a multi-view video generation model to synthesize diverse street views. This method utilizes routinely collected autonomous driving data, reducing data acquisition challenges and enriching 3D scene generation. In the 3DGS generation step, we introduce Fault-Tolerant Gaussian Splatting to address minor errors and use monocular depth for better initialization, alongside appearance modeling to manage exposure discrepancies across viewpoints. Experiments show that MagicDrive3D generates diverse, high-quality 3D driving scenes, supports any-view rendering, and enhances downstream tasks like BEV segmentation, demonstrating its potential for autonomous driving simulation and beyond.
comment: Project Page: https://flymin.github.io/magicdrive3d
♻ ☆ MagicDrive-V2: High-Resolution Long Video Generation for Autonomous Driving with Adaptive Control ICCV 2025
The rapid advancement of diffusion models has greatly improved video synthesis, especially in controllable video generation, which is vital for applications like autonomous driving. Although DiT with 3D VAE has become a standard framework for video generation, it introduces challenges in controllable driving video generation, especially for geometry control, rendering existing control methods ineffective. To address these issues, we propose MagicDrive-V2, a novel approach that integrates the MVDiT block and spatial-temporal conditional encoding to enable multi-view video generation and precise geometric control. Additionally, we introduce an efficient method for obtaining contextual descriptions for videos to support diverse textual control, along with a progressive training strategy using mixed video data to enhance training efficiency and generalizability. Consequently, MagicDrive-V2 enables multi-view driving video synthesis with $3.3\times$ resolution and $4\times$ frame count (compared to current SOTA), rich contextual control, and geometric controls. Extensive experiments demonstrate MagicDrive-V2's ability, unlocking broader applications in autonomous driving.
comment: ICCV 2025 camera-ready version, Project Website: https://flymin.github.io/magicdrive-v2/
♻ ☆ Towards Generalized Range-View LiDAR Segmentation in Adverse Weather
LiDAR segmentation has emerged as an important task to enrich scene perception and understanding. Range-view-based methods have gained popularity due to their high computational efficiency and compatibility with real-time deployment. However, their generalized performance under adverse weather conditions remains underexplored, limiting their reliability in real-world environments. In this work, we identify and analyze the unique challenges that affect the generalization of range-view LiDAR segmentation in severe weather. To address these challenges, we propose a modular and lightweight framework that enhances robustness without altering the core architecture of existing models. Our method reformulates the initial stem block of standard range-view networks into two branches to process geometric attributes and reflectance intensity separately. Specifically, a Geometric Abnormality Suppression (GAS) module reduces the influence of weather-induced spatial noise, and a Reflectance Distortion Calibration (RDC) module corrects reflectance distortions through memory-guided adaptive instance normalization. The processed features are then fused and passed to the original segmentation pipeline. Extensive experiments on different benchmarks and baseline models demonstrate that our approach significantly improves generalization to adverse weather with minimal inference overhead, offering a practical and effective solution for real-world LiDAR segmentation.
♻ ☆ High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 73.2%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors
A single-pass driving clip frequently results in incomplete scanning of the road structure, making reconstructed scene expanding a critical requirement for sensor simulators to effectively regress driving actions. Although contemporary 3D Gaussian Splatting (3DGS) techniques achieve remarkable reconstruction quality, their direct extension through the integration of diffusion priors often introduces cumulative physical inconsistencies and compromises training efficiency. To address these limitations, we present RGE-GS, a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration. The RGE-GS framework incorporates two key innovations: First, we propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases, thereby enabling selective retention of diffusion outputs for spatial stability. Second, during the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics, which achieving better convergence than baseline methods. Extensive evaluations of publicly available datasets demonstrate that RGE-GS achieves state-of-the-art performance in reconstruction quality. Our source-code will be made publicly available at https://github.com/CN-ADLab/RGE-GS.
Artificial Intelligence 122
☆ Advancing Event Forecasting through Massive Training of Large Language Models: Challenges, Solutions, and Broader Impacts
Many recent papers have studied the development of superforecaster-level event forecasting LLMs. While methodological problems with early studies cast doubt on the use of LLMs for event forecasting, recent studies with improved evaluation methods have shown that state-of-the-art LLMs are gradually reaching superforecaster-level performance, and reinforcement learning has also been reported to improve future forecasting. Additionally, the unprecedented success of recent reasoning models and Deep Research-style models suggests that technology capable of greatly improving forecasting performance has been developed. Therefore, based on these positive recent trends, we argue that the time is ripe for research on large-scale training of superforecaster-level event forecasting LLMs. We discuss two key research directions: training methods and data acquisition. For training, we first introduce three difficulties of LLM-based event forecasting training: noisiness-sparsity, knowledge cut-off, and simple reward structure problems. Then, we present related ideas to mitigate these problems: hypothetical event Bayesian networks, utilizing poorly-recalled and counterfactual events, and auxiliary reward signals. For data, we propose aggressive use of market, public, and crawling datasets to enable large-scale training and evaluation. Finally, we explain how these technical advances could enable AI to provide predictive intelligence to society in broader areas. This position paper presents promising specific paths and considerations for getting closer to superforecaster-level AI technology, aiming to call for researchers' interest in these directions.
☆ Let It Go? Not Quite: Addressing Item Cold Start in Sequential Recommendations with Content-Based Initialization
Many sequential recommender systems suffer from the cold start problem, where items with few or no interactions cannot be effectively used by the model due to the absence of a trained embedding. Content-based approaches, which leverage item metadata, are commonly used in such scenarios. One possible way is to use embeddings derived from content features such as textual descriptions as initialization for the model embeddings. However, directly using frozen content embeddings often results in suboptimal performance, as they may not fully adapt to the recommendation task. On the other hand, fine-tuning these embeddings can degrade performance for cold-start items, as item representations may drift far from their original structure after training. We propose a novel approach to address this limitation. Instead of entirely freezing the content embeddings or fine-tuning them extensively, we introduce a small trainable delta to frozen embeddings that enables the model to adapt item representations without letting them go too far from their original semantic structure. This approach demonstrates consistent improvements across multiple datasets and modalities, including e-commerce datasets with textual descriptions and a music dataset with audio-based representation.
☆ Hierarchical Deep Reinforcement Learning Framework for Multi-Year Asset Management Under Budget Constraints
Budget planning and maintenance optimization are crucial for infrastructure asset management, ensuring cost-effectiveness and sustainability. However, the complexity arising from combinatorial action spaces, diverse asset deterioration, stringent budget constraints, and environmental uncertainty significantly limits existing methods' scalability. This paper proposes a Hierarchical Deep Reinforcement Learning methodology specifically tailored to multi-year infrastructure planning. Our approach decomposes the problem into two hierarchical levels: a high-level Budget Planner allocating annual budgets within explicit feasibility bounds, and a low-level Maintenance Planner prioritizing assets within the allocated budget. By structurally separating macro-budget decisions from asset-level prioritization and integrating linear programming projection within a hierarchical Soft Actor-Critic framework, the method efficiently addresses exponential growth in the action space and ensures rigorous budget compliance. A case study evaluating sewer networks of varying sizes (10, 15, and 20 sewersheds) illustrates the effectiveness of the proposed approach. Compared to conventional Deep Q-Learning and enhanced genetic algorithms, our methodology converges more rapidly, scales effectively, and consistently delivers near-optimal solutions even as network size grows.
☆ GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning
Large language models (LLMs) are increasingly adapted to downstream tasks via reinforcement learning (RL) methods like Group Relative Policy Optimization (GRPO), which often require thousands of rollouts to learn new tasks. We argue that the interpretable nature of language can often provide a much richer learning medium for LLMs, compared with policy gradients derived from sparse, scalar rewards. To test this, we introduce GEPA (Genetic-Pareto), a prompt optimizer that thoroughly incorporates natural language reflection to learn high-level rules from trial and error. Given any AI system containing one or more LLM prompts, GEPA samples system-level trajectories (e.g., reasoning, tool calls, and tool outputs) and reflects on them in natural language to diagnose problems, propose and test prompt updates, and combine complementary lessons from the Pareto frontier of its own attempts. As a result of GEPA's design, it can often turn even just a few rollouts into a large quality gain. Across four tasks, GEPA outperforms GRPO by 10% on average and by up to 20%, while using up to 35x fewer rollouts. GEPA also outperforms the leading prompt optimizer, MIPROv2, by over 10% across two LLMs, and demonstrates promising results as an inference-time search strategy for code optimization.
☆ Step-3 is Large yet Affordable: Model-system Co-design for Cost-effective Decoding
Large language models (LLMs) face low hardware efficiency during decoding, especially for long-context reasoning tasks. This paper introduces Step-3, a 321B-parameter VLM with hardware-aware model-system co-design optimized for minimizing decoding costs. Step-3 innovates in two key dimensions: (1) A novel Multi-Matrix Factorization Attention (MFA) mechanism that significantly reduces both KV cache size and computation while maintaining high attention expressiveness, and (2) Attention-FFN Disaggregation (AFD), a distributed inference system that decouples attention and Feed-Forward Network (FFN) layers into specialized subsystems. This co-design achieves unprecedented cost efficiency: Step-3 significantly reduces theoretical decoding costs compared with models like DeepSeek-V3 and Qwen3 MoE 235B, with the gains widening at longer context. Step-3 achieves low cost while activating 38B parameters per token (more than DeepSeek-V3 and Qwen3 MoE 235B), demonstrating that hardware-aligned attention arithmetic intensity, MoE sparsity, and AFD are critical to cost-effectiveness. We perform a head-to-head comparison with DeepSeek-V3 in its favorable scenarios. Our implementation on Hopper GPUs achieves a decoding throughput of up to 4,039 tokens per second per GPU under 50ms TPOT SLA (4K context, FP8, no MTP). It is higher than DeepSeek-V3's 2,324 in the same setup and sets a new Pareto frontier for LLM decoding.
☆ On Arbitrary Predictions from Equally Valid Models
Model multiplicity refers to the existence of multiple machine learning models that describe the data equally well but may produce different predictions on individual samples. In medicine, these models can admit conflicting predictions for the same patient -- a risk that is poorly understood and insufficiently addressed. In this study, we empirically analyze the extent, drivers, and ramifications of predictive multiplicity across diverse medical tasks and model architectures, and show that even small ensembles can mitigate/eliminate predictive multiplicity in practice. Our analysis reveals that (1) standard validation metrics fail to identify a uniquely optimal model and (2) a substantial amount of predictions hinges on arbitrary choices made during model development. Using multiple models instead of a single model reveals instances where predictions differ across equally plausible models -- highlighting patients that would receive arbitrary diagnoses if any single model were used. In contrast, (3) a small ensemble paired with an abstention strategy can effectively mitigate measurable predictive multiplicity in practice; predictions with high inter-model consensus may thus be amenable to automated classification. While accuracy is not a principled antidote to predictive multiplicity, we find that (4) higher accuracy achieved through increased model capacity reduces predictive multiplicity. Our findings underscore the clinical importance of accounting for model multiplicity and advocate for ensemble-based strategies to improve diagnostic reliability. In cases where models fail to reach sufficient consensus, we recommend deferring decisions to expert review.
☆ SDVDiag: A Modular Platform for the Diagnosis of Connected Vehicle Functions
Connected and software-defined vehicles promise to offer a broad range of services and advanced functions to customers, aiming to increase passenger comfort and support autonomous driving capabilities. Due to the high reliability and availability requirements of connected vehicles, it is crucial to resolve any occurring failures quickly. To achieve this however, a complex cloud/edge architecture with a mesh of dependencies must be navigated to diagnose the responsible root cause. As such, manual analyses become unfeasible since they would significantly delay the troubleshooting. To address this challenge, this paper presents SDVDiag, an extensible platform for the automated diagnosis of connected vehicle functions. The platform enables the creation of pipelines that cover all steps from initial data collection to the tracing of potential root causes. In addition, SDVDiag supports self-adaptive behavior by the ability to exchange modules at runtime. Dependencies between functions are detected and continuously updated, resulting in a dynamic graph view of the system. In addition, vital system metrics are monitored for anomalies. Whenever an incident is investigated, a snapshot of the graph is taken and augmented by relevant anomalies. Finally, the analysis is performed by traversing the graph and creating a ranking of the most likely causes. To evaluate the platform, it is deployed inside an 5G test fleet environment for connected vehicle functions. The results show that injected faults can be detected reliably. As such, the platform offers the potential to gain new insights and reduce downtime by identifying problems and their causes at an early stage.
comment: 7 pages, 5 figures
☆ Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security
As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.
☆ CXR-CML: Improved zero-shot classification of long-tailed multi-label diseases in Chest X-Rays
Chest radiography (CXR) plays a crucial role in the diagnosis of various diseases. However, the inherent class imbalance in the distribution of clinical findings presents a significant challenge for current self-supervised deep learning models. These models often fail to accurately classify long-tailed classes. Current Vision-Language models such as Contrastive Language Image Pre-training (CLIP) models effectively model the manifold distribution of the latent space, enabling high zero-shot classification accuracies. Although CLIP performs well on most of the primary classes in the dataset, our work reveals that its effectiveness decreases significantly for classes with a long-tailed distribution. Our approach employs a class-weighting mechanism that directly aligns with the distribution of classes within the latent space. This method ensures a substantial improvement in overall classification performance, with particular emphasis on enhancing the recognition and accuracy of rarely observed classes. We accomplish this by applying Gaussian Mixture Model (GMM) clustering to the latent space. The subsequent clusters are further refined by Student t-distribution, followed by a metric loss that utilizes the altered embeddings. Our approach facilitates stable and adaptive clustering of the features. This results in a notable average improvement of 7\% points in zero-shot AUC scores across 40 classes in the MIMIC-CXR-JPG dataset from previous SOTA models.
☆ ReCatcher: Towards LLMs Regression Testing for Code Generation
Large Language Models (LLMs) for code generation evolve rapidly through fine-tuning, merging, or new model releases. However, such updates can introduce regressions, not only in correctness but also in code quality and performance. To address this, we present ReCatcher, a regression testing framework for Python code generation. ReCatcher systematically compares two LLMs, typically a current model and a candidate update, across three dimensions: logical correctness, static code quality, and execution performance. We apply ReCatcher to assess regressions across three update scenarios, fine-tuning, merging, and model release, using CodeLlama, DeepSeek-Coder, and GPT-4o. Our evaluation shows that fine-tuning with cross-language datasets increases syntax errors by up to 12%. Merging with general-purpose models like Llama2 leads to regressions in correctness by up to 18%. GPT-4o introduces regressions of up to 50% in handling missing imports compared to GPT-3.5-turbo, while GPT-4o-mini suffers up to 80% performance degradation in execution time versus GPT-4o. Overall, logical correctness, performance, and error handling (e.g., syntax errors and missing imports) are the most regression-prone areas. Comparing ReCatcher with baseline solutions, it presents better and consistent accuracy across logical and performance aspects. ReCatcher highlights the importance of systematic regression evaluation before adopting new models, while assisting researchers and practitioners in making more informed update decisions.
comment: 24 pages, 3 Figures, 2 Tables
☆ Data Augmentation for Spoken Grammatical Error Correction ISCA
While there exist strong benchmark datasets for grammatical error correction (GEC), high-quality annotated spoken datasets for Spoken GEC (SGEC) are still under-resourced. In this paper, we propose a fully automated method to generate audio-text pairs with grammatical errors and disfluencies. Moreover, we propose a series of objective metrics that can be used to evaluate the generated data and choose the more suitable dataset for SGEC. The goal is to generate an augmented dataset that maintains the textual and acoustic characteristics of the original data while providing new types of errors. This augmented dataset should augment and enrich the original corpus without altering the language assessment scores of the second language (L2) learners. We evaluate the use of the augmented corpus both for written GEC (the text part) and for SGEC (the audio-text pairs). Our experiments are conducted on the S\&I Corpus, the first publicly available speech dataset with grammar error annotations.
comment: This work has been accepted by ISCA SLaTE 2025
☆ Learning neuro-symbolic convergent term rewriting systems
Building neural systems that can learn to execute symbolic algorithms is a challenging open problem in artificial intelligence, especially when aiming for strong generalization and out-of-distribution performance. In this work, we introduce a general framework for learning convergent term rewriting systems using a neuro-symbolic architecture inspired by the rewriting algorithm itself. We present two modular implementations of such architecture: the Neural Rewriting System (NRS) and the Fast Neural Rewriting System (FastNRS). As a result of algorithmic-inspired design and key architectural elements, both models can generalize to out-of-distribution instances, with FastNRS offering significant improvements in terms of memory efficiency, training speed, and inference time. We evaluate both architectures on four tasks involving the simplification of mathematical formulas and further demonstrate their versatility in a multi-domain learning scenario, where a single model is trained to solve multiple types of problems simultaneously. The proposed system significantly outperforms two strong neural baselines: the Neural Data Router, a recent transformer variant specifically designed to solve algorithmic problems, and GPT-4o, one of the most powerful general-purpose large-language models. Moreover, our system matches or outperforms the latest o1-preview model from OpenAI that excels in reasoning benchmarks.
comment: 48 pages, 31 figures. Submitted for review by Artificial Intelligence Journal
☆ Counterfactual Explanations in Medical Imaging: Exploring SPN-Guided Latent Space Manipulation
Artificial intelligence is increasingly leveraged across various domains to automate decision-making processes that significantly impact human lives. In medical image analysis, deep learning models have demonstrated remarkable performance. However, their inherent complexity makes them black box systems, raising concerns about reliability and interpretability. Counterfactual explanations provide comprehensible insights into decision processes by presenting hypothetical "what-if" scenarios that alter model classifications. By examining input alterations, counterfactual explanations provide patterns that influence the decision-making process. Despite their potential, generating plausible counterfactuals that adhere to similarity constraints providing human-interpretable explanations remains a challenge. In this paper, we investigate this challenge by a model-specific optimization approach. While deep generative models such as variational autoencoders (VAEs) exhibit significant generative power, probabilistic models like sum-product networks (SPNs) efficiently represent complex joint probability distributions. By modeling the likelihood of a semi-supervised VAE's latent space with an SPN, we leverage its dual role as both a latent space descriptor and a classifier for a given discrimination task. This formulation enables the optimization of latent space counterfactuals that are both close to the original data distribution and aligned with the target class distribution. We conduct experimental evaluation on the cheXpert dataset. To evaluate the effectiveness of the integration of SPNs, our SPN-guided latent space manipulation is compared against a neural network baseline. Additionally, the trade-off between latent variable regularization and counterfactual quality is analyzed.
comment: 10 pages, 3 figures
☆ Integrating LLM in Agent-Based Social Simulation: Opportunities and Challenges
This position paper examines the use of Large Language Models (LLMs) in social simulation, analyzing both their potential and their limitations from a computational social science perspective. The first part reviews recent findings on the ability of LLMs to replicate key aspects of human cognition, including Theory of Mind reasoning and social inference, while also highlighting significant limitations such as cognitive biases, lack of true understanding, and inconsistencies in behavior. The second part surveys emerging applications of LLMs in multi-agent simulation frameworks, focusing on system architectures, scale, and validation strategies. Notable projects such as Generative Agents (Smallville) and AgentSociety are discussed in terms of their design choices, empirical grounding, and methodological innovations. Particular attention is given to the challenges of behavioral fidelity, calibration, and reproducibility in large-scale LLM-driven simulations. The final section distinguishes between contexts where LLMs, like other black-box systems, offer direct value-such as interactive simulations and serious games-and those where their use is more problematic, notably in explanatory or predictive modeling. The paper concludes by advocating for hybrid approaches that integrate LLMs into traditional agent-based modeling platforms (GAMA, Netlogo, etc), enabling modelers to combine the expressive flexibility of language-based reasoning with the transparency and analytical rigor of classical rule-based systems.
☆ LOTUS: A Leaderboard for Detailed Image Captioning from Quality to Societal Bias and User Preferences ACL 2025
Large Vision-Language Models (LVLMs) have transformed image captioning, shifting from concise captions to detailed descriptions. We introduce LOTUS, a leaderboard for evaluating detailed captions, addressing three main gaps in existing evaluations: lack of standardized criteria, bias-aware assessments, and user preference considerations. LOTUS comprehensively evaluates various aspects, including caption quality (e.g., alignment, descriptiveness), risks (\eg, hallucination), and societal biases (e.g., gender bias) while enabling preference-oriented evaluations by tailoring criteria to diverse user preferences. Our analysis of recent LVLMs reveals no single model excels across all criteria, while correlations emerge between caption detail and bias risks. Preference-oriented evaluations demonstrate that optimal model selection depends on user priorities.
comment: Accepted to ACL 2025. Leaderboard: huggingface.co/spaces/nvidia/lotus-vlm-bias-leaderboard
☆ SpeechIQ: Speech Intelligence Quotient Across Cognitive Levels in Voice Understanding Large Language Models ACL 2025
We introduce Speech-based Intelligence Quotient (SIQ) as a new form of human cognition-inspired evaluation pipeline for voice understanding large language models, LLM Voice, designed to assess their voice understanding ability. Moving beyond popular voice understanding metrics such as word error rate (WER), SIQ examines LLM Voice across three cognitive levels motivated by Bloom's Taxonomy: (1) Remembering (i.e., WER for verbatim accuracy); (2) Understanding (i.e., similarity of LLM's interpretations); and (3) Application (i.e., QA accuracy for simulating downstream tasks). We demonstrate that SIQ not only quantifies voice understanding abilities but also provides unified comparisons between cascaded methods (e.g., ASR LLM) and end-to-end models, identifies annotation errors in existing benchmarks, and detects hallucinations in LLM Voice. Our framework represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks, while exposing overlooked challenges in multi-modal training.
comment: Our Speech-IQ leaderboard will be hosted at huggingface.co/spaces/nvidia/Speech-IQ-leaderboard. ACL 2025 main
Smooth Reading: Bridging the Gap of Recurrent LLM to Self-Attention LLM on Long-Context Tasks
Recently, recurrent large language models (Recurrent LLMs) with linear computational complexity have re-emerged as efficient alternatives to self-attention-based LLMs (Self-Attention LLMs), which have quadratic complexity. However, Recurrent LLMs often underperform on long-context tasks due to their limited fixed-size memory. Previous research has primarily focused on enhancing the memory capacity of Recurrent LLMs through architectural innovations, but these approaches have not yet enabled Recurrent LLMs to match the performance of Self-Attention LLMs on long-context tasks. We argue that this limitation arises because processing the entire context at once is not well-suited for Recurrent LLMs. In this paper, we propose Smooth Reading, a chunk-wise inference method inspired by human reading strategies. Smooth Reading processes context in chunks and iteratively summarizes the contextual information, thereby reducing memory demands and making the approach more compatible with Recurrent LLMs. Our experimental results show that this method substantially narrows the performance gap between Recurrent and Self-Attention LLMs on long-context tasks, while preserving the efficiency advantages of Recurrent LLMs. Our Smooth Reading boosts SWA-3B-4k (a Recurrent LLM) from 5.68% lower to 3.61% higher performance than Self-Attention LLMs on LongBench. Besides, our method maintains the high efficiency, training 3x faster and inferring 2x faster at 64k context compared to Self-Attention LLMs. To our knowledge, this is the first work to achieve comparable performance using Recurrent LLMs compared with Self-Attention LLMs on long-context tasks. We hope our method will inspire future research in this area. To facilitate further progress, we will release code and dataset.
☆ Doubling Your Data in Minutes: Ultra-fast Tabular Data Generation via LLM-Induced Dependency Graphs
Tabular data is critical across diverse domains, yet high-quality datasets remain scarce due to privacy concerns and the cost of collection. Contemporary approaches adopt large language models (LLMs) for tabular augmentation, but exhibit two major limitations: (1) dense dependency modeling among tabular features that can introduce bias, and (2) high computational overhead in sampling. To address these issues, we propose SPADA for SPArse Dependency-driven Augmentation, a lightweight generative framework that explicitly captures sparse dependencies via an LLM-induced graph. We treat each feature as a node and synthesize values by traversing the graph, conditioning each feature solely on its parent nodes. We explore two synthesis strategies: a non-parametric method using Gaussian kernel density estimation, and a conditional normalizing flow model that learns invertible mappings for conditional density estimation. Experiments on four datasets show that SPADA reduces constraint violations by 4% compared to diffusion-based methods and accelerates generation by nearly 9,500 times over LLM-based baselines.
☆ SIDE: Sparse Information Disentanglement for Explainable Artificial Intelligence
Understanding the decisions made by deep neural networks is essential in high-stakes domains such as medical imaging and autonomous driving. Yet, these models often lack transparency, particularly in computer vision. Prototypical-parts-based neural networks have emerged as a promising solution by offering concept-level explanations. However, most are limited to fine-grained classification tasks, with few exceptions such as InfoDisent. InfoDisent extends prototypical models to large-scale datasets like ImageNet, but produces complex explanations. We introduce Sparse Information Disentanglement for Explainability (SIDE), a novel method that improves the interpretability of prototypical parts through a dedicated training and pruning scheme that enforces sparsity. Combined with sigmoid activations in place of softmax, this approach allows SIDE to associate each class with only a small set of relevant prototypes. Extensive experiments show that SIDE matches the accuracy of existing methods while reducing explanation size by over $90\%$, substantially enhancing the understandability of prototype-based explanations.
☆ Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes IROS 2025
Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy. To address real-world challenges in outdoor 3D object detection, fusion of LiDAR and RGB input has started gaining traction. However, effective integration of these modalities for precise object detection task still remains a largely open problem. To address that, we propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities. The network follows a three-stream structure. Its LiDAR-PillarNet stream extracts sparse 2D pillar features from the LiDAR input while the LiDAR-Height Compression stream computes Bird's-Eye View features. An additional 3D Multimodal stream combines RGB and LiDAR features using UV mapping and polar coordinate indexing. Eventually, the features containing comprehensive spatial, textural and geometric information are carefully fused and fed to a detection head for 3D object detection. Our extensive evaluation on the challenging KITTI Object Detection Benchmark using public testing server at https://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=d162ec699d6992040e34314d19ab7f5c217075e0 establishes the efficacy of our method by achieving new state-of-the-art or highly competitive results in different categories while remaining among the most efficient methods. Our code will be released through MuStD GitHub repository at https://github.com/IbrahimUWA/MuStD.git
comment: This paper has been accepted by IEEE/RSJ IROS 2025 for oral presentation on 19 Oct. 2025
Controlling Topological Defects in Polar Fluids via Reinforcement Learning
Topological defects in active polar fluids exhibit complex dynamics driven by internally generated stresses, reflecting the deep interplay between topology, flow, and non-equilibrium hydrodynamics. Feedback control offers a powerful means to guide such systems, enabling transitions between dynamic states. We investigated closed-loop steering of integer-charged defects in a confined active fluid by modulating the spatial profile of activity. Using a continuum hydrodynamic model, we show that localized control of active stress induces flow fields that can reposition and direct defects along prescribed trajectories by exploiting non-linear couplings in the system. A reinforcement learning framework is used to discover effective control strategies that produce robust defect transport across both trained and novel trajectories. The results highlight how AI agents can learn the underlying dynamics and spatially structure activity to manipulate topological excitations, offering insights into the controllability of active matter and the design of adaptive, self-organized materials.
☆ Towards LLM-Enhanced Group Recommender Systems
In contrast to single-user recommender systems, group recommender systems are designed to generate and explain recommendations for groups. This group-oriented setting introduces additional complexities, as several factors - absent in individual contexts - must be addressed. These include understanding group dynamics (e.g., social dependencies within the group), defining effective decision-making processes, ensuring that recommendations are suitable for all group members, and providing group-level explanations as well as explanations for individual users. In this paper, we analyze in which way large language models (LLMs) can support these aspects and help to increase the overall decision support quality and applicability of group recommender systems.
☆ Fine-Tuning Multilingual Language Models for Code Review: An Empirical Study on Industrial C# Projects
Code review is essential for maintaining software quality but often time-consuming and cognitively demanding, especially in industrial environments. Recent advancements in language models (LMs) have opened new avenues for automating core review tasks. This study presents the empirical evaluation of monolingual fine-tuning on the performance of open-source LMs across three key automated code review tasks: Code Change Quality Estimation, Review Comment Generation, and Code Refinement. We fine-tuned three distinct models, CodeReviewer, CodeLlama-7B, and DeepSeek-R1-Distill, on a C\# specific dataset combining public benchmarks with industrial repositories. Our study investigates how different configurations of programming languages and natural languages in the training data affect LM performance, particularly in comment generation. Additionally, we benchmark the fine-tuned models against an automated software analysis tool (ASAT) and human reviewers to evaluate their practical utility in real-world settings. Our results show that monolingual fine-tuning improves model accuracy and relevance compared to multilingual baselines. While LMs can effectively support code review workflows, especially for routine or repetitive tasks, human reviewers remain superior in handling semantically complex or context-sensitive changes. Our findings highlight the importance of language alignment and task-specific adaptation in optimizing LMs for automated code review.
☆ Modeling Uncertainty: Constraint-Based Belief States in Imperfect-Information Games
In imperfect-information games, agents must make decisions based on partial knowledge of the game state. The Belief Stochastic Game model addresses this challenge by delegating state estimation to the game model itself. This allows agents to operate on externally provided belief states, thereby reducing the need for game-specific inference logic. This paper investigates two approaches to represent beliefs in games with hidden piece identities: a constraint-based model using Constraint Satisfaction Problems and a probabilistic extension using Belief Propagation to estimate marginal probabilities. We evaluated the impact of both representations using general-purpose agents across two different games. Our findings indicate that constraint-based beliefs yield results comparable to those of probabilistic inference, with minimal differences in agent performance. This suggests that constraint-based belief states alone may suffice for effective decision-making in many settings.
☆ Knowledge Grafting: A Mechanism for Optimizing AI Model Deployment in Resource-Constrained Environments
The increasing adoption of Artificial Intelligence (AI) has led to larger, more complex models with numerous parameters that require substantial computing power -- resources often unavailable in many real-world application scenarios. Our paper addresses this challenge by introducing knowledge grafting, a novel mechanism that optimizes AI models for resource-constrained environments by transferring selected features (the scion) from a large donor model to a smaller rootstock model. The approach achieves an 88.54% reduction in model size (from 64.39 MB to 7.38 MB), while improving generalization capability of the model. Our new rootstock model achieves 89.97% validation accuracy (vs. donor's 87.47%), maintains lower validation loss (0.2976 vs. 0.5068), and performs exceptionally well on unseen test data with 90.45% accuracy. It addresses the typical size vs performance trade-off, and enables deployment of AI frameworks on resource-constrained devices with enhanced performance. We have tested our approach on an agricultural weed detection scenario, however, it can be extended across various edge computing scenarios, potentially accelerating AI adoption in areas with limited hardware/software support -- by mirroring in a similar manner the horticultural grafting enables productive cultivation in challenging agri-based environments.
comment: 18 pages, 4 figures, ArXiv preprint - Novel "knowledge grafting" technique achieving 88.54% AI model size reduction while improving accuracy for resource-constrained deployment
☆ A Markov Categorical Framework for Language Modeling
Auto-regressive language models factorize sequence probabilities and are trained by minimizing the negative log-likelihood (NLL) objective. While empirically powerful, a deep theoretical understanding of why this simple objective yields such versatile representations remains elusive. This work introduces a unifying analytical framework using Markov Categories (MCs) to deconstruct the AR generation process and the NLL objective. We model the single-step generation map as a composition of Markov kernels in the category Stoch. This compositional view, when enriched with statistical divergences, allows us to dissect information flow and learned geometry. Our framework makes three main contributions. First, we provide a formal, information-theoretic rationale for the success of modern speculative decoding methods like EAGLE, quantifying the information surplus in hidden states that these methods exploit. Second, we formalize how NLL minimization forces the model to learn not just the next token, but the data's intrinsic conditional stochasticity, a process we analyze using categorical entropy. Third, and most centrally, we prove that NLL training acts as an implicit form of spectral contrastive learning. By analyzing the information geometry of the model's prediction head, we show that NLL implicitly forces the learned representation space to align with the eigenspectrum of a predictive similarity operator, thereby learning a geometrically structured space without explicit contrastive pairs. This compositional and information-geometric perspective reveals the deep structural principles underlying the effectiveness of modern LMs. Project Page: https://github.com/asiresearch/lm-theory
comment: Project Page: https://github.com/asiresearch/lm-theory
☆ Transfinite Fixed Points in Alpay Algebra as Ordinal Game Equilibria in Dependent Type Theory
This paper contributes to the Alpay Algebra by demonstrating that the stable outcome of a self referential process, obtained by iterating a transformation through all ordinal stages, is identical to the unique equilibrium of an unbounded revision dialogue between a system and its environment. The analysis initially elucidates how classical fixed point theorems guarantee such convergence in finite settings and subsequently extends the argument to the transfinite domain, relying upon well founded induction and principles of order theoretic continuity. Furthermore, the resulting transordinal fixed point operator is embedded into dependent type theory, a formalization which permits every step of the transfinite iteration and its limit to be verified within a modern proof assistant. This procedure yields a machine checked proof that the iterative dialogue necessarily stabilizes and that its limit is unique. The result provides a foundation for Alpay's philosophical claim of semantic convergence within the framework of constructive logic. By unifying concepts from fixed point theory, game semantics, ordinal analysis, and type theory, this research establishes a broadly accessible yet formally rigorous foundation for reasoning about infinite self referential systems and offers practical tools for certifying their convergence within computational environments.
comment: 21 pages, 1 figure
☆ Virne: A Comprehensive Benchmark for Deep RL-based Network Resource Allocation in NFV
Resource allocation (RA) is critical to efficient service deployment in Network Function Virtualization (NFV), a transformative networking paradigm. Recently, deep Reinforcement Learning (RL)-based methods have been showing promising potential to address this complexity. However, the lack of a systematic benchmarking framework and thorough analysis hinders the exploration of emerging networks and the development of more robust algorithms while causing inconsistent evaluation. In this paper, we introduce Virne, a comprehensive benchmarking framework for the NFV-RA problem, with a focus on supporting deep RL-based methods. Virne provides customizable simulations for diverse network scenarios, including cloud, edge, and 5G environments. It also features a modular and extensible implementation pipeline that supports over 30 methods of various types, and includes practical evaluation perspectives beyond effectiveness, such as scalability, generalization, and scalability. Furthermore, we conduct in-depth analysis through extensive experiments to provide valuable insights into performance trade-offs for efficient implementation and offer actionable guidance for future research directions. Overall, with its diverse simulations, rich implementations, and extensive evaluation capabilities, Virne could serve as a comprehensive benchmark for advancing NFV-RA methods and deep RL applications. The code is publicly available at https://github.com/GeminiLight/virne.
☆ Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/
comment: Accepted, ACM Multimedia 2025, 10 pages, 5 figures
☆ Enhancing Diabetic Retinopathy Classification Accuracy through Dual Attention Mechanism in Deep Learning
Automatic classification of Diabetic Retinopathy (DR) can assist ophthalmologists in devising personalized treatment plans, making it a critical component of clinical practice. However, imbalanced data distribution in the dataset becomes a bottleneck in the generalization of deep learning models trained for DR classification. In this work, we combine global attention block (GAB) and category attention block (CAB) into the deep learning model, thus effectively overcoming the imbalanced data distribution problem in DR classification. Our proposed approach is based on an attention mechanism-based deep learning model that employs three pre-trained networks, namely, MobileNetV3-small, Efficientnet-b0, and DenseNet-169 as the backbone architecture. We evaluate the proposed method on two publicly available datasets of retinal fundoscopy images for DR. Experimental results show that on the APTOS dataset, the DenseNet-169 yielded 83.20% mean accuracy, followed by the MobileNetV3-small and EfficientNet-b0, which yielded 82% and 80% accuracies, respectively. On the EYEPACS dataset, the EfficientNet-b0 yielded a mean accuracy of 80%, while the DenseNet-169 and MobileNetV3-small yielded 75.43% and 76.68% accuracies, respectively. In addition, we also compute the F1-score of 82.0%, precision of 82.1%, sensitivity of 83.0%, specificity of 95.5%, and a kappa score of 88.2% for the experiments. Moreover, in our work, the MobileNetV3-small has 1.6 million parameters on the APTOS dataset and 0.90 million parameters on the EYEPACS dataset, which is comparatively less than other methods. The proposed approach achieves competitive performance that is at par with recently reported works on DR classification.
comment: submitted to Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
☆ WACA-UNet: Weakness-Aware Channel Attention for Static IR Drop Prediction in Integrated Circuit Design
Accurate spatial prediction of power integrity issues, such as IR drop, is critical for reliable VLSI design. However, traditional simulation-based solvers are computationally expensive and difficult to scale. We address this challenge by reformulating IR drop estimation as a pixel-wise regression task on heterogeneous multi-channel physical maps derived from circuit layouts. Prior learning-based methods treat all input layers (e.g., metal, via, and current maps) equally, ignoring their varying importance to prediction accuracy. To tackle this, we propose a novel Weakness-Aware Channel Attention (WACA) mechanism, which recursively enhances weak feature channels while suppressing over-dominant ones through a two-stage gating strategy. Integrated into a ConvNeXtV2-based attention U-Net, our approach enables adaptive and balanced feature representation. On the public ICCAD-2023 benchmark, our method outperforms the ICCAD-2023 contest winner by reducing mean absolute error by 61.1% and improving F1-score by 71.0%. These results demonstrate that channel-wise heterogeneity is a key inductive bias in physical layout analysis for VLSI.
comment: 9 pages, 5 figures
☆ Can Small-Scale Data Poisoning Exacerbate Dialect-Linked Biases in Large Language Models?
Despite the ongoing improvements in the design of large language models (LLMs) to foster inclusion and balanced responses, these systems remain susceptible to encoding and amplifying social biases. This study examines how dialectal variation, specifically African American Vernacular English (AAVE) versus Standard American English (SAE), interacts with data poisoning to influence toxicity in outputs. Using both small- and medium-scale LLaMA models, we show that even minimal exposure to poisoned data significantly increases toxicity for AAVE inputs, while it remains comparatively unaffected for SAE. Larger models exhibit a more significant amplification effect which suggests heightened susceptibility with scale. To further assess these disparities, we employed GPT-4o as a fairness auditor, which identified harmful stereotypical patterns disproportionately tied to AAVE inputs, including portrayals of aggression, criminality, and intellectual inferiority. These findings underscore the compounding impact of data poisoning and dialectal bias and emphasize the need for dialect-aware evaluation, targeted debiasing interventions, and socially responsible training protocols during development.
☆ PrompTrend: Continuous Community-Driven Vulnerability Discovery and Assessment for Large Language Models
Static benchmarks fail to capture LLM vulnerabilities emerging through community experimentation in online forums. We present PrompTrend, a system that collects vulnerability data across platforms and evaluates them using multidimensional scoring, with an architecture designed for scalable monitoring. Cross-sectional analysis of 198 vulnerabilities collected from online communities over a five-month period (January-May 2025) and tested on nine commercial models reveals that advanced capabilities correlate with increased vulnerability in some architectures, psychological attacks significantly outperform technical exploits, and platform dynamics shape attack effectiveness with measurable model-specific patterns. The PrompTrend Vulnerability Assessment Framework achieves 78% classification accuracy while revealing limited cross-model transferability, demonstrating that effective LLM security requires comprehensive socio-technical monitoring beyond traditional periodic assessment. Our findings challenge the assumption that capability advancement improves security and establish community-driven psychological manipulation as the dominant threat vector for current language models.
☆ Faster Lifting for Ordered Domains with Predecessor Relations
We investigate lifted inference on ordered domains with predecessor relations, where the elements of the domain respect a total (cyclic) order, and every element has a distinct (clockwise) predecessor. Previous work has explored this problem through weighted first-order model counting (WFOMC), which computes the weighted sum of models for a given first-order logic sentence over a finite domain. In WFOMC, the order constraint is typically encoded by the linear order axiom introducing a binary predicate in the sentence to impose a linear ordering on the domain elements. The immediate and second predecessor relations are then encoded by the linear order predicate. Although WFOMC with the linear order axiom is theoretically tractable, existing algorithms struggle with practical applications, particularly when the predecessor relations are involved. In this paper, we treat predecessor relations as a native part of the axiom and devise a novel algorithm that inherently supports these relations. The proposed algorithm not only provides an exponential speedup for the immediate and second predecessor relations, which are known to be tractable, but also handles the general k-th predecessor relations. The extensive experiments on lifted inference tasks and combinatorics math problems demonstrate the efficiency of our algorithm, achieving speedups of a full order of magnitude.
☆ PhysDrive: A Multimodal Remote Physiological Measurement Dataset for In-vehicle Driver Monitoring
Robust and unobtrusive in-vehicle physiological monitoring is crucial for ensuring driving safety and user experience. While remote physiological measurement (RPM) offers a promising non-invasive solution, its translation to real-world driving scenarios is critically constrained by the scarcity of comprehensive datasets. Existing resources are often limited in scale, modality diversity, the breadth of biometric annotations, and the range of captured conditions, thereby omitting inherent real-world challenges in driving. Here, we present PhysDrive, the first large-scale multimodal dataset for contactless in-vehicle physiological sensing with dedicated consideration on various modality settings and driving factors. PhysDrive collects data from 48 drivers, including synchronized RGB, near-infrared camera, and raw mmWave radar data, accompanied with six synchronized ground truths (ECG, BVP, Respiration, HR, RR, and SpO2). It covers a wide spectrum of naturalistic driving conditions, including driver motions, dynamic natural light, vehicle types, and road conditions. We extensively evaluate both signal-processing and deep-learning methods on PhysDrive, establishing a comprehensive benchmark across all modalities, and release full open-source code with compatibility for mainstream public toolboxes. We envision PhysDrive will serve as a foundational resource and accelerate research on multimodal driver monitoring and smart-cockpit systems.
comment: It is the initial version, not the final version
☆ An Empirical Investigation of Gender Stereotype Representation in Large Language Models: The Italian Case ECML
The increasing use of Large Language Models (LLMs) in a large variety of domains has sparked worries about how easily they can perpetuate stereotypes and contribute to the generation of biased content. With a focus on gender and professional bias, this work examines in which manner LLMs shape responses to ungendered prompts, contributing to biased outputs. This analysis uses a structured experimental method, giving different prompts involving three different professional job combinations, which are also characterized by a hierarchical relationship. This study uses Italian, a language with extensive grammatical gender differences, to highlight potential limitations in current LLMs' ability to generate objective text in non-English languages. Two popular LLM-based chatbots are examined, namely OpenAI ChatGPT (gpt-4o-mini) and Google Gemini (gemini-1.5-flash). Through APIs, we collected a range of 3600 responses. The results highlight how content generated by LLMs can perpetuate stereotypes. For example, Gemini associated 100% (ChatGPT 97%) of 'she' pronouns to the 'assistant' rather than the 'manager'. The presence of bias in AI-generated text can have significant implications in many fields, such as in the workplaces or in job selections, raising ethical concerns about its use. Understanding these risks is pivotal to developing mitigation strategies and assuring that AI-based systems do not increase social inequalities, but rather contribute to more equitable outcomes. Future research directions include expanding the study to additional chatbots or languages, refining prompt engineering methods or further exploiting a larger experimental base.
comment: 16 pages, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2025) - 5th Workshop on Bias and Fairness in AI (BIAS25)
☆ ReCoDe: Reinforcement Learning-based Dynamic Constraint Design for Multi-Agent Coordination
Constraint-based optimization is a cornerstone of robotics, enabling the design of controllers that reliably encode task and safety requirements such as collision avoidance or formation adherence. However, handcrafted constraints can fail in multi-agent settings that demand complex coordination. We introduce ReCoDe--Reinforcement-based Constraint Design--a decentralized, hybrid framework that merges the reliability of optimization-based controllers with the adaptability of multi-agent reinforcement learning. Rather than discarding expert controllers, ReCoDe improves them by learning additional, dynamic constraints that capture subtler behaviors, for example, by constraining agent movements to prevent congestion in cluttered scenarios. Through local communication, agents collectively constrain their allowed actions to coordinate more effectively under changing conditions. In this work, we focus on applications of ReCoDe to multi-agent navigation tasks requiring intricate, context-based movements and consensus, where we show that it outperforms purely handcrafted controllers, other hybrid approaches, and standard MARL baselines. We give empirical (real robot) and theoretical evidence that retaining a user-defined controller, even when it is imperfect, is more efficient than learning from scratch, especially because ReCoDe can dynamically change the degree to which it relies on this controller.
☆ Solar Photovoltaic Assessment with Large Language Model
Accurate detection and localization of solar photovoltaic (PV) panels in satellite imagery is essential for optimizing microgrids and active distribution networks (ADNs), which are critical components of renewable energy systems. Existing methods lack transparency regarding their underlying algorithms or training datasets, rely on large, high-quality PV training data, and struggle to generalize to new geographic regions or varied environmental conditions without extensive re-training. These limitations lead to inconsistent detection outcomes, hindering large-scale deployment and data-driven grid optimization. In this paper, we investigate how large language models (LLMs) can be leveraged to overcome these challenges. Despite their promise, LLMs face several challenges in solar panel detection, including difficulties with multi-step logical processes, inconsistent output formatting, frequent misclassification of visually similar objects (e.g., shadows, parking lots), and low accuracy in complex tasks such as spatial localization and quantification. To overcome these issues, we propose the PV Assessment with LLMs (PVAL) framework, which incorporates task decomposition for more efficient workflows, output standardization for consistent and scalable formatting, few-shot prompting to enhance classification accuracy, and fine-tuning using curated PV datasets with detailed annotations. PVAL ensures transparency, scalability, and adaptability across heterogeneous datasets while minimizing computational overhead. By combining open-source accessibility with robust methodologies, PVAL establishes an automated and reproducible pipeline for solar panel detection, paving the way for large-scale renewable energy integration and optimized grid management.
comment: 27 pages, 7 figures
☆ Assessment of Personality Dimensions Across Situations Using Conversational Speech
Prior research indicates that users prefer assistive technologies whose personalities align with their own. This has sparked interest in automatic personality perception (APP), which aims to predict an individual's perceived personality traits. Previous studies in APP have treated personalities as static traits, independent of context. However, perceived personalities can vary by context and situation as shown in psychological research. In this study, we investigate the relationship between conversational speech and perceived personality for participants engaged in two work situations (a neutral interview and a stressful client interaction). Our key findings are: 1) perceived personalities differ significantly across interactions, 2) loudness, sound level, and spectral flux features are indicative of perceived extraversion, agreeableness, conscientiousness, and openness in neutral interactions, while neuroticism correlates with these features in stressful contexts, 3) handcrafted acoustic features and non-verbal features outperform speaker embeddings in inference of perceived personality, and 4) stressful interactions are more predictive of neuroticism, aligning with existing psychological research.
☆ OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.
comment: Work in progress
Graph Structure Learning with Privacy Guarantees for Open Graph Data
Ensuring privacy in large-scale open datasets is increasingly challenging under regulations such as the General Data Protection Regulation (GDPR). While differential privacy (DP) provides strong theoretical guarantees, it primarily focuses on noise injection during model training, neglecting privacy preservation at the data publishing stage. Existing privacy-preserving data publishing (PPDP) approaches struggle to balance privacy and utility, particularly when data publishers and users are distinct entities. To address this gap, we focus on the graph recovery problem and propose a novel privacy-preserving estimation framework for open graph data, leveraging Gaussian DP (GDP) with a structured noise-injection mechanism. Unlike traditional methods that perturb gradients or model updates, our approach ensures unbiased graph structure recovery while enforcing DP at the data publishing stage. Moreover, we provide theoretical guarantees on estimation accuracy and extend our method to discrete-variable graphs, a setting often overlooked in DP research. Experimental results in graph learning demonstrate robust performance, offering a viable solution for privacy-conscious graph analysis.
☆ Automated Code Review Using Large Language Models at Ericsson: An Experience Report
Code review is one of the primary means of assuring the quality of released software along with testing and static analysis. However, code review requires experienced developers who may not always have the time to perform an in-depth review of code. Thus, automating code review can help alleviate the cognitive burden on experienced software developers allowing them to focus on their primary activities of writing code to add new features and fix bugs. In this paper, we describe our experience in using Large Language Models towards automating the code review process in Ericsson. We describe the development of a lightweight tool using LLMs and static program analysis. We then describe our preliminary experiments with experienced developers in evaluating our code review tool and the encouraging results.
☆ Pareto-NRPA: A Novel Monte-Carlo Search Algorithm for Multi-Objective Optimization
We introduce Pareto-NRPA, a new Monte-Carlo algorithm designed for multi-objective optimization problems over discrete search spaces. Extending the Nested Rollout Policy Adaptation (NRPA) algorithm originally formulated for single-objective problems, Pareto-NRPA generalizes the nested search and policy update mechanism to multi-objective optimization. The algorithm uses a set of policies to concurrently explore different regions of the solution space and maintains non-dominated fronts at each level of search. Policy adaptation is performed with respect to the diversity and isolation of sequences within the Pareto front. We benchmark Pareto-NRPA on two classes of problems: a novel bi-objective variant of the Traveling Salesman Problem with Time Windows problem (MO-TSPTW), and a neural architecture search task on well-known benchmarks. Results demonstrate that Pareto-NRPA achieves competitive performance against state-of-the-art multi-objective algorithms, both in terms of convergence and diversity of solutions. Particularly, Pareto-NRPA strongly outperforms state-of-the-art evolutionary multi-objective algorithms on constrained search spaces. To our knowledge, this work constitutes the first adaptation of NRPA to the multi-objective setting.
comment: Preprint ; accepted to ECAI 2025
☆ Distilling a Small Utility-Based Passage Selector to Enhance Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating retrieved information. Standard retrieval process prioritized relevance, focusing on topical alignment between queries and passages. In contrast, in RAG, the emphasis has shifted to utility, which considers the usefulness of passages for generating accurate answers. Despite empirical evidence showing the benefits of utility-based retrieval in RAG, the high computational cost of using LLMs for utility judgments limits the number of passages evaluated. This restriction is problematic for complex queries requiring extensive information. To address this, we propose a method to distill the utility judgment capabilities of LLMs into smaller, more efficient models. Our approach focuses on utility-based selection rather than ranking, enabling dynamic passage selection tailored to specific queries without the need for fixed thresholds. We train student models to learn pseudo-answer generation and utility judgments from teacher LLMs, using a sliding window method that dynamically selects useful passages. Our experiments demonstrate that utility-based selection provides a flexible and cost-effective solution for RAG, significantly reducing computational costs while improving answer quality. We present the distillation results using Qwen3-32B as the teacher model for both relevance ranking and utility-based selection, distilled into RankQwen1.7B and UtilityQwen1.7B. Our findings indicate that for complex questions, utility-based selection is more effective than relevance ranking in enhancing answer generation performance. We will release the relevance ranking and utility-based selection annotations for the MS MARCO dataset, supporting further research in this area.
comment: 9 pages, 5 figures
☆ MedSymmFlow: Bridging Generative Modeling and Classification in Medical Imaging through Symmetrical Flow Matching MICCAI 2025
Reliable medical image classification requires accurate predictions and well-calibrated uncertainty estimates, especially in high-stakes clinical settings. This work presents MedSymmFlow, a generative-discriminative hybrid model built on Symmetrical Flow Matching, designed to unify classification, generation, and uncertainty quantification in medical imaging. MedSymmFlow leverages a latent-space formulation that scales to high-resolution inputs and introduces a semantic mask conditioning mechanism to enhance diagnostic relevance. Unlike standard discriminative models, it naturally estimates uncertainty through its generative sampling process. The model is evaluated on four MedMNIST datasets, covering a range of modalities and pathologies. The results show that MedSymmFlow matches or exceeds the performance of established baselines in classification accuracy and AUC, while also delivering reliable uncertainty estimates validated by performance improvements under selective prediction.
comment: DGM4MICCAI 2025
☆ Fine-Grained Traffic Inference from Road to Lane via Spatio-Temporal Graph Node Generation
Fine-grained traffic management and prediction are fundamental to key applications such as autonomous driving, lane change guidance, and traffic signal control. However, obtaining lane-level traffic data has become a critical bottleneck for data-driven models due to limitations in the types and number of sensors and issues with the accuracy of tracking algorithms. To address this, we propose the Fine-grained Road Traffic Inference (FRTI) task, which aims to generate more detailed lane-level traffic information using limited road data, providing a more energy-efficient and cost-effective solution for precise traffic management. This task is abstracted as the first scene of the spatio-temporal graph node generation problem. We designed a two-stage framework--RoadDiff--to solve the FRTI task. solve the FRTI task. This framework leverages the Road-Lane Correlation Autoencoder-Decoder and the Lane Diffusion Module to fully utilize the limited spatio-temporal dependencies and distribution relationships of road data to accurately infer fine-grained lane traffic states. Based on existing research, we designed several baseline models with the potential to solve the FRTI task and conducted extensive experiments on six datasets representing different road conditions to validate the effectiveness of the RoadDiff model in addressing the FRTI task. The relevant datasets and code are available at https://github.com/ShuhaoLii/RoadDiff.
☆ PBiLoss: Popularity-Aware Regularization to Improve Fairness in Graph-Based Recommender Systems
Recommender systems, especially those based on graph neural networks (GNNs), have achieved remarkable success in capturing user-item interaction patterns. However, they remain susceptible to popularity bias--the tendency to over-recommend popular items--resulting in reduced content diversity and compromised fairness. In this paper, we propose PBiLoss, a novel regularization-based loss function designed to counteract popularity bias in graph-based recommender models explicitly. PBiLoss augments traditional training objectives by penalizing the model's inclination toward popular items, thereby encouraging the recommendation of less popular but potentially more personalized content. We introduce two sampling strategies: Popular Positive (PopPos) and Popular Negative (PopNeg), which respectively modulate the contribution of the positive and negative popular items during training. We further explore two methods to distinguish popular items: one based on a fixed popularity threshold and another without any threshold, making the approach flexible and adaptive. Our proposed method is model-agnostic and can be seamlessly integrated into state-of-the-art graph-based frameworks such as LightGCN and its variants. Comprehensive experiments across multiple real-world datasets demonstrate that PBiLoss significantly improves fairness, as demonstrated by reductions in the Popularity-Rank Correlation for Users (PRU) and Popularity-Rank Correlation for Items (PRI), while maintaining or even enhancing standard recommendation accuracy and ranking metrics. These results highlight the effectiveness of directly embedding fairness objectives into the optimization process, providing a practical and scalable solution for balancing accuracy and equitable content exposure in modern recommender systems.
☆ Closing the Modality Gap for Mixed Modality Search
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.
comment: Project page: https://yuhui-zh15.github.io/MixedModalitySearch/
☆ Dual Path Learning -- learning from noise and context for medical image denoising
Medical imaging plays a critical role in modern healthcare, enabling clinicians to accurately diagnose diseases and develop effective treatment plans. However, noise, often introduced by imaging devices, can degrade image quality, leading to misinterpretation and compromised clinical outcomes. Existing denoising approaches typically rely either on noise characteristics or on contextual information from the image. Moreover, they are commonly developed and evaluated for a single imaging modality and noise type. Motivated by Geng et.al CNCL, which integrates both noise and context, this study introduces a Dual-Pathway Learning (DPL) model architecture that effectively denoises medical images by leveraging both sources of information and fusing them to generate the final output. DPL is evaluated across multiple imaging modalities and various types of noise, demonstrating its robustness and generalizability. DPL improves PSNR by 3.35% compared to the baseline UNet when evaluated on Gaussian noise and trained across all modalities. The code is available at 10.5281/zenodo.15836053.
comment: 10 pages, 7 figures
☆ MindSpeed RL: Distributed Dataflow for Scalable and Efficient RL Training on Ascend NPU Cluster
Reinforcement learning (RL) is a paradigm increasingly used to align large language models. Popular RL algorithms utilize multiple workers and can be modeled as a graph, where each node is the status of a worker and each edge represents dataflow between nodes. Owing to the heavy cross-node dependencies, the RL training system usually suffers from poor cluster scalability and low memory utilization. In this article, we introduce MindSpeed RL, an effective and efficient system for large-scale RL training. Unlike existing centralized methods, MindSpeed RL organizes the essential data dependencies in RL training, i.e., sample flow and resharding flow, from a distributed view. On the one hand, a distributed transfer dock strategy, which sets controllers and warehouses on the basis of the conventional replay buffer, is designed to release the dispatch overhead in the sample flow. A practical allgather--swap strategy is presented to eliminate redundant memory usage in resharding flow. In addition, MindSpeed RL further integrates numerous parallelization strategies and acceleration techniques for systematic optimization. Compared with existing state-of-the-art systems, comprehensive experiments on the RL training of popular Qwen2.5-Dense-7B/32B, Qwen3-MoE-30B, and DeepSeek-R1-MoE-671B show that MindSpeed RL increases the throughput by 1.42 ~ 3.97 times. Finally, we open--source MindSpeed RL and perform all the experiments on a super pod of Ascend with 384 neural processing units (NPUs) to demonstrate the powerful performance and reliability of Ascend.
comment: 9 pages
☆ MedIQA: A Scalable Foundation Model for Prompt-Driven Medical Image Quality Assessment MICCAI 2025
Rapid advances in medical imaging technology underscore the critical need for precise and automated image quality assessment (IQA) to ensure diagnostic accuracy. Existing medical IQA methods, however, struggle to generalize across diverse modalities and clinical scenarios. In response, we introduce MedIQA, the first comprehensive foundation model for medical IQA, designed to handle variability in image dimensions, modalities, anatomical regions, and types. We developed a large-scale multi-modality dataset with plentiful manually annotated quality scores to support this. Our model integrates a salient slice assessment module to focus on diagnostically relevant regions feature retrieval and employs an automatic prompt strategy that aligns upstream physical parameter pre-training with downstream expert annotation fine-tuning. Extensive experiments demonstrate that MedIQA significantly outperforms baselines in multiple downstream tasks, establishing a scalable framework for medical IQA and advancing diagnostic workflows and clinical decision-making.
comment: We note that the version after peer review of this paper has been provisionally accepted by The 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2025)
☆ A diffusion-based generative model for financial time series via geometric Brownian motion
We propose a novel diffusion-based generative framework for financial time series that incorporates geometric Brownian motion (GBM), the foundation of the Black--Scholes theory, into the forward noising process. Unlike standard score-based models that treat price trajectories as generic numerical sequences, our method injects noise proportionally to asset prices at each time step, reflecting the heteroskedasticity observed in financial time series. By accurately balancing the drift and diffusion terms, we show that the resulting log-price process reduces to a variance-exploding stochastic differential equation, aligning with the formulation in score-based generative models. The reverse-time generative process is trained via denoising score matching using a Transformer-based architecture adapted from the Conditional Score-based Diffusion Imputation (CSDI) framework. Empirical evaluations on historical stock data demonstrate that our model reproduces key stylized facts heavy-tailed return distributions, volatility clustering, and the leverage effect more realistically than conventional diffusion models.
☆ GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units
As AI workloads proliferate, optimizing arithmetic units is becoming increasingly important to reduce the footprint of digital systems. Conventional design flows, which often rely on manual or heuristics-based optimization, are limited in their ability to thoroughly explore the vast design space. In this paper, we introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units, more specifically multipliers. At the core of GENIAL is a Transformer-based surrogate model trained in two stages, involving self-supervised pretraining followed by supervised finetuning, to robustly forecast key hardware metrics such as power and area from abstracted design representations. By inverting the surrogate model, GENIAL efficiently searches for new operand encodings that directly minimize power consumption in arithmetic units for specific input data distributions. Extensive experiments on large datasets demonstrate that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs. This enables to deploy a high-effort logic synthesis optimization flow in the loop, improving the accuracy of the surrogate model. Notably, GENIAL automatically discovers encodings that achieve up to 18% switching activity savings within multipliers on representative AI workloads compared with the conventional two's complement. We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines, highlighting GENIAL's applicability for a wide spectrum of logic functions. Together, these advances mark a significant step toward automated Quality-of-Results-optimized combinational circuit generation for digital systems.
comment: Under review
☆ Differentiated Thyroid Cancer Recurrence Classification Using Machine Learning Models and Bayesian Neural Networks with Varying Priors: A SHAP-Based Interpretation of the Best Performing Model
Differentiated thyroid cancer DTC recurrence is a major public health concern, requiring classification and predictive models that are not only accurate but also interpretable and uncertainty aware. This study introduces a comprehensive framework for DTC recurrence classification using a dataset containing 383 patients and 16 clinical and pathological variables. Initially, 11 machine learning ML models were employed using the complete dataset, where the Support Vector Machines SVM model achieved the highest accuracy of 0.9481. To reduce complexity and redundancy, feature selection was carried out using the Boruta algorithm, and the same ML models were applied to the reduced dataset, where it was observed that the Logistic Regression LR model obtained the maximum accuracy of 0.9611. However, these ML models often lack uncertainty quantification, which is critical in clinical decision making. Therefore, to address this limitation, the Bayesian Neural Networks BNN with six varying prior distributions, including Normal 0,1, Normal 0,10, Laplace 0,1, Cauchy 0,1, Cauchy 0,2.5, and Horseshoe 1, were implemented on both the complete and reduced datasets. The BNN model with Normal 0,10 prior distribution exhibited maximum accuracies of 0.9740 and 0.9870 before and after feature selection, respectively.
comment: 16 pages, 15 figures, to be published in International Journal of Research in Computing (IJRC)
☆ Towards Improving Long-Tail Entity Predictions in Temporal Knowledge Graphs through Global Similarity and Weighted Sampling
Temporal Knowledge Graph (TKG) completion models traditionally assume access to the entire graph during training. This overlooks challenges stemming from the evolving nature of TKGs, such as: (i) the model's requirement to generalize and assimilate new knowledge, and (ii) the task of managing new or unseen entities that often have sparse connections. In this paper, we present an incremental training framework specifically designed for TKGs, aiming to address entities that are either not observed during training or have sparse connections. Our approach combines a model-agnostic enhancement layer with a weighted sampling strategy, that can be augmented to and improve any existing TKG completion method. The enhancement layer leverages a broader, global definition of entity similarity, which moves beyond mere local neighborhood proximity of GNN-based methods. The weighted sampling strategy employed in training accentuates edges linked to infrequently occurring entities. We evaluate our method on two benchmark datasets, and demonstrate that our framework outperforms existing methods in total link prediction, inductive link prediction, and in addressing long-tail entities. Notably, our method achieves a 10\% improvement and a 15\% boost in MRR for these datasets. The results underscore the potential of our approach in mitigating catastrophic forgetting and enhancing the robustness of TKG completion methods, especially in an incremental training context
☆ A Toolbox, Not a Hammer -- Multi-TAG: Scaling Math Reasoning with Multi-Tool Aggregation
Augmenting large language models (LLMs) with external tools is a promising avenue for developing high-performance mathematical reasoning systems. Prior tool-augmented approaches typically finetune an LLM to select and invoke a single tool at each reasoning step and show promising results on simpler math reasoning benchmarks such as GSM8K. However, these approaches struggle with more complex math problems that require precise reasoning over multiple steps. To address this limitation, in this work, we propose Multi-TAG, a Multi-Tool AGgregation-based framework. Instead of relying on a single tool, Multi-TAG guides an LLM to concurrently invoke multiple tools at each reasoning step. It then aggregates their diverse outputs to verify and refine the reasoning process, enhancing solution robustness and accuracy. Notably, Multi-TAG is a finetuning-free, inference-only framework, making it readily applicable to any LLM backbone, including large open-weight models which are computationally expensive to finetune and proprietary frontier models which cannot be finetuned with custom recipes. We evaluate Multi-TAG on four challenging benchmarks: MATH500, AIME, AMC, and OlympiadBench. Across both open-weight and closed-source LLM backbones, Multi-TAG consistently and substantially outperforms state-of-the-art baselines, achieving average improvements of 6.0% to 7.5% over state-of-the-art baselines.
comment: 21 pages, 3 figures
☆ Underwater Waste Detection Using Deep Learning A Performance Comparison of YOLOv7 to 10 and Faster RCNN
Underwater pollution is one of today's most significant environmental concerns, with vast volumes of garbage found in seas, rivers, and landscapes around the world. Accurate detection of these waste materials is crucial for successful waste management, environmental monitoring, and mitigation strategies. In this study, we investigated the performance of five cutting-edge object recognition algorithms, namely YOLO (You Only Look Once) models, including YOLOv7, YOLOv8, YOLOv9, YOLOv10, and Faster Region-Convolutional Neural Network (R-CNN), to identify which model was most effective at recognizing materials in underwater situations. The models were thoroughly trained and tested on a large dataset containing fifteen different classes under diverse conditions, such as low visibility and variable depths. From the above-mentioned models, YOLOv8 outperformed the others, with a mean Average Precision (mAP) of 80.9%, indicating a significant performance. This increased performance is attributed to YOLOv8's architecture, which incorporates advanced features such as improved anchor-free mechanisms and self-supervised learning, allowing for more precise and efficient recognition of items in a variety of settings. These findings highlight the YOLOv8 model's potential as an effective tool in the global fight against pollution, improving both the detection capabilities and scalability of underwater cleanup operations.
comment: 7 pages, 11 figures, to be published in International Journal of Research in Computing (IJRC)
☆ TreeReader: A Hierarchical Academic Paper Reader Powered by Language Models
Efficiently navigating and understanding academic papers is crucial for scientific progress. Traditional linear formats like PDF and HTML can cause cognitive overload and obscure a paper's hierarchical structure, making it difficult to locate key information. While LLM-based chatbots offer summarization, they often lack nuanced understanding of specific sections, may produce unreliable information, and typically discard the document's navigational structure. Drawing insights from a formative study on academic reading practices, we introduce TreeReader, a novel language model-augmented paper reader. TreeReader decomposes papers into an interactive tree structure where each section is initially represented by an LLM-generated concise summary, with underlying details accessible on demand. This design allows users to quickly grasp core ideas, selectively explore sections of interest, and verify summaries against the source text. A user study was conducted to evaluate TreeReader's impact on reading efficiency and comprehension. TreeReader provides a more focused and efficient way to navigate and understand complex academic literature by bridging hierarchical summarization with interactive exploration.
☆ CNN-based Surface Temperature Forecasts with Ensemble Numerical Weather Prediction over Medium-range Forecast Periods
This study proposes a method that integrates convolutional neural networks (CNNs) with ensemble numerical weather prediction (NWP) models, enabling surface temperature forecasting at lead times beyond the short-range (five-day) forecast period. Owing to limited computational resources, operational medium-range temperature forecasts typically rely on low-resolution NWP models, which are prone to systematic and random errors. To resolve these limitations, the proposed method first reduces systematic errors through CNN-based post-processing (bias correction and spatial super-resolution) on each ensemble member, reconstructing high-resolution temperature fields from low-resolution model outputs. Second, it reduces random errors through ensemble averaging of the CNN-corrected members. This study also investigates whether the sequence of CNN correction and ensemble averaging affects the forecast accuracy. For comparison with the proposed method, we additionally conducted experiments with the CNN trained on ensemble-averaged forecasts. The first approach--CNN correction before ensemble averaging--consistently achieved higher accuracy than the reverse approach. Although based on low-resolution ensemble forecasts, the proposed method notably outperformed the high-resolution deterministic NWP models. These findings indicate that combining CNN-based correction with ensemble averaging effectively reduces both the systematic and random errors in NWP model outputs. The proposed approach is a practical and scalable solution for improving medium-range temperature forecasts, and is particularly valuable at operational centers with limited computational resources.
comment: 32 pages, 10 figures
☆ MGHFT: Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition
Although pre-trained visual models with text have demonstrated strong capabilities in visual feature extraction, sticker emotion understanding remains challenging due to its reliance on multi-view information, such as background knowledge and stylistic cues. To address this, we propose a novel multi-granularity hierarchical fusion transformer (MGHFT), with a multi-view sticker interpreter based on Multimodal Large Language Models. Specifically, inspired by the human ability to interpret sticker emotions from multiple views, we first use Multimodal Large Language Models to interpret stickers by providing rich textual context via multi-view descriptions. Then, we design a hierarchical fusion strategy to fuse the textual context into visual understanding, which builds upon a pyramid visual transformer to extract both global and local sticker features at multiple stages. Through contrastive learning and attention mechanisms, textual features are injected at different stages of the visual backbone, enhancing the fusion of global- and local-granularity visual semantics with textual guidance. Finally, we introduce a text-guided fusion attention mechanism to effectively integrate the overall multimodal features, enhancing semantic understanding. Extensive experiments on 2 public sticker emotion datasets demonstrate that MGHFT significantly outperforms existing sticker emotion recognition approaches, achieving higher accuracy and more fine-grained emotion recognition. Compared to the best pre-trained visual models, our MGHFT also obtains an obvious improvement, 5.4% on F1 and 4.0% on accuracy. The code is released at https://github.com/cccccj-03/MGHFT_ACMMM2025.
comment: Accepted by ACMMM2025
☆ WiSE-OD: Benchmarking Robustness in Infrared Object Detection
Object detection (OD) in infrared (IR) imagery is critical for low-light and nighttime applications. However, the scarcity of large-scale IR datasets forces models to rely on weights pre-trained on RGB images. While fine-tuning on IR improves accuracy, it often compromises robustness under distribution shifts due to the inherent modality gap between RGB and IR. To address this, we introduce LLVIP-C and FLIR-C, two cross-modality out-of-distribution (OOD) benchmarks built by applying corruption to standard IR datasets. Additionally, to fully leverage the complementary knowledge from RGB and infrared trained models, we propose WiSE-OD, a weight-space ensembling method with two variants: WiSE-OD$_{ZS}$, which combines RGB zero-shot and IR fine-tuned weights, and WiSE-OD$_{LP}$, which blends zero-shot and linear probing. Evaluated across three RGB-pretrained detectors and two robust baselines, WiSE-OD improves both cross-modality and corruption robustness without any additional training or inference cost.
comment: 8 pages, conference
☆ Uncovering Cross-Linguistic Disparities in LLMs using Sparse Autoencoders
Multilingual large language models (LLMs) exhibit strong cross-linguistic generalization, yet medium to low resource languages underperform on common benchmarks such as ARC-Challenge, MMLU, and HellaSwag. We analyze activation patterns in Gemma-2-2B across all 26 residual layers and 10 languages: Chinese (zh), Russian (ru), Spanish (es), Italian (it), medium to low resource languages including Indonesian (id), Catalan (ca), Marathi (mr), Malayalam (ml), and Hindi (hi), with English (en) as the reference. Using Sparse Autoencoders (SAEs), we reveal systematic disparities in activation patterns. Medium to low resource languages receive up to 26.27 percent lower activations in early layers, with a persistent gap of 19.89 percent in deeper layers. To address this, we apply activation-aware fine-tuning via Low-Rank Adaptation (LoRA), leading to substantial activation gains, such as 87.69 percent for Malayalam and 86.32 percent for Hindi, while maintaining English retention at approximately 91 percent. After fine-tuning, benchmark results show modest but consistent improvements, highlighting activation alignment as a key factor in enhancing multilingual LLM performance.
☆ HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling
Discrete speech tokenization is a fundamental component in speech codecs. However, in large-scale speech-to-speech systems, the complexity of parallel streams from multiple quantizers and the computational cost of high-time-dimensional codecs pose significant challenges. In this paper, we introduce HH-Codec, a neural codec that achieves extreme compression at 24 tokens per second for 24 kHz audio while relying on single-quantizer inference. Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss. Building on this, we propose an asymmetric encoder-decoder architecture (Audio-VQ-Mel-Audio) that leverages dual supervision and progressive training to enhance reconstruction stability and fidelity. HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps. We further evaluate its effectiveness in codebook utilization and generative model adaptation, with extensive ablations validating the necessity of each module. HH-Codec is available at https://github.com/opendilab/HH-Codec.
☆ Success in Humanoid Reinforcement Learning under Partial Observation
Reinforcement learning has been widely applied to robotic control, but effective policy learning under partial observability remains a major challenge, especially in high-dimensional tasks like humanoid locomotion. To date, no prior work has demonstrated stable training of humanoid policies with incomplete state information in the benchmark Gymnasium Humanoid-v4 environment. The objective in this environment is to walk forward as fast as possible without falling, with rewards provided for staying upright and moving forward, and penalties incurred for excessive actions and external contact forces. This research presents the first successful instance of learning under partial observability in this environment. The learned policy achieves performance comparable to state-of-the-art results with full state access, despite using only one-third to two-thirds of the original states. Moreover, the policy exhibits adaptability to robot properties, such as variations in body part masses. The key to this success is a novel history encoder that processes a fixed-length sequence of past observations in parallel. Integrated into a standard model-free algorithm, the encoder enables performance on par with fully observed baselines. We hypothesize that it reconstructs essential contextual information from recent observations, thereby enabling robust decision-making.
comment: 11 pages, 3 figures, and 4 tables. Not published anywhere else
☆ A Comprehensive Review of AI-based Intelligent Tutoring Systems: Applications and Challenges
AI-based Intelligent Tutoring Systems (ITS) have significant potential to transform teaching and learning. As efforts continue to design, develop, and integrate ITS into educational contexts, mixed results about their effectiveness have emerged. This paper provides a comprehensive review to understand how ITS operate in real educational settings and to identify the associated challenges in their application and evaluation. We use a systematic literature review method to analyze numerous qualified studies published from 2010 to 2025, examining domains such as pedagogical strategies, NLP, adaptive learning, student modeling, and domain-specific applications of ITS. The results reveal a complex landscape regarding the effectiveness of ITS, highlighting both advancements and persistent challenges. The study also identifies a need for greater scientific rigor in experimental design and data analysis. Based on these findings, suggestions for future research and practical implications are proposed.
comment: Journal of Computers in Education ( 2025 )
☆ A Neuroscience-Inspired Dual-Process Model of Compositional Generalization
Systematic compositional generalization - constructing and understanding novel combinations of known building blocks - remains a core challenge for AI systems. Human cognition achieves this flexibility via the interplay of the hippocampus (HPC) and prefrontal cortex (PFC): the hippocampus rapidly encodes episodes, and the prefrontal cortex consolidates them into reusable schemas for reasoning. Drawing on these insights, we present MIRAGE (Meta-Inference with Rules and Abstractions from Generalized Experience), a framework that achieves systematic generalization on compositional tasks. MIRAGE has two interacting modules mirroring the brain's deliberative HPC-PFC loop and intuitive neocortical pattern recognition. (1) The meta-trained Transformer Neural Decomposer, paralleling neocortical "System 1" computation, is trained on a task-agnostic stream of randomly sampled compositional grammars and applies one decomposition step per pass, with successive passes iteratively refining the sequence representation. (2) The Schema Engine, analogous to the HPC-PFC "System 2" loop, dynamically extracts, ranks, and applies reusable schemas, storing variable bindings in episodic memory and expanding them when needed. By explicitly equipping the Transformer component of MIRAGE with actively managed schematic structures, our model performs systematic compositional operations through explicit schema application and transformation, relying solely on frozen weights when solving entirely novel tasks. This approach demonstrates systematic compositional generalization on the SCAN benchmark, achieving > 99% accuracy on all task splits with only 1.19M parameters in the transformer module. Ablation studies confirm that MIRAGE's systematicity critically depends on the quality of extracted schemas and the model's iterative refinement process.
☆ Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning via Incorporating Generalized Human Expertise
Efficient exploration in multi-agent reinforcement learning (MARL) is a challenging problem when receiving only a team reward, especially in environments with sparse rewards. A powerful method to mitigate this issue involves crafting dense individual rewards to guide the agents toward efficient exploration. However, individual rewards generally rely on manually engineered shaping-reward functions that lack high-order intelligence, thus it behaves ineffectively than humans regarding learning and generalization in complex problems. To tackle these issues, we combine the above two paradigms and propose a novel framework, LIGHT (Learning Individual Intrinsic reward via Incorporating Generalized Human experTise), which can integrate human knowledge into MARL algorithms in an end-to-end manner. LIGHT guides each agent to avoid unnecessary exploration by considering both individual action distribution and human expertise preference distribution. Then, LIGHT designs individual intrinsic rewards for each agent based on actionable representational transformation relevant to Q-learning so that the agents align their action preferences with the human expertise while maximizing the joint action value. Experimental results demonstrate the superiority of our method over representative baselines regarding performance and better knowledge reusability across different sparse-reward tasks on challenging scenarios.
comment: IEEE International Conference on Systems, Man, and Cybernetics
☆ PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning
Retrieval-augmented generation (RAG) often falls short when retrieved context includes confusing semi-relevant passages, or when answering questions require deep contextual understanding and reasoning. We propose an efficient fine-tuning framework, called PrismRAG, that (i) trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages, and (ii) instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions. Evaluated across 12 open-book RAG QA benchmarks spanning diverse application domains and scenarios, PrismRAG improves average factuality by 5.4%, outperforming state-of-the-art solutions.
♻ ☆ Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
The diagnostic value of electrocardiogram (ECG) lies in its dynamic characteristics, ranging from rhythm fluctuations to subtle waveform deformations that evolve across time and frequency domains. However, supervised ECG models tend to overfit dominant and repetitive patterns, overlooking fine-grained but clinically critical cues, a phenomenon known as Simplicity Bias (SB), where models favor easily learnable signals over subtle but informative ones. In this work, we first empirically demonstrate the presence of SB in ECG analyses and its negative impact on diagnostic performance, while simultaneously discovering that self-supervised learning (SSL) can alleviate it, providing a promising direction for tackling the bias. Following the SSL paradigm, we propose a novel method comprising two key components: 1) Temporal-Frequency aware Filters to capture temporal-frequency features reflecting the dynamic characteristics of ECG signals, and 2) building on this, Multi-Grained Prototype Reconstruction for coarse and fine representation learning across dual domains, further mitigating SB. To advance SSL in ECG analyses, we curate a large-scale multi-site ECG dataset with 1.53 million recordings from over 300 clinical centers. Experiments on three downstream tasks across six ECG datasets demonstrate that our method effectively reduces SB and achieves state-of-the-art performance. Code and dataset will be released publicly.
comment: there are factual errors
♻ ☆ ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.
comment: 12 pages,9 figures
♻ ☆ When Noisy Labels Meet Class Imbalance on Graphs: A Graph Augmentation Method with LLM and Pseudo Label
Class-imbalanced graph node classification is a practical yet underexplored research problem. Although recent studies have attempted to address this issue, they typically assume clean and reliable labels when processing class-imbalanced graphs. This assumption often violates the nature of real-world graphs, where labels frequently contain noise. Given this gap, this paper systematically investigates robust node classification for class-imbalanced graphs with noisy labels. We propose GraphALP, a novel Graph Augmentation framework based on Large language models (LLMs) and Pseudo-labeling techniques. Specifically, we design an LLM-based oversampling method to generate synthetic minority nodes, producing label-accurate minority nodes to alleviate class imbalance. Based on the class-balanced graphs, we develop a dynamically weighted pseudo-labeling method to obtain high-confidence pseudo labels to reduce label noise ratio. Additionally, we implement a secondary LLM-guided oversampling mechanism to mitigate potential class distribution skew caused by pseudo labels. Experimental results show that GraphALP achieves superior performance over state-of-the-art methods on class-imbalanced graphs with noisy labels.
♻ ☆ HIVMedQA: Benchmarking large language models for HIV medical decision support
Large language models (LLMs) are emerging as valuable tools to support clinicians in routine decision-making. HIV management is a compelling use case due to its complexity, including diverse treatment options, comorbidities, and adherence challenges. However, integrating LLMs into clinical practice raises concerns about accuracy, potential harm, and clinician acceptance. Despite their promise, AI applications in HIV care remain underexplored, and LLM benchmarking studies are scarce. This study evaluates the current capabilities of LLMs in HIV management, highlighting their strengths and limitations. We introduce HIVMedQA, a benchmark designed to assess open-ended medical question answering in HIV care. The dataset consists of curated, clinically relevant questions developed with input from an infectious disease physician. We evaluated seven general-purpose and three medically specialized LLMs, applying prompt engineering to enhance performance. Our evaluation framework incorporates both lexical similarity and an LLM-as-a-judge approach, extended to better reflect clinical relevance. We assessed performance across key dimensions: question comprehension, reasoning, knowledge recall, bias, potential harm, and factual accuracy. Results show that Gemini 2.5 Pro consistently outperformed other models across most dimensions. Notably, two of the top three models were proprietary. Performance declined as question complexity increased. Medically fine-tuned models did not always outperform general-purpose ones, and larger model size was not a reliable predictor of performance. Reasoning and comprehension were more challenging than factual recall, and cognitive biases such as recency and status quo were observed. These findings underscore the need for targeted development and evaluation to ensure safe, effective LLM integration in clinical care.
♻ ☆ GOAT-SLM: A Spoken Language Model with Paralinguistic and Speaker Characteristic Awareness
Recent advances in end-to-end spoken language models (SLMs) have significantly improved the ability of AI systems to engage in natural spoken interactions. However, most existing models treat speech merely as a vehicle for linguistic content, often overlooking the rich paralinguistic and speaker characteristic cues embedded in human speech, such as dialect, age, emotion, and non-speech vocalizations. In this work, we introduce GOAT-SLM, a novel spoken language model with paralinguistic and speaker characteristic awareness, designed to extend spoken language modeling beyond text semantics. GOAT-SLM adopts a dual-modality head architecture that decouples linguistic modeling from acoustic realization, enabling robust language understanding while supporting expressive and adaptive speech generation. To enhance model efficiency and versatility, we propose a modular, staged training strategy that progressively aligns linguistic, paralinguistic, and speaker characteristic information using large-scale speech-text corpora. Experimental results on TELEVAL, a multi-dimensional evaluation benchmark, demonstrate that GOAT-SLM achieves well-balanced performance across both semantic and non-semantic tasks, and outperforms existing open-source models in handling emotion, dialectal variation, and age-sensitive interactions. This work highlights the importance of modeling beyond linguistic content and advances the development of more natural, adaptive, and socially aware spoken language systems.
♻ ☆ Natural Language Processing for Tigrinya: Current State and Future Directions
Despite being spoken by millions of people, Tigrinya remains severely underrepresented in Natural Language Processing (NLP) research. This work presents a comprehensive survey of NLP research for Tigrinya, analyzing over 40 studies spanning more than a decade of work from 2011 to 2025. We systematically review the current state of computational resources, models, and applications across ten distinct downstream tasks, including morphological processing, machine translation, speech recognition, and question-answering. Our analysis reveals a clear trajectory from foundational, rule-based systems to modern neural architectures, with progress consistently unlocked by resource creation milestones. We identify key challenges rooted in Tigrinya's morphological complexity and resource scarcity, while highlighting promising research directions, including morphology-aware modeling, cross-lingual transfer, and community-centered resource development. This work serves as both a comprehensive reference for researchers and a roadmap for advancing Tigrinya NLP. A curated metadata of the surveyed studies and resources is made publicly available.
♻ ☆ VIBE: Video-Input Brain Encoder for fMRI Response Modeling
We present VIBE, a two-stage Transformer that fuses multi-modal video, audio, and text features to predict fMRI activity. Representations from open-source models (Qwen2.5, BEATs, Whisper, SlowFast, V-JEPA) are merged by a modality-fusion transformer and temporally decoded by a prediction transformer with rotary embeddings. Trained on 65 hours of movie data from the CNeuroMod dataset and ensembled across 20 seeds, VIBE attains mean parcel-wise Pearson correlations of 0.3225 on in-distribution Friends S07 and 0.2125 on six out-of-distribution films. An earlier iteration of the same architecture obtained 0.3198 and 0.2096, respectively, winning Phase-1 and placing second overall in the Algonauts 2025 Challenge.
♻ ☆ Gemini 2.5 Pro Capable of Winning Gold at IMO 2025
The International Mathematical Olympiad (IMO) poses uniquely challenging problems requiring deep insight, creativity, and formal reasoning. While Large Language Models (LLMs) perform well on mathematical benchmarks like AIME, they struggle with Olympiad-level tasks. We use Google's Gemini 2.5 Pro on the newly released IMO 2025 problems, avoiding data contamination. Using a self-verification pipeline with careful prompt design, 5 (out of 6) problems are solved correctly. This result underscores the importance of developing optimal strategies to harness the full potential of powerful LLMs for complex reasoning tasks.
♻ ☆ RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
♻ ☆ ObjectRelator: Enabling Cross-View Object Relation Understanding Across Ego-Centric and Exo-Centric Perspectives ICCV25
Bridging the gap between ego-centric and exo-centric views has been a long-standing question in computer vision. In this paper, we focus on the emerging Ego-Exo object correspondence task, which aims to understand object relations across ego-exo perspectives through segmentation. While numerous segmentation models have been proposed, most operate on a single image (view), making them impractical for cross-view scenarios. PSALM, a recently proposed segmentation method, stands out as a notable exception with its demonstrated zero-shot ability on this task. However, due to the drastic viewpoint change between ego and exo, PSALM fails to accurately locate and segment objects, especially in complex backgrounds or when object appearances change significantly. To address these issues, we propose ObjectRelator, a novel approach featuring two key modules: Multimodal Condition Fusion (MCFuse) and SSL-based Cross-View Object Alignment (XObjAlign). MCFuse introduces language as an additional cue, integrating both visual masks and textual descriptions to improve object localization and prevent incorrect associations. XObjAlign enforces cross-view consistency through self-supervised alignment, enhancing robustness to object appearance variations. Extensive experiments demonstrate ObjectRelator's effectiveness on the large-scale Ego-Exo4D benchmark and HANDAL-X (an adapted dataset for cross-view segmentation) with state-of-the-art performance. Code is made available at: http://yuqianfu.com/ObjectRelator.
comment: Accepted by ICCV25 (Highlight)
♻ ☆ TaylorPODA: A Taylor Expansion-Based Method to Improve Post-Hoc Attributions for Opaque Models AAAI 2026
Existing post-hoc model-agnostic methods generate external explanations for opaque models, primarily by locally attributing the model output to its input features. However, they often lack an explicit and systematic framework for quantifying the contribution of individual features. Building on the Taylor expansion framework introduced by Deng et al. (2024) to unify existing local attribution methods, we propose a rigorous set of postulates -- "precision", "federation", and "zero-discrepancy" -- to govern Taylor term-specific attribution. Guided by these postulates, we introduce TaylorPODA (Taylor expansion-derived imPortance-Order aDapted Attribution), which incorporates an additional "adaptation" property. This property enables alignment with task-specific goals, especially in post-hoc settings lacking ground-truth explanations. Empirical evaluations demonstrate that TaylorPODA achieves competitive results against baseline methods, providing principled and visualization-friendly explanations. This work represents a step toward the trustworthy deployment of opaque models by offering explanations with stronger theoretical grounding.
comment: 17 pages, 6 figures. To be submitted to AAAI 2026. Re-upload with amended author list
♻ ☆ ASR-Guided Speaker-Role Diarization and Diarization-Guided ASR Decoding
From an application standpoint, speaker-role diarization (RD), such as doctor vs. patient, host vs. guest, etc. is often more useful than traditional speaker diarization (SD), which assigns generic labels like speaker-1, speaker-2 etc. In the context of joint automatic speech recognition (ASR) + SD (who spoke what?), recent end-to-end models employ an auxiliary SD transducer, synchronized with the ASR transducer, to predict speakers per word. In this paper, we extend this framework to RD with three key contributions: (1) we simplify the training via forced alignment and cross-entropy loss instead of RNNT loss, (2) we show that word prediction and role prediction require different amounts of predictor's context, leading to separate task-specific predictors, unlike existing shared-predictor models, and (3) we propose a way to leverage RD posterior activity to influence ASR decoding and reduce small-word deletion errors.
comment: Work in progress
♻ ☆ Distillation Scaling Laws ICML 2025
We propose a distillation scaling law that estimates distilled model performance based on a compute budget and its allocation between the student and teacher. Our findings mitigate the risks associated with large-scale distillation by enabling compute-optimal allocation for both the teacher and student to maximize student performance. We provide compute-optimal distillation recipes for two key scenarios: when a teacher already exists, and when a teacher needs training. In settings involving many students or an existing teacher, distillation outperforms supervised learning up to a compute level that scales predictably with student size. Conversely, if only one student is to be distilled and a teacher also requires training, supervised learning is generally preferable. Additionally, our large-scale study of distillation increases our understanding of the process and helps inform experimental design.
comment: Version accepted to ICML 2025. 69 pages, 54 figures, 13 tables
♻ ☆ Understanding LLM Scientific Reasoning through Promptings and Model's Explanation on the Answers
Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding, reasoning, and problem-solving across various domains. However, their ability to perform complex, multi-step reasoning task-essential for applications in science, medicine, and law-remains an area of active investigation. This paper examines the reasoning capabilities of contemporary LLMs, analyzing their strengths, limitations, and potential for improvement. The study uses prompt engineering techniques on the Graduate-Level GoogleProof Q&A (GPQA) dataset to assess the scientific reasoning of GPT-4o. Five popular prompt engineering techniques and two tailored promptings were tested: baseline direct answer (zero-shot), chain-of-thought (CoT), zero-shot CoT, self-ask, self-consistency, decomposition, and multipath promptings. Our findings indicate that while LLMs exhibit emergent reasoning abilities, they often rely on pattern recognition rather than true logical inference, leading to inconsistencies in complex problem-solving. The results indicated that self-consistency outperformed the other prompt engineering technique with an accuracy of 52.99%, followed by direct answer (52.23%). Zero-shot CoT (50%) outperformed multipath (48.44%), decomposition (47.77%), self-ask (46.88%), and CoT (43.75%). Self-consistency performed the second worst in explaining the answers. Simple techniques such as direct answer, CoT, and zero-shot CoT have the best scientific reasoning. We propose a research agenda aimed at bridging these gaps by integrating structured reasoning frameworks, hybrid AI approaches, and human-in-the-loop methodologies. By critically evaluating the reasoning mechanisms of LLMs, this paper contributes to the ongoing discourse on the future of artificial general intelligence and the development of more robust, trustworthy AI systems.
♻ ☆ Integrating IP Broadcasting with Audio Tags: Workflow and Challenges
The broadcasting industry has adopted IP technologies, revolutionising both live and pre-recorded content production, from news gathering to live music events. IP broadcasting allows for the transport of audio and video signals in an easily configurable way, aligning with modern networking techniques. This shift towards an IP workflow allows for much greater flexibility, not only in routing signals but with the integration of tools using standard web development techniques. One possible tool could include the use of live audio tagging, which has a number of uses in the production of content. These could include adding sound effects to automated closed captioning or identifying unwanted sound events within a scene. In this paper, we describe the process of containerising an audio tagging model into a microservice, a small segregated code module that can be integrated into a multitude of different network setups. The goal is to develop a modular, accessible, and flexible tool capable of seamless deployment into broadcasting workflows of all sizes, from small productions to large corporations. Challenges surrounding latency of the selected audio tagging model and its effect on the usefulness of the end product are discussed.
comment: Accepted for publication in 2025 AES International Conference on Artificial Intelligence and Machine Learning for Audio
♻ ☆ $S^2M^2$: Scalable Stereo Matching Model for Reliable Depth Estimation ICCV
The pursuit of a generalizable stereo matching model, capable of performing across varying resolutions and disparity ranges without dataset-specific fine-tuning, has revealed a fundamental trade-off. Iterative local search methods achieve high scores on constrained benchmarks, but their core mechanism inherently limits the global consistency required for true generalization. On the other hand, global matching architectures, while theoretically more robust, have been historically rendered infeasible by prohibitive computational and memory costs. We resolve this dilemma with $S^2M^2$: a global matching architecture that achieves both state-of-the-art accuracy and high efficiency without relying on cost volume filtering or deep refinement stacks. Our design integrates a multi-resolution transformer for robust long-range correspondence, trained with a novel loss function that concentrates probability on feasible matches. This approach enables a more robust joint estimation of disparity, occlusion, and confidence. $S^2M^2$ establishes a new state of the art on the Middlebury v3 and ETH3D benchmarks, significantly outperforming prior methods across most metrics while reconstructing high-quality details with competitive efficiency.
comment: 8 pages, 5 figures, ICCV accepted paper
♻ ☆ Generating Clinically Realistic EHR Data via a Hierarchy- and Semantics-Guided Transformer
Generating realistic synthetic electronic health records (EHRs) holds tremendous promise for accelerating healthcare research, facilitating AI model development and enhancing patient privacy. However, existing generative methods typically treat EHRs as flat sequences of discrete medical codes. This approach overlooks two critical aspects: the inherent hierarchical organization of clinical coding systems and the rich semantic context provided by code descriptions. Consequently, synthetic patient sequences often lack high clinical fidelity and have limited utility in downstream clinical tasks. In this paper, we propose the Hierarchy- and Semantics-Guided Transformer (HiSGT), a novel framework that leverages both hierarchical and semantic information for the generative process. HiSGT constructs a hierarchical graph to encode parent-child and sibling relationships among clinical codes and employs a graph neural network to derive hierarchy-aware embeddings. These are then fused with semantic embeddings extracted from a pre-trained clinical language model (e.g., ClinicalBERT), enabling the Transformer-based generator to more accurately model the nuanced clinical patterns inherent in real EHRs. Extensive experiments on the MIMIC-III and MIMIC-IV datasets demonstrate that HiSGT significantly improves the statistical alignment of synthetic data with real patient records, as well as supports robust downstream applications such as chronic disease classification. By addressing the limitations of conventional raw code-based generative models, HiSGT represents a significant step toward clinically high-fidelity synthetic data generation and a general paradigm suitable for interpretable medical code representation, offering valuable applications in data augmentation and privacy-preserving healthcare analytics.
comment: The camera ready version for ECAI-2025
♻ ☆ All in One: Visual-Description-Guided Unified Point Cloud Segmentation ICCV2025
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.
comment: Accepted by ICCV2025
♻ ☆ Latent Space Analysis for Melanoma Prevention
Melanoma represents a critical health risk due to its aggressive progression and high mortality, underscoring the need for early, interpretable diagnostic tools. While deep learning has advanced in skin lesion classification, most existing models provide only binary outputs, offering limited clinical insight. This work introduces a novel approach that extends beyond classification, enabling interpretable risk modelling through a Conditional Variational Autoencoder. The proposed method learns a structured latent space that captures semantic relationships among lesions, allowing for a nuanced, continuous assessment of morphological differences. An SVM is also trained on this representation effectively differentiating between benign nevi and melanomas, demonstrating strong and consistent performance. More importantly, the learned latent space supports visual and geometric interpretation of malignancy, with the spatial proximity of a lesion to known melanomas serving as a meaningful indicator of risk. This approach bridges predictive performance with clinical applicability, fostering early detection, highlighting ambiguous cases, and enhancing trust in AI-assisted diagnosis through transparent and interpretable decision-making.
comment: The proposed approach presents some technical imperfections and needs to be refined with further examinations
♻ ☆ Reactivation: Empirical NTK Dynamics Under Task Shifts ICML 2025
The Neural Tangent Kernel (NTK) offers a powerful tool to study the functional dynamics of neural networks. In the so-called lazy, or kernel regime, the NTK remains static during training and the network function is linear in the static neural tangents feature space. The evolution of the NTK during training is necessary for feature learning, a key driver of deep learning success. The study of the NTK dynamics has led to several critical discoveries in recent years, in generalization and scaling behaviours. However, this body of work has been limited to the single task setting, where the data distribution is assumed constant over time. In this work, we present a comprehensive empirical analysis of NTK dynamics in continual learning, where the data distribution shifts over time. Our findings highlight continual learning as a rich and underutilized testbed for probing the dynamics of neural training. At the same time, they challenge the validity of static-kernel approximations in theoretical treatments of continual learning, even at large scale.
comment: Accepted by the 3rd Workshop on High-dimensional Learning Dynamics (HiLD), ICML 2025
♻ ☆ SE-VLN: A Self-Evolving Vision-Language Navigation Framework Based on Multimodal Large Language Models
Recent advances in vision-language navigation (VLN) were mainly attributed to emerging large language models (LLMs). These methods exhibited excellent generalization capabilities in instruction understanding and task reasoning. However, they were constrained by the fixed knowledge bases and reasoning abilities of LLMs, preventing fully incorporating experiential knowledge and thus resulting in a lack of efficient evolutionary capacity. To address this, we drew inspiration from the evolution capabilities of natural agents, and proposed a self-evolving VLN framework (SE-VLN) to endow VLN agents with the ability to continuously evolve during testing. To the best of our knowledge, it was the first time that an multimodal LLM-powered self-evolving VLN framework was proposed. Specifically, SE-VLN comprised three core modules, i.e., a hierarchical memory module to transfer successful and failure cases into reusable knowledge, a retrieval-augmented thought-based reasoning module to retrieve experience and enable multi-step decision-making, and a reflection module to realize continual evolution. Comprehensive tests illustrated that the SE-VLN achieved navigation success rates of 57% and 35.2% in unseen environments, representing absolute performance improvements of 23.9% and 15.0% over current state-of-the-art methods on R2R and REVERSE datasets, respectively. Moreover, the SE-VLN showed performance improvement with increasing experience repository, elucidating its great potential as a self-evolving agent framework for VLN.
♻ ☆ Enhancing Generalization of Spiking Neural Networks Through Temporal Regularization
Spiking Neural Networks (SNNs) have received widespread attention due to their event-driven and low-power characteristics, making them particularly effective for processing event-based neuromorphic data. Recent studies have shown that directly trained SNNs suffer from severe overfitting issues due to the limited scale of neuromorphic datasets and the gradient mismatching problem, which fundamentally constrain their generalization performance. In this paper, we propose a temporal regularization training (TRT) method by introducing a time-dependent regularization mechanism to enforce stronger constraints on early timesteps. We compare the performance of TRT with other state-of-the-art methods performance on datasets including CIFAR10/100, ImageNet100, DVS-CIFAR10, and N-Caltech101. To validate the effectiveness of TRT, we conducted ablation studies and analyses including loss landscape visualization and learning curve analysis, demonstrating that TRT can effectively mitigate overfitting and flatten the training loss landscape, thereby enhancing generalizability. Furthermore, we establish a theoretical interpretation of TRT's temporal regularization mechanism based on the results of Fisher information analysis. We analyze the temporal information dynamics inside SNNs by tracking Fisher information during the TRT training process, revealing the Temporal Information Concentration (TIC) phenomenon, where Fisher information progressively concentrates in early timesteps. The time-decaying regularization mechanism implemented in TRT effectively guides the network to learn robust features in early timesteps with rich information, thereby leading to significant improvements in model generalization. Code is available at https://anonymous.4open.science/r/TRT-7FBFUYT4E.
comment: Code is available at https://anonymous.4open.science/r/TRT-7FBFUYT4E
♻ ☆ Secret Collusion among AI Agents: Multi-Agent Deception via Steganography
Recent capability increases in large language models (LLMs) open up applications in which groups of communicating generative AI agents solve joint tasks. This poses privacy and security challenges concerning the unauthorised sharing of information, or other unwanted forms of agent coordination. Modern steganographic techniques could render such dynamics hard to detect. In this paper, we comprehensively formalise the problem of secret collusion in systems of generative AI agents by drawing on relevant concepts from both AI and security literature. We study incentives for the use of steganography, and propose a variety of mitigation measures. Our investigations result in a model evaluation framework that systematically tests capabilities required for various forms of secret collusion. We provide extensive empirical results across a range of contemporary LLMs. While the steganographic capabilities of current models remain limited, GPT-4 displays a capability jump suggesting the need for continuous monitoring of steganographic frontier model capabilities. We conclude by laying out a comprehensive research program to mitigate future risks of collusion between generative AI models.
♻ ☆ Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs
Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
♻ ☆ Addressing the Minor-Embedding Problem in Quantum Annealing and Evaluating State-of-the-Art Algorithm Performance
This study addresses the minor-embedding problem, which involves mapping the variables of an Ising model onto a quantum annealing processor. The primary motivation stems from the observed performance disparity of quantum annealers when solving problems suited to the processor's architecture versus those with non-hardware-native topologies. Our research has two main objectives: i) to analyze the impact of embedding quality on the performance of D-Wave Systems quantum annealers, and ii) to evaluate the quality of the embeddings generated by Minorminer, the standard minor-embedding technique in the quantum annealing literature, provided by D-Wave. Regarding the first objective, our experiments reveal a clear correlation between the average chain length of embeddings and the relative errors of the solutions sampled. This underscores the critical influence of embedding quality on quantum annealing performance. For the second objective, we evaluate Minorminer's embedding capabilities, the quality and robustness of its embeddings, and its execution-time performance. We also compare its performance with Clique Embedding, another algorithm developed by D-Wave, which is deterministic and designed to embed fully connected Ising models into quantum annealing processors, serving as a worst-case scenario. The results demonstrate that there is significant room for improvement for Minorminer, suggesting that more effective embedding strategies could lead to meaningful gains in quantum annealing performance.
comment: Paper submitted for review in the Future Generation Computer Systems journal
♻ ☆ Scalpel vs. Hammer: GRPO Amplifies Existing Capabilities, SFT Replaces Them
Training large language models (LLMs) for reasoning via maths and code datasets has become a major new focus in LLM post-training. Two particularly popular approaches are reinforcement learning (RL) and supervised fine-tuning (SFT), but their training dynamics are poorly understood. We present a comparative analysis of RL and SFT on the same maths problems with the same model and similar hyperparameters. We find that RL yields minor in-domain gains on maths and slight degradation on knowledge-intensive benchmarks like MMLU, while both trends are more pronounced in SFT. We also analyse model parameters across checkpoints, observing that both algorithms modify query and key weights the most. Meanwhile, SFT exhibits greater updates and also affects mid-layer MLPs more, leading us to hypothesise that this may have caused the out-of-domain degradation. We therefore investigate whether freezing parts of the model during training can mitigate the reduced performance on knowledge-intensive benchmarks. However, our results are inconclusive, with benefits on GPQA:Diamond and degradation on other benchmarks. Taken together, our observations provide a preliminary indication for why RL amplifies existing capabilities, while SFT replaces old skills with new ones.
♻ ☆ AI PsyRoom: Artificial Intelligence Platform for Segmented Yearning and Reactive Outcome Optimization Method
Psychological counseling faces huge challenges due to the growing demand for mental health services and the shortage of trained professionals. Large language models (LLMs) have shown potential to assist psychological counseling, especially in empathy and emotional support. However, existing models lack a deep understanding of emotions and are unable to generate personalized treatment plans based on fine-grained emotions. To address these shortcomings, we present AI PsyRoom, a multi-agent simulation framework designed to enhance psychological counseling by generating empathetic and emotionally nuanced conversations. By leveraging fine-grained emotion classification and a multi-agent framework, we construct a multi-agent PsyRoom A for dialogue reconstruction, generating a high-quality dialogue dataset EmoPsy, which contains 35 sub-emotions, 423 specific emotion scenarios, and 12,350 dialogues. We also propose PsyRoom B for generating personalized treatment plans. Quantitative evaluations demonstrate that AI PsyRoom significantly outperforms state-of-the-art methods, achieving 18% improvement in problem orientation, 23% in expression, 24% in Empathy, and 16% in interactive communication quality. The datasets and models are publicly available, providing a foundation for advancing AI-assisted psychological counseling research.
comment: I found that some of the experiments were wrong with some data, especially those involving the protocol evaluation area
♻ ☆ Studying Cross-cluster Modularity in Neural Networks
An approach to improve neural network interpretability is via clusterability, i.e., splitting a model into disjoint clusters that can be studied independently. We define a measure for clusterability and show that pre-trained models form highly enmeshed clusters via spectral graph clustering. We thus train models to be more modular using a "clusterability loss" function that encourages the formation of non-interacting clusters. We then investigate the emerging properties of these highly clustered models. We find our trained clustered models do not exhibit more task specialization, but do form smaller circuits. We investigate CNNs trained on MNIST and CIFAR, small transformers trained on modular addition, and GPT-2 and Pythia on the Wiki dataset, and Gemma on a Chemistry dataset. This investigation shows what to expect from clustered models.
comment: 8 pages, under review. arXiv admin note: text overlap with arXiv:2409.15747 (author note: this is an extension of that paper but has different authors)
♻ ☆ FBSDiff: Plug-and-Play Frequency Band Substitution of Diffusion Features for Highly Controllable Text-Driven Image Translation ACM MM 2024
Large-scale text-to-image diffusion models have been a revolutionary milestone in the evolution of generative AI and multimodal technology, allowing wonderful image generation with natural-language text prompt. However, the issue of lacking controllability of such models restricts their practical applicability for real-life content creation. Thus, attention has been focused on leveraging a reference image to control text-to-image synthesis, which is also regarded as manipulating (or editing) a reference image as per a text prompt, namely, text-driven image-to-image translation. This paper contributes a novel, concise, and efficient approach that adapts pre-trained large-scale text-to-image (T2I) diffusion model to the image-to-image (I2I) paradigm in a plug-and-play manner, realizing high-quality and versatile text-driven I2I translation without any model training, model fine-tuning, or online optimization process. To guide T2I generation with a reference image, we propose to decompose diverse guiding factors with different frequency bands of diffusion features in the DCT spectral space, and accordingly devise a novel frequency band substitution layer which realizes dynamic control of the reference image to the T2I generation result in a plug-and-play manner. We demonstrate that our method allows flexible control over both guiding factor and guiding intensity of the reference image simply by tuning the type and bandwidth of the substituted frequency band, respectively. Extensive qualitative and quantitative experiments verify superiority of our approach over related methods in I2I translation visual quality, versatility, and controllability. The code is publicly available at: https://github.com/XiangGao1102/FBSDiff.
comment: Accepted conference paper of ACM MM 2024
♻ ☆ Reshaping MOFs text mining with a dynamic multi-agents framework of large language model
Accurately identifying synthesis conditions for metal-organic frameworks (MOFs) remains a critical bottleneck in materials research, as translating literature-derived knowledge into actionable insights is hindered by the unstructured and heterogeneous nature of scientific texts. Here we present MOFh6, a large language model (LLM)-based multi-agent system designed to extract, structure, and apply synthesis knowledge from diverse input formats, including raw literature and crystal codes. Built on gpt-4o-mini and fine-tuned with up to few-shot expert-annotated data, MOFh6 achieves 99% accuracy in synthesis data parsing and resolves 94.1% of complex co-reference abbreviations. It processes a single full-text document in 9.6 seconds and localizes structured synthesis descriptions within 36 seconds, with the cost per 100 papers reduced to USD 4.24, a 76% saving over existing systems. By addressing long-standing limitations in cross-paragraph semantic fusion and terminology standardization, MOFh6 reshapes the LLM-based paradigm for MOF synthesis research, transforming static retrieval into an integrated and dynamic knowledge acquisition process. This shift bridges the gap between scientific literature and actionable synthesis design, providing a scalable framework for accelerating materials discovery.
♻ ☆ Large Language Models as Attribution Regularizers for Efficient Model Training
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains. However, effectively leveraging their vast knowledge for training smaller downstream models remains an open challenge, especially in domains like tabular data learning, where simpler models are often preferred due to interpretability and efficiency. In this paper, we introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks. Specifically, we propose an attribution-matching regularization term that aligns the training dynamics of the smaller model with the insights provided by the LLM. By doing so, our approach yields superior performance in few-shot learning scenarios. Notably, our method requires only black-box API access to the LLM, making it easy to integrate into existing training pipelines with minimal computational overhead. Furthermore, we demonstrate how this method can be used to address common issues in real-world datasets, such as skewness and bias. By integrating high-level knowledge from LLMs, our approach improves generalization, even when training data is limited or imbalanced. We validate its effectiveness through extensive experiments across multiple tasks, demonstrating improved learning efficiency and model robustness.
♻ ☆ JCAPT: A Joint Modeling Approach for CAPT ISCA
Effective pronunciation feedback is critical in second language (L2) learning, for which computer-assisted pronunciation training (CAPT) systems often encompass two key tasks: automatic pronunciation assessment (APA) and mispronunciation detection and diagnosis (MDD). Recent work has shown that joint modeling of these two tasks can yield mutual benefits. Our unified framework leverages Mamba, a selective state space model (SSM), while integrating phonological features and think token strategies to jointly enhance interpretability and fine-grained temporal reasoning in APA and MDD. To our knowledge, this is the first study to combine phonological attribution, SSM-based modeling, and prompting in CAPT. A series of experiments conducted on the speechocean762 benchmark demonstrate that our model consistently outperforms prior methods, particularly on the MDD task.
comment: Accepted to the ISCA SLaTE-2025 Workshop
♻ ☆ Blind Spot Navigation: Evolutionary Discovery of Sensitive Semantic Concepts for LVLMs
Adversarial attacks aim to generate malicious inputs that mislead deep models, but beyond causing model failure, they cannot provide certain interpretable information such as ``\textit{What content in inputs make models more likely to fail?}'' However, this information is crucial for researchers to specifically improve model robustness. Recent research suggests that models may be particularly sensitive to certain semantics in visual inputs (such as ``wet,'' ``foggy''), making them prone to errors. Inspired by this, in this paper we conducted the first exploration on large vision-language models (LVLMs) and found that LVLMs indeed are susceptible to hallucinations and various errors when facing specific semantic concepts in images. To efficiently search for these sensitive concepts, we integrated large language models (LLMs) and text-to-image (T2I) models to propose a novel semantic evolution framework. Randomly initialized semantic concepts undergo LLM-based crossover and mutation operations to form image descriptions, which are then converted by T2I models into visual inputs for LVLMs. The task-specific performance of LVLMs on each input is quantified as fitness scores for the involved semantics and serves as reward signals to further guide LLMs in exploring concepts that induce LVLMs. Extensive experiments on seven mainstream LVLMs and two multimodal tasks demonstrate the effectiveness of our method. Additionally, we provide interesting findings about the sensitive semantics of LVLMs, aiming to inspire further in-depth research.
comment: The paper needs major revisions, so it is being withdrawn
♻ ☆ ToolACE: Winning the Points of LLM Function Calling
Function calling significantly extends the application boundary of large language models, where high-quality and diverse training data is critical for unlocking this capability. However, real function-calling data is quite challenging to collect and annotate, while synthetic data generated by existing pipelines tends to lack coverage and accuracy. In this paper, we present ToolACE, an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data. ToolACE leverages a novel self-evolution synthesis process to curate a comprehensive API pool of 26,507 diverse APIs. Dialogs are further generated through the interplay among multiple agents, guided by a formalized thinking process. To ensure data accuracy, we implement a dual-layer verification system combining rule-based and model-based checks. We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard, rivaling the latest GPT-4 models. Our model and a subset of the data are publicly available at https://huggingface.co/Team-ACE.
comment: 21 pages, 22 figures
♻ ☆ XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare
Clinical decision support systems require models that are not only highly accurate but also equitable and sensitive to the implications of missed diagnoses. In this study, we introduce a knowledge-guided in-context learning (ICL) framework designed to enable large language models (LLMs) to effectively process structured clinical data. Our approach integrates domain-specific feature groupings, carefully balanced few-shot examples, and task-specific prompting strategies. We systematically evaluate this method across seventy distinct ICL designs by various prompt variations and two different communication styles-natural-language narrative and numeric conversational-and compare its performance to robust classical machine learning (ML) benchmarks on tasks involving heart disease and diabetes prediction. Our findings indicate that while traditional ML models maintain superior performance in balanced precision-recall scenarios, LLMs employing narrative prompts with integrated domain knowledge achieve higher recall and significantly reduce gender bias, effectively narrowing fairness disparities by an order of magnitude. Despite the current limitation of increased inference latency, LLMs provide notable advantages, including the capacity for zero-shot deployment and enhanced equity. This research offers the first comprehensive analysis of ICL design considerations for applying LLMs to tabular clinical tasks and highlights distillation and multimodal extensions as promising directions for future research.
♻ ☆ DyWA: Dynamics-adaptive World Action Model for Generalizable Non-prehensile Manipulation
Nonprehensile manipulation is crucial for handling objects that are too thin, large, or otherwise ungraspable in unstructured environments. While conventional planning-based approaches struggle with complex contact modeling, learning-based methods have recently emerged as a promising alternative. However, existing learning-based approaches face two major limitations: they heavily rely on multi-view cameras and precise pose tracking, and they fail to generalize across varying physical conditions, such as changes in object mass and table friction. To address these challenges, we propose the Dynamics-Adaptive World Action Model (DyWA), a novel framework that enhances action learning by jointly predicting future states while adapting to dynamics variations based on historical trajectories. By unifying the modeling of geometry, state, physics, and robot actions, DyWA enables more robust policy learning under partial observability. Compared to baselines, our method improves the success rate by 31.5% using only single-view point cloud observations in the simulation. Furthermore, DyWA achieves an average success rate of 68% in real-world experiments, demonstrating its ability to generalize across diverse object geometries, adapt to varying table friction, and robustness in challenging scenarios such as half-filled water bottles and slippery surfaces.
comment: Project Page:https://pku-epic.github.io/DyWA/
♻ ☆ Kill two birds with one stone: generalized and robust AI-generated text detection via dynamic perturbations NAACL 2025
The growing popularity of large language models has raised concerns regarding the potential to misuse AI-generated text (AIGT). It becomes increasingly critical to establish an excellent AIGT detection method with high generalization and robustness. However, existing methods either focus on model generalization or concentrate on robustness. The unified mechanism, to simultaneously address the challenges of generalization and robustness, is less explored. In this paper, we argue that robustness can be view as a specific form of domain shift, and empirically reveal an intrinsic mechanism for model generalization of AIGT detection task. Then, we proposed a novel AIGT detection method (DP-Net) via dynamic perturbations introduced by a reinforcement learning with elaborated reward and action. Experimentally, extensive results show that the proposed DP-Net significantly outperforms some state-of-the-art AIGT detection methods for generalization capacity in three cross-domain scenarios. Meanwhile, the DP-Net achieves best robustness under two text adversarial attacks. The code is publicly available at https://github.com/CAU-ISS-Lab/AIGT-Detection-Evade-Detection/tree/main/DP-Net.
comment: Accepted by NAACL 2025 main conference
♻ ☆ Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning ICCV 2025
Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
comment: Accepted at ICCV 2025 (Highlight)
♻ ☆ CoCoEvo: Co-Evolution of Programs and Test Cases to Enhance Code Generation
Large Language Models (LLMs) have shown remarkable performance in automated code generation. However, existing approaches often rely heavily on pre-defined test cases, which become impractical in scenarios where such cases are unavailable. While prior works explore filtering techniques between programs and test cases, they overlook the refinement of test cases. To address this limitation, we introduce CoCoEvo, a novel LLM-based co-evolution framework that simultaneously evolves programs and test cases. CoCoEvo eliminates the dependency on pre-defined test cases by generating both programs and test cases directly from natural language problem descriptions and function headers. The framework employs specialized evolutionary operators, including LLM-based crossover and mutation operators for program evolution, along with an additional test case generation operator for test case evolution. Additionally, we propose optimization strategies such as a crossover rate scheduler to balance exploration and convergence, and a multi-objective optimization method for test case selection. Experimental results on multiple state-of-the-art LLMs demonstrate that CoCoEvo surpasses existing methods, achieving state-of-the-art performance in automated code generation and testing. These results underscore the potential of co-evolutionary techniques in advancing the field of automated programming.
♻ ☆ Evaluation of LLM Vulnerabilities to Being Misused for Personalized Disinformation Generation ACL 2025
The capabilities of recent large language models (LLMs) to generate high-quality content indistinguishable by humans from human-written texts raises many concerns regarding their misuse. Previous research has shown that LLMs can be effectively misused for generating disinformation news articles following predefined narratives. Their capabilities to generate personalized (in various aspects) content have also been evaluated and mostly found usable. However, a combination of personalization and disinformation abilities of LLMs has not been comprehensively studied yet. Such a dangerous combination should trigger integrated safety filters of the LLMs, if there are some. This study fills this gap by evaluating vulnerabilities of recent open and closed LLMs, and their willingness to generate personalized disinformation news articles in English. We further explore whether the LLMs can reliably meta-evaluate the personalization quality and whether the personalization affects the generated-texts detectability. Our results demonstrate the need for stronger safety-filters and disclaimers, as those are not properly functioning in most of the evaluated LLMs. Additionally, our study revealed that the personalization actually reduces the safety-filter activations; thus effectively functioning as a jailbreak. Such behavior must be urgently addressed by LLM developers and service providers.
comment: ACL 2025 main
♻ ☆ MultiSocial: Multilingual Benchmark of Machine-Generated Text Detection of Social-Media Texts ACL 2025
Recent LLMs are able to generate high-quality multilingual texts, indistinguishable for humans from authentic human-written ones. Research in machine-generated text detection is however mostly focused on the English language and longer texts, such as news articles, scientific papers or student essays. Social-media texts are usually much shorter and often feature informal language, grammatical errors, or distinct linguistic items (e.g., emoticons, hashtags). There is a gap in studying the ability of existing methods in detection of such texts, reflected also in the lack of existing multilingual benchmark datasets. To fill this gap we propose the first multilingual (22 languages) and multi-platform (5 social media platforms) dataset for benchmarking machine-generated text detection in the social-media domain, called MultiSocial. It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual LLMs. We use this benchmark to compare existing detection methods in zero-shot as well as fine-tuned form. Our results indicate that the fine-tuned detectors have no problem to be trained on social-media texts and that the platform selection for training matters.
comment: ACL 2025 main
♻ ☆ Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
♻ ☆ Tell Me What to Track: Infusing Robust Language Guidance for Enhanced Referring Multi-Object Tracking
Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to localize an arbitrary number of targets based on a language expression and continuously track them in a video. This intricate task involves reasoning on multi-modal data and precise target localization with temporal association. However, prior studies overlook the imbalanced data distribution between newborn targets and existing targets due to the nature of the task. In addition, they only indirectly fuse multi-modal features, struggling to deliver clear guidance on newborn target detection. To solve the above issues, we conduct a collaborative matching strategy to alleviate the impact of the imbalance, boosting the ability to detect newborn targets while maintaining tracking performance. In the encoder, we integrate and enhance the cross-modal and multi-scale fusion, overcoming the bottlenecks in previous work, where limited multi-modal information is shared and interacted between feature maps. In the decoder, we also develop a referring-infused adaptation that provides explicit referring guidance through the query tokens. The experiments showcase the superior performance of our model (+3.42%) compared to prior works, demonstrating the effectiveness of our designs.
♻ ☆ Improving Question Embeddings with Cognitive Representation Optimization for Knowledge Tracing
Designed to track changes in students' knowledge status and predict their future answers based on students' historical answer records. Current research on KT modeling focuses on predicting future student performance based on existing, unupdated records of student learning interactions. However, these methods ignore distractions in the response process (such as slipping and guessing) and ignore that static cognitive representations are temporary and limited. Most of them assume that there are no distractions during the answering process, and that the recorded representation fully represents the student's understanding and proficiency in knowledge. This can lead to many dissonant and uncoordinated issues in the original record. Therefore, we propose a knowledge-tracking cognitive representation optimization (CRO-KT) model that uses dynamic programming algorithms to optimize the structure of cognitive representation. This ensures that the structure matches the student's cognitive patterns in terms of practice difficulty. In addition, we use a synergistic optimization algorithm to optimize the cognitive representation of sub-target exercises based on the overall picture of exercise responses by considering all exercises with synergistic relationships as one goal. At the same time, the CRO-KT model integrates the relationship embedding learned in the dichotomous graph with the optimized record representation in a weighted manner, which enhances students' cognitive expression ability. Finally, experiments were conducted on three public datasets to verify the effectiveness of the proposed cognitive representation optimization model.
♻ ☆ Spike No More: Stabilizing the Pre-training of Large Language Models
Loss spikes often occur during pre-training of large language models. The spikes degrade the performance of large language models and sometimes ruin the pre-training. Since the pre-training needs a vast computational budget, we should avoid such spikes. Based on the assumption that the loss spike is caused by the sudden growth of the gradient norm, we explore factors to keep the gradient norm small through an analysis of the spectral norms of the Jacobian matrices for the sub-layers. Our findings suggest that stabilizing the pre-training process requires two conditions: small sub-layers and large shortcut. We conduct various experiments to empirically verify our theoretical analyses. Experimental results demonstrate that methods satisfying the conditions effectively prevent loss spikes during pre-training.
comment: COLM 2025
♻ ☆ Geometric Origins of Bias in Deep Neural Networks: A Human Visual System Perspective
Bias formation in deep neural networks (DNNs) remains a critical yet poorly understood challenge, influencing both fairness and reliability in artificial intelligence systems. Inspired by the human visual system, which decouples object manifolds through hierarchical processing to achieve object recognition, we propose a geometric analysis framework linking the geometric complexity of class-specific perceptual manifolds in DNNs to model bias. Our findings reveal that differences in geometric complexity can lead to varying recognition capabilities across categories, introducing biases. To support this analysis, we present the Perceptual-Manifold-Geometry library, designed for calculating the geometric properties of perceptual manifolds. The toolkit has been downloaded and installed over 4,500 times. This work provides a novel geometric perspective on bias formation in modern learning systems and lays a theoretical foundation for developing more equitable and robust artificial intelligence.
♻ ☆ MedicalBERT: enhancing biomedical natural language processing using pretrained BERT-based model
Recent advances in natural language processing (NLP) have been driven bypretrained language models like BERT, RoBERTa, T5, and GPT. Thesemodels excel at understanding complex texts, but biomedical literature, withits domain-specific terminology, poses challenges that models likeWord2Vec and bidirectional long short-term memory (Bi-LSTM) can't fullyaddress. GPT and T5, despite capturing context, fall short in tasks needingbidirectional understanding, unlike BERT. Addressing this, we proposedMedicalBERT, a pretrained BERT model trained on a large biomedicaldataset and equipped with domain-specific vocabulary that enhances thecomprehension of biomedical terminology. MedicalBERT model is furtheroptimized and fine-tuned to address diverse tasks, including named entityrecognition, relation extraction, question answering, sentence similarity, anddocument classification. Performance metrics such as the F1-score,accuracy, and Pearson correlation are employed to showcase the efficiencyof our model in comparison to other BERT-based models such as BioBERT,SciBERT, and ClinicalBERT. MedicalBERT outperforms these models onmost of the benchmarks, and surpasses the general-purpose BERT model by5.67% on average across all the tasks evaluated respectively. This work alsounderscores the potential of leveraging pretrained BERT models for medicalNLP tasks, demonstrating the effectiveness of transfer learning techniques incapturing domain-specific information. (PDF) MedicalBERT: enhancing biomedical natural language processing using pretrained BERT-based model. Available from: https://www.researchgate.net/publication/392489050_MedicalBERT_enhancing_biomedical_natural_language_processing_using_pretrained_BERT-based_model [accessed Jul 06 2025].
♻ ☆ Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters
Multilingual translation stands as a challenging task for large language models (LLMs) to handle intricate language patterns and stilted translations that arise in automated translations. In this paper, we introduce Seed-X, a family of open-source LLMs comprising instruct and reasoning models, pushing the limits of translation capability with 7B parameter size. The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages, harnessing the full potential of multilingual data. The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs. Seed-X achieves performance comparable to leading closed-source models, including Gemini-2.5 and GPT-4o, across 28 languages, and significantly outperforms larger open-source models in both automatic metrics and human evaluations. We share the best practices through our optimization process, and make the parameter public available for advancing translation research and applications.
♻ ☆ MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes
Controllable generative models for images and videos have seen significant success, yet 3D scene generation, especially in unbounded scenarios like autonomous driving, remains underdeveloped. Existing methods lack flexible controllability and often rely on dense view data collection in controlled environments, limiting their generalizability across common datasets (e.g., nuScenes). In this paper, we introduce MagicDrive3D, a novel framework for controllable 3D street scene generation that combines video-based view synthesis with 3D representation (3DGS) generation. It supports multi-condition control, including road maps, 3D objects, and text descriptions. Unlike previous approaches that require 3D representation before training, MagicDrive3D first trains a multi-view video generation model to synthesize diverse street views. This method utilizes routinely collected autonomous driving data, reducing data acquisition challenges and enriching 3D scene generation. In the 3DGS generation step, we introduce Fault-Tolerant Gaussian Splatting to address minor errors and use monocular depth for better initialization, alongside appearance modeling to manage exposure discrepancies across viewpoints. Experiments show that MagicDrive3D generates diverse, high-quality 3D driving scenes, supports any-view rendering, and enhances downstream tasks like BEV segmentation, demonstrating its potential for autonomous driving simulation and beyond.
comment: Project Page: https://flymin.github.io/magicdrive3d
♻ ☆ PLEIADES: Building Temporal Kernels with Orthogonal Polynomials
We introduce a class of neural networks named PLEIADES (PoLynomial Expansion In Adaptive Distributed Event-based Systems), which contains temporal convolution kernels generated from orthogonal polynomial basis functions. We focus on interfacing these networks with event-based data to perform online spatiotemporal classification and detection with low latency. By virtue of using structured temporal kernels and event-based data, we have the freedom to vary the sample rate of the data along with the discretization step-size of the network without additional finetuning. We experimented with three event-based benchmarks and obtained state-of-the-art results on all three by large margins with significantly smaller memory and compute costs. We achieved: 1) 99.59% accuracy with 192K parameters on the DVS128 hand gesture recognition dataset and 100% with a small additional output filter; 2) 99.58% test accuracy with 277K parameters on the AIS 2024 eye tracking challenge; and 3) 0.556 mAP with 576k parameters on the PROPHESEE 1 Megapixel Automotive Detection Dataset.
comment: 14 pages, 3 figures
♻ ☆ Bridging Quantum and Classical Computing in Drug Design: Architecture Principles for Improved Molecule Generation
Hybrid quantum-classical machine learning offers a path to leverage noisy intermediate-scale quantum (NISQ) devices for drug discovery, but optimal model architectures remain unclear. We systematically optimize the quantum-classical bridge architecture of generative adversarial networks (GANs) for molecule discovery using multi-objective Bayesian optimization. Our optimized model (BO-QGAN) significantly improves performance, achieving a 2.27-fold higher Drug Candidate Score (DCS) than prior quantum-hybrid benchmarks and 2.21-fold higher than the classical baseline, while reducing parameter count by more than 60%. Key findings favor layering multiple (3-4) shallow (4-8 qubit) quantum circuits sequentially, while classical architecture shows less sensitivity above a minimum capacity. This work provides the first empirically-grounded architectural guidelines for hybrid models, enabling more effective integration of current quantum computers into pharmaceutical research pipelines.
comment: Published in Proceedings of the Workshop on Generative AI for Biology at the 42nd International Conference on Machine Learning 10 pages, 7 figures
♻ ☆ High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 73.2%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
♻ ☆ Why Isn't Relational Learning Taking Over the World?
AI seems to be taking over the world with systems that model pixels, words, and phonemes. The world is arguably made up, not of pixels, words, and phonemes but of entities (objects, things, including events) with properties and relations among them. Surely we should model these, not the perception or description of them. You might suspect that concentrating on modeling words and pixels is because all of the (valuable) data in the world is in terms of text and images. If you look into almost any company you will find their most valuable data is in spreadsheets, databases and other relational formats. These are not the form that are studied in introductory machine learning, but are full of product numbers, student numbers, transaction numbers and other identifiers that can't be interpreted naively as numbers. The field that studies this sort of data has various names including relational learning, statistical relational AI, and many others. This paper explains why relational learning is not taking over the world -- except in a few cases with restricted relations -- and what needs to be done to bring it to it's rightful prominence.
comment: 10 pages (6 pages + references + appendices)
♻ ☆ Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity
Despite widespread adoption, the impact of AI tools on software development in the wild remains understudied. We conduct a randomized controlled trial (RCT) to understand how AI tools at the February-June 2025 frontier affect the productivity of experienced open-source developers. 16 developers with moderate AI experience complete 246 tasks in mature projects on which they have an average of 5 years of prior experience. Each task is randomly assigned to allow or disallow usage of early 2025 AI tools. When AI tools are allowed, developers primarily use Cursor Pro, a popular code editor, and Claude 3.5/3.7 Sonnet. Before starting tasks, developers forecast that allowing AI will reduce completion time by 24%. After completing the study, developers estimate that allowing AI reduced completion time by 20%. Surprisingly, we find that allowing AI actually increases completion time by 19%--AI tooling slowed developers down. This slowdown also contradicts predictions from experts in economics (39% shorter) and ML (38% shorter). To understand this result, we collect and evaluate evidence for 20 properties of our setting that a priori could contribute to the observed slowdown effect--for example, the size and quality standards of projects, or prior developer experience with AI tooling. Although the influence of experimental artifacts cannot be entirely ruled out, the robustness of the slowdown effect across our analyses suggests it is unlikely to primarily be a function of our experimental design.
comment: 51 pages, 8 tables, 22 figures
Machine Learning 129
☆ Advancing Event Forecasting through Massive Training of Large Language Models: Challenges, Solutions, and Broader Impacts
Many recent papers have studied the development of superforecaster-level event forecasting LLMs. While methodological problems with early studies cast doubt on the use of LLMs for event forecasting, recent studies with improved evaluation methods have shown that state-of-the-art LLMs are gradually reaching superforecaster-level performance, and reinforcement learning has also been reported to improve future forecasting. Additionally, the unprecedented success of recent reasoning models and Deep Research-style models suggests that technology capable of greatly improving forecasting performance has been developed. Therefore, based on these positive recent trends, we argue that the time is ripe for research on large-scale training of superforecaster-level event forecasting LLMs. We discuss two key research directions: training methods and data acquisition. For training, we first introduce three difficulties of LLM-based event forecasting training: noisiness-sparsity, knowledge cut-off, and simple reward structure problems. Then, we present related ideas to mitigate these problems: hypothetical event Bayesian networks, utilizing poorly-recalled and counterfactual events, and auxiliary reward signals. For data, we propose aggressive use of market, public, and crawling datasets to enable large-scale training and evaluation. Finally, we explain how these technical advances could enable AI to provide predictive intelligence to society in broader areas. This position paper presents promising specific paths and considerations for getting closer to superforecaster-level AI technology, aiming to call for researchers' interest in these directions.
☆ Let It Go? Not Quite: Addressing Item Cold Start in Sequential Recommendations with Content-Based Initialization
Many sequential recommender systems suffer from the cold start problem, where items with few or no interactions cannot be effectively used by the model due to the absence of a trained embedding. Content-based approaches, which leverage item metadata, are commonly used in such scenarios. One possible way is to use embeddings derived from content features such as textual descriptions as initialization for the model embeddings. However, directly using frozen content embeddings often results in suboptimal performance, as they may not fully adapt to the recommendation task. On the other hand, fine-tuning these embeddings can degrade performance for cold-start items, as item representations may drift far from their original structure after training. We propose a novel approach to address this limitation. Instead of entirely freezing the content embeddings or fine-tuning them extensively, we introduce a small trainable delta to frozen embeddings that enables the model to adapt item representations without letting them go too far from their original semantic structure. This approach demonstrates consistent improvements across multiple datasets and modalities, including e-commerce datasets with textual descriptions and a music dataset with audio-based representation.
☆ Linearly Convergent Algorithms for Nonsmooth Problems with Unknown Smooth Pieces
We develop efficient algorithms for optimizing piecewise smooth (PWS) functions where the underlying partition of the domain into smooth pieces is \emph{unknown}. For PWS functions satisfying a quadratic growth (QG) condition, we propose a bundle-level (BL) type method that achieves global linear convergence -- to our knowledge, the first such result for any algorithm for this problem class. We extend this method to handle approximately PWS functions and to solve weakly-convex PWS problems, improving the state-of-the-art complexity to match the benchmark for smooth non-convex optimization. Furthermore, we introduce the first verifiable and accurate termination criterion for PWS optimization. Similar to the gradient norm in smooth optimization, this certificate tightly characterizes the optimality gap under the QG condition, and can moreover be evaluated without knowledge of any problem parameters. We develop a search subroutine for this certificate and embed it within a guess-and-check framework, resulting in an almost parameter-free algorithm for both the convex QG and weakly-convex settings.
☆ Fast Learning of Non-Cooperative Spacecraft 3D Models through Primitive Initialization
The advent of novel view synthesis techniques such as NeRF and 3D Gaussian Splatting (3DGS) has enabled learning precise 3D models only from posed monocular images. Although these methods are attractive, they hold two major limitations that prevent their use in space applications: they require poses during training, and have high computational cost at training and inference. To address these limitations, this work contributes: (1) a Convolutional Neural Network (CNN) based primitive initializer for 3DGS using monocular images; (2) a pipeline capable of training with noisy or implicit pose estimates; and (3) and analysis of initialization variants that reduce the training cost of precise 3D models. A CNN takes a single image as input and outputs a coarse 3D model represented as an assembly of primitives, along with the target's pose relative to the camera. This assembly of primitives is then used to initialize 3DGS, significantly reducing the number of training iterations and input images needed -- by at least an order of magnitude. For additional flexibility, the CNN component has multiple variants with different pose estimation techniques. This work performs a comparison between these variants, evaluating their effectiveness for downstream 3DGS training under noisy or implicit pose estimates. The results demonstrate that even with imperfect pose supervision, the pipeline is able to learn high-fidelity 3D representations, opening the door for the use of novel view synthesis in space applications.
☆ Hierarchical Deep Reinforcement Learning Framework for Multi-Year Asset Management Under Budget Constraints
Budget planning and maintenance optimization are crucial for infrastructure asset management, ensuring cost-effectiveness and sustainability. However, the complexity arising from combinatorial action spaces, diverse asset deterioration, stringent budget constraints, and environmental uncertainty significantly limits existing methods' scalability. This paper proposes a Hierarchical Deep Reinforcement Learning methodology specifically tailored to multi-year infrastructure planning. Our approach decomposes the problem into two hierarchical levels: a high-level Budget Planner allocating annual budgets within explicit feasibility bounds, and a low-level Maintenance Planner prioritizing assets within the allocated budget. By structurally separating macro-budget decisions from asset-level prioritization and integrating linear programming projection within a hierarchical Soft Actor-Critic framework, the method efficiently addresses exponential growth in the action space and ensures rigorous budget compliance. A case study evaluating sewer networks of varying sizes (10, 15, and 20 sewersheds) illustrates the effectiveness of the proposed approach. Compared to conventional Deep Q-Learning and enhanced genetic algorithms, our methodology converges more rapidly, scales effectively, and consistently delivers near-optimal solutions even as network size grows.
☆ GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning
Large language models (LLMs) are increasingly adapted to downstream tasks via reinforcement learning (RL) methods like Group Relative Policy Optimization (GRPO), which often require thousands of rollouts to learn new tasks. We argue that the interpretable nature of language can often provide a much richer learning medium for LLMs, compared with policy gradients derived from sparse, scalar rewards. To test this, we introduce GEPA (Genetic-Pareto), a prompt optimizer that thoroughly incorporates natural language reflection to learn high-level rules from trial and error. Given any AI system containing one or more LLM prompts, GEPA samples system-level trajectories (e.g., reasoning, tool calls, and tool outputs) and reflects on them in natural language to diagnose problems, propose and test prompt updates, and combine complementary lessons from the Pareto frontier of its own attempts. As a result of GEPA's design, it can often turn even just a few rollouts into a large quality gain. Across four tasks, GEPA outperforms GRPO by 10% on average and by up to 20%, while using up to 35x fewer rollouts. GEPA also outperforms the leading prompt optimizer, MIPROv2, by over 10% across two LLMs, and demonstrates promising results as an inference-time search strategy for code optimization.
☆ Forest-Guided Clustering -- Shedding Light into the Random Forest Black Box
As machine learning models are increasingly deployed in sensitive application areas, the demand for interpretable and trustworthy decision-making has increased. Random Forests (RF), despite their widespread use and strong performance on tabular data, remain difficult to interpret due to their ensemble nature. We present Forest-Guided Clustering (FGC), a model-specific explainability method that reveals both local and global structure in RFs by grouping instances according to shared decision paths. FGC produces human-interpretable clusters aligned with the model's internal logic and computes cluster-specific and global feature importance scores to derive decision rules underlying RF predictions. FGC accurately recovered latent subclass structure on a benchmark dataset and outperformed classical clustering and post-hoc explanation methods. Applied to an AML transcriptomic dataset, FGC uncovered biologically coherent subpopulations, disentangled disease-relevant signals from confounders, and recovered known and novel gene expression patterns. FGC bridges the gap between performance and interpretability by providing structure-aware insights that go beyond feature-level attribution.
☆ Gradient-based grand canonical optimization enabled by graph neural networks with fractional atomic existence
Machine learning interatomic potentials have become an indispensable tool for materials science, enabling the study of larger systems and longer timescales. State-of-the-art models are generally graph neural networks that employ message passing to iteratively update atomic embeddings that are ultimately used for predicting properties. In this work we extend the message passing formalism with the inclusion of a continuous variable that accounts for fractional atomic existence. This allows us to calculate the gradient of the Gibbs free energy with respect to both the Cartesian coordinates of atoms and their existence. Using this we propose a gradient-based grand canonical optimization method and document its capabilities for a Cu(110) surface oxide.
☆ Observations Meet Actions: Learning Control-Sufficient Representations for Robust Policy Generalization
Capturing latent variations ("contexts") is key to deploying reinforcement-learning (RL) agents beyond their training regime. We recast context-based RL as a dual inference-control problem and formally characterize two properties and their hierarchy: observation sufficiency (preserving all predictive information) and control sufficiency (retaining decision-making relevant information). Exploiting this dichotomy, we derive a contextual evidence lower bound(ELBO)-style objective that cleanly separates representation learning from policy learning and optimizes it with Bottlenecked Contextual Policy Optimization (BCPO), an algorithm that places a variational information-bottleneck encoder in front of any off-policy policy learner. On standard continuous-control benchmarks with shifting physical parameters, BCPO matches or surpasses other baselines while using fewer samples and retaining performance far outside the training regime. The framework unifies theory, diagnostics, and practice for context-based RL.
☆ Step-3 is Large yet Affordable: Model-system Co-design for Cost-effective Decoding
Large language models (LLMs) face low hardware efficiency during decoding, especially for long-context reasoning tasks. This paper introduces Step-3, a 321B-parameter VLM with hardware-aware model-system co-design optimized for minimizing decoding costs. Step-3 innovates in two key dimensions: (1) A novel Multi-Matrix Factorization Attention (MFA) mechanism that significantly reduces both KV cache size and computation while maintaining high attention expressiveness, and (2) Attention-FFN Disaggregation (AFD), a distributed inference system that decouples attention and Feed-Forward Network (FFN) layers into specialized subsystems. This co-design achieves unprecedented cost efficiency: Step-3 significantly reduces theoretical decoding costs compared with models like DeepSeek-V3 and Qwen3 MoE 235B, with the gains widening at longer context. Step-3 achieves low cost while activating 38B parameters per token (more than DeepSeek-V3 and Qwen3 MoE 235B), demonstrating that hardware-aligned attention arithmetic intensity, MoE sparsity, and AFD are critical to cost-effectiveness. We perform a head-to-head comparison with DeepSeek-V3 in its favorable scenarios. Our implementation on Hopper GPUs achieves a decoding throughput of up to 4,039 tokens per second per GPU under 50ms TPOT SLA (4K context, FP8, no MTP). It is higher than DeepSeek-V3's 2,324 in the same setup and sets a new Pareto frontier for LLM decoding.
☆ Perfect Clustering in Very Sparse Diverse Multiplex Networks
The paper studies the DIverse MultiPLEx Signed Generalized Random Dot Product Graph (DIMPLE-SGRDPG) network model (Pensky (2024)), where all layers of the network have the same collection of nodes. In addition, all layers can be partitioned into groups such that the layers in the same group are embedded in the same ambient subspace but otherwise matrices of connection probabilities can be all different. This setting includes majority of multilayer network models as its particular cases. The key task in this model is to recover the groups of layers with unique subspace structures, since the case where all layers of the network are embedded in the same subspace has been fairly well studied. Until now, clustering of layers in such networks was based on the layer-per-layer analysis, which required the multilayer network to be sufficiently dense. Nevertheless, in this paper we succeeded in pooling information in all layers together and providing a tensor-based methodology that ensures perfect clustering for a much sparser network. Our theoretical results, established under intuitive non-restrictive assumptions, assert that the new technique achieves perfect clustering under sparsity conditions that, up to logarithmic factors, coincide with the computational lower bound derived for a much simpler model.
comment: 5 figures
☆ CircuitProbe: Dissecting Spatiotemporal Visual Semantics with Circuit Tracing
The processing mechanisms underlying language and image understanding in large vision-language models (LVLMs) have been extensively studied. However, the internal reasoning mechanisms of LVLMs for spatiotemporal understanding remain poorly understood. In this work, we introduce a systematic, circuit-based framework designed to investigate how spatiotemporal visual semantics are represented and processed within these LVLMs. Specifically, our framework comprises three circuits: visual auditing circuit, semantic tracing circuit, and attention flow circuit. Through the lens of these circuits, we discover that visual semantics are highly localized to specific object tokens--removing these tokens can degrade model performance by up to 92.6%. Furthermore, we identify that interpretable concepts of objects and actions emerge and become progressively refined in the middle-to-late layers of LVLMs. In contrary to the current works that solely focus on objects in one image, we reveal that the middle-to-late layers of LVLMs exhibit specialized functional localization for spatiotemporal semantics. Our findings offer significant mechanistic insights into spatiotemporal semantics analysis of LVLMs, laying a foundation for designing more robust and interpretable models.
☆ SILS: Strategic Influence on Liquidity Stability and Whale Detection in Concentrated-Liquidity DEXs
Traditional methods for identifying impactful liquidity providers (LPs) in Concentrated Liquidity Market Makers (CLMMs) rely on broad measures, such as nominal capital size or surface-level activity, which often lead to inaccurate risk analysis. The SILS framework offers a significantly more detailed approach, characterizing LPs not just as capital holders but as dynamic systemic agents whose actions directly impact market stability. This represents a fundamental paradigm shift from the static, volume-based analysis to a dynamic, impact-focused understanding. This advanced approach uses on-chain event logs and smart contract execution traces to compute Exponential Time-Weighted Liquidity (ETWL) profiles and apply unsupervised anomaly detection. Most importantly, it defines an LP's functional importance through the Liquidity Stability Impact Score (LSIS), a counterfactual metric that measures the potential degradation of the market if the LP withdraws. This combined approach provides a more detailed and realistic characterization of an LP's impact, moving beyond the binary and often misleading classifications used by existing methods. This impact-focused and comprehensive approach enables SILS to accurately identify high-impact LPs-including those missed by traditional methods and supports essential applications like a protective oracle layer and actionable trader signals, thereby significantly enhancing DeFi ecosystem. The framework provides unprecedented transparency into the underlying liquidity structure and associated risks, effectively reducing the common false positives and uncovering critical false negatives found in traditional models. Therefore, SILS provides an effective mechanism for proactive risk management, transforming how DeFi protocols safeguard their ecosystems against asymmetric liquidity behavior.
☆ On Arbitrary Predictions from Equally Valid Models
Model multiplicity refers to the existence of multiple machine learning models that describe the data equally well but may produce different predictions on individual samples. In medicine, these models can admit conflicting predictions for the same patient -- a risk that is poorly understood and insufficiently addressed. In this study, we empirically analyze the extent, drivers, and ramifications of predictive multiplicity across diverse medical tasks and model architectures, and show that even small ensembles can mitigate/eliminate predictive multiplicity in practice. Our analysis reveals that (1) standard validation metrics fail to identify a uniquely optimal model and (2) a substantial amount of predictions hinges on arbitrary choices made during model development. Using multiple models instead of a single model reveals instances where predictions differ across equally plausible models -- highlighting patients that would receive arbitrary diagnoses if any single model were used. In contrast, (3) a small ensemble paired with an abstention strategy can effectively mitigate measurable predictive multiplicity in practice; predictions with high inter-model consensus may thus be amenable to automated classification. While accuracy is not a principled antidote to predictive multiplicity, we find that (4) higher accuracy achieved through increased model capacity reduces predictive multiplicity. Our findings underscore the clinical importance of accounting for model multiplicity and advocate for ensemble-based strategies to improve diagnostic reliability. In cases where models fail to reach sufficient consensus, we recommend deferring decisions to expert review.
☆ FD4QC: Application of Classical and Quantum-Hybrid Machine Learning for Financial Fraud Detection A Technical Report
The increasing complexity and volume of financial transactions pose significant challenges to traditional fraud detection systems. This technical report investigates and compares the efficacy of classical, quantum, and quantum-hybrid machine learning models for the binary classification of fraudulent financial activities. As of our methodology, first, we develop a comprehensive behavioural feature engineering framework to transform raw transactional data into a rich, descriptive feature set. Second, we implement and evaluate a range of models on the IBM Anti-Money Laundering (AML) dataset. The classical baseline models include Logistic Regression, Decision Tree, Random Forest, and XGBoost. These are compared against three hybrid classic quantum algorithms architectures: a Quantum Support Vector Machine (QSVM), a Variational Quantum Classifier (VQC), and a Hybrid Quantum Neural Network (HQNN). Furthermore, we propose Fraud Detection for Quantum Computing (FD4QC), a practical, API-driven system architecture designed for real-world deployment, featuring a classical-first, quantum-enhanced philosophy with robust fallback mechanisms. Our results demonstrate that classical tree-based models, particularly \textit{Random Forest}, significantly outperform the quantum counterparts in the current setup, achieving high accuracy (\(97.34\%\)) and F-measure (\(86.95\%\)). Among the quantum models, \textbf{QSVM} shows the most promise, delivering high precision (\(77.15\%\)) and a low false-positive rate (\(1.36\%\)), albeit with lower recall and significant computational overhead. This report provides a benchmark for a real-world financial application, highlights the current limitations of quantum machine learning in this domain, and outlines promising directions for future research.
comment: This is a technical report
☆ Learning neuro-symbolic convergent term rewriting systems
Building neural systems that can learn to execute symbolic algorithms is a challenging open problem in artificial intelligence, especially when aiming for strong generalization and out-of-distribution performance. In this work, we introduce a general framework for learning convergent term rewriting systems using a neuro-symbolic architecture inspired by the rewriting algorithm itself. We present two modular implementations of such architecture: the Neural Rewriting System (NRS) and the Fast Neural Rewriting System (FastNRS). As a result of algorithmic-inspired design and key architectural elements, both models can generalize to out-of-distribution instances, with FastNRS offering significant improvements in terms of memory efficiency, training speed, and inference time. We evaluate both architectures on four tasks involving the simplification of mathematical formulas and further demonstrate their versatility in a multi-domain learning scenario, where a single model is trained to solve multiple types of problems simultaneously. The proposed system significantly outperforms two strong neural baselines: the Neural Data Router, a recent transformer variant specifically designed to solve algorithmic problems, and GPT-4o, one of the most powerful general-purpose large-language models. Moreover, our system matches or outperforms the latest o1-preview model from OpenAI that excels in reasoning benchmarks.
comment: 48 pages, 31 figures. Submitted for review by Artificial Intelligence Journal
☆ Counterfactual Explanations in Medical Imaging: Exploring SPN-Guided Latent Space Manipulation
Artificial intelligence is increasingly leveraged across various domains to automate decision-making processes that significantly impact human lives. In medical image analysis, deep learning models have demonstrated remarkable performance. However, their inherent complexity makes them black box systems, raising concerns about reliability and interpretability. Counterfactual explanations provide comprehensible insights into decision processes by presenting hypothetical "what-if" scenarios that alter model classifications. By examining input alterations, counterfactual explanations provide patterns that influence the decision-making process. Despite their potential, generating plausible counterfactuals that adhere to similarity constraints providing human-interpretable explanations remains a challenge. In this paper, we investigate this challenge by a model-specific optimization approach. While deep generative models such as variational autoencoders (VAEs) exhibit significant generative power, probabilistic models like sum-product networks (SPNs) efficiently represent complex joint probability distributions. By modeling the likelihood of a semi-supervised VAE's latent space with an SPN, we leverage its dual role as both a latent space descriptor and a classifier for a given discrimination task. This formulation enables the optimization of latent space counterfactuals that are both close to the original data distribution and aligned with the target class distribution. We conduct experimental evaluation on the cheXpert dataset. To evaluate the effectiveness of the integration of SPNs, our SPN-guided latent space manipulation is compared against a neural network baseline. Additionally, the trade-off between latent variable regularization and counterfactual quality is analyzed.
comment: 10 pages, 3 figures
☆ A Data-Driven Approach to Estimate LEO Orbit Capacity Models
Utilizing the Sparse Identification of Nonlinear Dynamics algorithm (SINDy) and Long Short-Term Memory Recurrent Neural Networks (LSTM), the population of resident space objects, divided into Active, Derelict, and Debris, in LEO can be accurately modeled to predict future satellite and debris propagation. This proposed approach makes use of a data set coming from a computational expensive high-fidelity model, the MOCAT-MC, to provide a light, low-fidelity counterpart that provides accurate forecasting in a shorter time frame.
comment: 18 pages, 15 figures
☆ LOTUS: A Leaderboard for Detailed Image Captioning from Quality to Societal Bias and User Preferences ACL 2025
Large Vision-Language Models (LVLMs) have transformed image captioning, shifting from concise captions to detailed descriptions. We introduce LOTUS, a leaderboard for evaluating detailed captions, addressing three main gaps in existing evaluations: lack of standardized criteria, bias-aware assessments, and user preference considerations. LOTUS comprehensively evaluates various aspects, including caption quality (e.g., alignment, descriptiveness), risks (\eg, hallucination), and societal biases (e.g., gender bias) while enabling preference-oriented evaluations by tailoring criteria to diverse user preferences. Our analysis of recent LVLMs reveals no single model excels across all criteria, while correlations emerge between caption detail and bias risks. Preference-oriented evaluations demonstrate that optimal model selection depends on user priorities.
comment: Accepted to ACL 2025. Leaderboard: huggingface.co/spaces/nvidia/lotus-vlm-bias-leaderboard
☆ EffiComm: Bandwidth Efficient Multi Agent Communication SC 2025
Collaborative perception allows connected vehicles to exchange sensor information and overcome each vehicle's blind spots. Yet transmitting raw point clouds or full feature maps overwhelms Vehicle-to-Vehicle (V2V) communications, causing latency and scalability problems. We introduce EffiComm, an end-to-end framework that transmits less than 40% of the data required by prior art while maintaining state-of-the-art 3D object detection accuracy. EffiComm operates on Bird's-Eye-View (BEV) feature maps from any modality and applies a two-stage reduction pipeline: (1) Selective Transmission (ST) prunes low-utility regions with a confidence mask; (2) Adaptive Grid Reduction (AGR) uses a Graph Neural Network (GNN) to assign vehicle-specific keep ratios according to role and network load. The remaining features are fused with a soft-gated Mixture-of-Experts (MoE) attention layer, offering greater capacity and specialization for effective feature integration. On the OPV2V benchmark, EffiComm reaches 0.84 mAP@0.7 while sending only an average of approximately 1.5 MB per frame, outperforming previous methods on the accuracy-per-bit curve. These results highlight the value of adaptive, learned communication for scalable Vehicle-to-Everything (V2X) perception.
comment: Accepted for publication at ITSC 2025
☆ Reconstruction of Sparse Urban Wireless Signals via Group Equivariant Non-Expansive Operators
In emerging communication systems such as sixth generation (6G) wireless networks, efficient resource management and service delivery rely on accurate knowledge of spatially-varying quantities like signal-to-interference-noise ratio (SINR) maps, which are costly to acquire at high resolution. This work explores the reconstruction of such spatial signals from sparse measurements using Group Equivariant Non-Expansive Operators (GENEOs), offering a low-complexity alternative to traditional neural networks. The concept of GENEO, which originated in topological data analysis (TDA), is a mathematical tool used in machine learning to represent agents modelled as functional operators acting on data while incorporating application-specific invariances. Leveraging these invariances reduces the number of parameters with respect to traditional neural networks and mitigates data scarcity by enforcing known algebraic and geometric constraints that reflect symmetries in the agents' actions. In this paper, we introduce a novel GENEO-based approach for SINR map reconstruction in urban wireless communication networks using extremely sparse sampling. We demonstrate that this mathematical framework achieves competitive performance compared to established methods. Our evaluation, conducted using both statistical and TDA metrics, highlights the advantages of our approach in accurately reconstructing spatial signals under severe data limitations on the number of samples.
☆ Short-Form Video Recommendations with Multimodal Embeddings: Addressing Cold-Start and Bias Challenges
In recent years, social media users have spent significant amounts of time on short-form video platforms. As a result, established platforms in other domains, such as e-commerce, have begun introducing short-form video content to engage users and increase their time spent on the platform. The success of these experiences is due not only to the content itself but also to a unique UI innovation: instead of offering users a list of choices to click, platforms actively recommend content for users to watch one at a time. This creates new challenges for recommender systems, especially when launching a new video experience. Beyond the limited interaction data, immersive feed experiences introduce stronger position bias due to the UI and duration bias when optimizing for watch-time, as models tend to favor shorter videos. These issues, together with the feedback loop inherent in recommender systems, make it difficult to build effective solutions. In this paper, we highlight the challenges faced when introducing a new short-form video experience and present our experience showing that, even with sufficient video interaction data, it can be more beneficial to leverage a video retrieval system using a fine-tuned multimodal vision-language model to overcome these challenges. This approach demonstrated greater effectiveness compared to conventional supervised learning methods in online experiments conducted on our e-commerce platform.
☆ Doubling Your Data in Minutes: Ultra-fast Tabular Data Generation via LLM-Induced Dependency Graphs
Tabular data is critical across diverse domains, yet high-quality datasets remain scarce due to privacy concerns and the cost of collection. Contemporary approaches adopt large language models (LLMs) for tabular augmentation, but exhibit two major limitations: (1) dense dependency modeling among tabular features that can introduce bias, and (2) high computational overhead in sampling. To address these issues, we propose SPADA for SPArse Dependency-driven Augmentation, a lightweight generative framework that explicitly captures sparse dependencies via an LLM-induced graph. We treat each feature as a node and synthesize values by traversing the graph, conditioning each feature solely on its parent nodes. We explore two synthesis strategies: a non-parametric method using Gaussian kernel density estimation, and a conditional normalizing flow model that learns invertible mappings for conditional density estimation. Experiments on four datasets show that SPADA reduces constraint violations by 4% compared to diffusion-based methods and accelerates generation by nearly 9,500 times over LLM-based baselines.
☆ SIDE: Sparse Information Disentanglement for Explainable Artificial Intelligence
Understanding the decisions made by deep neural networks is essential in high-stakes domains such as medical imaging and autonomous driving. Yet, these models often lack transparency, particularly in computer vision. Prototypical-parts-based neural networks have emerged as a promising solution by offering concept-level explanations. However, most are limited to fine-grained classification tasks, with few exceptions such as InfoDisent. InfoDisent extends prototypical models to large-scale datasets like ImageNet, but produces complex explanations. We introduce Sparse Information Disentanglement for Explainability (SIDE), a novel method that improves the interpretability of prototypical parts through a dedicated training and pruning scheme that enforces sparsity. Combined with sigmoid activations in place of softmax, this approach allows SIDE to associate each class with only a small set of relevant prototypes. Extensive experiments show that SIDE matches the accuracy of existing methods while reducing explanation size by over $90\%$, substantially enhancing the understandability of prototype-based explanations.
☆ Human-AI Synergy in Adaptive Active Learning for Continuous Lithium Carbonate Crystallization Optimization
As demand for high-purity lithium surges with the growth of the electric vehicle (EV) industry, cost-effective extraction from lower-grade North American sources like the Smackover Formation is critical. These resources, unlike high-purity South American brines, require innovative purification techniques to be economically viable. Continuous crystallization is a promising method for producing battery-grade lithium carbonate, but its optimization is challenged by a complex parameter space and limited data. This study introduces a Human-in-the-Loop (HITL) assisted active learning framework to optimize the continuous crystallization of lithium carbonate. By integrating human expertise with data-driven insights, our approach accelerates the optimization of lithium extraction from challenging sources. Our results demonstrate the framework's ability to rapidly adapt to new data, significantly improving the process's tolerance to critical impurities like magnesium from the industry standard of a few hundred ppm to as high as 6000 ppm. This breakthrough makes the exploitation of low-grade, impurity-rich lithium resources feasible, potentially reducing the need for extensive pre-refinement processes. By leveraging artificial intelligence, we have refined operational parameters and demonstrated that lower-grade materials can be used without sacrificing product quality. This advancement is a significant step towards economically harnessing North America's vast lithium reserves, such as those in the Smackover Formation, and enhancing the sustainability of the global lithium supply chain.
☆ Negative news posts are less prevalent and generate lower user engagement than non-negative news posts across six countries
Although news negativity is often studied, missing is comparative evidence on the prevalence of and engagement with negative political and non-political news posts on social media. We use 6,081,134 Facebook posts published between January 1, 2020, and April 1, 2024, by 97 media organizations in six countries (U.S., UK, Ireland, Poland, France, Spain) and develop two multilingual classifiers for labeling posts as (non-)political and (non-)negative. We show that: (1) negative news posts constitute a relatively small fraction (12.6%); (2) political news posts are neither more nor less negative than non-political news posts; (3) U.S. political news posts are less negative relative to the other countries on average (40% lower odds); (4) Negative news posts get 15% fewer likes and 13% fewer comments than non-negative news posts. Lastly, (5) we provide estimates of the proportion of the total volume of user engagement with negative news posts and show that only between 10.2% to 13.1% of engagement is linked to negative posts by the analyzed news organizations.
Controlling Topological Defects in Polar Fluids via Reinforcement Learning
Topological defects in active polar fluids exhibit complex dynamics driven by internally generated stresses, reflecting the deep interplay between topology, flow, and non-equilibrium hydrodynamics. Feedback control offers a powerful means to guide such systems, enabling transitions between dynamic states. We investigated closed-loop steering of integer-charged defects in a confined active fluid by modulating the spatial profile of activity. Using a continuum hydrodynamic model, we show that localized control of active stress induces flow fields that can reposition and direct defects along prescribed trajectories by exploiting non-linear couplings in the system. A reinforcement learning framework is used to discover effective control strategies that produce robust defect transport across both trained and novel trajectories. The results highlight how AI agents can learn the underlying dynamics and spatially structure activity to manipulate topological excitations, offering insights into the controllability of active matter and the design of adaptive, self-organized materials.
☆ Query Efficient Structured Matrix Learning
We study the problem of learning a structured approximation (low-rank, sparse, banded, etc.) to an unknown matrix $A$ given access to matrix-vector product (matvec) queries of the form $x \rightarrow Ax$ and $x \rightarrow A^Tx$. This problem is of central importance to algorithms across scientific computing and machine learning, with applications to fast multiplication and inversion for structured matrices, building preconditioners for first-order optimization, and as a model for differential operator learning. Prior work focuses on obtaining query complexity upper and lower bounds for learning specific structured matrix families that commonly arise in applications. We initiate the study of the problem in greater generality, aiming to understand the query complexity of learning approximations from general matrix families. Our main result focuses on finding a near-optimal approximation to $A$ from any finite-sized family of matrices, $\mathcal{F}$. Standard results from matrix sketching show that $O(\log|\mathcal{F}|)$ matvec queries suffice in this setting. This bound can also be achieved, and is optimal, for vector-matrix-vector queries of the form $x,y\rightarrow x^TAy$, which have been widely studied in work on rank-$1$ matrix sensing. Surprisingly, we show that, in the matvec model, it is possible to obtain a nearly quadratic improvement in complexity, to $\tilde{O}(\sqrt{\log|\mathcal{F}|})$. Further, we prove that this bound is tight up to log-log factors.Via covering number arguments, our result extends to well-studied infinite families. As an example, we establish that a near-optimal approximation from any \emph{linear matrix family} of dimension $q$ can be learned with $\tilde{O}(\sqrt{q})$ matvec queries, improving on an $O(q)$ bound achievable via sketching techniques and vector-matrix-vector queries.
☆ Knowledge Grafting: A Mechanism for Optimizing AI Model Deployment in Resource-Constrained Environments
The increasing adoption of Artificial Intelligence (AI) has led to larger, more complex models with numerous parameters that require substantial computing power -- resources often unavailable in many real-world application scenarios. Our paper addresses this challenge by introducing knowledge grafting, a novel mechanism that optimizes AI models for resource-constrained environments by transferring selected features (the scion) from a large donor model to a smaller rootstock model. The approach achieves an 88.54% reduction in model size (from 64.39 MB to 7.38 MB), while improving generalization capability of the model. Our new rootstock model achieves 89.97% validation accuracy (vs. donor's 87.47%), maintains lower validation loss (0.2976 vs. 0.5068), and performs exceptionally well on unseen test data with 90.45% accuracy. It addresses the typical size vs performance trade-off, and enables deployment of AI frameworks on resource-constrained devices with enhanced performance. We have tested our approach on an agricultural weed detection scenario, however, it can be extended across various edge computing scenarios, potentially accelerating AI adoption in areas with limited hardware/software support -- by mirroring in a similar manner the horticultural grafting enables productive cultivation in challenging agri-based environments.
comment: 18 pages, 4 figures, ArXiv preprint - Novel "knowledge grafting" technique achieving 88.54% AI model size reduction while improving accuracy for resource-constrained deployment
☆ A Markov Categorical Framework for Language Modeling
Auto-regressive language models factorize sequence probabilities and are trained by minimizing the negative log-likelihood (NLL) objective. While empirically powerful, a deep theoretical understanding of why this simple objective yields such versatile representations remains elusive. This work introduces a unifying analytical framework using Markov Categories (MCs) to deconstruct the AR generation process and the NLL objective. We model the single-step generation map as a composition of Markov kernels in the category Stoch. This compositional view, when enriched with statistical divergences, allows us to dissect information flow and learned geometry. Our framework makes three main contributions. First, we provide a formal, information-theoretic rationale for the success of modern speculative decoding methods like EAGLE, quantifying the information surplus in hidden states that these methods exploit. Second, we formalize how NLL minimization forces the model to learn not just the next token, but the data's intrinsic conditional stochasticity, a process we analyze using categorical entropy. Third, and most centrally, we prove that NLL training acts as an implicit form of spectral contrastive learning. By analyzing the information geometry of the model's prediction head, we show that NLL implicitly forces the learned representation space to align with the eigenspectrum of a predictive similarity operator, thereby learning a geometrically structured space without explicit contrastive pairs. This compositional and information-geometric perspective reveals the deep structural principles underlying the effectiveness of modern LMs. Project Page: https://github.com/asiresearch/lm-theory
comment: Project Page: https://github.com/asiresearch/lm-theory
☆ Component-Based Machine Learning for Indoor Flow and Temperature Fields Prediction Latent Feature Aggregation and Flow Interaction
Accurate and efficient prediction of indoor airflow and temperature distributions is essential for building energy optimization and occupant comfort control. However, traditional CFD simulations are computationally intensive, limiting their integration into real-time or design-iterative workflows. This study proposes a component-based machine learning (CBML) surrogate modeling approach to replace conventional CFD simulation for fast prediction of indoor velocity and temperature fields. The model consists of three neural networks: a convolutional autoencoder with residual connections (CAER) to extract and compress flow features, a multilayer perceptron (MLP) to map inlet velocities to latent representations, and a convolutional neural network (CNN) as an aggregator to combine single-inlet features into dual-inlet scenarios. A two-dimensional room with varying left and right air inlet velocities is used as a benchmark case, with CFD simulations providing training and testing data. Results show that the CBML model accurately and fast predicts two-component aggregated velocity and temperature fields across both training and testing datasets.
☆ Dependency-aware synthetic tabular data generation
Synthetic tabular data is increasingly used in privacy-sensitive domains such as health care, but existing generative models often fail to preserve inter-attribute relationships. In particular, functional dependencies (FDs) and logical dependencies (LDs), which capture deterministic and rule-based associations between features, are rarely or often poorly retained in synthetic datasets. To address this research gap, we propose the Hierarchical Feature Generation Framework (HFGF) for synthetic tabular data generation. We created benchmark datasets with known dependencies to evaluate our proposed HFGF. The framework first generates independent features using any standard generative model, and then reconstructs dependent features based on predefined FD and LD rules. Our experiments on four benchmark datasets with varying sizes, feature imbalance, and dependency complexity demonstrate that HFGF improves the preservation of FDs and LDs across six generative models, including CTGAN, TVAE, and GReaT. Our findings demonstrate that HFGF can significantly enhance the structural fidelity and downstream utility of synthetic tabular data.
comment: 23 pages, 3 figures, submitted to Pattern Recognition
☆ Physics-Informed Graph Neural Networks for Transverse Momentum Estimation in CMS Trigger Systems
Real-time particle transverse momentum ($p_T$) estimation in high-energy physics demands algorithms that are both efficient and accurate under strict hardware constraints. Static machine learning models degrade under high pileup and lack physics-aware optimization, while generic graph neural networks (GNNs) often neglect domain structure critical for robust $p_T$ regression. We propose a physics-informed GNN framework that systematically encodes detector geometry and physical observables through four distinct graph construction strategies that systematically encode detector geometry and physical observables: station-as-node, feature-as-node, bending angle-centric, and pseudorapidity ($\eta$)-centric representations. This framework integrates these tailored graph structures with a novel Message Passing Layer (MPL), featuring intra-message attention and gated updates, and domain-specific loss functions incorporating $p_{T}$-distribution priors. Our co-design methodology yields superior accuracy-efficiency trade-offs compared to existing baselines. Extensive experiments on the CMS Trigger Dataset validate the approach: a station-informed EdgeConv model achieves a state-of-the-art MAE of 0.8525 with $\ge55\%$ fewer parameters than deep learning baselines, especially TabNet, while an $\eta$-centric MPL configuration also demonstrates improved accuracy with comparable efficiency. These results establish the promise of physics-guided GNNs for deployment in resource-constrained trigger systems.
☆ Latent Granular Resynthesis using Neural Audio Codecs
We introduce a novel technique for creative audio resynthesis that operates by reworking the concept of granular synthesis at the latent vector level. Our approach creates a "granular codebook" by encoding a source audio corpus into latent vector segments, then matches each latent grain of a target audio signal to its closest counterpart in the codebook. The resulting hybrid sequence is decoded to produce audio that preserves the target's temporal structure while adopting the source's timbral characteristics. This technique requires no model training, works with diverse audio materials, and naturally avoids the discontinuities typical of traditional concatenative synthesis through the codec's implicit interpolation during decoding. We include supplementary material at https://github.com/naotokui/latentgranular/ , as well as a proof-of-concept implementation to allow users to experiment with their own sounds at https://huggingface.co/spaces/naotokui/latentgranular .
comment: Accepted at ISMIR 2025 Late Breaking Demos
☆ WACA-UNet: Weakness-Aware Channel Attention for Static IR Drop Prediction in Integrated Circuit Design
Accurate spatial prediction of power integrity issues, such as IR drop, is critical for reliable VLSI design. However, traditional simulation-based solvers are computationally expensive and difficult to scale. We address this challenge by reformulating IR drop estimation as a pixel-wise regression task on heterogeneous multi-channel physical maps derived from circuit layouts. Prior learning-based methods treat all input layers (e.g., metal, via, and current maps) equally, ignoring their varying importance to prediction accuracy. To tackle this, we propose a novel Weakness-Aware Channel Attention (WACA) mechanism, which recursively enhances weak feature channels while suppressing over-dominant ones through a two-stage gating strategy. Integrated into a ConvNeXtV2-based attention U-Net, our approach enables adaptive and balanced feature representation. On the public ICCAD-2023 benchmark, our method outperforms the ICCAD-2023 contest winner by reducing mean absolute error by 61.1% and improving F1-score by 71.0%. These results demonstrate that channel-wise heterogeneity is a key inductive bias in physical layout analysis for VLSI.
comment: 9 pages, 5 figures
☆ Can Small-Scale Data Poisoning Exacerbate Dialect-Linked Biases in Large Language Models?
Despite the ongoing improvements in the design of large language models (LLMs) to foster inclusion and balanced responses, these systems remain susceptible to encoding and amplifying social biases. This study examines how dialectal variation, specifically African American Vernacular English (AAVE) versus Standard American English (SAE), interacts with data poisoning to influence toxicity in outputs. Using both small- and medium-scale LLaMA models, we show that even minimal exposure to poisoned data significantly increases toxicity for AAVE inputs, while it remains comparatively unaffected for SAE. Larger models exhibit a more significant amplification effect which suggests heightened susceptibility with scale. To further assess these disparities, we employed GPT-4o as a fairness auditor, which identified harmful stereotypical patterns disproportionately tied to AAVE inputs, including portrayals of aggression, criminality, and intellectual inferiority. These findings underscore the compounding impact of data poisoning and dialectal bias and emphasize the need for dialect-aware evaluation, targeted debiasing interventions, and socially responsible training protocols during development.
☆ Bespoke multiresolution analysis of graph signals
We present a novel framework for discrete multiresolution analysis of graph signals. The main analytical tool is the samplet transform, originally defined in the Euclidean framework as a discrete wavelet-like construction, tailored to the analysis of scattered data. The first contribution of this work is defining samplets on graphs. To this end, we subdivide the graph into a fixed number of patches, embed each patch into a Euclidean space, where we construct samplets, and eventually pull the construction back to the graph. This ensures orthogonality, locality, and the vanishing moments property with respect to properly defined polynomial spaces on graphs. Compared to classical Haar wavelets, this framework broadens the class of graph signals that can efficiently be compressed and analyzed. Along this line, we provide a definition of a class of signals that can be compressed using our construction. We support our findings with different examples of signals defined on graphs whose vertices lie on smooth manifolds. For efficient numerical implementation, we combine heavy edge clustering, to partition the graph into meaningful patches, with landmark \texttt{Isomap}, which provides low-dimensional embeddings for each patch. Our results demonstrate the method's robustness, scalability, and ability to yield sparse representations with controllable approximation error, significantly outperforming traditional Haar wavelet approaches in terms of compression efficiency and multiresolution fidelity.
☆ Automatic Cough Analysis for Non-Small Cell Lung Cancer Detection
Early detection of non-small cell lung cancer (NSCLC) is critical for improving patient outcomes, and novel approaches are needed to facilitate early diagnosis. In this study, we explore the use of automatic cough analysis as a pre-screening tool for distinguishing between NSCLC patients and healthy controls. Cough audio recordings were prospectively acquired from a total of 227 subjects, divided into NSCLC patients and healthy controls. The recordings were analyzed using machine learning techniques, such as support vector machine (SVM) and XGBoost, as well as deep learning approaches, specifically convolutional neural networks (CNN) and transfer learning with VGG16. To enhance the interpretability of the machine learning model, we utilized Shapley Additive Explanations (SHAP). The fairness of the models across demographic groups was assessed by comparing the performance of the best model across different age groups (less than or equal to 58y and higher than 58y) and gender using the equalized odds difference on the test set. The results demonstrate that CNN achieves the best performance, with an accuracy of 0.83 on the test set. Nevertheless, SVM achieves slightly lower performances (accuracy of 0.76 in validation and 0.78 in the test set), making it suitable in contexts with low computational power. The use of SHAP for SVM interpretation further enhances model transparency, making it more trustworthy for clinical applications. Fairness analysis shows slightly higher disparity across age (0.15) than gender (0.09) on the test set. Therefore, to strengthen our findings' reliability, a larger, more diverse, and unbiased dataset is needed -- particularly including individuals at risk of NSCLC and those in early disease stages.
comment: Emilia Ambrosini and Simona Ferrante equally contributed to the work
☆ Explainable AI guided unsupervised fault diagnostics for high-voltage circuit breakers
Commercial high-voltage circuit breaker (CB) condition monitoring systems rely on directly observable physical parameters such as gas filling pressure with pre-defined thresholds. While these parameters are crucial, they only cover a small subset of malfunctioning mechanisms and usually can be monitored only if the CB is disconnected from the grid. To facilitate online condition monitoring while CBs remain connected, non-intrusive measurement techniques such as vibration or acoustic signals are necessary. Currently, CB condition monitoring studies using these signals typically utilize supervised methods for fault diagnostics, where ground-truth fault types are known due to artificially introduced faults in laboratory settings. This supervised approach is however not feasible in real-world applications, where fault labels are unavailable. In this work, we propose a novel unsupervised fault detection and segmentation framework for CBs based on vibration and acoustic signals. This framework can detect deviations from the healthy state. The explainable artificial intelligence (XAI) approach is applied to the detected faults for fault diagnostics. The specific contributions are: (1) we propose an integrated unsupervised fault detection and segmentation framework that is capable of detecting faults and clustering different faults with only healthy data required during training (2) we provide an unsupervised explainability-guided fault diagnostics approach using XAI to offer domain experts potential indications of the aged or faulty components, achieving fault diagnostics without the prerequisite of ground-truth fault labels. These contributions are validated using an experimental dataset from a high-voltage CB under healthy and artificially introduced fault conditions, contributing to more reliable CB system operation.
☆ ReCoDe: Reinforcement Learning-based Dynamic Constraint Design for Multi-Agent Coordination
Constraint-based optimization is a cornerstone of robotics, enabling the design of controllers that reliably encode task and safety requirements such as collision avoidance or formation adherence. However, handcrafted constraints can fail in multi-agent settings that demand complex coordination. We introduce ReCoDe--Reinforcement-based Constraint Design--a decentralized, hybrid framework that merges the reliability of optimization-based controllers with the adaptability of multi-agent reinforcement learning. Rather than discarding expert controllers, ReCoDe improves them by learning additional, dynamic constraints that capture subtler behaviors, for example, by constraining agent movements to prevent congestion in cluttered scenarios. Through local communication, agents collectively constrain their allowed actions to coordinate more effectively under changing conditions. In this work, we focus on applications of ReCoDe to multi-agent navigation tasks requiring intricate, context-based movements and consensus, where we show that it outperforms purely handcrafted controllers, other hybrid approaches, and standard MARL baselines. We give empirical (real robot) and theoretical evidence that retaining a user-defined controller, even when it is imperfect, is more efficient than learning from scratch, especially because ReCoDe can dynamically change the degree to which it relies on this controller.
☆ Solar Photovoltaic Assessment with Large Language Model
Accurate detection and localization of solar photovoltaic (PV) panels in satellite imagery is essential for optimizing microgrids and active distribution networks (ADNs), which are critical components of renewable energy systems. Existing methods lack transparency regarding their underlying algorithms or training datasets, rely on large, high-quality PV training data, and struggle to generalize to new geographic regions or varied environmental conditions without extensive re-training. These limitations lead to inconsistent detection outcomes, hindering large-scale deployment and data-driven grid optimization. In this paper, we investigate how large language models (LLMs) can be leveraged to overcome these challenges. Despite their promise, LLMs face several challenges in solar panel detection, including difficulties with multi-step logical processes, inconsistent output formatting, frequent misclassification of visually similar objects (e.g., shadows, parking lots), and low accuracy in complex tasks such as spatial localization and quantification. To overcome these issues, we propose the PV Assessment with LLMs (PVAL) framework, which incorporates task decomposition for more efficient workflows, output standardization for consistent and scalable formatting, few-shot prompting to enhance classification accuracy, and fine-tuning using curated PV datasets with detailed annotations. PVAL ensures transparency, scalability, and adaptability across heterogeneous datasets while minimizing computational overhead. By combining open-source accessibility with robust methodologies, PVAL establishes an automated and reproducible pipeline for solar panel detection, paving the way for large-scale renewable energy integration and optimized grid management.
comment: 27 pages, 7 figures
☆ Game-Theoretic Gradient Control for Robust Neural Network Training
Feed-forward neural networks (FFNNs) are vulnerable to input noise, reducing prediction performance. Existing regularization methods like dropout often alter network architecture or overlook neuron interactions. This study aims to enhance FFNN noise robustness by modifying backpropagation, interpreted as a multi-agent game, and exploring controlled target variable noising. Our "gradient dropout" selectively nullifies hidden layer neuron gradients with probability 1 - p during backpropagation, while keeping forward passes active. This is framed within compositional game theory. Additionally, target variables were perturbed with white noise or stable distributions. Experiments on ten diverse tabular datasets show varying impacts: improvement or diminishing of robustness and accuracy, depending on dataset and hyperparameters. Notably, on regression tasks, gradient dropout (p = 0.9) combined with stable distribution target noising significantly increased input noise robustness, evidenced by flatter MSE curves and more stable SMAPE values. These results highlight the method's potential, underscore the critical role of adaptive parameter tuning, and open new avenues for analyzing neural networks as complex adaptive systems exhibiting emergent behavior within a game-theoretic framework.
comment: 19 pages, 6 figures
Graph Structure Learning with Privacy Guarantees for Open Graph Data
Ensuring privacy in large-scale open datasets is increasingly challenging under regulations such as the General Data Protection Regulation (GDPR). While differential privacy (DP) provides strong theoretical guarantees, it primarily focuses on noise injection during model training, neglecting privacy preservation at the data publishing stage. Existing privacy-preserving data publishing (PPDP) approaches struggle to balance privacy and utility, particularly when data publishers and users are distinct entities. To address this gap, we focus on the graph recovery problem and propose a novel privacy-preserving estimation framework for open graph data, leveraging Gaussian DP (GDP) with a structured noise-injection mechanism. Unlike traditional methods that perturb gradients or model updates, our approach ensures unbiased graph structure recovery while enforcing DP at the data publishing stage. Moreover, we provide theoretical guarantees on estimation accuracy and extend our method to discrete-variable graphs, a setting often overlooked in DP research. Experimental results in graph learning demonstrate robust performance, offering a viable solution for privacy-conscious graph analysis.
☆ Distilling a Small Utility-Based Passage Selector to Enhance Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating retrieved information. Standard retrieval process prioritized relevance, focusing on topical alignment between queries and passages. In contrast, in RAG, the emphasis has shifted to utility, which considers the usefulness of passages for generating accurate answers. Despite empirical evidence showing the benefits of utility-based retrieval in RAG, the high computational cost of using LLMs for utility judgments limits the number of passages evaluated. This restriction is problematic for complex queries requiring extensive information. To address this, we propose a method to distill the utility judgment capabilities of LLMs into smaller, more efficient models. Our approach focuses on utility-based selection rather than ranking, enabling dynamic passage selection tailored to specific queries without the need for fixed thresholds. We train student models to learn pseudo-answer generation and utility judgments from teacher LLMs, using a sliding window method that dynamically selects useful passages. Our experiments demonstrate that utility-based selection provides a flexible and cost-effective solution for RAG, significantly reducing computational costs while improving answer quality. We present the distillation results using Qwen3-32B as the teacher model for both relevance ranking and utility-based selection, distilled into RankQwen1.7B and UtilityQwen1.7B. Our findings indicate that for complex questions, utility-based selection is more effective than relevance ranking in enhancing answer generation performance. We will release the relevance ranking and utility-based selection annotations for the MS MARCO dataset, supporting further research in this area.
comment: 9 pages, 5 figures
☆ GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network
Attributed graph clustering holds significant importance in modern data analysis. However, due to the complexity of graph data and the heterogeneity of node attributes, leveraging graph information for clustering remains challenging. To address this, we propose a novel deep graph clustering model, GCL-GCN, specifically designed to address the limitations of existing models in capturing local dependencies and complex structures when dealing with sparse and heterogeneous graph data. GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships, effectively capturing both global and local information between nodes, thereby enhancing the quality of node representations. Additionally, we propose a novel contrastive learning module that significantly enhances the discriminative power of feature representations. In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix, ensuring more identifiable initial representations for subsequent graph convolution and clustering tasks. Extensive experimental results on six datasets demonstrate that GCL-GCN outperforms 14 advanced methods in terms of clustering quality and robustness. Specifically, on the Cora dataset, it improves ACC, NMI, and ARI by 4.94%, 13.01%, and 10.97%, respectively, compared to the primary comparison method MBN.
comment: The source code for this study is available at https://github.com/YF-W/GCL-GCN
Graph Neural Network-Based Predictor for Optimal Quantum Hardware Selection
The growing variety of quantum hardware technologies, each with unique peculiarities such as connectivity and native gate sets, creates challenges when selecting the best platform for executing a specific quantum circuit. This selection process usually involves a brute-force approach: compiling the circuit on various devices and evaluating performance based on factors such as circuit depth and gate fidelity. However, this method is computationally expensive and does not scale well as the number of available quantum processors increases. In this work, we propose a Graph Neural Network (GNN)-based predictor that automates hardware selection by analyzing the Directed Acyclic Graph (DAG) representation of a quantum circuit. Our study evaluates 498 quantum circuits (up to 27 qubits) from the MQT Bench dataset, compiled using Qiskit on four devices: three superconducting quantum processors (IBM-Kyiv, IBM-Brisbane, IBM-Sherbrooke) and one trapped-ion processor (IONQ-Forte). Performance is estimated using a metric that integrates circuit depth and gate fidelity, resulting in a dataset where 93 circuits are optimally compiled on the trapped-ion device, while the remaining circuits prefer superconducting platforms. By exploiting graph-based machine learning, our approach avoids extracting the circuit features for the model evaluation but directly embeds it as a graph, significantly accelerating the optimal target decision-making process and maintaining all the information. Experimental results prove 94.4% accuracy and an 85.5% F1 score for the minority class, effectively predicting the best compilation target. The developed code is publicly available on GitHub (https://github.com/antotu/GNN-Model-Quantum-Predictor).
☆ Clustering-Oriented Generative Attribute Graph Imputation ACM MM'25
Attribute-missing graph clustering has emerged as a significant unsupervised task, where only attribute vectors of partial nodes are available and the graph structure is intact. The related models generally follow the two-step paradigm of imputation and refinement. However, most imputation approaches fail to capture class-relevant semantic information, leading to sub-optimal imputation for clustering. Moreover, existing refinement strategies optimize the learned embedding through graph reconstruction, while neglecting the fact that some attributes are uncorrelated with the graph. To remedy the problems, we establish the Clustering-oriented Generative Imputation with reliable Refinement (CGIR) model. Concretely, the subcluster distributions are estimated to reveal the class-specific characteristics precisely, and constrain the sampling space of the generative adversarial module, such that the imputation nodes are impelled to align with the correct clusters. Afterwards, multiple subclusters are merged to guide the proposed edge attention network, which identifies the edge-wise attributes for each class, so as to avoid the redundant attributes in graph reconstruction from disturbing the refinement of overall embedding. To sum up, CGIR splits attribute-missing graph clustering into the search and mergence of subclusters, which guides to implement node imputation and refinement within a unified framework. Extensive experiments prove the advantages of CGIR over state-of-the-art competitors.
comment: Accepted by ACM MM'25
☆ PurpCode: Reasoning for Safer Code Generation
We introduce PurpCode, the first post-training recipe for training safe code reasoning models towards generating secure code and defending against malicious cyberactivities. PurpCode trains a reasoning model in two stages: (i) Rule Learning, which explicitly teaches the model to reference cybersafety rules to generate vulnerability-free code and to avoid facilitating malicious cyberactivities; and (ii) Reinforcement Learning, which optimizes model safety and preserves model utility through diverse, multi-objective reward mechanisms. To empower the training pipelines with comprehensive cybersafety data, we conduct internal red-teaming to synthesize comprehensive and high-coverage prompts based on real-world tasks for inducing unsafe cyberactivities in the model. Based on PurpCode, we develop a reasoning-based coding model, namely PurpCode-32B, which demonstrates state-of-the-art cybersafety, outperforming various frontier models. Meanwhile, our alignment method decreases the model overrefusal rates in both general and cybersafety-specific scenarios, while preserving model utility in both code generation and common security knowledge.
☆ Exploring molecular assembly as a biosignature using mass spectrometry and machine learning
Molecular assembly offers a promising path to detect life beyond Earth, while minimizing assumptions based on terrestrial life. As mass spectrometers will be central to upcoming Solar System missions, predicting molecular assembly from their data without needing to elucidate unknown structures will be essential for unbiased life detection. An ideal agnostic biosignature must be interpretable and experimentally measurable. Here, we show that molecular assembly, a recently developed approach to measure objects that have been produced by evolution, satisfies both criteria. First, it is interpretable for life detection, as it reflects the assembly of molecules with their bonds as building blocks, in contrast to approaches that discount construction history. Second, it can be determined without structural elucidation, as it can be physically measured by mass spectrometry, a property that distinguishes it from other approaches that use structure-based information measures for molecular complexity. Whilst molecular assembly is directly measurable using mass spectrometry data, there are limits imposed by mission constraints. To address this, we developed a machine learning model that predicts molecular assembly with high accuracy, reducing error by three-fold compared to baseline models. Simulated data shows that even small instrumental inconsistencies can double model error, emphasizing the need for standardization. These results suggest that standardized mass spectrometry databases could enable accurate molecular assembly prediction, without structural elucidation, providing a proof-of-concept for future astrobiology missions.
comment: 35 pages,7 figures, 62 references
☆ Closing the Modality Gap for Mixed Modality Search
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.
comment: Project page: https://yuhui-zh15.github.io/MixedModalitySearch/
Dynamics-Informed Reservoir Computing with Visibility Graphs
Accurate prediction of complex and nonlinear time series remains a challenging problem across engineering and scientific disciplines. Reservoir computing (RC) offers a computationally efficient alternative to traditional deep learning by training only the read-out layer while employing a randomly structured and fixed reservoir network. Despite its advantages, the largely random reservoir graph architecture often results in suboptimal and oversized networks with poorly understood dynamics. Addressing this issue, we propose a novel Dynamics-Informed Reservoir Computing (DyRC) framework that systematically infers the reservoir network structure directly from the input training sequence. This work proposes to employ the visibility graph (VG) technique, which converts time series data into networks by representing measurement points as nodes linked by mutual visibility. The reservoir network is constructed by directly adopting the VG network from a training data sequence, leveraging the parameter-free visibility graph approach to avoid expensive hyperparameter tuning. This process results in a reservoir that is directly informed by the specific dynamics of the prediction task under study. We assess the DyRC-VG method through prediction tasks involving the canonical nonlinear Duffing oscillator, evaluating prediction accuracy and consistency. Compared to an Erd\H{o}s-R\'enyi graph of the same size, spectral radius, and comparable density, we observe higher prediction quality and more consistent performance over repeated implementations in the DyRC-VG.
comment: 7 pages, 4 figures. The following article has been submitted to by Chaos: An Interdisciplinary Journal of Nonlinear Science
☆ Neural Ordinary Differential Equations for Learning and Extrapolating System Dynamics Across Bifurcations
Forecasting system behaviour near and across bifurcations is crucial for identifying potential shifts in dynamical systems. While machine learning has recently been used to learn critical transitions and bifurcation structures from data, most studies remain limited as they exclusively focus on discrete-time methods and local bifurcations. To address these limitations, we use Neural Ordinary Differential Equations which provide a continuous, data-driven framework for learning system dynamics. We apply our approach to a predator-prey system that features both local and global bifurcations, presenting a challenging test case. Our results show that Neural Ordinary Differential Equations can recover underlying bifurcation structures directly from timeseries data by learning parameter-dependent vector fields. Notably, we demonstrate that Neural Ordinary Differential Equations can forecast bifurcations even beyond the parameter regions represented in the training data. We also assess the method's performance under limited and noisy data conditions, finding that model accuracy depends more on the quality of information that can be inferred from the training data, than on the amount of data available.
☆ ProGMLP: A Progressive Framework for GNN-to-MLP Knowledge Distillation with Efficient Trade-offs
GNN-to-MLP (G2M) methods have emerged as a promising approach to accelerate Graph Neural Networks (GNNs) by distilling their knowledge into simpler Multi-Layer Perceptrons (MLPs). These methods bridge the gap between the expressive power of GNNs and the computational efficiency of MLPs, making them well-suited for resource-constrained environments. However, existing G2M methods are limited by their inability to flexibly adjust inference cost and accuracy dynamically, a critical requirement for real-world applications where computational resources and time constraints can vary significantly. To address this, we introduce a Progressive framework designed to offer flexible and on-demand trade-offs between inference cost and accuracy for GNN-to-MLP knowledge distillation (ProGMLP). ProGMLP employs a Progressive Training Structure (PTS), where multiple MLP students are trained in sequence, each building on the previous one. Furthermore, ProGMLP incorporates Progressive Knowledge Distillation (PKD) to iteratively refine the distillation process from GNNs to MLPs, and Progressive Mixup Augmentation (PMA) to enhance generalization by progressively generating harder mixed samples. Our approach is validated through comprehensive experiments on eight real-world graph datasets, demonstrating that ProGMLP maintains high accuracy while dynamically adapting to varying runtime scenarios, making it highly effective for deployment in diverse application settings.
☆ MindSpeed RL: Distributed Dataflow for Scalable and Efficient RL Training on Ascend NPU Cluster
Reinforcement learning (RL) is a paradigm increasingly used to align large language models. Popular RL algorithms utilize multiple workers and can be modeled as a graph, where each node is the status of a worker and each edge represents dataflow between nodes. Owing to the heavy cross-node dependencies, the RL training system usually suffers from poor cluster scalability and low memory utilization. In this article, we introduce MindSpeed RL, an effective and efficient system for large-scale RL training. Unlike existing centralized methods, MindSpeed RL organizes the essential data dependencies in RL training, i.e., sample flow and resharding flow, from a distributed view. On the one hand, a distributed transfer dock strategy, which sets controllers and warehouses on the basis of the conventional replay buffer, is designed to release the dispatch overhead in the sample flow. A practical allgather--swap strategy is presented to eliminate redundant memory usage in resharding flow. In addition, MindSpeed RL further integrates numerous parallelization strategies and acceleration techniques for systematic optimization. Compared with existing state-of-the-art systems, comprehensive experiments on the RL training of popular Qwen2.5-Dense-7B/32B, Qwen3-MoE-30B, and DeepSeek-R1-MoE-671B show that MindSpeed RL increases the throughput by 1.42 ~ 3.97 times. Finally, we open--source MindSpeed RL and perform all the experiments on a super pod of Ascend with 384 neural processing units (NPUs) to demonstrate the powerful performance and reliability of Ascend.
comment: 9 pages
☆ A diffusion-based generative model for financial time series via geometric Brownian motion
We propose a novel diffusion-based generative framework for financial time series that incorporates geometric Brownian motion (GBM), the foundation of the Black--Scholes theory, into the forward noising process. Unlike standard score-based models that treat price trajectories as generic numerical sequences, our method injects noise proportionally to asset prices at each time step, reflecting the heteroskedasticity observed in financial time series. By accurately balancing the drift and diffusion terms, we show that the resulting log-price process reduces to a variance-exploding stochastic differential equation, aligning with the formulation in score-based generative models. The reverse-time generative process is trained via denoising score matching using a Transformer-based architecture adapted from the Conditional Score-based Diffusion Imputation (CSDI) framework. Empirical evaluations on historical stock data demonstrate that our model reproduces key stylized facts heavy-tailed return distributions, volatility clustering, and the leverage effect more realistically than conventional diffusion models.
☆ Adapting to Fragmented and Evolving Data: A Fisher Information Perspective
Modern machine learning systems operating in dynamic environments often face \textit{sequential covariate shift} (SCS), where input distributions evolve over time while the conditional distribution remains stable. We introduce FADE (Fisher-based Adaptation to Dynamic Environments), a lightweight and theoretically grounded framework for robust learning under SCS. FADE employs a shift-aware regularization mechanism anchored in Fisher information geometry, guiding adaptation by modulating parameter updates based on sensitivity and stability. To detect significant distribution changes, we propose a Cramer-Rao-informed shift signal that integrates KL divergence with temporal Fisher dynamics. Unlike prior methods requiring task boundaries, target supervision, or experience replay, FADE operates online with fixed memory and no access to target labels. Evaluated on seven benchmarks spanning vision, language, and tabular data, FADE achieves up to 19\% higher accuracy under severe shifts, outperforming methods such as TENT and DIW. FADE also generalizes naturally to federated learning by treating heterogeneous clients as temporally fragmented environments, enabling scalable and stable adaptation in decentralized settings. Theoretical analysis guarantees bounded regret and parameter consistency, while empirical results demonstrate FADE's robustness across modalities and shift intensities.
☆ Agent0: Leveraging LLM Agents to Discover Multi-value Features from Text for Enhanced Recommendations KDD '25
Large language models (LLMs) and their associated agent-based frameworks have significantly advanced automated information extraction, a critical component of modern recommender systems. While these multitask frameworks are widely used in code generation, their application in data-centric research is still largely untapped. This paper presents Agent0, an LLM-driven, agent-based system designed to automate information extraction and feature construction from raw, unstructured text. Categorical features are crucial for large-scale recommender systems but are often expensive to acquire. Agent0 coordinates a group of interacting LLM agents to automatically identify the most valuable text aspects for subsequent tasks (such as models or AutoML pipelines). Beyond its feature engineering capabilities, Agent0 also offers an automated prompt-engineering tuning method that utilizes dynamic feedback loops from an oracle. Our findings demonstrate that this closed-loop methodology is both practical and effective for automated feature discovery, which is recognized as one of the most challenging phases in current recommender system development.
comment: Agent4IR, KDD '25
Reinforcement Learning via Conservative Agent for Environments with Random Delays
Real-world reinforcement learning applications are often hindered by delayed feedback from environments, which violates the Markov assumption and introduces significant challenges. Although numerous delay-compensating methods have been proposed for environments with constant delays, environments with random delays remain largely unexplored due to their inherent variability and unpredictability. In this study, we propose a simple yet robust agent for decision-making under random delays, termed the conservative agent, which reformulates the random-delay environment into its constant-delay equivalent. This transformation enables any state-of-the-art constant-delay method to be directly extended to the random-delay environments without modifying the algorithmic structure or sacrificing performance. We evaluate the conservative agent-based algorithm on continuous control tasks, and empirical results demonstrate that it significantly outperforms existing baseline algorithms in terms of asymptotic performance and sample efficiency.
☆ GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units
As AI workloads proliferate, optimizing arithmetic units is becoming increasingly important to reduce the footprint of digital systems. Conventional design flows, which often rely on manual or heuristics-based optimization, are limited in their ability to thoroughly explore the vast design space. In this paper, we introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units, more specifically multipliers. At the core of GENIAL is a Transformer-based surrogate model trained in two stages, involving self-supervised pretraining followed by supervised finetuning, to robustly forecast key hardware metrics such as power and area from abstracted design representations. By inverting the surrogate model, GENIAL efficiently searches for new operand encodings that directly minimize power consumption in arithmetic units for specific input data distributions. Extensive experiments on large datasets demonstrate that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs. This enables to deploy a high-effort logic synthesis optimization flow in the loop, improving the accuracy of the surrogate model. Notably, GENIAL automatically discovers encodings that achieve up to 18% switching activity savings within multipliers on representative AI workloads compared with the conventional two's complement. We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines, highlighting GENIAL's applicability for a wide spectrum of logic functions. Together, these advances mark a significant step toward automated Quality-of-Results-optimized combinational circuit generation for digital systems.
comment: Under review
☆ Differentiated Thyroid Cancer Recurrence Classification Using Machine Learning Models and Bayesian Neural Networks with Varying Priors: A SHAP-Based Interpretation of the Best Performing Model
Differentiated thyroid cancer DTC recurrence is a major public health concern, requiring classification and predictive models that are not only accurate but also interpretable and uncertainty aware. This study introduces a comprehensive framework for DTC recurrence classification using a dataset containing 383 patients and 16 clinical and pathological variables. Initially, 11 machine learning ML models were employed using the complete dataset, where the Support Vector Machines SVM model achieved the highest accuracy of 0.9481. To reduce complexity and redundancy, feature selection was carried out using the Boruta algorithm, and the same ML models were applied to the reduced dataset, where it was observed that the Logistic Regression LR model obtained the maximum accuracy of 0.9611. However, these ML models often lack uncertainty quantification, which is critical in clinical decision making. Therefore, to address this limitation, the Bayesian Neural Networks BNN with six varying prior distributions, including Normal 0,1, Normal 0,10, Laplace 0,1, Cauchy 0,1, Cauchy 0,2.5, and Horseshoe 1, were implemented on both the complete and reduced datasets. The BNN model with Normal 0,10 prior distribution exhibited maximum accuracies of 0.9740 and 0.9870 before and after feature selection, respectively.
comment: 16 pages, 15 figures, to be published in International Journal of Research in Computing (IJRC)
☆ KASPER: Kolmogorov Arnold Networks for Stock Prediction and Explainable Regimes
Forecasting in financial markets remains a significant challenge due to their nonlinear and regime-dependent dynamics. Traditional deep learning models, such as long short-term memory networks and multilayer perceptrons, often struggle to generalize across shifting market conditions, highlighting the need for a more adaptive and interpretable approach. To address this, we introduce Kolmogorov-Arnold networks for stock prediction and explainable regimes (KASPER), a novel framework that integrates regime detection, sparse spline-based function modeling, and symbolic rule extraction. The framework identifies hidden market conditions using a Gumbel-Softmax-based mechanism, enabling regime-specific forecasting. For each regime, it employs Kolmogorov-Arnold networks with sparse spline activations to capture intricate price behaviors while maintaining robustness. Interpretability is achieved through symbolic learning based on Monte Carlo Shapley values, which extracts human-readable rules tailored to each regime. Applied to real-world financial time series from Yahoo Finance, the model achieves an $R^2$ score of 0.89, a Sharpe Ratio of 12.02, and a mean squared error as low as 0.0001, outperforming existing methods. This research establishes a new direction for regime-aware, transparent, and robust forecasting in financial markets.
comment: 11 pages, 7 figures, 3 tables
☆ A Toolbox, Not a Hammer -- Multi-TAG: Scaling Math Reasoning with Multi-Tool Aggregation
Augmenting large language models (LLMs) with external tools is a promising avenue for developing high-performance mathematical reasoning systems. Prior tool-augmented approaches typically finetune an LLM to select and invoke a single tool at each reasoning step and show promising results on simpler math reasoning benchmarks such as GSM8K. However, these approaches struggle with more complex math problems that require precise reasoning over multiple steps. To address this limitation, in this work, we propose Multi-TAG, a Multi-Tool AGgregation-based framework. Instead of relying on a single tool, Multi-TAG guides an LLM to concurrently invoke multiple tools at each reasoning step. It then aggregates their diverse outputs to verify and refine the reasoning process, enhancing solution robustness and accuracy. Notably, Multi-TAG is a finetuning-free, inference-only framework, making it readily applicable to any LLM backbone, including large open-weight models which are computationally expensive to finetune and proprietary frontier models which cannot be finetuned with custom recipes. We evaluate Multi-TAG on four challenging benchmarks: MATH500, AIME, AMC, and OlympiadBench. Across both open-weight and closed-source LLM backbones, Multi-TAG consistently and substantially outperforms state-of-the-art baselines, achieving average improvements of 6.0% to 7.5% over state-of-the-art baselines.
comment: 21 pages, 3 figures
☆ TiVy: Time Series Visual Summary for Scalable Visualization IEEE VIS 2025
Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.
comment: to be published in TVCG (IEEE VIS 2025)
☆ Underwater Waste Detection Using Deep Learning A Performance Comparison of YOLOv7 to 10 and Faster RCNN
Underwater pollution is one of today's most significant environmental concerns, with vast volumes of garbage found in seas, rivers, and landscapes around the world. Accurate detection of these waste materials is crucial for successful waste management, environmental monitoring, and mitigation strategies. In this study, we investigated the performance of five cutting-edge object recognition algorithms, namely YOLO (You Only Look Once) models, including YOLOv7, YOLOv8, YOLOv9, YOLOv10, and Faster Region-Convolutional Neural Network (R-CNN), to identify which model was most effective at recognizing materials in underwater situations. The models were thoroughly trained and tested on a large dataset containing fifteen different classes under diverse conditions, such as low visibility and variable depths. From the above-mentioned models, YOLOv8 outperformed the others, with a mean Average Precision (mAP) of 80.9%, indicating a significant performance. This increased performance is attributed to YOLOv8's architecture, which incorporates advanced features such as improved anchor-free mechanisms and self-supervised learning, allowing for more precise and efficient recognition of items in a variety of settings. These findings highlight the YOLOv8 model's potential as an effective tool in the global fight against pollution, improving both the detection capabilities and scalability of underwater cleanup operations.
comment: 7 pages, 11 figures, to be published in International Journal of Research in Computing (IJRC)
☆ CNN-based Surface Temperature Forecasts with Ensemble Numerical Weather Prediction over Medium-range Forecast Periods
This study proposes a method that integrates convolutional neural networks (CNNs) with ensemble numerical weather prediction (NWP) models, enabling surface temperature forecasting at lead times beyond the short-range (five-day) forecast period. Owing to limited computational resources, operational medium-range temperature forecasts typically rely on low-resolution NWP models, which are prone to systematic and random errors. To resolve these limitations, the proposed method first reduces systematic errors through CNN-based post-processing (bias correction and spatial super-resolution) on each ensemble member, reconstructing high-resolution temperature fields from low-resolution model outputs. Second, it reduces random errors through ensemble averaging of the CNN-corrected members. This study also investigates whether the sequence of CNN correction and ensemble averaging affects the forecast accuracy. For comparison with the proposed method, we additionally conducted experiments with the CNN trained on ensemble-averaged forecasts. The first approach--CNN correction before ensemble averaging--consistently achieved higher accuracy than the reverse approach. Although based on low-resolution ensemble forecasts, the proposed method notably outperformed the high-resolution deterministic NWP models. These findings indicate that combining CNN-based correction with ensemble averaging effectively reduces both the systematic and random errors in NWP model outputs. The proposed approach is a practical and scalable solution for improving medium-range temperature forecasts, and is particularly valuable at operational centers with limited computational resources.
comment: 32 pages, 10 figures
☆ Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction
Accurate prediction of blood-brain barrier permeability (BBBP) is essential for central nervous system (CNS) drug development. While graph neural networks (GNNs) have advanced molecular property prediction, they often rely on molecular topology and neglect the three-dimensional geometric information crucial for modeling transport mechanisms. This paper introduces the geometric multi-color message-passing graph neural network (GMC-MPNN), a novel framework that enhances standard message-passing architectures by explicitly incorporating atomic-level geometric features and long-range interactions. Our model constructs weighted colored subgraphs based on atom types to capture the spatial relationships and chemical context that govern BBB permeability. We evaluated GMC-MPNN on three benchmark datasets for both classification and regression tasks, using rigorous scaffold-based splitting to ensure a robust assessment of generalization. The results demonstrate that GMC-MPNN consistently outperforms existing state-of-the-art models, achieving superior performance in both classifying compounds as permeable/non-permeable (AUC-ROC of 0.9704 and 0.9685) and in regressing continuous permeability values (RMSE of 0.4609, Pearson correlation of 0.7759). An ablation study further quantified the impact of specific atom-pair interactions, revealing that the model's predictive power derives from its ability to learn from both common and rare, but chemically significant, functional motifs. By integrating spatial geometry into the graph representation, GMC-MPNN sets a new performance benchmark and offers a more accurate and generalizable tool for drug discovery pipelines.
☆ A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions
Retrieval-Augmented Generation (RAG) represents a major advancement in natural language processing (NLP), combining large language models (LLMs) with information retrieval systems to enhance factual grounding, accuracy, and contextual relevance. This paper presents a comprehensive systematic review of RAG, tracing its evolution from early developments in open domain question answering to recent state-of-the-art implementations across diverse applications. The review begins by outlining the motivations behind RAG, particularly its ability to mitigate hallucinations and outdated knowledge in parametric models. Core technical components-retrieval mechanisms, sequence-to-sequence generation models, and fusion strategies are examined in detail. A year-by-year analysis highlights key milestones and research trends, providing insight into RAG's rapid growth. The paper further explores the deployment of RAG in enterprise systems, addressing practical challenges related to retrieval of proprietary data, security, and scalability. A comparative evaluation of RAG implementations is conducted, benchmarking performance on retrieval accuracy, generation fluency, latency, and computational efficiency. Persistent challenges such as retrieval quality, privacy concerns, and integration overhead are critically assessed. Finally, the review highlights emerging solutions, including hybrid retrieval approaches, privacy-preserving techniques, optimized fusion strategies, and agentic RAG architectures. These innovations point toward a future of more reliable, efficient, and context-aware knowledge-intensive NLP systems.
comment: 33 pages, 2 figures
☆ Probably Approximately Correct Causal Discovery
The discovery of causal relationships is a foundational problem in artificial intelligence, statistics, epidemiology, economics, and beyond. While elegant theories exist for accurate causal discovery given infinite data, real-world applications are inherently resource-constrained. Effective methods for inferring causal relationships from observational data must perform well under finite data and time constraints, where "performing well" implies achieving high, though not perfect accuracy. In his seminal paper A Theory of the Learnable, Valiant highlighted the importance of resource constraints in supervised machine learning, introducing the concept of Probably Approximately Correct (PAC) learning as an alternative to exact learning. Inspired by Valiant's work, we propose the Probably Approximately Correct Causal (PACC) Discovery framework, which extends PAC learning principles to the causal field. This framework emphasizes both computational and sample efficiency for established causal methods such as propensity score techniques and instrumental variable approaches. Furthermore, we show that it can also provide theoretical guarantees for other widely used methods, such as the Self-Controlled Case Series (SCCS) method, which had previously lacked such guarantees.
☆ Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning via Incorporating Generalized Human Expertise
Efficient exploration in multi-agent reinforcement learning (MARL) is a challenging problem when receiving only a team reward, especially in environments with sparse rewards. A powerful method to mitigate this issue involves crafting dense individual rewards to guide the agents toward efficient exploration. However, individual rewards generally rely on manually engineered shaping-reward functions that lack high-order intelligence, thus it behaves ineffectively than humans regarding learning and generalization in complex problems. To tackle these issues, we combine the above two paradigms and propose a novel framework, LIGHT (Learning Individual Intrinsic reward via Incorporating Generalized Human experTise), which can integrate human knowledge into MARL algorithms in an end-to-end manner. LIGHT guides each agent to avoid unnecessary exploration by considering both individual action distribution and human expertise preference distribution. Then, LIGHT designs individual intrinsic rewards for each agent based on actionable representational transformation relevant to Q-learning so that the agents align their action preferences with the human expertise while maximizing the joint action value. Experimental results demonstrate the superiority of our method over representative baselines regarding performance and better knowledge reusability across different sparse-reward tasks on challenging scenarios.
comment: IEEE International Conference on Systems, Man, and Cybernetics
☆ Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning
Background: Hypertensive kidney disease (HKD) patients in intensive care units (ICUs) face high short-term mortality, but tailored risk prediction tools are lacking. Early identification of high-risk individuals is crucial for clinical decision-making. Methods: We developed a machine learning framework to predict 30-day in-hospital mortality among ICU patients with HKD using early clinical data from the MIMIC-IV v2.2 database. A cohort of 1,366 adults was curated with strict criteria, excluding malignancy cases. Eighteen clinical features-including vital signs, labs, comorbidities, and therapies-were selected via random forest importance and mutual information filtering. Several models were trained and compared with stratified five-fold cross-validation; CatBoost demonstrated the best performance. Results: CatBoost achieved an AUROC of 0.88 on the independent test set, with sensitivity of 0.811 and specificity of 0.798. SHAP values and Accumulated Local Effects (ALE) plots showed the model relied on meaningful predictors such as altered consciousness, vasopressor use, and coagulation status. Additionally, the DREAM algorithm was integrated to estimate patient-specific posterior risk distributions, allowing clinicians to assess both predicted mortality and its uncertainty. Conclusions: We present an interpretable machine learning pipeline for early, real-time risk assessment in ICU patients with HKD. By combining high predictive performance with uncertainty quantification, our model supports individualized triage and transparent clinical decisions. This approach shows promise for clinical deployment and merits external validation in broader critical care populations.
☆ PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning
Retrieval-augmented generation (RAG) often falls short when retrieved context includes confusing semi-relevant passages, or when answering questions require deep contextual understanding and reasoning. We propose an efficient fine-tuning framework, called PrismRAG, that (i) trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages, and (ii) instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions. Evaluated across 12 open-book RAG QA benchmarks spanning diverse application domains and scenarios, PrismRAG improves average factuality by 5.4%, outperforming state-of-the-art solutions.
♻ ☆ Neural Tangent Kernels and Fisher Information Matrices for Simple ReLU Networks with Random Hidden Weights
Fisher information matrices and neural tangent kernels (NTK) for 2-layer ReLU networks with random hidden weight are argued. We discuss the relation between both notions as a linear transformation and show that spectral decomposition of NTK with concrete forms of eigenfunctions with major eigenvalues. We also obtain an approximation formula of the functions presented by the 2-layer neural networks.
♻ ☆ Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
The diagnostic value of electrocardiogram (ECG) lies in its dynamic characteristics, ranging from rhythm fluctuations to subtle waveform deformations that evolve across time and frequency domains. However, supervised ECG models tend to overfit dominant and repetitive patterns, overlooking fine-grained but clinically critical cues, a phenomenon known as Simplicity Bias (SB), where models favor easily learnable signals over subtle but informative ones. In this work, we first empirically demonstrate the presence of SB in ECG analyses and its negative impact on diagnostic performance, while simultaneously discovering that self-supervised learning (SSL) can alleviate it, providing a promising direction for tackling the bias. Following the SSL paradigm, we propose a novel method comprising two key components: 1) Temporal-Frequency aware Filters to capture temporal-frequency features reflecting the dynamic characteristics of ECG signals, and 2) building on this, Multi-Grained Prototype Reconstruction for coarse and fine representation learning across dual domains, further mitigating SB. To advance SSL in ECG analyses, we curate a large-scale multi-site ECG dataset with 1.53 million recordings from over 300 clinical centers. Experiments on three downstream tasks across six ECG datasets demonstrate that our method effectively reduces SB and achieves state-of-the-art performance. Code and dataset will be released publicly.
comment: there are factual errors
♻ ☆ GVCCS: A Dataset for Contrail Identification and Tracking on Visible Whole Sky Camera Sequences
Aviation's climate impact includes not only CO2 emissions but also significant non-CO2 effects, especially from contrails. These ice clouds can alter Earth's radiative balance, potentially rivaling the warming effect of aviation CO2. Physics-based models provide useful estimates of contrail formation and climate impact, but their accuracy depends heavily on the quality of atmospheric input data and on assumptions used to represent complex processes like ice particle formation and humidity-driven persistence. Observational data from remote sensors, such as satellites and ground cameras, could be used to validate and calibrate these models. However, existing datasets don't explore all aspect of contrail dynamics and formation: they typically lack temporal tracking, and do not attribute contrails to their source flights. To address these limitations, we present the Ground Visible Camera Contrail Sequences (GVCCS), a new open data set of contrails recorded with a ground-based all-sky camera in the visible range. Each contrail is individually labeled and tracked over time, allowing a detailed analysis of its lifecycle. The dataset contains 122 video sequences (24,228 frames) and includes flight identifiers for contrails that form above the camera. As reference, we also propose a unified deep learning framework for contrail analysis using a panoptic segmentation model that performs semantic segmentation (contrail pixel identification), instance segmentation (individual contrail separation), and temporal tracking in a single architecture. By providing high-quality, temporally resolved annotations and a benchmark for model evaluation, our work supports improved contrail monitoring and will facilitate better calibration of physical models. This sets the groundwork for more accurate climate impact understanding and assessments.
♻ ☆ ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.
comment: 12 pages,9 figures
♻ ☆ When Noisy Labels Meet Class Imbalance on Graphs: A Graph Augmentation Method with LLM and Pseudo Label
Class-imbalanced graph node classification is a practical yet underexplored research problem. Although recent studies have attempted to address this issue, they typically assume clean and reliable labels when processing class-imbalanced graphs. This assumption often violates the nature of real-world graphs, where labels frequently contain noise. Given this gap, this paper systematically investigates robust node classification for class-imbalanced graphs with noisy labels. We propose GraphALP, a novel Graph Augmentation framework based on Large language models (LLMs) and Pseudo-labeling techniques. Specifically, we design an LLM-based oversampling method to generate synthetic minority nodes, producing label-accurate minority nodes to alleviate class imbalance. Based on the class-balanced graphs, we develop a dynamically weighted pseudo-labeling method to obtain high-confidence pseudo labels to reduce label noise ratio. Additionally, we implement a secondary LLM-guided oversampling mechanism to mitigate potential class distribution skew caused by pseudo labels. Experimental results show that GraphALP achieves superior performance over state-of-the-art methods on class-imbalanced graphs with noisy labels.
♻ ☆ VIBE: Video-Input Brain Encoder for fMRI Response Modeling
We present VIBE, a two-stage Transformer that fuses multi-modal video, audio, and text features to predict fMRI activity. Representations from open-source models (Qwen2.5, BEATs, Whisper, SlowFast, V-JEPA) are merged by a modality-fusion transformer and temporally decoded by a prediction transformer with rotary embeddings. Trained on 65 hours of movie data from the CNeuroMod dataset and ensembled across 20 seeds, VIBE attains mean parcel-wise Pearson correlations of 0.3225 on in-distribution Friends S07 and 0.2125 on six out-of-distribution films. An earlier iteration of the same architecture obtained 0.3198 and 0.2096, respectively, winning Phase-1 and placing second overall in the Algonauts 2025 Challenge.
♻ ☆ Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.
comment: 8 pages, 2 figures, 1 table. Invited report, CCN 2025 Algonauts Project session (3rd-place team). Code: https://github.com/erensemih/Algonauts2025_ModalityRNN
♻ ☆ Causal Mechanism Estimation in Multi-Sensor Systems Across Multiple Domains
To gain deeper insights into a complex sensor system through the lens of causality, we present common and individual causal mechanism estimation (CICME), a novel three-step approach to inferring causal mechanisms from heterogeneous data collected across multiple domains. By leveraging the principle of Causal Transfer Learning (CTL), CICME is able to reliably detect domain-invariant causal mechanisms when provided with sufficient samples. The identified common causal mechanisms are further used to guide the estimation of the remaining causal mechanisms in each domain individually. The performance of CICME is evaluated on linear Gaussian models under scenarios inspired from a manufacturing process. Building upon existing continuous optimization-based causal discovery methods, we show that CICME leverages the benefits of applying causal discovery on the pooled data and repeatedly on data from individual domains, and it even outperforms both baseline methods under certain scenarios.
♻ ☆ RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
♻ ☆ TESSERA: Temporal Embeddings of Surface Spectra for Earth Representation and Analysis
Satellite remote sensing from repeated observations and multiple sensors enables a wide range of downstream applications, including climate modeling, carbon accounting, and strategies for conservation and sustainable land use. However, satellite time series are voluminous, often corrupted by sensor noise, clouds, and atmospheric conditions, and unevenly spaced in time, making them challenging to use. We present TESSERA, an open, global, land-oriented remote sensing foundation model that uses self-supervised learning to generate `ready-to-use' embeddings at 10~m scale from pixel-level satellite time series data. TESSERA uses two parallel Transformer-based encoders to combine optical data from ten Sentinel-2 spectral bands at 10-60~m spatial resolution and two Sentinel-1 synthetic aperture radar backscatter coefficients at 10~m resolution to create embeddings that are subsequently fused with a multilayer perceptron to create annual global embedding maps. We compare our work with state-of-the-art task-specific models and other foundation models in five diverse downstream tasks and find that TESSERA closely matches or outperforms these baselines. We believe that TESSERA's ease of use, openness, computation-, label-, and data-efficiency, and high performance will prove transformative in a wide range of vegetation-oriented ecological and agricultural applications.
♻ ☆ Bounded KRnet and its applications to density estimation and approximation
In this paper, we develop an invertible mapping, called B-KRnet, on a bounded domain and apply it to density estimation/approximation for data or the solutions of PDEs such as the Fokker-Planck equation and the Keller-Segel equation. Similar to KRnet, B-KRnet consists of a series of coupling layers with progressively fewer active transformation dimensions, inspired by the triangular structure of the Knothe-Rosenblatt (KR) rearrangement. The main difference between B-KRnet and KRnet is that B-KRnet is defined on a hypercube while KRnet is defined on the whole space, in other words, a new mechanism is introduced in B-KRnet to maintain the exact invertibility. Using B-KRnet as a transport map, we obtain an explicit probability density function (PDF) model that corresponds to the pushforward of a base (uniform) distribution on the hypercube. It can be directly applied to density estimation when only data are available. By coupling KRnet and B-KRnet, we define a deep generative model on a high-dimensional domain where some dimensions are bounded and other dimensions are unbounded. A typical case is the solution of the stationary kinetic Fokker-Planck equation, which is a PDF of position and momentum. Based on B-KRnet, we develop an adaptive learning approach to approximate partial differential equations whose solutions are PDFs or can be treated as PDFs. A variety of numerical experiments is presented to demonstrate the effectiveness of B-KRnet.
comment: 26 pages, 16 figures
♻ ☆ TaylorPODA: A Taylor Expansion-Based Method to Improve Post-Hoc Attributions for Opaque Models AAAI 2026
Existing post-hoc model-agnostic methods generate external explanations for opaque models, primarily by locally attributing the model output to its input features. However, they often lack an explicit and systematic framework for quantifying the contribution of individual features. Building on the Taylor expansion framework introduced by Deng et al. (2024) to unify existing local attribution methods, we propose a rigorous set of postulates -- "precision", "federation", and "zero-discrepancy" -- to govern Taylor term-specific attribution. Guided by these postulates, we introduce TaylorPODA (Taylor expansion-derived imPortance-Order aDapted Attribution), which incorporates an additional "adaptation" property. This property enables alignment with task-specific goals, especially in post-hoc settings lacking ground-truth explanations. Empirical evaluations demonstrate that TaylorPODA achieves competitive results against baseline methods, providing principled and visualization-friendly explanations. This work represents a step toward the trustworthy deployment of opaque models by offering explanations with stronger theoretical grounding.
comment: 17 pages, 6 figures. To be submitted to AAAI 2026. Re-upload with amended author list
♻ ☆ ASR-Guided Speaker-Role Diarization and Diarization-Guided ASR Decoding
From an application standpoint, speaker-role diarization (RD), such as doctor vs. patient, host vs. guest, etc. is often more useful than traditional speaker diarization (SD), which assigns generic labels like speaker-1, speaker-2 etc. In the context of joint automatic speech recognition (ASR) + SD (who spoke what?), recent end-to-end models employ an auxiliary SD transducer, synchronized with the ASR transducer, to predict speakers per word. In this paper, we extend this framework to RD with three key contributions: (1) we simplify the training via forced alignment and cross-entropy loss instead of RNNT loss, (2) we show that word prediction and role prediction require different amounts of predictor's context, leading to separate task-specific predictors, unlike existing shared-predictor models, and (3) we propose a way to leverage RD posterior activity to influence ASR decoding and reduce small-word deletion errors.
comment: Work in progress
♻ ☆ Distillation Scaling Laws ICML 2025
We propose a distillation scaling law that estimates distilled model performance based on a compute budget and its allocation between the student and teacher. Our findings mitigate the risks associated with large-scale distillation by enabling compute-optimal allocation for both the teacher and student to maximize student performance. We provide compute-optimal distillation recipes for two key scenarios: when a teacher already exists, and when a teacher needs training. In settings involving many students or an existing teacher, distillation outperforms supervised learning up to a compute level that scales predictably with student size. Conversely, if only one student is to be distilled and a teacher also requires training, supervised learning is generally preferable. Additionally, our large-scale study of distillation increases our understanding of the process and helps inform experimental design.
comment: Version accepted to ICML 2025. 69 pages, 54 figures, 13 tables
♻ ☆ Integrating Physics and Topology in Neural Networks for Learning Rigid Body Dynamics
Rigid body interactions are fundamental to numerous scientific disciplines, but remain challenging to simulate due to their abrupt nonlinear nature and sensitivity to complex, often unknown environmental factors. These challenges call for adaptable learning-based methods capable of capturing complex interactions beyond explicit physical models and simulations. While graph neural networks can handle simple scenarios, they struggle with complex scenes and long-term predictions. We introduce a novel framework for modeling rigid body dynamics and learning collision interactions, addressing key limitations of existing graph-based methods. Our approach extends the traditional representation of meshes by incorporating higher-order topology complexes, offering a physically consistent representation. Additionally, we propose a physics-informed message-passing neural architecture, embedding physical laws directly in the model. Our method demonstrates superior accuracy, even during long rollouts, and exhibits strong generalization to unseen scenarios. Importantly, this work addresses the challenge of multi-entity dynamic interactions, with applications spanning diverse scientific and engineering domains.
comment: 20 pages, 10 figures. Published in Nature Communications
♻ ☆ Learning Causally Predictable Outcomes from Psychiatric Longitudinal Data
Causal inference in longitudinal biomedical data remains a central challenge, especially in psychiatry, where symptom heterogeneity and latent confounding frequently undermine classical estimators. Most existing methods for treatment effect estimation presuppose a fixed outcome variable and address confounding through observed covariate adjustment. However, the assumption of unconfoundedness may not hold for a fixed outcome in practice. To address this foundational limitation, we directly optimize the outcome definition to maximize causal identifiability. Our DEBIAS (Durable Effects with Backdoor-Invariant Aggregated Symptoms) algorithm learns non-negative, clinically interpretable weights for outcome aggregation, maximizing durable treatment effects and empirically minimizing both observed and latent confounding by leveraging the time-limited direct effects of prior treatments in psychiatric longitudinal data. The algorithm also furnishes an empirically verifiable test for outcome unconfoundedness. DEBIAS consistently outperforms state-of-the-art methods in recovering causal effects for clinically interpretable composite outcomes across comprehensive experiments in depression and schizophrenia.
comment: R code is available at github.com/ericstrobl/DEBIAS
♻ ☆ Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning
Auxiliary tasks facilitate learning in situations where data is scarce or the principal task of interest is extremely complex. This idea is primarily inspired by the improved generalization capability induced by solving multiple tasks simultaneously, which leads to a more robust shared representation. Nevertheless, finding optimal auxiliary tasks is a crucial problem that often requires hand-crafted solutions or expensive meta-learning approaches. In this paper, we propose a novel framework, dubbed Detaux, whereby a weakly supervised disentanglement procedure is used to discover a new unrelated auxiliary classification task, which allows us to go from a Single-Task Learning (STL) to a Multi-Task Learning (MTL) problem. The disentanglement procedure works at the representation level, isolating the variation related to the principal task into an isolated subspace and additionally producing an arbitrary number of orthogonal subspaces, each of which encourages high separability among projections. We generate the auxiliary classification task through a clustering procedure on the most disentangled subspace, obtaining a discrete set of labels. Subsequently, the original data, the labels associated with the principal task, and the newly discovered ones can be fed into any MTL framework. Experimental validation on both synthetic and real data, along with various ablation studies, demonstrates promising results, revealing the potential in what has been, so far, an unexplored connection between learning disentangled representations and MTL. The source code is available at https://github.com/intelligolabs/Detaux.
comment: Accepted at ICIAP25
♻ ☆ Agreement-Based Cascading for Efficient Inference
Adaptive inference schemes reduce the cost of machine learning inference by assigning smaller models to easier examples, attempting to avoid invocation of larger models when possible. In this work we explore a simple, effective adaptive inference technique we term Agreement-Based Cascading (ABC). ABC builds a cascade of models of increasing size/complexity, and uses agreement between ensembles of models at each level of the cascade as a basis for data-dependent routing. Although ensemble execution introduces additional expense, we show that these costs can be easily offset in practice due to large expected differences in model sizes, parallel inference execution capabilities, and accuracy benefits of ensembling. We examine ABC theoretically and empirically in terms of these parameters, showing that the approach can reliably act as a drop-in replacement for existing models and surpass the best single model it aims to replace in terms of both efficiency and accuracy. Additionally, we explore the performance of ABC relative to existing cascading methods in three common scenarios: (1) edge-to-cloud inference, where ABC reduces communication costs by up to 14x; (2) cloud-based model serving, where it achieves a 3x reduction in rental costs; and (3) inference via model API services, where ABC achieves a 2-25x reduction in average price per token/request relative to state-of-the-art LLM cascades.
comment: Published at TMLR (July 2025)
♻ ☆ Deep Learning for Double Auction
Auctions are important mechanisms extensively implemented in various markets, e.g., search engines' keyword auctions, antique auctions, etc. Finding an optimal auction mechanism is extremely difficult due to the constraints of imperfect information, incentive compatibility (IC), and individual rationality (IR). In addition to the traditional economic methods, some recently attempted to find the optimal (single) auction using deep learning methods. Unlike those attempts focusing on single auctions, we develop deep learning methods for double auctions, where imperfect information exists on both the demand and supply sides. The previous attempts on single auction cannot directly apply to our contexts and those attempts additionally suffer from limited generalizability, inefficiency in ensuring the constraints, and learning fluctuations. We innovate in designing deep learning models for solving the more complex problem and additionally addressing the previous models' three limitations. Specifically, we achieve generalizability by leveraging a transformer-based architecture to model market participants as sequences for varying market sizes; we utilize the numerical features of the constraints and pre-treat them for a higher learning efficiency; we develop a gradient-conflict-elimination scheme to address the problem of learning fluctuation. Extensive experimental evaluations demonstrate the superiority of our approach to classical and machine learning baselines.
comment: This submission has been withdrawn in accordance with our institution's publication policy, which requires additional internal review and approval prior to public release
♻ ☆ Lower Bounds on the Size of Markov Equivalence Classes
Causal discovery algorithms typically recover causal graphs only up to their Markov equivalence classes unless additional parametric assumptions are made. The sizes of these equivalence classes reflect the limits of what can be learned about the underlying causal graph from purely observational data. Under the assumptions of acyclicity, causal sufficiency, and a uniform model prior, Markov equivalence classes are known to be small on average. In this paper, we show that this is no longer the case when any of these assumptions is relaxed. Specifically, we prove exponentially large lower bounds for the expected size of Markov equivalence classes in three settings: sparse random directed acyclic graphs, uniformly random acyclic directed mixed graphs, and uniformly random directed cyclic graphs.
♻ ☆ Generating Clinically Realistic EHR Data via a Hierarchy- and Semantics-Guided Transformer
Generating realistic synthetic electronic health records (EHRs) holds tremendous promise for accelerating healthcare research, facilitating AI model development and enhancing patient privacy. However, existing generative methods typically treat EHRs as flat sequences of discrete medical codes. This approach overlooks two critical aspects: the inherent hierarchical organization of clinical coding systems and the rich semantic context provided by code descriptions. Consequently, synthetic patient sequences often lack high clinical fidelity and have limited utility in downstream clinical tasks. In this paper, we propose the Hierarchy- and Semantics-Guided Transformer (HiSGT), a novel framework that leverages both hierarchical and semantic information for the generative process. HiSGT constructs a hierarchical graph to encode parent-child and sibling relationships among clinical codes and employs a graph neural network to derive hierarchy-aware embeddings. These are then fused with semantic embeddings extracted from a pre-trained clinical language model (e.g., ClinicalBERT), enabling the Transformer-based generator to more accurately model the nuanced clinical patterns inherent in real EHRs. Extensive experiments on the MIMIC-III and MIMIC-IV datasets demonstrate that HiSGT significantly improves the statistical alignment of synthetic data with real patient records, as well as supports robust downstream applications such as chronic disease classification. By addressing the limitations of conventional raw code-based generative models, HiSGT represents a significant step toward clinically high-fidelity synthetic data generation and a general paradigm suitable for interpretable medical code representation, offering valuable applications in data augmentation and privacy-preserving healthcare analytics.
comment: The camera ready version for ECAI-2025
♻ ☆ Accelerometry-based Energy Expenditure Estimation During Activities of Daily Living: A Comparison Among Different Accelerometer Compositions
Physical activity energy expenditure (PAEE) can be measured from breath-by-breath respiratory data, which can serve as a reference. Alternatively, PAEE can be predicted from the body movements, which can be measured and estimated with accelerometers. The body center of mass (COM) acceleration reflects the movements of the whole body and thus serves as a good predictor for PAEE. However, the wrist has also become a popular location due to recent advancements in wrist-worn devices. Therefore, in this work, using the respiratory data measured by COSMED K5 as the reference, we evaluated and compared the performances of COM-based settings and wrist-based settings. The COM-based settings include two different accelerometer compositions, using only the pelvis accelerometer (pelvis-acc) and the pelvis accelerometer with two accelerometers from two thighs (3-acc). The wrist-based settings include using only the left wrist accelerometer (l-wrist-acc) and only the right wrist accelerometer (r-wrist-acc). We implemented two existing PAEE estimation methods on our collected dataset, where 9 participants performed activities of daily living while wearing 5 accelerometers (i.e., pelvis, two thighs, and two wrists). These two methods include a linear regression (LR) model and a CNN-LSTM model. Both models yielded the best results with the COM-based 3-acc setting (LR: $R^2$ = 0.41, CNN-LSTM: $R^2$ = 0.53). No significant difference was found between the 3-acc and pelvis-acc settings (p-value = 0.278). For both models, neither the l-wrist-acc nor the r-wrist-acc settings demonstrated predictive power on PAEE with $R^2$ values close to 0, significantly outperformed by the two COM-based settings (p-values $<$ 0.05). No significant difference was found between the two wrists (p-value = 0.329).
comment: This work has been accepted by IEEE EMBC 2025
♻ ☆ Interpretable Cross-Sphere Multiscale Deep Learning Predicts ENSO Skilfully Beyond 2 Years
El Ni\~no-Southern Oscillation (ENSO) exerts global climate and societal impacts, but real-time prediction with lead times beyond one year remains challenging. Dynamical models suffer from large biases and uncertainties, while deep learning struggles with interpretability and multi-scale dynamics. Here, we introduce PTSTnet, an interpretable model that unifies dynamical processes and cross-scale spatiotemporal learning in an innovative neural-network framework with physics-encoding learning. PTSTnet produces interpretable predictions significantly outperforming state-of-the-art benchmarks with lead times beyond 24 months, providing physical insights into error propagation in ocean-atmosphere interactions. PTSTnet learns feature representations with physical consistency from sparse data to tackle inherent multi-scale and multi-physics challenges underlying ocean-atmosphere processes, thereby inherently enhancing long-term prediction skill. Our successful realizations mark substantial steps forward in interpretable insights into innovative neural ocean modelling.
comment: 13 pages, 4 figures
♻ ☆ Reactivation: Empirical NTK Dynamics Under Task Shifts ICML 2025
The Neural Tangent Kernel (NTK) offers a powerful tool to study the functional dynamics of neural networks. In the so-called lazy, or kernel regime, the NTK remains static during training and the network function is linear in the static neural tangents feature space. The evolution of the NTK during training is necessary for feature learning, a key driver of deep learning success. The study of the NTK dynamics has led to several critical discoveries in recent years, in generalization and scaling behaviours. However, this body of work has been limited to the single task setting, where the data distribution is assumed constant over time. In this work, we present a comprehensive empirical analysis of NTK dynamics in continual learning, where the data distribution shifts over time. Our findings highlight continual learning as a rich and underutilized testbed for probing the dynamics of neural training. At the same time, they challenge the validity of static-kernel approximations in theoretical treatments of continual learning, even at large scale.
comment: Accepted by the 3rd Workshop on High-dimensional Learning Dynamics (HiLD), ICML 2025
♻ ☆ Delphos: A reinforcement learning framework for assisting discrete choice model specification
We introduce Delphos, a deep reinforcement learning framework for assisting the discrete choice model specification process. Unlike traditional approaches that treat model specification as a static optimisation problem, Delphos represents a paradigm shift: it frames this specification challenge as a sequential decision-making problem, formalised as a Markov Decision Process. In this setting, an agent learns to specify well-performing model candidates by choosing a sequence of modelling actions - such as selecting variables, accommodating both generic and alternative-specific taste parameters, applying non-linear transformations, and including interactions with covariates - and interacting with a modelling environment that estimates each candidate and returns a reward signal. Specifically, Delphos uses a Deep Q-Network that receives delayed rewards based on modelling outcomes (e.g., log-likelihood) and behavioural expectations (e.g., parameter signs), and distributes rewards across the sequence of actions to learn which modelling decisions lead to well-performing candidates. We evaluate Delphos on both simulated and empirical datasets, varying the size of the modelling space and the reward function. To assess the agent's performance in navigating the model space, we analyse the learning curve, the distribution of Q-values, occupancy metrics, and Pareto fronts. Our results show that the agent learns to adaptively explore strategies to identify well-performing models across search spaces, even without prior domain knowledge. It efficiently explores large modelling spaces, concentrates its search in high-reward regions, and suggests candidates that define Pareto frontiers balancing model fit and behavioural plausibility. These findings highlight the potential of this novel adaptive, learning-based framework to assist in the model specification process.
comment: 13 pages, 7 figures
♻ ☆ Prolonging Tool Life: Learning Skillful Use of General-purpose Tools through Lifespan-guided Reinforcement Learning
In inaccessible environments with uncertain task demands, robots often rely on general-purpose tools that lack predefined usage strategies. These tools are not tailored for particular operations, making their longevity highly sensitive to how they are used. This creates a fundamental challenge: how can a robot learn a tool-use policy that both completes the task and prolongs the tool's lifespan? In this work, we address this challenge by introducing a reinforcement learning (RL) framework that incorporates tool lifespan as a factor during policy optimization. Our framework leverages Finite Element Analysis (FEA) and Miner's Rule to estimate Remaining Useful Life (RUL) based on accumulated stress, and integrates the RUL into the RL reward to guide policy learning toward lifespan-guided behavior. To handle the fact that RUL can only be estimated after task execution, we introduce an Adaptive Reward Normalization (ARN) mechanism that dynamically adjusts reward scaling based on estimated RULs, ensuring stable learning signals. We validate our method across simulated and real-world tool use tasks, including Object-Moving and Door-Opening with multiple general-purpose tools. The learned policies consistently prolong tool lifespan (up to 8.01x in simulation) and transfer effectively to real-world settings, demonstrating the practical value of learning lifespan-guided tool use strategies.
comment: Under review
♻ ☆ Pilot Contamination-Aware Graph Attention Network for Power Control in CFmMIMO
Optimization-based power control algorithms are predominantly iterative with high computational complexity, making them impractical for real-time applications in cell-free massive multiple-input multiple-output (CFmMIMO) systems. Learning-based methods have emerged as a promising alternative, and among them, graph neural networks (GNNs) have demonstrated their excellent performance in solving power control problems. However, all existing GNN-based approaches assume ideal orthogonality among pilot sequences for user equipments (UEs), which is unrealistic given that the number of UEs exceeds the available orthogonal pilot sequences in CFmMIMO schemes. Moreover, most learning-based methods assume a fixed number of UEs, whereas the number of active UEs varies over time in practice. Additionally, supervised training necessitates costly computational resources for computing the target power control solutions for a large volume of training samples. To address these issues, we propose a graph attention network for downlink power control in CFmMIMO systems that operates in a self-supervised manner while effectively handling pilot contamination and adapting to a dynamic number of UEs. Experimental results show its effectiveness, even in comparison to the optimal accelerated projected gradient method as a baseline.
♻ ☆ Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs
Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
♻ ☆ Doubly Regularized Entropic Wasserstein Barycenters
We study a general formulation of regularized Wasserstein barycenters that enjoys favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it $(\lambda,\tau)$-barycenter, where $\lambda$ is the inner regularization strength and $\tau$ the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of $\lambda,\tau \geq 0$ and generalizes them. First, in spite of -- and in fact owing to -- being \emph{doubly} regularized, we show that our formulation is debiased for $\tau=\lambda/2$: the suboptimality in the (unregularized) Wasserstein barycenter objective is, for smooth densities, of the order of the strength $\lambda^2$ of entropic regularization, instead of $\max\{\lambda,\tau\}$ in general. We discuss this phenomenon for isotropic Gaussians where all $(\lambda,\tau)$-barycenters have closed form. Second, we show that for $\lambda,\tau>0$, this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given $n$ samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate $n^{-1/2}$. And finally, this formulation lends itself naturally to a grid-free optimization algorithm: we propose a simple \emph{noisy particle gradient descent} which, in the mean-field limit, converges globally at an exponential rate to the barycenter.
♻ ☆ Scalpel vs. Hammer: GRPO Amplifies Existing Capabilities, SFT Replaces Them
Training large language models (LLMs) for reasoning via maths and code datasets has become a major new focus in LLM post-training. Two particularly popular approaches are reinforcement learning (RL) and supervised fine-tuning (SFT), but their training dynamics are poorly understood. We present a comparative analysis of RL and SFT on the same maths problems with the same model and similar hyperparameters. We find that RL yields minor in-domain gains on maths and slight degradation on knowledge-intensive benchmarks like MMLU, while both trends are more pronounced in SFT. We also analyse model parameters across checkpoints, observing that both algorithms modify query and key weights the most. Meanwhile, SFT exhibits greater updates and also affects mid-layer MLPs more, leading us to hypothesise that this may have caused the out-of-domain degradation. We therefore investigate whether freezing parts of the model during training can mitigate the reduced performance on knowledge-intensive benchmarks. However, our results are inconclusive, with benefits on GPQA:Diamond and degradation on other benchmarks. Taken together, our observations provide a preliminary indication for why RL amplifies existing capabilities, while SFT replaces old skills with new ones.
♻ ☆ Learnable cut flow for high energy physics
Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but requires extensive manual tuning to identify optimal cut boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this strategy, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF 1. accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, 2. assigns higher importance to discriminative features with minimal overlap, 3. handles redundant or correlated features robustly, and 4. performs effectively in real-world scenarios. In the diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. However, pruning less critical features-guided by learned importance-boosts its performance to match or exceed these baselines. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance.
comment: 31 pages, 26 figures, 8 tables, source code and data are available at GitHub
♻ ☆ Studying Cross-cluster Modularity in Neural Networks
An approach to improve neural network interpretability is via clusterability, i.e., splitting a model into disjoint clusters that can be studied independently. We define a measure for clusterability and show that pre-trained models form highly enmeshed clusters via spectral graph clustering. We thus train models to be more modular using a "clusterability loss" function that encourages the formation of non-interacting clusters. We then investigate the emerging properties of these highly clustered models. We find our trained clustered models do not exhibit more task specialization, but do form smaller circuits. We investigate CNNs trained on MNIST and CIFAR, small transformers trained on modular addition, and GPT-2 and Pythia on the Wiki dataset, and Gemma on a Chemistry dataset. This investigation shows what to expect from clustered models.
comment: 8 pages, under review. arXiv admin note: text overlap with arXiv:2409.15747 (author note: this is an extension of that paper but has different authors)
♻ ☆ Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings
The excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation. To gain insights into this problem, we first conduct extensive empirical studies on the attention behaviors of MLLMs, and summarize three main inference stages in MLLMs: (i) Early fusion between tokens is first accomplished quickly. (ii) Intra-modality modeling then comes to play. (iii) Multimodal reasoning} resumes and lasts until the end of inference. In particular, we reveal that visual tokens will stop contributing to reasoning when the text tokens receive enough image information, yielding obvious visual redundancy. Based on these generalized observations, we propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE). DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer, thereby addressing the observed visual redundancy. To validate VTE, we apply it to a set of MLLMs, including LLaVA, VILA, Eagle and InternVL, and conduct extensive experiments on a bunch of benchmarks. The experiment results not only show the effectiveness of our VTE in improving MLLMs' efficiency, but also yield the general modeling patterns of MLLMs, well facilitating the in-depth understanding of MLLMs. Our code is released at https://github.com/DoubtedSteam/DyVTE.
♻ ☆ Large Language Models as Attribution Regularizers for Efficient Model Training
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains. However, effectively leveraging their vast knowledge for training smaller downstream models remains an open challenge, especially in domains like tabular data learning, where simpler models are often preferred due to interpretability and efficiency. In this paper, we introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks. Specifically, we propose an attribution-matching regularization term that aligns the training dynamics of the smaller model with the insights provided by the LLM. By doing so, our approach yields superior performance in few-shot learning scenarios. Notably, our method requires only black-box API access to the LLM, making it easy to integrate into existing training pipelines with minimal computational overhead. Furthermore, we demonstrate how this method can be used to address common issues in real-world datasets, such as skewness and bias. By integrating high-level knowledge from LLMs, our approach improves generalization, even when training data is limited or imbalanced. We validate its effectiveness through extensive experiments across multiple tasks, demonstrating improved learning efficiency and model robustness.
♻ ☆ Mean flow data assimilation using physics-constrained Graph Neural Networks
Despite their widespread use, purely data-driven methods often suffer from overfitting, lack of physical consistency, and high data dependency, particularly when physical constraints are not incorporated. This study introduces a novel data assimilation approach that integrates Graph Neural Networks (GNNs) with optimisation techniques to enhance the accuracy of mean flow reconstruction, using Reynolds-Averaged Navier-Stokes (RANS) equations as a baseline. The method leverages the adjoint approach, incorporating RANS-derived gradients as optimisation terms during GNN training, ensuring that the learned model adheres to physical laws and maintains consistency. Additionally, the GNN framework is well-suited for handling unstructured data, which is common in the complex geometries encountered in Computational Fluid Dynamics (CFD). The GNN is interfaced with the Finite Element Method (FEM) for numerical simulations, enabling accurate modelling in unstructured domains. We consider the reconstruction of mean flow past bluff bodies at low Reynolds numbers as a test case, addressing tasks such as sparse data recovery, denoising, and inpainting of missing flow data. The key strengths of the approach lie in its integration of physical constraints into the GNN training process, leading to accurate predictions with limited data, making it particularly valuable when data are scarce or corrupted. Results demonstrate significant improvements in the accuracy of mean flow reconstructions, even with limited training data, compared to analogous purely data-driven models.
♻ ☆ Ambient Noise Full Waveform Inversion with Neural Operators
Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end-to-end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint-state method. State-of-the-art optimization techniques built into PyTorch provide neural operators with greater flexibility to improve the optimization dynamics of full waveform inversion, thereby mitigating cycle-skipping problems. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic dataset, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.
comment: Revision
♻ ☆ A self-supervised neural-analytic method to predict the evolution of COVID-19 in Romania
Analysing and understanding the transmission and evolution of the COVID-19 pandemic is mandatory to be able to design the best social and medical policies, foresee their outcomes and deal with all the subsequent socio-economic effects. We address this important problem from a computational and machine learning perspective. More specifically, we want to statistically estimate all the relevant parameters for the new coronavirus COVID-19, such as the reproduction number, fatality rate or length of infectiousness period, based on Romanian patients, as well as be able to predict future outcomes. This endeavor is important, since it is well known that these factors vary across the globe, and might be dependent on many causes, including social, medical, age and genetic factors. We use a recently published improved version of SEIR, which is the classic, established model for infectious diseases. We want to infer all the parameters of the model, which govern the evolution of the pandemic in Romania, based on the only reliable, true measurement, which is the number of deaths. Once the model parameters are estimated, we are able to predict all the other relevant measures, such as the number of exposed and infectious people. To this end, we propose a self-supervised approach to train a deep convolutional network to guess the correct set of Modified-SEIR model parameters, given the observed number of daily fatalities. Then, we refine the solution with a stochastic coordinate descent approach. We compare our deep learning optimization scheme with the classic grid search approach and show great improvement in both computational time and prediction accuracy. We find an optimistic result in the case fatality rate for Romania which may be around 0.3% and we also demonstrate that our model is able to correctly predict the number of daily fatalities for up to three weeks in the future.
♻ ☆ ToolACE: Winning the Points of LLM Function Calling
Function calling significantly extends the application boundary of large language models, where high-quality and diverse training data is critical for unlocking this capability. However, real function-calling data is quite challenging to collect and annotate, while synthetic data generated by existing pipelines tends to lack coverage and accuracy. In this paper, we present ToolACE, an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data. ToolACE leverages a novel self-evolution synthesis process to curate a comprehensive API pool of 26,507 diverse APIs. Dialogs are further generated through the interplay among multiple agents, guided by a formalized thinking process. To ensure data accuracy, we implement a dual-layer verification system combining rule-based and model-based checks. We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard, rivaling the latest GPT-4 models. Our model and a subset of the data are publicly available at https://huggingface.co/Team-ACE.
comment: 21 pages, 22 figures
♻ ☆ Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization
We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.
comment: 8 pages, 3 figures
♻ ☆ XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare
Clinical decision support systems require models that are not only highly accurate but also equitable and sensitive to the implications of missed diagnoses. In this study, we introduce a knowledge-guided in-context learning (ICL) framework designed to enable large language models (LLMs) to effectively process structured clinical data. Our approach integrates domain-specific feature groupings, carefully balanced few-shot examples, and task-specific prompting strategies. We systematically evaluate this method across seventy distinct ICL designs by various prompt variations and two different communication styles-natural-language narrative and numeric conversational-and compare its performance to robust classical machine learning (ML) benchmarks on tasks involving heart disease and diabetes prediction. Our findings indicate that while traditional ML models maintain superior performance in balanced precision-recall scenarios, LLMs employing narrative prompts with integrated domain knowledge achieve higher recall and significantly reduce gender bias, effectively narrowing fairness disparities by an order of magnitude. Despite the current limitation of increased inference latency, LLMs provide notable advantages, including the capacity for zero-shot deployment and enhanced equity. This research offers the first comprehensive analysis of ICL design considerations for applying LLMs to tabular clinical tasks and highlights distillation and multimodal extensions as promising directions for future research.
♻ ☆ Stella Nera: A Differentiable Maddness-Based Hardware Accelerator for Efficient Approximate Matrix Multiplication
Artificial intelligence has surged in recent years, with advancements in machine learning rapidly impacting nearly every area of life. However, the growing complexity of these models has far outpaced advancements in available hardware accelerators, leading to significant computational and energy demands, primarily due to matrix multiplications, which dominate the compute workload. Maddness (i.e., Multiply-ADDitioN-lESS) presents a hash-based version of product quantization, which renders matrix multiplications into lookups and additions, eliminating the need for multipliers entirely. We present Stella Nera, the first Maddness-based accelerator achieving an energy efficiency of 161 TOp/s/W@0.55V, 25x better than conventional MatMul accelerators due to its small components and reduced computational complexity. We further enhance Maddness with a differentiable approximation, allowing for gradient-based fine-tuning and achieving an end-to-end performance of 92.5% Top-1 accuracy on CIFAR-10.
comment: Accepted as full paper at IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2025
♻ ☆ Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning ICCV 2025
Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
comment: Accepted at ICCV 2025 (Highlight)
♻ ☆ CLIP-Guided Backdoor Defense through Entropy-Based Poisoned Dataset Separation
Deep Neural Networks (DNNs) are susceptible to backdoor attacks, where adversaries poison training data to implant backdoor into the victim model. Current backdoor defenses on poisoned data often suffer from high computational costs or low effectiveness against advanced attacks like clean-label and clean-image backdoors. To address them, we introduce CLIP-Guided backdoor Defense (CGD), an efficient and effective method that mitigates various backdoor attacks. CGD utilizes a publicly accessible CLIP model to identify inputs that are likely to be clean or poisoned. It then retrains the model with these inputs, using CLIP's logits as a guidance to effectively neutralize the backdoor. Experiments on 4 datasets and 11 attack types demonstrate that CGD reduces attack success rates (ASRs) to below 1% while maintaining clean accuracy (CA) with a maximum drop of only 0.3%, outperforming existing defenses. Additionally, we show that clean-data-based defenses can be adapted to poisoned data using CGD. Also, CGD exhibits strong robustness, maintaining low ASRs even when employing a weaker CLIP model or when CLIP itself is compromised by a backdoor. These findings underscore CGD's exceptional efficiency, effectiveness, and applicability for real-world backdoor defense scenarios. Code: https://github.com/binyxu/CGD.
comment: 15 pages, 9 figures, 15 tables. To appear in the Proceedings of the 32nd ACM International Conference on Multimedia (MM '25)
♻ ☆ Verbalized Representation Learning for Interpretable Few-Shot Generalization ICCV 2025
Humans recognize objects after observing only a few examples, a remarkable capability enabled by their inherent language understanding of the real-world environment. Developing verbalized and interpretable representation can significantly improve model generalization in low-data settings. In this work, we propose Verbalized Representation Learning (VRL), a novel approach for automatically extracting human-interpretable features for object recognition using few-shot data. Our method uniquely captures inter-class differences and intra-class commonalities in the form of natural language by employing a Vision-Language Model (VLM) to identify key discriminative features between different classes and shared characteristics within the same class. These verbalized features are then mapped to numeric vectors through the VLM. The resulting feature vectors can be further utilized to train and infer with downstream classifiers. Experimental results show that, at the same model scale, VRL achieves a 24% absolute improvement over prior state-of-the-art methods while using 95% less data and a smaller mode. Furthermore, compared to human-labeled attributes, the features learned by VRL exhibit a 20% absolute gain when used for downstream classification tasks. Code is available at: https://github.com/joeyy5588/VRL/tree/main.
comment: Accepted to ICCV 2025
♻ ☆ Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
Multi-agent reinforcement learning (MARL) for cyber-physical vehicle systems usually requires a significantly long training time due to their inherent complexity. Furthermore, deploying the trained policies in the real world demands a feature-rich environment along with multiple physical embodied agents, which may not be feasible due to monetary, physical, energy, or safety constraints. This work seeks to address these pain points by presenting a mixed-reality (MR) digital twin (DT) framework capable of: (i) boosting training speeds by selectively scaling parallelized simulation workloads on-demand, and (ii) immersing the MARL policies across hybrid simulation-to-reality (sim2real) experiments. The viability and performance of the proposed framework are highlighted through two representative use cases, which cover cooperative as well as competitive classes of MARL problems. We study the effect of: (i) agent and environment parallelization on training time, and (ii) systematic domain randomization on zero-shot sim2real transfer, across both case studies. Results indicate up to 76.3% reduction in training time with the proposed parallelization scheme and sim2real gap as low as 2.9% using the proposed deployment method.
comment: Accepted in IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
♻ ☆ Concept-TRAK: Understanding how diffusion models learn concepts through concept-level attribution
While diffusion models excel at image generation, their growing adoption raises critical concerns around copyright issues and model transparency. Existing attribution methods identify training examples influencing an entire image, but fall short in isolating contributions to specific elements, such as styles or objects, that matter most to stakeholders. To bridge this gap, we introduce \emph{concept-level attribution} via a novel method called \emph{Concept-TRAK}. Concept-TRAK extends influence functions with two key innovations: (1) a reformulated diffusion training loss based on diffusion posterior sampling, enabling robust, sample-specific attribution; and (2) a concept-aware reward function that emphasizes semantic relevance. We evaluate Concept-TRAK on the AbC benchmark, showing substantial improvements over prior methods. Through diverse case studies--ranging from identifying IP-protected and unsafe content to analyzing prompt engineering and compositional learning--we demonstrate how concept-level attribution yields actionable insights for responsible generative AI development and governance.
comment: Preprint
♻ ☆ On exploration of an interior mirror descent flow for stochastic nonconvex constrained problem
We study a nonsmooth nonconvex optimization problem defined over nonconvex constraints, where the feasible set is given by the intersection of the closure of an open set and a smooth manifold. By endowing the open set with a Riemannian metric induced by a barrier function, we obtain a Riemannian subgradient flow formulated as a differential inclusion, which remains strictly within the interior of the feasible set. This continuous dynamical system unifies two classes of iterative optimization methods, namely the Hessian barrier method and mirror descent scheme, by revealing that these methods can be interpreted as discrete approximations of the continuous flow. We explore the long-term behavior of the trajectories generated by this dynamical system and show that the existing deficient convergence properties of the Hessian barrier and mirror descent scheme can be unifily and more insightfully interpreted through these of the continuous trajectory. For instance, the notorious spurious stationary points \cite{chen2024spurious} observed in Hessian barrier method and mirror descent scheme are interpreted as stable equilibria of the dynamical system that do not correspond to real stationary points of the original optimization problem. We provide two sufficient condition such that these spurious stationary points can be avoided if the strict complementarity conditions holds. In the absence of these regularity condition, we propose a random perturbation strategy that ensures the trajectory converges (subsequentially) to an approximate stationary point. Building on these insights, we introduce two iterative Riemannian subgradient methods, form of interior point methods, that generalizes the existing Hessian barrier method and mirror descent scheme for solving nonsmooth nonconvex optimization problems.
comment: 34 Pages
♻ ☆ MedicalBERT: enhancing biomedical natural language processing using pretrained BERT-based model
Recent advances in natural language processing (NLP) have been driven bypretrained language models like BERT, RoBERTa, T5, and GPT. Thesemodels excel at understanding complex texts, but biomedical literature, withits domain-specific terminology, poses challenges that models likeWord2Vec and bidirectional long short-term memory (Bi-LSTM) can't fullyaddress. GPT and T5, despite capturing context, fall short in tasks needingbidirectional understanding, unlike BERT. Addressing this, we proposedMedicalBERT, a pretrained BERT model trained on a large biomedicaldataset and equipped with domain-specific vocabulary that enhances thecomprehension of biomedical terminology. MedicalBERT model is furtheroptimized and fine-tuned to address diverse tasks, including named entityrecognition, relation extraction, question answering, sentence similarity, anddocument classification. Performance metrics such as the F1-score,accuracy, and Pearson correlation are employed to showcase the efficiencyof our model in comparison to other BERT-based models such as BioBERT,SciBERT, and ClinicalBERT. MedicalBERT outperforms these models onmost of the benchmarks, and surpasses the general-purpose BERT model by5.67% on average across all the tasks evaluated respectively. This work alsounderscores the potential of leveraging pretrained BERT models for medicalNLP tasks, demonstrating the effectiveness of transfer learning techniques incapturing domain-specific information. (PDF) MedicalBERT: enhancing biomedical natural language processing using pretrained BERT-based model. Available from: https://www.researchgate.net/publication/392489050_MedicalBERT_enhancing_biomedical_natural_language_processing_using_pretrained_BERT-based_model [accessed Jul 06 2025].
♻ ☆ From Conditional to Unconditional Independence: Testing Conditional Independence via Transport Maps
Testing conditional independence between two random vectors given a third is a fundamental and challenging problem in statistics, particularly in multivariate nonparametric settings due to the complexity of conditional structures. We propose a novel method for testing conditional independence by transforming it to an unconditional independence test problem. We achieve this by constructing two transport maps that transform conditional independence into unconditional independence, this substantially simplifies the problem. These transport maps are estimated from data using conditional continuous normalizing flow models. Within this framework, we derive a test statistic and prove its asymptotic validity under both the null and alternative hypotheses. A permutation-based procedure is employed to evaluate the significance of the test. We validate the proposed method through extensive simulations and real-data analysis. Our numerical studies demonstrate the practical effectiveness of the proposed method for conditional independence
comment: 41 pages
♻ ☆ PLEIADES: Building Temporal Kernels with Orthogonal Polynomials
We introduce a class of neural networks named PLEIADES (PoLynomial Expansion In Adaptive Distributed Event-based Systems), which contains temporal convolution kernels generated from orthogonal polynomial basis functions. We focus on interfacing these networks with event-based data to perform online spatiotemporal classification and detection with low latency. By virtue of using structured temporal kernels and event-based data, we have the freedom to vary the sample rate of the data along with the discretization step-size of the network without additional finetuning. We experimented with three event-based benchmarks and obtained state-of-the-art results on all three by large margins with significantly smaller memory and compute costs. We achieved: 1) 99.59% accuracy with 192K parameters on the DVS128 hand gesture recognition dataset and 100% with a small additional output filter; 2) 99.58% test accuracy with 277K parameters on the AIS 2024 eye tracking challenge; and 3) 0.556 mAP with 576k parameters on the PROPHESEE 1 Megapixel Automotive Detection Dataset.
comment: 14 pages, 3 figures
♻ ☆ Bridging Quantum and Classical Computing in Drug Design: Architecture Principles for Improved Molecule Generation
Hybrid quantum-classical machine learning offers a path to leverage noisy intermediate-scale quantum (NISQ) devices for drug discovery, but optimal model architectures remain unclear. We systematically optimize the quantum-classical bridge architecture of generative adversarial networks (GANs) for molecule discovery using multi-objective Bayesian optimization. Our optimized model (BO-QGAN) significantly improves performance, achieving a 2.27-fold higher Drug Candidate Score (DCS) than prior quantum-hybrid benchmarks and 2.21-fold higher than the classical baseline, while reducing parameter count by more than 60%. Key findings favor layering multiple (3-4) shallow (4-8 qubit) quantum circuits sequentially, while classical architecture shows less sensitivity above a minimum capacity. This work provides the first empirically-grounded architectural guidelines for hybrid models, enabling more effective integration of current quantum computers into pharmaceutical research pipelines.
comment: Published in Proceedings of the Workshop on Generative AI for Biology at the 42nd International Conference on Machine Learning 10 pages, 7 figures
♻ ☆ A Survey on State-of-the-art Deep Learning Applications and Challenges
Deep learning, a branch of artificial intelligence, is a data-driven method that uses multiple layers of interconnected units or neurons to learn intricate patterns and representations directly from raw input data. Empowered by this learning capability, it has become a powerful tool for solving complex problems and is the core driver of many groundbreaking technologies and innovations. Building a deep learning model is challenging due to the algorithm's complexity and the dynamic nature of real-world problems. Several studies have reviewed deep learning concepts and applications. However, the studies mostly focused on the types of deep learning models and convolutional neural network architectures, offering limited coverage of the state-of-the-art deep learning models and their applications in solving complex problems across different domains. Therefore, motivated by the limitations, this study aims to comprehensively review the state-of-the-art deep learning models in computer vision, natural language processing, time series analysis and pervasive computing, and robotics. We highlight the key features of the models and their effectiveness in solving the problems within each domain. Furthermore, this study presents the fundamentals of deep learning, various deep learning model types and prominent convolutional neural network architectures. Finally, challenges and future directions in deep learning research are discussed to offer a broader perspective for future researchers.
comment: Update journal reference. This manuscript has been published in Engineering Applications of Artificial Intelligence (Elsevier)
♻ ☆ Why Isn't Relational Learning Taking Over the World?
AI seems to be taking over the world with systems that model pixels, words, and phonemes. The world is arguably made up, not of pixels, words, and phonemes but of entities (objects, things, including events) with properties and relations among them. Surely we should model these, not the perception or description of them. You might suspect that concentrating on modeling words and pixels is because all of the (valuable) data in the world is in terms of text and images. If you look into almost any company you will find their most valuable data is in spreadsheets, databases and other relational formats. These are not the form that are studied in introductory machine learning, but are full of product numbers, student numbers, transaction numbers and other identifiers that can't be interpreted naively as numbers. The field that studies this sort of data has various names including relational learning, statistical relational AI, and many others. This paper explains why relational learning is not taking over the world -- except in a few cases with restricted relations -- and what needs to be done to bring it to it's rightful prominence.
comment: 10 pages (6 pages + references + appendices)
♻ ☆ Value-Based Deep RL Scales Predictably ICML 2025
Scaling data and compute is critical to the success of modern ML. However, scaling demands predictability: we want methods to not only perform well with more compute or data, but also have their performance be predictable from small-scale runs, without running the large-scale experiment. In this paper, we show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior. First, we show that data and compute requirements to attain a given performance level lie on a Pareto frontier, controlled by the updates-to-data (UTD) ratio. By estimating this frontier, we can predict this data requirement when given more compute, and this compute requirement when given more data. Second, we determine the optimal allocation of a total resource budget across data and compute for a given performance and use it to determine hyperparameters that maximize performance for a given budget. Third, this scaling is enabled by first estimating predictable relationships between hyperparameters, which is used to manage effects of overfitting and plasticity loss unique to RL. We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym, when extrapolating to higher levels of data, compute, budget, or performance.
comment: ICML 2025
♻ ☆ Estimation of conditional average treatment effects on distributed confidential data
The estimation of conditional average treatment effects (CATEs) is an important topic in many scientific fields. CATEs can be estimated with high accuracy if data distributed across multiple parties are centralized. However, it is difficult to aggregate such data owing to confidentiality or privacy concerns. To address this issue, we propose data collaboration double machine learning, a method for estimating CATE models using privacy-preserving fusion data constructed from distributed sources, and evaluate its performance through simulations. We make three main contributions. First, our method enables estimation and testing of semi-parametric CATE models without iterative communication on distributed data, providing robustness to model mis-specification compared to parametric approaches. Second, it enables collaborative estimation across different time points and parties by accumulating a knowledge base. Third, our method performs as well as or better than existing methods in simulations using synthetic, semi-synthetic, and real-world datasets.
comment: 45 pages, 12 figures
♻ ☆ Resonant-Tunnelling Diode Reservoir Computing System for Image Recognition
As artificial intelligence continues to push into real-time, edge-based and resource-constrained environments, there is an urgent need for novel, hardware-efficient computational models. In this study, we present and validate a neuromorphic computing architecture based on resonant-tunnelling diodes (RTDs), which exhibit the nonlinear characteristics ideal for physical reservoir computing (RC). We theoretically formulate and numerically implement an RTD-based RC system and demonstrate its effectiveness on two image recognition benchmarks: handwritten digit classification and object recognition using the Fruit~360 dataset. Our results show that this circuit-level architecture delivers promising performance while adhering to the principles of next-generation RC -- eliminating random connectivity in favour of a deterministic nonlinear transformation of input signals.
♻ ☆ BEAVER: Building Environments with Assessable Variation for Evaluating Multi-Objective Reinforcement Learning ICML
Recent years have seen significant advancements in designing reinforcement learning (RL)-based agents for building energy management. While individual success is observed in simulated or controlled environments, the scalability of RL approaches in terms of efficiency and generalization across building dynamics and operational scenarios remains an open question. In this work, we formally characterize the generalization space for the cross-environment, multi-objective building energy management task, and formulate the multi-objective contextual RL problem. Such a formulation helps understand the challenges of transferring learned policies across varied operational contexts such as climate and heat convection dynamics under multiple control objectives such as comfort level and energy consumption. We provide a principled way to parameterize such contextual information in realistic building RL environments, and construct a novel benchmark to facilitate the evaluation of generalizable RL algorithms in practical building control tasks. Our results show that existing multi-objective RL methods are capable of achieving reasonable trade-offs between conflicting objectives. However, their performance degrades under certain environment variations, underscoring the importance of incorporating dynamics-dependent contextual information into the policy learning process.
comment: Accepted at the Workshop on Computational Optimization of Buildings (ICML CO-BUILD), 42nd International Conference on Machine Learning (ICML 2025), Vancouver, Canada
Graphics 4
☆ TiVy: Time Series Visual Summary for Scalable Visualization IEEE VIS 2025
Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.
comment: to be published in TVCG (IEEE VIS 2025)
☆ Procedural city modeling
We propose a method to procedurally generate a familiar yet complex human artifact: the city. We are not trying to reproduce existing cities, but to generate artificial cities that are convincing and plausible by capturing developmental behavior. In addition, our results are meant to build upon themselves, such that they ought to look compelling at any point along the transition from village to metropolis. Our approach largely focuses upon land usage and building distribution for creating realistic city environments, whereas previous attempts at city modeling have mainly focused on populating road networks. Finally, we want our model to be self automated to the point that the only necessary input is a terrain description, but other high-level and low-level parameters can be specified to support artistic contributions. With the aid of agent based simulation we are generating a system of agents and behaviors that interact with one another through their effects upon a simulated environment. Our philosophy is that as each agent follows a simple behavioral rule set, a more complex behavior will tend to emerge out of the interactions between the agents and their differing rule sets. By confining our model to a set of simple rules for each class of agents, we hope to make our model extendible not only in regard to the types of structures that are produced, but also in describing the social and cultural influences prevalent in all cities
☆ GSCache: Real-Time Radiance Caching for Volume Path Tracing using 3D Gaussian Splatting
Real-time path tracing is rapidly becoming the standard for rendering in entertainment and professional applications. In scientific visualization, volume rendering plays a crucial role in helping researchers analyze and interpret complex 3D data. Recently, photorealistic rendering techniques have gained popularity in scientific visualization, yet they face significant challenges. One of the most prominent issues is slow rendering performance and high pixel variance caused by Monte Carlo integration. In this work, we introduce a novel radiance caching approach for path-traced volume rendering. Our method leverages advances in volumetric scene representation and adapts 3D Gaussian splatting to function as a multi-level, path-space radiance cache. This cache is designed to be trainable on the fly, dynamically adapting to changes in scene parameters such as lighting configurations and transfer functions. By incorporating our cache, we achieve less noisy, higher-quality images without increasing rendering costs. To evaluate our approach, we compare it against a baseline path tracer that supports uniform sampling and next-event estimation and the state-of-the-art for neural radiance caching. Through both quantitative and qualitative analyses, we demonstrate that our path-space radiance cache is a robust solution that is easy to integrate and significantly enhances the rendering quality of volumetric visualization applications while maintaining comparable computational efficiency.
♻ ☆ Motion Synthesis with Sparse and Flexible Keyjoint Control ICCV 2025
Creating expressive character animations is labor-intensive, requiring intricate manual adjustment of animators across space and time. Previous works on controllable motion generation often rely on a predefined set of dense spatio-temporal specifications (e.g., dense pelvis trajectories with exact per-frame timing), limiting practicality for animators. To process high-level intent and intuitive control in diverse scenarios, we propose a practical controllable motions synthesis framework that respects sparse and flexible keyjoint signals. Our approach employs a decomposed diffusion-based motion synthesis framework that first synthesizes keyjoint movements from sparse input control signals and then synthesizes full-body motion based on the completed keyjoint trajectories. The low-dimensional keyjoint movements can easily adapt to various control signal types, such as end-effector position for diverse goal-driven motion synthesis, or incorporate functional constraints on a subset of keyjoints. Additionally, we introduce a time-agnostic control formulation, eliminating the need for frame-specific timing annotations and enhancing control flexibility. Then, the shared second stage can synthesize a natural whole-body motion that precisely satisfies the task requirement from dense keyjoint movements. We demonstrate the effectiveness of sparse and flexible keyjoint control through comprehensive experiments on diverse datasets and scenarios.
comment: Accepted to ICCV 2025. Project Page: http://inwoohwang.me/SFControl